(精品)一线三等角相似模型.ppt
合集下载
精品一线三等角相似模型.ppt课件

• (3)当M点运动到什么位置时,Rt△ABM∽Rt△AMN?求此时x的 值.
如图,在△ABC中,AB=AC=5cm,BC=8,点P为BC边上一动点(不 与点B、C重合),过点P作射线PM交AC于点M,使∠APM=∠B;
(1)求证:△ABP∽△PCM; (2)设BP=x,CM=y.求 y与x的函数解析式,并写出函数的取值范
A型
基本 8型 图形
K型
一线三等角是一个常见的相似模型,指的是有三 个等角的顶点在同一条直线上构成的相似图形, 这个角可以是直角,也可以是锐角或钝角。
三角形基架
K型 矩形基架
梯形基架
毕达哥拉斯证法
赵爽弦图
K字型的一般形式
你能证明吗?
证明: 在ABC中 1 A ACB 180 又 2 DCE ACB 180
1 2 3 A DCE △ABC∽△CDE
1、如图,等边△ABC的边长为3
,点D是BC上一点,且BD=1,在
AC上取点E,使∠ADE=60度,AE
长为( c )
A. 3 B. 2
2
3
C.
7 3
D. 3
4
2.在矩形ABCD中,AB=4,BC=5,AF平 分∠DAE,EF⊥AE,
1.5 则CF= ______
∴ PM PC 5 PA AB 8
即
8x 5 58
39
∴BP= 8
A M
B
P
C
A
M
BP
CA MBPC5
• ∴BE= 3
【2014德州中考试题】 24.(2)是否存在点P,使得△ACP是以AC为直角边的 直角三角形?若存在,求出所有符合条件的点P的坐标; 若不存在,说明理由.
(2016呼市T9)如图,面积为24的正方形ABCD中,有一
如图,在△ABC中,AB=AC=5cm,BC=8,点P为BC边上一动点(不 与点B、C重合),过点P作射线PM交AC于点M,使∠APM=∠B;
(1)求证:△ABP∽△PCM; (2)设BP=x,CM=y.求 y与x的函数解析式,并写出函数的取值范
A型
基本 8型 图形
K型
一线三等角是一个常见的相似模型,指的是有三 个等角的顶点在同一条直线上构成的相似图形, 这个角可以是直角,也可以是锐角或钝角。
三角形基架
K型 矩形基架
梯形基架
毕达哥拉斯证法
赵爽弦图
K字型的一般形式
你能证明吗?
证明: 在ABC中 1 A ACB 180 又 2 DCE ACB 180
1 2 3 A DCE △ABC∽△CDE
1、如图,等边△ABC的边长为3
,点D是BC上一点,且BD=1,在
AC上取点E,使∠ADE=60度,AE
长为( c )
A. 3 B. 2
2
3
C.
7 3
D. 3
4
2.在矩形ABCD中,AB=4,BC=5,AF平 分∠DAE,EF⊥AE,
1.5 则CF= ______
∴ PM PC 5 PA AB 8
即
8x 5 58
39
∴BP= 8
A M
B
P
C
A
M
BP
CA MBPC5
• ∴BE= 3
【2014德州中考试题】 24.(2)是否存在点P,使得△ACP是以AC为直角边的 直角三角形?若存在,求出所有符合条件的点P的坐标; 若不存在,说明理由.
(2016呼市T9)如图,面积为24的正方形ABCD中,有一
相似三角形基本模型一线三等角精品PPT课件

△ABE∽ △ECF ∽ △AEF
A
D
A
D
F
B
E
C
F
B
E
C
A
△ABE∽ △ECF
F
((2)1)点点E为E为BBCC上上任任意意一一点点若,∠若B= ∠∠CB==α,∠∠CA=E6F0°= ∠, ∠CA,则EF△=A∠BCE,则与△ EC△FA的B关E与系△还成EC立F吗的?关系还成立吗?
说明理由
B
α
α
B
E
α
C
点拨:要善于运用类比、迁移的数学方法 解决问题。
A
A
①
B
F
②
E
C
①
B
③
F
②
E
C
E为中点
D
A
F
①
α
B
α ②α
E
C
A
F
①
α
B
③
α②
α
E
C
1.矩形ABCD中,把DA沿AF对折,使D与CB边上的点E 重合,若AD=10, AB= 8,
则EF=___5___
D
F
C
EE
A
点拨:要善于在复杂图形中寻找基本型。 B
A
E F
B
D
C
变式:已知:△ABC中,AB=AC, ∠BAC= 120°,D为BC的 中点, 且∠EDF =∠C, (1) 若BE·CF=48,则AB=__8___
(2)在(1)的条件下,若EF=m,
则S△DEF =___3__m__
A EH
F
P
B
D
点拨:联想基本模型,寻找 相关结论。
C
A
D
A
D
F
B
E
C
F
B
E
C
A
△ABE∽ △ECF
F
((2)1)点点E为E为BBCC上上任任意意一一点点若,∠若B= ∠∠CB==α,∠∠CA=E6F0°= ∠, ∠CA,则EF△=A∠BCE,则与△ EC△FA的B关E与系△还成EC立F吗的?关系还成立吗?
说明理由
B
α
α
B
E
α
C
点拨:要善于运用类比、迁移的数学方法 解决问题。
A
A
①
B
F
②
E
C
①
B
③
F
②
E
C
E为中点
D
A
F
①
α
B
α ②α
E
C
A
F
①
α
B
③
α②
α
E
C
1.矩形ABCD中,把DA沿AF对折,使D与CB边上的点E 重合,若AD=10, AB= 8,
则EF=___5___
D
F
C
EE
A
点拨:要善于在复杂图形中寻找基本型。 B
A
E F
B
D
C
变式:已知:△ABC中,AB=AC, ∠BAC= 120°,D为BC的 中点, 且∠EDF =∠C, (1) 若BE·CF=48,则AB=__8___
(2)在(1)的条件下,若EF=m,
则S△DEF =___3__m__
A EH
F
P
B
D
点拨:联想基本模型,寻找 相关结论。
C
一线三等角优秀课件

B
D
D
E
AC
E
D
AC
E
思考:以上图形有什么共同点?
一线三等角,两头对应好,互补导等角,相似轻易找
活动三 图形辨析 强化理解
• 下列每个图形中,∠1=∠2=∠3,请你快速找出 “一线三等角”的基本图形所形成的相似三角 形(要求对应的顶点写在对应的位置)
A
2 1 B
D
E
3 C
A E
1 B
2 F
D
G 3
如图,当∠CPD=∠CAB=∠EBD时,两三角形还相似吗?
解: △CPA∽△PDB 理由:∵∠CPD=∠CAB
∠CPA+∠BPD=∠CPA+∠C
∴∠EC=∠BPD
又∵∠CAB=∠EBD ∴1800-∠CAB=1800-∠EBD 即∠PAC=∠PDB ∴△CPA∽△PDB
活动二抽象模型,揭示本质
B
AC B
• (3)如图③,将矩形ABCD沿CM折叠,使点D落在AB边上的点E处,若点E 恰好是四边形ABCM的边AB上的一个强相似点,试探究AB与BC的数量关系。
活动五 收获分享
1、通过本节课的学习,你有什么收获? 2、本节课的学习过程,对你今后思考问题有什
么启示?
D 理由:∵∠A=∠BCD=∠E= α°
•
∠ACB+∠DCE=1800-α°
•αα
A• •
C
∠CDE+ ∠DCE=1800-α°
α
∴∠ACB= ∠CDE
E 又∵∠A=∠E
•
∴ △ABC∽△ECD
活动二抽象模型,揭示本质
如图,当∠CPD=∠CAB=∠EBD时,.如图,已知∠A=∠BCD=∠E=120°, △ABC与 △ECD是否相似?并说明由。
一线三等角(公开课)ppt课件

A
D
A
E
E
B1
A 1
E
B
2
F
F
2
G
3C
D 3
G
C
2 1 B
D
A
E
1
2
B
F
3 C
D
3 C 7
典例解析 综合运用
例1:在等边△ABC中,D为BC边上一点,E为AC边上一点, 且∠ADE=60°, BD=3,CE=2,则△ABC的边长为多少?
A
BD
E C
8
典例解析 综合运用
例2、如图,在平面直角坐标系中,o为坐标原点,B点坐标为(5,0) ,梯形OBCD中,CD∥OB,OD=BC=2,DC=3,∠DOB=60°,若点E、F分 别在线段DC、CB上
答:⊿ABE∽ ⊿ECF 理由:∵ ∠B=∠AEF=∠C=90°
A F
∴ ∠A+ ∠1=90°, ∠2+ ∠1=180°- ∠AEF=90 °
∴ ∠A=∠2
1
2
B
E
C
∴ ⊿ABE∽ ⊿ECF
图1
2、如图,已知∠B=∠AEF=∠C=60°,图中有没有相似三角形?并说明理由
。
A
F
3、如图,已知∠B=∠AEF=∠C=120°,图中有没有相B 似
人教版数学九年级下
1
• 学习目标:
1、熟悉“一线三等角”的基本图形,并能解决相似中 的相关问题.
2、通过抽象模型,图形变换,变式类比等方法提高综 合解题能力.
• 学习重点:
运用“一线三等角”相似型的基本图形解题。
2
课前回顾
三角形相似的判定定理有哪些?
3
一线三等角模型复习课Ppt0000050

链接中考
链接中考
挑战自我
在△ABC中,D为BC边的中点,以D为顶点 作∠EDF=∠B. ∠EDF的两边交AC、AB 于E、F。 (1)请问你能找到图中的相似三角形吗?
挑战自我
自我小结
1、一线三等角的证明方法和结论 2、类比思想、从特殊到一般的思想 3、掌握一线三等角的基本图形,并会利用比例关 系解决图形问题 4、。。。。。。
相似三角形基本图形复习
——一线三等角
课前导学
如图,∠C=∠ABE=∠F=90°,AB=BE。 你能得到什么结论?
课前导学
三等角=90°
课前导学
三等角=60°或45°
课前导学
三等角为任意角
方法归纳
类比总结:当某条直线或线段的同一侧有依次排序的 三个相等的角时,首尾两个角所在的三角形相似,我 们把这种特殊的相似称为“一线三等角”。
一线三等角模型ppt课件

一线三等角模型
2019
-
1
通俗地讲,一条直线上有三个相等的角一般就会存在相似的三角形!
什么是一线三等角?
如图,等腰△ABC中,AB=AC,∠EDF=∠B,请问图中 是否有相似三角形?
相似三角形判定 定理一: 两角对应相等, 两三角形相似。
注意:对应边千万不要找错,相同的角 标记同一个符号会比较清晰!
2019 2
“一线三等角”模型 教学目标及重、难点
教学目标: 用“一线三等角”基本模型解决相似三角形中的相 关问题; 重点:掌握“一线三等角”基本模型; 难点: “一线三等角”基本图形的提炼、变式和运用。
特别是“一线三直角”辅助线的构造
2019 3
“一线三等角”模型按照角度的分类
锐角形一线三等角
中点型“一线三等角”模型
中点型: 至少有三 对相似三 角形
β
再次提醒:对应边和对应角千万不要找错!
2019
-
7
一线三直角在直角坐标系中的应用
2012年上海中考24题
1 t 2
4 2
t
2
1 t 2
4
2019
-
8
一线三直角巧求点坐标
尝试用上题中你总结的方法解答下题: 2011年宝山一模18题
方法二:两点 距离公式; 方法三:利用 互相垂直的一 次函数(针对 优等生,且此 法适用于任意 三角形翻折)
PD DH CD CH PD AD CD CH DH AD
3 x
2
3 x 2
2
BC 4
3
13
13 2
PD PC AD PD 13 PC BC 2
15
2019
2019
-
1
通俗地讲,一条直线上有三个相等的角一般就会存在相似的三角形!
什么是一线三等角?
如图,等腰△ABC中,AB=AC,∠EDF=∠B,请问图中 是否有相似三角形?
相似三角形判定 定理一: 两角对应相等, 两三角形相似。
注意:对应边千万不要找错,相同的角 标记同一个符号会比较清晰!
2019 2
“一线三等角”模型 教学目标及重、难点
教学目标: 用“一线三等角”基本模型解决相似三角形中的相 关问题; 重点:掌握“一线三等角”基本模型; 难点: “一线三等角”基本图形的提炼、变式和运用。
特别是“一线三直角”辅助线的构造
2019 3
“一线三等角”模型按照角度的分类
锐角形一线三等角
中点型“一线三等角”模型
中点型: 至少有三 对相似三 角形
β
再次提醒:对应边和对应角千万不要找错!
2019
-
7
一线三直角在直角坐标系中的应用
2012年上海中考24题
1 t 2
4 2
t
2
1 t 2
4
2019
-
8
一线三直角巧求点坐标
尝试用上题中你总结的方法解答下题: 2011年宝山一模18题
方法二:两点 距离公式; 方法三:利用 互相垂直的一 次函数(针对 优等生,且此 法适用于任意 三角形翻折)
PD DH CD CH PD AD CD CH DH AD
3 x
2
3 x 2
2
BC 4
3
13
13 2
PD PC AD PD 13 PC BC 2
15
2019
一线三等角模型ppt(共22张PPT)

(11分)如图,在平面直角坐标系中,直线与抛物线交于A、B两点,点A在x轴上,点B的横坐标为-8.
没边相等证相似.
若不存在,请说明理由.
若存在,请直接写出所有符合条件的点F的坐标;
((21)01如2成图都①),(当本点小Q题在满E线分段10A分C)上,且HAP=AQ时,求证:△BPE≌△CQE; 若(A2)B=根k据A图E,象A写C出= k在A第F,一试象探限究内H,E当与取H何F之值间时F的,数y1量<关y2系?,并说明理由.
FQ之延伸
如图4,△ABC中,AG⊥BC于点G,分别以AB、AC为
一边向△ABC外作矩形ABME和矩形ACNF,射线GA交EF于点
H. 若AB= k AE,AC= k AF,试探究HE与HF之间的数量关系,
并说明理由. 有边相等证全等;
若存在,请直接写出所有符合条件的点F的坐标;
有边相等证全等;
(2)如图(2),将∠MDN绕点D沿逆时针方向旋转,DM,DN分别交线段AC,AB于E,F点(点E与点A不重合),不添加辅助线,写出图
中所有的相似三角形,并证明你的结论.
已知:在矩形AOBC中,OB=3,OA=2.分别以 OB、OA所在直线为x轴和y轴,建立如图所示的 平面直角坐标系.若点F是边BC上的一个动点( 不与B、C重合),过F点的反比例函数(k>0)的
一个特殊图形的应用——一线三等角模型
考试过程中学生若能遇到自己平时非常熟悉的题型,快 速找到解决问题的突破口,就能减轻思维量,提高做题速 度,缓解考试紧张情绪,取得理想的成绩。因此,平时教 学中模型的渗透就非常重要。
一线三等角解题理念: 有边相等证全等; 没边相等证相似.
建立模型
2013一调13 如图,在平面直角坐标系中,直线y= -2x+2与 x轴、 y轴分别相交于点A、B,四边形ABCD是正方形,曲线在第一象限经 过点D.则________.
初中数学北师大九年级上册图形的相似-相似三角形“一线三等角型”PPT

又ADE C B
△ADE ∽△ABD;
又D为中点
根据三线合一知 ABD为直角三角形
ADE为直角三角形
点
E在AC边上,且 ADE= C
(1)求证:△ABD ∽△DCE
(2)如果BD= x ,AE =y,求y与x的函数关系式,并写出x的取值范围.
(3)当点D是BC的中点时,试说明 ADE是什么三角形,并说明理由
(1)证明:AB AC且ADE C ADE B C
DAB ADB 180 B
,求CF的长
证明: ABC 为பைடு நூலகம்边三角形
B C 60
又EDF ABC
EDF B C
在BDE中BED EDB 180 - B
且EDB CDF 180 - EDF
EDB CFD
△BDE ∽△CFD
BD BE CF CD
1 即 1 3
CF 1 CF 1
3
【例2】如图,在 ABC中,AC=AB=8,BC=10,D是BC边上的动点,
ADB CDE 180 ADE
又ADE B
ADB CED △ABD ∽△DCE ;
【例2】如图,在 ABC中,AC=AB=8,BC=10,D是BC边上的动点,
点
E在AC边上,且 ADE= C
(1)求证:△ABD ∽△DCE
(2)如果BD= x ,AE =y,求y与x的函数关系式,并写出x的取值范围.
(3)当点D是BC的中点时,试说明 ADE是什么三角形,并说明理由
(2)解:由(1)可得
y 8
8-y
x
10-x
BD AB CE DC
x 8 8 - y 10 - x
化简得y 1 x2 - 5 x (8 0 x 10) 84
△ADE ∽△ABD;
又D为中点
根据三线合一知 ABD为直角三角形
ADE为直角三角形
点
E在AC边上,且 ADE= C
(1)求证:△ABD ∽△DCE
(2)如果BD= x ,AE =y,求y与x的函数关系式,并写出x的取值范围.
(3)当点D是BC的中点时,试说明 ADE是什么三角形,并说明理由
(1)证明:AB AC且ADE C ADE B C
DAB ADB 180 B
,求CF的长
证明: ABC 为பைடு நூலகம்边三角形
B C 60
又EDF ABC
EDF B C
在BDE中BED EDB 180 - B
且EDB CDF 180 - EDF
EDB CFD
△BDE ∽△CFD
BD BE CF CD
1 即 1 3
CF 1 CF 1
3
【例2】如图,在 ABC中,AC=AB=8,BC=10,D是BC边上的动点,
ADB CDE 180 ADE
又ADE B
ADB CED △ABD ∽△DCE ;
【例2】如图,在 ABC中,AC=AB=8,BC=10,D是BC边上的动点,
点
E在AC边上,且 ADE= C
(1)求证:△ABD ∽△DCE
(2)如果BD= x ,AE =y,求y与x的函数关系式,并写出x的取值范围.
(3)当点D是BC的中点时,试说明 ADE是什么三角形,并说明理由
(2)解:由(1)可得
y 8
8-y
x
10-x
BD AB CE DC
x 8 8 - y 10 - x
化简得y 1 x2 - 5 x (8 0 x 10) 84
一线三等角ppt课件

经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
一 找准切入点,初识模型
例1:如图在⊿ABC中,点D,E分别在BC, AC上连接AD,DE,使∠ 1=∠B= ∠C. (1),请写出三个正确结论。
三,增加思维点,研究模型
• 1,强化条件,深化模型
例3,⊿ABC中,AB=AC,点D为BC中点,以D
为顶点作∠MDN=∠B。
(1)
如图,当射线DM经过点A时,DM交AC边于点E,
写出图中所有与⊿ADE相似的三角形。
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
• (2)如图,将∠MDN绕点D延逆时针方向 旋转,DM,DN分别交线段AC,AB于E, F(点E与点A不重合),写出图中所有的相 似三角形。并证明你的结论。
⊿BDF∽⊿CED∽⊿DEF
你还能得出其他结论吗?
FD平分∠BFE, ED平分∠FEC
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
拓展应用
• (3)如图,D,E是D,A,E三点所在直线 m上的两动点(D,A,E三点互不重合)点 F为∠BAC平分线上的一点,且⊿ABF和 ⊿ACF均为等边三角形,连接BD,CE,若 ∠ BDA=∠AEC= ∠BAC,试判断⊿DEF的形 状。
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
一 找准切入点,初识模型
例1:如图在⊿ABC中,点D,E分别在BC, AC上连接AD,DE,使∠ 1=∠B= ∠C. (1),请写出三个正确结论。
三,增加思维点,研究模型
• 1,强化条件,深化模型
例3,⊿ABC中,AB=AC,点D为BC中点,以D
为顶点作∠MDN=∠B。
(1)
如图,当射线DM经过点A时,DM交AC边于点E,
写出图中所有与⊿ADE相似的三角形。
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
• (2)如图,将∠MDN绕点D延逆时针方向 旋转,DM,DN分别交线段AC,AB于E, F(点E与点A不重合),写出图中所有的相 似三角形。并证明你的结论。
⊿BDF∽⊿CED∽⊿DEF
你还能得出其他结论吗?
FD平分∠BFE, ED平分∠FEC
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
拓展应用
• (3)如图,D,E是D,A,E三点所在直线 m上的两动点(D,A,E三点互不重合)点 F为∠BAC平分线上的一点,且⊿ABF和 ⊿ACF均为等边三角形,连接BD,CE,若 ∠ BDA=∠AEC= ∠BAC,试判断⊿DEF的形 状。
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
一线三等角模型 ppt课件

(2)
3x
2
2
x
x2 4
3 x2 4
3
2
3 x 2 3x 2
2
3
13
13 2
方法一:勾股定理; 方法二:证明D是AH中点。
PD DH CD CH PD AD CD CH DH AD
BC 4
PD PC AD PD PC 13 BC
2
2020/9/8
一线三等角模型
15
一线三等角压轴题(共同探讨解题方法和注意事项)
一线三等角模型
2
“一线三等角”模型 教学目标及重、难点
教学目标:
用“一线三等角”基本模型解决相似三角形中的相 关问题;
重点:掌握“一线三等角”基本模型;
难点: “一线三等角”基本图形的提炼、变式和运用。
2020/9/8
特别是“一线三直角”辅助线的构造
一线三等角模型
3
“一线三等角”模型按照角度的分类
锐角形一线三等角
一
线
三
直角形一线三等角
等
角
钝角形一线三等角
一线三等角模型
最特殊 考到概 率最大
4
总结解题规律 一线三角两相似:
60° 60° 60°
60°
60° 60°”基本模型 以等腰三角形(含等边三角形)或等腰梯形为背景的一线三等角
注意:压轴题中出现射线、 直线要分类讨论!
思考:若把
tanBAO
3 3
样?
改t为anBAO
1 2
,解法是否一
2020/9/8
一线三等角模型
10
2a
9 a 9
2
9 2a
9
a
2
一线三等角相似模型

物理学应用
在物理学中,可以利用一线三等角 相似模型来研究物理现象和规律, 如光的反射和折射、波的传播等。
04 一线三等角相似模型的证 明方法
直接证明法
定义
直接证明法是通过直接使用已知条件和定理来证明结论的 方法。
步骤
首先,根据已知条件,明确一线三等角的定义和性质;然后, 通过比较两个三角形中的角度和边长,利用相似三角形的性质
03
注意事项
反证法需要熟练掌握反证法的原理和 推理技巧,以及能够灵活运用已知条 件。
综合法与分析法
定义
综合法是从已知条件出发,逐步推导出结论的方法;分析法是从结论出发,逐步推导出已知条件的方法。
步骤
在综合法中,首先明确已知条件和目标结论;然后,根据已知条件逐步推导所需结论;最后,总结推导过程。在分析 法中,首先明确目标结论和已知条件;然后,根据结论逐步推导所需条件;最后,总结推导过程。
,逐步推导出所需的结论。
注意事项
直接证明法需要熟练掌握相似三角形的性质和定理,以及 灵活运用已知条件。
反证法
01
定义
反证法是通过假设结论不成立,然后 推导出矛盾,从而证明结论成立的方 法。
02
步骤
首先,假设结论不成立;然后,根据 已知条件和反证法的原理,推导出与 已知条件相矛盾的结论;最后,根据 矛盾的结论,得出结论成立。
相似变换的性质
相似变换具有一些重要的性质,如保持角度不变、线 段长度比例不变等。
相似变换的应用
相似变换在几何学、物理学、工程学等领域有着广泛 的应用,如建筑设计、机械制造、航天技术等。
相似多边形的性质与应用
1 2
相似多边形的定义
相似多边形是指各对应角相等、各对应边成比例 的多边形。
在物理学中,可以利用一线三等角 相似模型来研究物理现象和规律, 如光的反射和折射、波的传播等。
04 一线三等角相似模型的证 明方法
直接证明法
定义
直接证明法是通过直接使用已知条件和定理来证明结论的 方法。
步骤
首先,根据已知条件,明确一线三等角的定义和性质;然后, 通过比较两个三角形中的角度和边长,利用相似三角形的性质
03
注意事项
反证法需要熟练掌握反证法的原理和 推理技巧,以及能够灵活运用已知条 件。
综合法与分析法
定义
综合法是从已知条件出发,逐步推导出结论的方法;分析法是从结论出发,逐步推导出已知条件的方法。
步骤
在综合法中,首先明确已知条件和目标结论;然后,根据已知条件逐步推导所需结论;最后,总结推导过程。在分析 法中,首先明确目标结论和已知条件;然后,根据结论逐步推导所需条件;最后,总结推导过程。
,逐步推导出所需的结论。
注意事项
直接证明法需要熟练掌握相似三角形的性质和定理,以及 灵活运用已知条件。
反证法
01
定义
反证法是通过假设结论不成立,然后 推导出矛盾,从而证明结论成立的方 法。
02
步骤
首先,假设结论不成立;然后,根据 已知条件和反证法的原理,推导出与 已知条件相矛盾的结论;最后,根据 矛盾的结论,得出结论成立。
相似变换的性质
相似变换具有一些重要的性质,如保持角度不变、线 段长度比例不变等。
相似变换的应用
相似变换在几何学、物理学、工程学等领域有着广泛 的应用,如建筑设计、机械制造、航天技术等。
相似多边形的性质与应用
1 2
相似多边形的定义
相似多边形是指各对应角相等、各对应边成比例 的多边形。
八年级全等模型第1讲一线三等角课件

斜边中点定理
中位线定理
证明角度相等方法
④角度的和差关系
⑤证明角所在的三角形全等或类似
⑥四点共圆,对角互补
⑦圆周角定理
⑧等(同)角的余(补)角相等
课堂练习
例1、已知:在△ABC中,AB=AC,∠BAC=90° ,过点A作直线l,过B,C分别作BD⊥l于点D,CE⊥l于点E.
(1)如图1,当直线l在△ABC的外部时,求证:DE= BD+CE;
CD= DE,∠CDE=45°求证:BD= BC.
【解答】已知在等腰Rt△ABC中,∠ACB=90°
∴∠B=45°∵CD= DE,∠CDE=45°
∴∠DCE=
180°−∠
2
= 67.5°
在△DCB中,同理∠CDB=180°-∠DCE-∠B=67.5°
∴∠DCE=∠CDB
∴BD= BC
对应边相等即可,再根据线段的和差关系不难解出答案。
课堂练习
二、等边三角形中的“一线三等角”
例1、如图,△ABC为等边三角形,D,E,F分别AB , BC,AC上的点,∠DEF= 60°, BD=CE.求证:BE= CF.
【解答】
已知△ABC为等边三角形
∴∠B=∠C=60°
∴∠BED+∠BDE=120°
∵∠DEF=60°
∴∠BED+∠FEC=120°
∴∠BDE=∠FEC
在△BED和△FCE中
∠ = ∠ = 60°
∵ ቐ =
∠ = ∠
∴△BED≌△FCE(ASA)
∴BE=CF
【分析】本题关键在于求证△BED≌△FCE(ASA)
一线三等角
中位线定理
证明角度相等方法
④角度的和差关系
⑤证明角所在的三角形全等或类似
⑥四点共圆,对角互补
⑦圆周角定理
⑧等(同)角的余(补)角相等
课堂练习
例1、已知:在△ABC中,AB=AC,∠BAC=90° ,过点A作直线l,过B,C分别作BD⊥l于点D,CE⊥l于点E.
(1)如图1,当直线l在△ABC的外部时,求证:DE= BD+CE;
CD= DE,∠CDE=45°求证:BD= BC.
【解答】已知在等腰Rt△ABC中,∠ACB=90°
∴∠B=45°∵CD= DE,∠CDE=45°
∴∠DCE=
180°−∠
2
= 67.5°
在△DCB中,同理∠CDB=180°-∠DCE-∠B=67.5°
∴∠DCE=∠CDB
∴BD= BC
对应边相等即可,再根据线段的和差关系不难解出答案。
课堂练习
二、等边三角形中的“一线三等角”
例1、如图,△ABC为等边三角形,D,E,F分别AB , BC,AC上的点,∠DEF= 60°, BD=CE.求证:BE= CF.
【解答】
已知△ABC为等边三角形
∴∠B=∠C=60°
∴∠BED+∠BDE=120°
∵∠DEF=60°
∴∠BED+∠FEC=120°
∴∠BDE=∠FEC
在△BED和△FCE中
∠ = ∠ = 60°
∵ ቐ =
∠ = ∠
∴△BED≌△FCE(ASA)
∴BE=CF
【分析】本题关键在于求证△BED≌△FCE(ASA)
一线三等角
相似专题:一线三等角相似模型

优势:简洁明了易于理解
注意事项:需要熟练掌握代数公式和定理以及灵活运用代数方法进行证明
三角函数证明法
利用三角函数的性质通过角度相等来证明三角形相似 利用三角函数的诱导公式将角度相等转化为边长比例相等 利用三角函数的和差公式将角度相等转化为边长比例相等 利用三角函数的倍角公式将角度相等转化为边长比例相等
一线三等角相似的判定条件
两个三角形中如果一个角分别与另两个角相等则这两个三角形相似。
在两个三角形中如果一个角的对边与另一个角的对边成比例则这两个三角形相似。 在两个三角形中如果一个角的对边与另一个角的邻边成比例则这两个三角形相似。
在两个三角形中如果一个角的对边与另一个角相等则这两个三角形相似。
一线三等角相似模型的 应用
单击添加标题
题目:在三角形BC中D是B上一点E是C上一点DE平行于BC且E:EC=1:2 则S△DE:S△BC=?
代数表达式简化:利用一线三等角 相似模型可以将复杂的代数表达式 进行简化。
代数应用实例
代数不等式证明:利用一线三等角 相似模型可以证明一些代数不等式。
添加标题
添加标题
添加标题
添加标题
代数方程求解:通过一线三等角相 似模型可以求解一些代数方程。
一线三等角相似模型的 应用实例
几何证明实例
单击添加标题
题目:已知三角形BC中D是B上一点E是C上一点DE平行于BC且D:DB=2: 1则S△DE:S△BC=?
单击添加标题
题目:在三角形BC中D是B上一点E是C上一点DE平行于BC且E:EC=2:1 则S△DE:S△BC=?
单击添加标题
题目:在三角形BC中D是B上一点E是C上一点DE平行于BC且BD:B=1:3 则S△DE:S△BC=?
注意事项:需要熟练掌握代数公式和定理以及灵活运用代数方法进行证明
三角函数证明法
利用三角函数的性质通过角度相等来证明三角形相似 利用三角函数的诱导公式将角度相等转化为边长比例相等 利用三角函数的和差公式将角度相等转化为边长比例相等 利用三角函数的倍角公式将角度相等转化为边长比例相等
一线三等角相似的判定条件
两个三角形中如果一个角分别与另两个角相等则这两个三角形相似。
在两个三角形中如果一个角的对边与另一个角的对边成比例则这两个三角形相似。 在两个三角形中如果一个角的对边与另一个角的邻边成比例则这两个三角形相似。
在两个三角形中如果一个角的对边与另一个角相等则这两个三角形相似。
一线三等角相似模型的 应用
单击添加标题
题目:在三角形BC中D是B上一点E是C上一点DE平行于BC且E:EC=1:2 则S△DE:S△BC=?
代数表达式简化:利用一线三等角 相似模型可以将复杂的代数表达式 进行简化。
代数应用实例
代数不等式证明:利用一线三等角 相似模型可以证明一些代数不等式。
添加标题
添加标题
添加标题
添加标题
代数方程求解:通过一线三等角相 似模型可以求解一些代数方程。
一线三等角相似模型的 应用实例
几何证明实例
单击添加标题
题目:已知三角形BC中D是B上一点E是C上一点DE平行于BC且D:DB=2: 1则S△DE:S△BC=?
单击添加标题
题目:在三角形BC中D是B上一点E是C上一点DE平行于BC且E:EC=2:1 则S△DE:S△BC=?
单击添加标题
题目:在三角形BC中D是B上一点E是C上一点DE平行于BC且BD:B=1:3 则S△DE:S△BC=?
相似三角形基本模型--一线三等角共18页

25、学习是劳动,是充满思想的劳动角
41、实际上,我们想要的不是针对犯 罪的法 律,而 是针对 疯狂的 法律。 ——马 克·吐温 42、法律的力量应当跟随着公民,就 像影子 跟随着 身体一 样。— —贝卡 利亚 43、法律和制度必须跟上人类思想进 步。— —杰弗 逊 44、人类受制于法律,法律受制于情 理。— —托·富 勒
45、法律的制定是为了保证每一个人 自由发 挥自己 的才能 ,而不 是为了 束缚他 的才能 。—— 罗伯斯 庇尔
21、要知道对好事的称颂过于夸大,也会招来人们的反感轻蔑和嫉妒。——培根 22、业精于勤,荒于嬉;行成于思,毁于随。——韩愈
23、一切节省,归根到底都归结为时间的节省。——马克思 24、意志命运往往背道而驰,决心到最后会全部推倒。——莎士比亚
41、实际上,我们想要的不是针对犯 罪的法 律,而 是针对 疯狂的 法律。 ——马 克·吐温 42、法律的力量应当跟随着公民,就 像影子 跟随着 身体一 样。— —贝卡 利亚 43、法律和制度必须跟上人类思想进 步。— —杰弗 逊 44、人类受制于法律,法律受制于情 理。— —托·富 勒
45、法律的制定是为了保证每一个人 自由发 挥自己 的才能 ,而不 是为了 束缚他 的才能 。—— 罗伯斯 庇尔
21、要知道对好事的称颂过于夸大,也会招来人们的反感轻蔑和嫉妒。——培根 22、业精于勤,荒于嬉;行成于思,毁于随。——韩愈
23、一切节省,归根到底都归结为时间的节省。——马克思 24、意志命运往往背道而驰,决心到最后会全部推倒。——莎士比亚
一线三等角公开课.ppt

(2)学习几何最重要是学会归纳一些简单 的基本图形,学会从复杂的图形里提 炼基本图形,并将其作为解决问题的 手段和方法。
(3)几何的学习中,要注重图形的运动和 变化,总结和发现图形之间的内在联 系,探求其规律,帮我们解决繁杂问题。
答:⊿ABE∽ ⊿ECF 理由:∵ ∠B=∠AEF=∠C=90°
A F
∴ ∠A+ ∠1=90°, ∠2+ ∠1=180°- ∠AEF=90 ° ∴ ∠A=∠2
1
2
B
E
C
∴ ⊿ABE∽ ⊿ECF
图1
2、如图,已知∠B=∠AEF=∠C=60°,图中有没有相似三角形?并说明理由
。
A
F
3、如图,已知∠B=∠AEF=∠C=120°,图中有没有相B 似
人教版数学九年级下
• 学习目标:
1、熟悉“一线三等角”的基本图形,并能解决相似中 的相关问题.
2、通过抽象模型,图形变换,变式类比等方法提高综 合解题能力.
• 学习重点:
运用“一线三等角”相似型的基本图形解题。
课前回顾
三角形相似的判定定理有哪些?
自主学习
1、如图,已知∠B=∠AEF=∠C=90°,图中有没有相似三角形?并说明理由。
三角形?并说明理由。
BA
BA CE
E
C
图2
DFECBiblioteka 抽象模型,揭示实质如图,已知∠A=∠BCD=∠E=α°,图中有没有相似三角形,
并写出证明过程.
结论:
理由:
B
D
A
αα
C
α
E
总结规律
顺口溜: “一线三等角,相似容易找”
运用新知,看图作答
下列每个图形中,∠1=∠2=∠3,请你快速找出“一线三等角”的 基本图形所形成的相似三角形(要求对应的顶点写在对应的位置)
(3)几何的学习中,要注重图形的运动和 变化,总结和发现图形之间的内在联 系,探求其规律,帮我们解决繁杂问题。
答:⊿ABE∽ ⊿ECF 理由:∵ ∠B=∠AEF=∠C=90°
A F
∴ ∠A+ ∠1=90°, ∠2+ ∠1=180°- ∠AEF=90 ° ∴ ∠A=∠2
1
2
B
E
C
∴ ⊿ABE∽ ⊿ECF
图1
2、如图,已知∠B=∠AEF=∠C=60°,图中有没有相似三角形?并说明理由
。
A
F
3、如图,已知∠B=∠AEF=∠C=120°,图中有没有相B 似
人教版数学九年级下
• 学习目标:
1、熟悉“一线三等角”的基本图形,并能解决相似中 的相关问题.
2、通过抽象模型,图形变换,变式类比等方法提高综 合解题能力.
• 学习重点:
运用“一线三等角”相似型的基本图形解题。
课前回顾
三角形相似的判定定理有哪些?
自主学习
1、如图,已知∠B=∠AEF=∠C=90°,图中有没有相似三角形?并说明理由。
三角形?并说明理由。
BA
BA CE
E
C
图2
DFECBiblioteka 抽象模型,揭示实质如图,已知∠A=∠BCD=∠E=α°,图中有没有相似三角形,
并写出证明过程.
结论:
理由:
B
D
A
αα
C
α
E
总结规律
顺口溜: “一线三等角,相似容易找”
运用新知,看图作答
下列每个图形中,∠1=∠2=∠3,请你快速找出“一线三等角”的 基本图形所形成的相似三角形(要求对应的顶点写在对应的位置)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5
• ∴BE= 3
【2014德州中考试题】 24.(2)是否存在点P,使得△ACP是以AC为直角边的 直角三角形?若存在,求出所有符合条件的点P的坐标; 若不存在,说明理由.
(2016呼市T9)如图,面积为24的正方形ABCD中,有一
个小正方形EFGH,其中E,F,G分别在AB,BC,FD
上.若BF= 6 ,则小正方形的周长为( ) 2
1 2 3 A DCE △ABC∽△CDE
1、如图,等边△ABC的边长为3
,点D是BC上一点,且BD=1,在
AC上取点E,使∠ADE=60度,AE
长为( c )
A. 3 B. 2
2
3
C.
7 3
D. 3
4
2.在矩形ABCD中,AB=4,BC=5,AF平 分∠DAE,EF⊥AE,
1.5 则CF= ______
• 解:(1)∵△ABC是等边三角形,∠EDF=60° • ∴∠B=∠C=∠EDF=60° • ∵∠EDC=∠EDF+∠FDC=∠B+∠BED • ∴∠BED=∠FDC • ∴△BDE∽△CFD • (2)∵△BDE∽△CFD
A
E
F
•
∴
FC CD BD BE
BD
C
• ∵BD=1,FC=3,CD=5
A型
基本 8型 图形
K型
一线三等角是一个常见的相似模型,指的是有三 个等角的顶点在同一条直线上构成的相似图形, 这个角可以是直角,也可以是锐角或钝角。
三角形基架
K型 矩形基架
梯形基架
毕达哥拉斯证法
赵爽弦图
K字型的一般形式ቤተ መጻሕፍቲ ባይዱ
你能证明吗?
证明: 在ABC中 1 A ACB 180 又 2 DCE ACB 180
∴ PM PC 5 PA AB 8
即
8x 5 58
39
∴BP= 8
A M
B
P
C
A
M
BP
C
A M
B
P
C
4 4 x x CD CD x2 4x
4
23:33
• 如图,正方形ABCD边长为8,M、N分别是BC、CD上的两个动点, 当M点在BC上运动时,保持AM和MN垂直.
• (1)证明:Rt△ABM∽Rt△MCN;
• (2)设BM=x,梯形ABCN的面积为y,求y与x之间的函数关系式; 当M点运动到什么位置时,四边形ABCN的面积最大,并求出最大 面积;
• 如图,等边△ABC中,边长为6,D是BC上动点, ∠EDF=60°
• (1)求证:△BDE∽△CFD • (2)当BD=1,FC=3时,求BE
A
E
F
BD
C
• 如图,等边△ABC中,边长为6,D是BC上动点, ∠EDF=60°
• (1)求证:△BDE∽△CFD
• (2)当BD=1,FC=3时,求BE
y 1 x2 8 x (0 x 8) 55
(3)当AP=PM时
∵
PM PC PA AB
∴PC=AB=5
∴BP=3
当AP=AM时
∵∠APM=∠B=∠C
∴∠PAM=∠BAC即点P与点B重合
∴P不与点B、C重合
∴舍去
当MP=AM时
∴∠MAP=∠MPA
∴△MAP∽△ABC
∴ MP AB 5 AP BC 8
• (3)当M点运动到什么位置时,Rt△ABM∽Rt△AMN?求此时x的 值.
如图,在△ABC中,AB=AC=5cm,BC=8,点P为BC边上一动点(不 与点B、C重合),过点P作射线PM交AC于点M,使∠APM=∠B;
(1)求证:△ABP∽△PCM; (2)设BP=x,CM=y.求 y与x的函数解析式,并写出函数的取值范
56 A. 8
56 B. 6
C.5 6 D.3 6
2
10
26
6 36
23:33
2
2
26
(2017鄂尔多斯)如图1,正△ABC的边长为4,点P为BC 边上的任意一点,且∠APD=60°,PD交AC于点D,设线 段PB的长度为x,图1中某线段的长度为y,y与x的函数关 系的大致图象如图2,则这条线段可能是图1中的( ) A. 线段AD B. 线段AP C. 线段PD D. 线段CD
围. (3)当△APM为等腰三角形时, 求PB的长.
A
M
B
P
C
解:(1)∵AB=AC,∠APM=∠B∴∠APM=∠B=∠C
∵∠APC=∠APM+∠MPC=∠B+∠BAP ∴∵∠BAP=∠MPC
∴△ABP∽△PCM
(2)∵BP=x,CM=y,CP=8-x
∴ AB BP PC MC
∴
5 x 8x y
• ∴BE= 3
【2014德州中考试题】 24.(2)是否存在点P,使得△ACP是以AC为直角边的 直角三角形?若存在,求出所有符合条件的点P的坐标; 若不存在,说明理由.
(2016呼市T9)如图,面积为24的正方形ABCD中,有一
个小正方形EFGH,其中E,F,G分别在AB,BC,FD
上.若BF= 6 ,则小正方形的周长为( ) 2
1 2 3 A DCE △ABC∽△CDE
1、如图,等边△ABC的边长为3
,点D是BC上一点,且BD=1,在
AC上取点E,使∠ADE=60度,AE
长为( c )
A. 3 B. 2
2
3
C.
7 3
D. 3
4
2.在矩形ABCD中,AB=4,BC=5,AF平 分∠DAE,EF⊥AE,
1.5 则CF= ______
• 解:(1)∵△ABC是等边三角形,∠EDF=60° • ∴∠B=∠C=∠EDF=60° • ∵∠EDC=∠EDF+∠FDC=∠B+∠BED • ∴∠BED=∠FDC • ∴△BDE∽△CFD • (2)∵△BDE∽△CFD
A
E
F
•
∴
FC CD BD BE
BD
C
• ∵BD=1,FC=3,CD=5
A型
基本 8型 图形
K型
一线三等角是一个常见的相似模型,指的是有三 个等角的顶点在同一条直线上构成的相似图形, 这个角可以是直角,也可以是锐角或钝角。
三角形基架
K型 矩形基架
梯形基架
毕达哥拉斯证法
赵爽弦图
K字型的一般形式ቤተ መጻሕፍቲ ባይዱ
你能证明吗?
证明: 在ABC中 1 A ACB 180 又 2 DCE ACB 180
∴ PM PC 5 PA AB 8
即
8x 5 58
39
∴BP= 8
A M
B
P
C
A
M
BP
C
A M
B
P
C
4 4 x x CD CD x2 4x
4
23:33
• 如图,正方形ABCD边长为8,M、N分别是BC、CD上的两个动点, 当M点在BC上运动时,保持AM和MN垂直.
• (1)证明:Rt△ABM∽Rt△MCN;
• (2)设BM=x,梯形ABCN的面积为y,求y与x之间的函数关系式; 当M点运动到什么位置时,四边形ABCN的面积最大,并求出最大 面积;
• 如图,等边△ABC中,边长为6,D是BC上动点, ∠EDF=60°
• (1)求证:△BDE∽△CFD • (2)当BD=1,FC=3时,求BE
A
E
F
BD
C
• 如图,等边△ABC中,边长为6,D是BC上动点, ∠EDF=60°
• (1)求证:△BDE∽△CFD
• (2)当BD=1,FC=3时,求BE
y 1 x2 8 x (0 x 8) 55
(3)当AP=PM时
∵
PM PC PA AB
∴PC=AB=5
∴BP=3
当AP=AM时
∵∠APM=∠B=∠C
∴∠PAM=∠BAC即点P与点B重合
∴P不与点B、C重合
∴舍去
当MP=AM时
∴∠MAP=∠MPA
∴△MAP∽△ABC
∴ MP AB 5 AP BC 8
• (3)当M点运动到什么位置时,Rt△ABM∽Rt△AMN?求此时x的 值.
如图,在△ABC中,AB=AC=5cm,BC=8,点P为BC边上一动点(不 与点B、C重合),过点P作射线PM交AC于点M,使∠APM=∠B;
(1)求证:△ABP∽△PCM; (2)设BP=x,CM=y.求 y与x的函数解析式,并写出函数的取值范
56 A. 8
56 B. 6
C.5 6 D.3 6
2
10
26
6 36
23:33
2
2
26
(2017鄂尔多斯)如图1,正△ABC的边长为4,点P为BC 边上的任意一点,且∠APD=60°,PD交AC于点D,设线 段PB的长度为x,图1中某线段的长度为y,y与x的函数关 系的大致图象如图2,则这条线段可能是图1中的( ) A. 线段AD B. 线段AP C. 线段PD D. 线段CD
围. (3)当△APM为等腰三角形时, 求PB的长.
A
M
B
P
C
解:(1)∵AB=AC,∠APM=∠B∴∠APM=∠B=∠C
∵∠APC=∠APM+∠MPC=∠B+∠BAP ∴∵∠BAP=∠MPC
∴△ABP∽△PCM
(2)∵BP=x,CM=y,CP=8-x
∴ AB BP PC MC
∴
5 x 8x y