高中数学之推理案例含答案
高中数学高考总复习推理与证明习题及详解

高中数学高考总复习推理与证明习题及详解一、选择题1.(2010·广东文,10)在集合{a ,b ,c ,d }上定义两种运算、⊗如下: 那么d ⊗(ac )=( )A .aB .bC .cD .d [答案] A[解析] 根据运算、⊗的定义可知,a c =c ,d ⊗c =a ,故选A.2.(文)(2010·福建莆田质检)如果将1,2,3,…,n 重新排列后,得到一个新系列a 1,a 2,a 3,…,a n ,使得k +a k (k =1,2,…,n )都是完全平方数,则称n 为“好数”.若n 分别取4,5,6,则这三个数中,“好数”的个数是( )A .3B .2C .1D .0 [答案] C[解析] 5是好数,4和6都不是,∵取a 1=3,a 2=2,a 3=1,a 4=5,a 5=4,则1+a 1=4=22,2+a 2=4=22,3+a 3=4=22,4+a 4=32,5+a 5=32.(理)(2010·寿光现代中学)若定义在区间D 上的函数f (x ),对于D 上的任意n 个值x 1,x 2,…,x n ,总满足f (x 1)+f (x 2)+…+f (x n )≥nf ⎝⎛⎭⎫x 1+x 2+…+x n n ,则称f (x )为D 上的凹函数,现已知f (x )=tan x 在⎝⎛⎭⎫0,π2上是凹函数,则在锐角三角形ABC 中,tan A +tan B +tan C 的最小值是( ) A .3 B.23 C .3 3 D. 3 [答案] C[解析] 根据f (x )=tan x 在⎝⎛⎭⎫0,π2上是凹函数,再结合凹函数定义得,tan A +tan B +tan C ≥3tan ⎝⎛⎭⎫A +B +C 3=3tan π3=3 3.故所求的最小值为3 3.3.(文)定义某种新运算“⊗”:S =a ⊗b 的运算原理为如图的程序框图所示,则式子5⊗4-3⊗6=( )A .2B .1C .3D .4 [答案] B[解析] 由题意知5⊗4=5×(4+1)=25,3⊗6=6×(3+1)=24,所以5⊗4-3⊗6=1. (理)如图所示的算法中,令a =tan θ,b =sin θ,c =cos θ,若在集合{θ|0<θ<3π2}中任取θ的一个值,输出的结果是sin θ的概率是( )A.13B.12C.23D.34 [答案] A[解析] 该程序框图的功能是比较a ,b ,c 的大小并输出最大值,因此要使输出的结果是sin θ,需sin θ>tan θ,且sin θ>cos θ,∵当θ∈⎝⎛⎭⎫0,π2时,总有tan θ>sin θ,当θ∈⎝⎛⎭⎫π2,π时,sin θ>0,tan θ<0,cos θ<0,当θ∈⎝⎛⎭⎫π,3π2时,tan θ>0,sin θ<0,故输出的结果是sin θ时,θ的范围是⎝⎛⎭⎫π2,π,结合几何概型公式得,输出sin θ的概率为π-π232π-0=13,故选A. 4.(2010·曲师大附中)设△ABC 的三边长分别为a 、b 、c ,△ABC 的面积为S ,内切圆半径为r ,则r =2S a +b +c ;类比这个结论可知:四面体S -ABC 的四个面的面积分别为S 1、S 2、S 3、S 4,内切球的半径为r ,四面体S -ABC 的体积为V ,则r =( )A.VS 1+S 2+S 3+S 4 B.2VS 1+S 2+S 3+S 4 C.3VS 1+S 2+S 3+S 4 D.4VS 1+S 2+S 3+S 4 [答案] C[解析] 设三棱锥的内切球球心为O ,那么由V S -ABC =V O -ABC +V O -SAB +V O -SAC +V O -SBC ,即V =13S 1r +13S 2r +13S 3r +13S 4r ,可得r =3V S 1+S 2+S 3+S 4.5.(2010·辽宁锦州)类比“两角和与差的正余弦公式”的形式,对于给定的两个函数,S (x )=a x -a -x 2,C (x )=a x +a -x2,其中a >0,且a ≠1,下面正确的运算公式是( )①S (x +y )=S (x )C (y )+C (x )S (y ); ②S (x -y )=S (x )C (y )-C (x )S (y ); ③C (x +y )=C (x )C (y )-S (x )S (y ); ④C (x -y )=C (x )C (y )+S (x )S (y ). A .①③B.②④C.①④D.①②③④[答案] D[解析]实际代入逐个验证即可.如S(x)C(y)+C(x)S(y)=a x-a-x2·a y+a-y2+a x+a-x2·a y-a-y2=14(ax+y-a y-x+a x-y-a-x-y+a x+y+a y-x-a x-y-a-x-y)=14(2ax+y-2a-x-y)=a x+y-a-(x+y)2=S(x+y),故①成立.同理可验证②③④均成立.6.四个小动物换座位,开始是鼠、猴、兔、猫分别坐在1、2、3、4号位子上如图所示,第一次前后排动物互换座位,第二次左右列动物互换座位,…,这样交替进行下去,那么第2011次互换座位后,小兔的座位对应的是()第一次第二次第三次第四次A.编号1 B.编号2 C.编号3 D.编号4[答案] D[解析]根据动物换座位的规则,可得第四次、第五次、第六次、第七次换座后的结果如下图所示:第一次 第二次 第三次 第四次据此可以归纳得到:四个小动物在换座后,每经过四次换座后与原来的座位一样,即以4为周期,因此在第2011次换座后,四个小动物的位置应该是和第3次换座后的位置一样,即小兔的座位号是4,故选D.[点评] 因为问题只求小兔座位号,故可只考虑小兔座位号的变化,用1→2表示小兔从1号位换到2号位,则小兔座位的变化规律是:3→1→2→4→3→1→2→4→3…,显见变化周期为4,又2011=4×502+3,故经过2011次换座后,小兔位于4号座.7.(2010·山东文)观察(x 2)′=2x ,(x 4)′=4x 3,(cos x )′=-sin x ,由归纳推理可得:若定义在R 上的函数f (x )满足f (-x )=f (x ),记g (x )为f (x )的导函数,则f (-x )=( )A .f (x )B .-f (x )C .g (x )D .-g (x ) [答案] D[解析] 观察所给例子可看出偶函数求导后都变成了奇函数,∴g (-x )=-g (x ),选D. 8.甲、乙两位同学玩游戏,对于给定的实数a 1,按下列方法操作一次产生一个新的实数:由甲、乙同时各掷一枚均匀的硬币,如果出现两个正面朝上或两个反面朝上,则把a 1乘以2后再加上12;如果出现一个正面朝上,一个反面朝上,则把a 1除以2后再加上12,这样就可得到一个新的实数a 2.对实数a 2仍按上述方法进行一次操作,又得到一个新的实数a 3.当a 3>a 1时,甲获胜,否则乙获胜.若甲获胜的概率为34,则a 1的取值范围是( )A .[-12,24]B .(-12,24)C .(-∞,-12)∪(24,+∞)D .(-∞,-12]∪[24,+∞) [答案] D[解析] 因为甲、乙同时各掷一枚均匀的硬币,出现的可能情形有4种:(正,正)、(正,反)、(反,正)、(反,反),所以每次操作后,得到两种新数的概率是一样的.故由题意得即4a 1+36,a 1+18,a 1+36,14a 1+18出现的机会是均等的,由于当a 3>a 1时,甲胜且甲胜的概率为34,故在上面四个表达式中,有3个大于a 1,∵a 1+18>a 1,a 1+36>a 1,故在其余二数中有且仅有一个大于a 1,由4a 1+36>a 1得a 1>-12,由14a 1+18>a 1得,a 1<24,故当-12<a 1<24时,四个数全大于a 1,当a 1≤-12或a 1≥24时,有且仅有3个大于a 1,故选D.9.(2010·广州市)如图所示的三角形数阵叫“莱布尼兹调和三角形”,它们是由整数的倒数组成的,第n 行有n 个数且两端的数均为1n (n ≥2),每个数是它下一行左右相邻两数的和,如11=12+12,12=13+16,13=14+112,…,则第7行第4个数(从左往右数)为( )11 12 12 13 16 13 14 112 112 14 15 120 130 120 15 ………………………………A.1140B.1105C.160D.142 [答案] A[解析] 第6行从左到右各数依次为16,130,160,160,130,16,第7行从左到右各数依次为17,142,1105,1140,1105,142,17,故选A. 10.(2010·山东淄博一中)如图,在梯形ABCD 中,AB ∥DC ,AB =a ,CD =b (a >b ).若EF ∥AB ,EF 到CD 与AB 的距离之比为m n ,则可推算出:EF =ma +nb m +n ,试用类比的方法,推想出下述问题的结果.在上面的梯形ABCD 中,延长梯形两腰AD 、BC 相交于O 点,设△OAB 、△OCD 的面积分别为S 1、S 2,EF ∥AB ,且EF 到CD 与AB 的距离之比为m n ,则△OEF 的面积S 0与S 1、S 2的关系是( )A .S 0=mS 1+nS 2m +nB .S 0=nS 1+mS 2m +nC.S 0=m S 1+n S 2m +nD.S 0=n S 1+m S 2m +n[答案] C[解析] 根据面积比等于相似比的平方求解. 二、填空题11.(2010·盐城调研)请阅读下列材料:若两个正实数a 1,a 2满足a 12+a 22=1,那么a 1+a 2≤ 2.证明:构造函数f (x )=(x -a 1)2+(x -a 2)2=2x 2-2(a 1+a 2)x +1,因为对一切实数x ,恒有f (x )≥0,所以Δ≤0,从而得4(a 1+a 2)2-8≤0,所以a 1+a 2≤ 2.根据上述证明方法,若n 个正实数满足a 12+a 22+…+a n 2=1时,你能得到的结论为________.(不必证明)[答案] a 1+a 2+…+a n ≤n12.(文)如图甲,在△ABC 中,AB ⊥AC ,AD ⊥BC ,D 是垂足,则AB 2=BD ·BC ,该结论称为射影定理.如图乙,在三棱锥A -BCD 中,AD ⊥平面ABC ,AO ⊥平面BCD ,O 为垂足,且O 在△BCD 中,类比射影定理,探究S △ABC 、S △BCO 、S △BCD 之间满足的关系式是________.[答案] S △ABC 2=S △BCO ·S △BCD[解析] 根据类比推理,将线段的长推广为三角形的面积,从而得到答案.(理)(2010·湖南湘潭市)现有一个关于平面图形的命题:如图所示,同一个平面内有两个边长都是a 的正方体,其中一个的某顶点在另一个的中心,则这两个正方形重叠部分的面积恒为a 24,类比到空间,有两个棱长均为a 的正方体,其中一个的某顶点在另一个的中心,则这两个正方体重叠部分的体积恒为______.[答案] a 3813.(文)(2010·陕西理)观察下列等式:13+23=32,13+23+33=62,13+23+33+43=102,…,根据上述规律,第五个等式为________________.[答案] 13+23+33+43+53+63=212 [解析] 观察所给等式可以发现: 13+23=32=(1+2)2 13+23+33=62=(1+2+3)2 13+23+33+43=102=(1+2+3+4)2 ……推想:13+23+33+…+n 3=(1+2+3+…+n )2∴第五个等式为:13+23+33+43+53+63=(1+2+…+6)2=212. (理)(2010·广东省佛山顺德区质检)已知一系列函数有如下性质: 函数y =x +1x 在(0,1]上是减函数,在[1,+∞)上是增函数;函数y =x +2x 在(0,2]上是减函数,在[2,+∞)上是增函数;函数y =x +3x 在(0,3]上是减函数,在[3,+∞)上是增函数;…………利用上述所提供的信息解决问题:若函数y =x +3mx (x >0)的值域是[6,+∞),则实数m 的值是________.[答案] 2[解析] 由题目提供信息可知y =x +3mx (x >0)在(0,3m ]上是减函数,在[3m ,+∞)上是增函数,∴当x =3m 时,y min =6,∴m =2.14.(文)(2010·湖南衡阳八中)如图(1)有关系S △P A ′B ′S △P AB=P A ′·PB ′P A ·PB ,则如图(2)有关系V P -A ′B ′C ′V P -ABC=________.[答案]P A ′·PB ′·PC ′P A ·PB ·PC[解析] 根据类比推理,将平面上三角形的结论,推广到空间,即V P -A ′B ′C ′V P -ABC=P A ′·PB ′·PC ′P A ·PB ·PC.简证如下:设B ′、B 到平面P AC 的距离分别为h 、H ,则h H =PB ′PB .又已知S △P A ′C ′S △P AC=P A ′·PC ′P A ·PC ,∴V P -A ′B ′C ′V P -ABC=13S △P A ′C ′·h13S △P AC·H =P A ′·PC ′·PB ′P A ·PC ·PB .(理)(2010·江苏姜堰中学)如图①,数轴上A (x 1)、B (x 2),点P 分AB 成两段长度之比APPB =λ,则点P 的坐标x P =x 1+λx 21+λ成立;如图②,在梯形ABCD 中,EF ∥AD ∥BC ,且AEEB =λ,则EF =AD +λ·BC 1+λ. 根据以上结论作类比推理,如图③,在棱台A 1B 1C 1-ABC 中,平面DEF 与平面ABC 平行,且A 1DDA =λ,△A 1B 1C 1、△DEF 、△ABC 的面积依次是S 1,S ,S 2,则有结论:________________________.[答案]S =S 1+λS 21+λ[解析] 将三棱台补成棱锥P -ABC ,不妨令P A 1=m ,DA =n ,则A 1D =nλ,那么, 由S 1S =m m +nλ,得m =n S 1S -S 1, 又由S S 2=m +nλm +n (λ+1),得m +nλ=n SS 2-S, ∴nλS 1S -S 1+nλ=n SS 2-S,∴S λS -S 1=SS 2-S,由此得S =S 1+λS 21+λ.三、解答题15.(2010·瑞安中学)用分析法...证明:3-2>5- 4. [证明] 证法1:要证3-2>5-4成立, ∵3-2>0,5-4>0,∴只要证(3-2)2>(5-4)2成立. 即证5-26>9-220成立. 即证-26>4-220成立, 只须证6<-2+20成立.∵20-2>0,故只须证6<24-420成立. 即证9>220成立,即证81>80成立.最后一个不等式显然成立,以上步步可逆,故原不等式成立.证法2:要证3-2>5-4成立,只须证3+4>5+2成立,只须证7+212>7+210成立,即证12>10成立,即证12>10成立,最后一个不等式显然成立,故原结论成立.16.(文)设数列{a n }的首项a 1=a ≠14,且a n +1=⎩⎨⎧12a n,n 为偶数a n+14,n 为奇数.记b n =a 2n -1-14,n=1,2,3,….(1)求a 2,a 3;(2)判断{b n }是否为等比数列,并证明你的结论. [解析] (1)a 2=a 1+14=a +14,a 3=12a 2=12a +18.(2)∵a 4=a 3+14=12a +38.∴a 5=12a 4=14a +316. ∴b 1=a 1-14=a -14≠0, b 2=a 3-14=12⎝⎛⎭⎫a -14, b 3=a 5-14=14⎝⎛⎭⎫a -14. 猜想{b n }是公比为12的等比数列. 证明如下:∵b n +1=a 2n +1-14=12a 2n -14=12⎝⎛⎭⎫a 2n -1+14-14 =12⎝⎛⎭⎫a 2n -1-14=12b n (n ∈N *). ∴{b n }是首项为a -14,公比为12的等比数列. (理)(2010·湖南文)给出下面的数表序列:表1 表2 表3 …1 1 3 1 3 54 4 812其中表n (n =1,2,3,…)有n 行,第1行的n 个数是1,3,5,…,2n -1,从第2行起,每行中的每个数都等于它肩上的两数之和.(1)写出表4,验证表4各行中的数的平均数按从上到下的顺序构成等比数列,并将结论推广到表n (n ≥3)(不要求证明);(2)每个数表中最后一行都只有一个数,它们构成数列,1,4,12,…,记此数列为{b n }.求和:b 3b 1b 2+b 4b 2b 3+…+b n +2b n b n +1(n ∈N *). [解析] (1)表4为1 3 5 74 8 1212 2032它的第1,2,3,4行中的数的平均数分别是4,8,16,32,它们构成首项为4,公比为2的等比数列.将这一结论推广到表n (n ≥3),即表n (n ≥3)各行中的数的平均数按从上到下的顺序构成首项为n ,公比为2的等比数列.简证如下(对考生不作要求)首先,表n (n ≥3)的第1行1,3,5,…,2n -1是等差数列,其平均数为1+3+…+(2n -1)n=n ;其次,若表n 的第k (1≤k ≤n -1)行a 1,a 2,…,a n -k +1是等差数列,则它的第k +1行a 1+a 2,a 2+a 3,…,a n -k +a n -k +1也是等差数列.由等差数列的性质知,表n 的第k 行中的数的平均数与第k +1行中的数的平均数分别是a 1+a n -k +12,a 1+a 2+a n -k +a n -k +12=a 1+a n -k +1.由此可知,表n (n ≥3)各行中的数都成等差数列,且各行中的数的平均数按从上到下的顺序构成首项为n ,公比为2的等比数列.(2)表n 的第1行是1,3,5,…,2n -1,其平均数是1+3+5+…+(2n -1)n=n . 由(1)知,它的各行中的数的平均数按从上到下的顺序构成首项为n ,公比为2的等比数列(从而它的第k 行中的数的平均数是n ·2k -1),于是,表n 中最后一行的唯一一个数为b n =n ·2n -1.因此b k +2b k b k +1=(k +2)2k +1k ·2k -1·(k +1)·2k =k +2k (k +1)·2k -2=2(k +1)-k k (k +1)·2k -2=1k ·2k -3-1(k +1)·2k -2(k =1,2,3,…,n ) 故b 3b 1b 2+b 4b 2b 3+…+b n +2b n b n +1=⎝⎛⎭⎫11×2-2-12×2-1+⎝⎛⎭⎫12×2-1-13×20+…+⎣⎡⎦⎤1n ×2n -3-1(n +1)×2n -2 =11×2-2-1(n +1)×2n -2=4-1(n +1)×2n -2. 17.(文)已知等比数列{a n }的前n 项和为S n ,若a m ,a m +2,a m +1(m ∈N *)成等差数列,试判断S m ,S m +2,S m +1是否成等差数列,并证明你的结论.[解析] 设等比数列{a n }的首项为a 1,公比为q (a 1≠0,q ≠0),若a m ,a m +2,a m +1成等差数列,则2a m +2=a m +a m +1.∴2a 1q m +1=a 1q m -1+a 1q m .∵a 1≠0,q ≠0,∴2q 2-q -1=0.解得q =1或q =-12. 当q =1时,∵S m =ma 1,S m +1=(m +1)a 1,S m +2=(m +2)a 1,∴2S m +2≠S m +S m +1.∴当q =1时,S m ,S m +2,S m +1不成等差数列.当q =-12时,S m ,S m +2,S m +1成等差数列. 证明如下:证法1:∵(S m +S m +1)-2S m +2=(S m +S m +a m +1)-2(S m +a m +1+a m +2)=-a m +1-2a m +2=-a m +1-2qa m +1=-a m +1-2a m +1⎝⎛⎭⎫-12=0, ∴2S m +2=S m +S m +1.∴当q =-12时,S m ,S m +2,S m +1成等差数列. 证法2:∵2S m +2=2a 1⎣⎡⎦⎤1-⎝⎛⎭⎫-12m +21+12=43a 1⎣⎡⎦⎤1-⎝⎛⎭⎫-12m +2, 又S m +S m +1=a 1⎣⎡⎦⎤1-⎝⎛⎭⎫-12m 1+12+a 1⎣⎡⎦⎤1-⎝⎛⎭⎫-12m +11+12=23a 1⎣⎡⎦⎤2-⎝⎛⎭⎫-12m -⎝⎛⎭⎫-12m +1 =23a 1⎣⎡⎦⎤2-4⎝⎛⎭⎫-12m +2+2⎝⎛⎭⎫-12m +2 =43a 1⎣⎡⎦⎤1-⎝⎛⎭⎫-12m +2, ∴2S m +2=S m +S m +1.∴当q =-12时,S m ,S m +2,S m +1成等差数列. (理)已知函数f (x )对任意的实数x 、y 都有f (x +y )=f (x )+f (y )-1,且当x >0时,f (x )>1.(1)求证:函数f (x )在R 上是增函数;(2)若关于x 的不等式f (x 2-ax +5a )<2的解集为{x |-3<x <2},求f (2010)的值;(3)在(2)的条件下,设a n =|f (n )-14|(n ∈N *),若数列{a n }从第k 项开始的连续20项之和等于102,求k 的值.[解析] (1)证明:设x 1>x 2,则x 1-x 2>0,从而f (x 1-x 2)>1,即f (x 1-x 2)-1>0. f (x 1)=f [x 2+(x 1-x 2)]=f (x 2)+f (x 1-x 2)-1>f (x 2),故f (x )在R 上是增函数.(2)设f (b )=2,于是不等式化为f (x 2-ax +5a )<f (b ).则x 2-ax +5a <b ,即x 2-ax +5a -b <0.∵不等式f (x 2-ax +5a )<2的解集为{x |-3<x <2}.∴方程x 2-ax +5a -b =0的两根为-3和2,于是⎩⎪⎨⎪⎧ -3+2=a -3×2=5a -b ,解得⎩⎪⎨⎪⎧a =-1b =1,∴f (1)=2. 在已知等式中令x =n ,y =1得,f (n +1)-f (n )=1.所以{f (n )}是首项为2,公差为1的等差数列.f (n )=2+(n -1)×1=n +1,故f (2010)=2011.(3)a k =|f (k )-14|=|(k +1)-14|=|k -13|.设从第k 项开始的连续20项之和为T k ,则T k =a k +a k +1+…+a k +19.当k ≥13时,a k =|k -13|=k -13,T k ≥T 13=0+1+2+3+…+19=190>102.当k <13时,a k =|k -13|=13-k .T k =(13-k )+(12-k )+…+1+0+1+…+(k +6)=k 2-7k +112.令k 2-7k +112=102,解得k =2或k =5.[点评] 当k ≥13时,a k =|k -13|=k -13,令T k =20(k -13)+20×192×1=102,无正整数解,故k ≥13时,T k 不可能取值为102.。
高中数学 课时跟踪检测(十二)合情推理(含解析)新人教A版选修2-2-新人教A版高二选修2-2数学试

课时跟踪检测(十二) 合情推理一、题组对点训练对点练一 数(式)中的归纳推理1.已知数列{a n }的前n 项和S n =n 2·a n (n ≥2),且a 1=1,通过计算a 2,a 3,a 4,猜想a n等于( )A .2(n +1)2B .2n (n +1)C .22n -1D .22n -1解析:选B 由a 1=1,S 2=22·a 2=a 1+a 2得a 2=13,由a 1+a 2+a 3=9×a 3得a 3=16,由a 1+a 2+a 3+a 4=42·a 4得a 4=110,…,猜想a n =2n (n +1),故选B.2.将正整数排列如下图: 12 3 4 5 6 7 8 910 11 12 13 14 15 16 …则2 018出现在 A .第44行第81列 B .第45行第81列 C .第44行第82列D .第45行第82列解析:选D 由题意可知第n 行有2n -1个数,则前n 行的数的个数为1+3+5+…+(2n -1)=n 2,因为442=1 936,452=2 025,且1 936<2 018<2 025,所以2 018在第45行,又第45行有2×45-1=89个数,2018-1 936=82,故2 018在第45行第82列,选D.3.观察下列各式:1=12,2+3+4=32,3+4+5+6+7=52,4+5+6+7+8+9+10=72,…可以得出的一般结论是( )A .n +(n +1)+(n +2)+…+(3n -2)=n 2B .n +(n +1)+(n +2)+…+(3n -2)=(2n -1)2C .n +(n +1)+(n +2)+…+(3n -1)=n 2D .n +(n +1)+(n +2)+…+(3n -1)=(2n -1)2解析:选B 观察各等式的构成规律可以发现,各等式的左边是2n -1(n ∈N *)项的和,其首项为n ,右边是项数的平方,故第n 个等式首项为n ,共有2n -1项,右边是(2n -1)2,即n+(n+1)+(n+2)+…+(3n-2)=(2n-1)2,故选B.4.设f(x)=13x+3,先分别求f(0)+f(1),f(-1)+f(2),f(-2)+f(3),然后归纳出一个一般结论,并给出证明.解:f(0)+f(1)=130+3+13+3=11+3+13+3=3-12+3-36=33.同理f(-1)+f(2)=33,f(-2)+f(3)=33.由此猜想:当x1+x2=1时,f(x1)+f(x2)=33.证明:设x1+x2=1,则f(x1)+f(x2)=13x1+3+13x2+3=3x1+3x2+233x1+x2+3(3x1+3x2)+3=3x1+3x2+233(3x1+3x2)+2×3=3x1+3x2+233(3x1+3x2+23)=33.故猜想成立.对点练二归纳推理在几何中的应用5.如图为一串白黑相间排列的珠子,按这种规律往下排起来,那么第36颗珠子应是什么颜色( )A.白色B.黑色C.白色可能性大D.黑色可能性大解析:选A 由图,知三白二黑周期性排列,36=5×7+1,故第36颗珠子的颜色为白色.6.如图所示,第n个图形是由正n+2边形拓展而来(n=1,2,…),则第n-2个图形共有________个顶点.解析:第一个图有3+3×3=4×3个顶点;第二个图有4+4×4=5×4个顶点;第三个图有5+5×5=6×5个顶点;第四个图有6+6×6=7×6个顶点;……;第n 个图有(n +3)×(n +2)个顶点. 第n -2个图有(n +1)×n =(n 2+n )个顶点. 答案:n 2+n7.某少数民族的刺绣有着悠久的历史,如图(1),(2),(3),(4)为最简单的四个图案,这些图案都是由小正方形构成,小正方形数越多刺绣越漂亮. 现按同样的规律刺绣(小正方形的摆放规律相同),设第n 个图形包含f (n )个小正方形.(1)求出f (5)的值;(2)利用合情推理的“归纳推理思想”,归纳出f (n +1)与f (n )之间的关系式,并根据你得到的关系式求出f (n )的表达式;(3)求1f (1)+1f (2)-1+1f (3)-1+…+1f (n )-1的值. 解:(1)f (5)=41.(2)因为f (2)-f (1)=4=4×1,f (3)-f (2)=8=4×2, f (4)-f (3)=12=4×3, f (5)-f (4)=16=4×4,…由上面规律,得出f (n +1)-f (n )=4n . 因为f (n +1)-f (n )=4n ⇒f (n +1)=f (n )+4n ⇒f (n )=f (n -1)+4(n -1)=f (n -2)+4(n -1)+4(n -2)=f (n -3)+4(n -1)+4(n -2)+4(n -3) =…=f (1)+4(n -1)+4(n -2)+4(n -3)+…+4 =2n 2-2n +1. (3)当n ≥2时,1f (n )-1=12n (n -1)=12⎝ ⎛⎭⎪⎫1n -1-1n .所以1f (1)+1f (2)-1+1f (3)-1+…+1f (n )-1=1+12×⎝ ⎛⎭⎪⎫1-12+12-13+13-14+…+1n -1-1n=1+12⎝ ⎛⎭⎪⎫1-1n =32-12n .对点练三 类比推理8.已知{b n }为等比数列,b 5=2,且b 1b 2b 3…b 9=29.若{a n }为等差数列,a 5=2,则{a n }的类似结论为( )A .a 1a 2a 3…a 9=29B .a 1+a 2+…+a 9=29C .a 1a 2…a 9=2×9D .a 1+a 2+…+a 9=2×9解析:选D 等比数列中的积(乘方)类比等差数列中的和(积),得a 1+a 2+…+a 9=2×9. 9.在平面中,△ABC 的∠ACB 的平分线CE 分△ABC 面积所成的比S △AEC S △BEC =ACBC,将这个结论类比到空间:在三棱锥A BCD 中,平面DEC 平分二面角A CD B 且与AB 交于E ,则类比的结论为________.解析:平面中的面积类比到空间为体积,故S △AEC S △BEC 类比成V A CDEV B CDE.平面中的线段长类比到空间为面积,故ACBC 类比成S △ACD S △BDC .故有V A CDE V B CDE =S △ACDS △BDC. 答案:V A CDE V B CDE =S △ACDS △BDC10.在矩形ABCD 中,对角线AC 与两邻边所成的角分别为α,β,则cos 2α+cos 2β=1,在立体几何中,通过类比,给出猜想并证明.解:如图①,在矩形ABCD 中,cos 2α+cos 2β=⎝ ⎛⎭⎪⎫a c 2+⎝ ⎛⎭⎪⎫b c 2=a 2+b 2c 2=c2c 2=1.于是类比到长方体中,猜想其体对角线与共顶点的三条棱所成的角分别为α,β,γ, 则cos 2α+cos 2β+cos 2γ=1,证明如下:如图②,cos 2α+cos 2β+cos 2γ=⎝ ⎛⎭⎪⎫m l 2+⎝ ⎛⎭⎪⎫n l 2+⎝ ⎛⎭⎪⎫g l 2=m 2+n 2+g 2l 2=l 2l 2=1.二、综合过关训练1.观察下列各式:72=49,73=343,74=2 401,…,则72 018的末两位数字为( )A .01B .43C .07D .49解析:选D 因为71=7,72=49,73=343,74=2 401,75=16 807,76=117 649,…, 所以这些数的末两位数字呈周期性出现,且周期T =4.又2 018=4×504+2, 所以72 018的末两位数字与72的末两位数字相同,为49.2.定义A *B ,B *C ,C *D ,D *B 依次对应下列4个图形:那么下列4个图形中,可以表示A *D ,A *C 的分别是( ) A .(1),(2) B .(1),(3) C .(2),(4)D .(1),(4)解析:选C 由①②③④可归纳得出:符号“*”表示图形的叠加,字母A 代表竖线,字母B 代表大矩形,字母C 代表横线,字母D 代表小矩形,∴A *D 是(2),A *C 是(4).3.古希腊人常用小石子在沙滩上摆成各种形状来研究数.比如:他们研究过图(1)中的1,3,6,10,…,由于这些数能够表示成三角形,将其称为三角形数;类似地,称图(2)中的1,4,9,16,…,这样的数为正方形数.下列数中既是三角形数又是正方形数的是( )A .289B .1 024C .1 225D .1 378解析:选C 记三角形数构成的数列为{a n },则a 1=1,a 2=3=1+2,a 3=6=1+2+3,a 4=10=1+2+3+4,可得通项公式为a n =1+2+3+…+n =n (n +1)2.同理可得正方形数构成的数列的通项公式为b n =n 2.将四个选项的数字分别代入上述两个通项公式,使得n 都为正整数的只有1 225.4.将正偶数2,4,6,8,…按下表的方式进行排列,记a ij 表示第i 行和第j 列的数,若a ij=2 018,则i +j 的值为( )第1 列 第2列 第3列 第4列 第5列 第1行2 4 6 8 第2行 1614 12 10 第3行18 20 22 24 第4行 3230 28 26 第5行34 36 38 40 ………………A .257B .256C .255D .254解析:选C 由表所反映的信息来看,第n 行的最大偶数为S n =8n (n ∈N *),则8(i -1)<2 018≤8i ,由于i ∈N *,解得i =253;另一方面,奇数行的最大数位于第5列,偶数行的最大数位于第1列,第252行最大数为8×252=2 016,此数位于第252行第1列,因此2 018位于第253行第2列,所以i =253,j =2,故i +j =253+2=255,故选C.5.设等差数列{a n }的前n 项和为S n ,则S 4,S 8-S 4,S 12-S 8,S 16-S 12成等差数列.类比以上结论有:设等比数列{b n }的前n 项积为T n ,则T 4,________,________,T 16T 12成等比数列. 解析:等差数列类比于等比数列时,和类比于积,减法类比于除法,可得类比结论为:设等比数列{b n }的前n 项积为T n ,则T 4,T 8T 4,T 12T 8,T 16T 12成等比数列. 答案:T 8T 4T 12T 86.如图(1),在三角形ABC 中,AB ⊥AC ,若AD ⊥BC ,则AB 2=BD ·BC .若类比该命题,如图(2),三棱锥A BCD 中,AD ⊥平面ABC ,若A 点在三角形BCD 所在平面内的射影为M ,则有什么结论?命题是不是真命题.解:命题是:三棱锥A BCD 中,AD ⊥平面ABC ,若A 点在三角形BCD 所在平面内的射影为M ,则有S 2△ABC =S △BCM ·S △BCD .此命题是一个真命题.证明如下:在图(2)中,延长DM 交BC 于E ,连接AE ,则有DE ⊥BC . 因为AD ⊥平面ABC , 所以AD ⊥AE .又AM ⊥DE ,所以AE 2=EM ·ED .于是S 2△ABC =⎝ ⎛⎭⎪⎫12BC ·AE 2=⎝ ⎛⎭⎪⎫12BC ·EM ·⎝ ⎛⎭⎪⎫12BC ·ED =S △BCM ·S △BCD .7.如图所示为m 行m +1列的士兵方阵(m ∈N *,m ≥2).(1)写出一个数列,用它表示当m 分别是2,3,4,5,…时,方阵中士兵的人数; (2)若把(1)中的数列记为{a n },归纳该数列的通项公式; (3)求a 10,并说明a 10表示的实际意义; (4)已知a n =9 900,问a n 是数列第几项?解:(1)当m =2时,表示一个2行3列的士兵方阵,共有6人,依次可以得到当m =3,4,5,…时的士兵人数分别为12,20,30,….故所求数列为6,12,20,30,….(2)因为a 1=2×3,a 2=3×4,a 3=4×5,…,所以猜想a n =(n +1)(n +2),n ∈N *. (3)a 10=11×12=132.a 10表示11行12列的士兵方阵的人数为132.(4)令(n +1)(n +2)=9 900,所以n =98,即a n 是数列的第98项,此时方阵为99行100列.。
高中数学 2.1《合情推理与演绎推理》测试(1) 新人教B版选修2-2

合情推理与演绎推理一、归纳推理 例1.(1)观察圆周上n 个点之间所连的弦,发现两个点可以连一条弦,3个点可以连3条弦,4个点可以连6条弦,5个点可以连10条弦,你由此可以归纳出什么规律?变式1.设平面内有n 条直线)3(≥n ,其中有且仅有两条直线互相平行,任意三条直线不过同一点.若用)(n f 表示这n 条直线交点的个数,则)4(f =____________;当4>n 时,=)(n f .(用n 表示)变式2.在圆内画一条线段,将圆分成两部分;画两条线段,彼此最多分割成4条线段,同时将圆分割成4部分;画三条线段,彼此最多分割成9条线段,同时将圆分割成7部分.那么 (1)在圆内画四条线段,彼此最多分割成 条线段?同时将圆分割成 部分?(2)猜想:圆内两两相交的n (n ≥2)条线段,彼此最多分割成 条线段?同时将圆分割成 部分?强化训练1.某同学在电脑上打下了一串黑白圆,如图所示,○○○●●○○○●●○○○…,按这种规律往下排,那么第36个圆的颜色应是 .2.由107>85,119>108,2513>219,…若a >b >0,m >0,则m a m b ++与a b 之间的大小关系为 .3.下列推理是归纳推理的是 (填序号).①A ,B 为定点,动点P 满足|PA |+|PB |=2a >|AB |,得P 的轨迹为椭圆 ②由a 1=1,a n =3n -1,求出S 1,S 2,S 3,猜想出数列的前n 项和S n 的表达式 ③由圆x 2+y 2=r 2的面积πr 2,猜想出椭圆2222b y a x +=1的面积S =πab④科学家利用鱼的沉浮原理制造潜艇4.已知整数的数对列如下:(1,1),(1,2),(2,1),(1,3),(2,2),(3,1),(1,4),(2,3),(3,2),(4,1),(1,5),(2,4),…则第60个数对是 .二、类比推理(一)数列中的类比例1.在等差数列{}n a 中,若010=a ,则有等式n a a a +⋅⋅⋅++21),19(1921+-∈<+⋅⋅⋅++=N n n a a a n 成立,类比上述性质,相应地:在等比数列{}n b 中,若19=b ,则有等式 成立.强化练习1.定义“等和数列”,在一个数列中,如果每一项与它的后一项的和都为同一常数,那么这个数列叫做等和数列,这个常数叫做该数列的公和。
高二数学知识点推理题大全

高二数学知识点推理题大全数学推理题是高中数学中常见的一种题型,它要求学生根据已有的数学知识,通过思考、分析和推理,得出正确的结论。
本文将为大家整理高二数学知识点推理题的大全,希望能帮助同学们更好地掌握这一题型。
以下是各个知识点的推理题示例:一、集合的推理题1.已知集合A={1,2,3,4},B={1,2,3,5},C={3,4,5,6},求A∩B 和B∪C。
解答:A∩B就是A和B的交集,即A和B中共有的元素,所以A∩B={1,2,3}。
B∪C就是B和C的并集,即A和B中的所有元素,所以B∪C={1,2,3,4,5,6}。
2.已知集合A={x|x是偶数},B={x|x是质数},C={x|x是正整数},求A∩B和B∪C。
解答:A∩B就是A和B的交集,即A和B中共有的元素,所以A∩B={2}。
B∪C就是B和C的并集,即B和C中的所有元素,所以B∪C={2,3,5,7,11,13,…}(其中省略了其他的质数)。
二、函数的推理题1.已知函数f(x)=2x+1,g(x)=3x-2,求f(3)-g(2)的值。
解答:f(3)=2*3+1=7,g(2)=3*2-2=4,所以f(3)-g(2)=7-4=3。
2.已知函数f(x)为偶函数,且f(1)=3,求f(-1)的值。
解答:由题可知,f(x)为偶函数,即f(x)=f(-x)。
所以f(1)=f(-1)=3。
三、平面几何的推理题1.已知△ABC中,角A=60°,角划分线AD将角A分为两个角,且角BAD=30°,求角DAC的度数。
解答:由题可知,角A=60°,角BAD=30°,所以角DAC=角A-角BAD=60°-30°=30°。
2.已知平行四边形ABCD的两个对角线交点为O,连结OA、OB、OC、OD,求△OBC的内角之和。
解答:由平行四边形性质可知,△OBC与△OAD全等,而△OAD的内角之和为180°,所以△OBC的内角之和也为180°。
人教A版高中数学高二选修2-1素材 趣味数学之逻辑推理 祸起箫墙

趣味数学之逻辑推理——祸起箫墙一天晚上,在一个由一对夫妇和他们的儿子、女儿组成的四口之家中,发生了一起谋杀案。
家庭中的一个成员杀害了另一个成员;其他两个成员,一个是目击者,另一个则是凶手的同谋。
(1)同谋和目击者性别不同。
(2)最年长的成员和目击者性别不同。
(3)最年轻的成员和被害者性别不同。
(4)同谋的年龄比被害者大。
(5)父亲是最年长的成员。
(6)凶手不是最年轻的成员。
在父亲、母亲、儿子和女儿这四人中,谁是凶手?(提示:最年轻的家庭成员是什么角色?谁是最年轻的的家庭成员?)答案根据{(3)最年轻的成员和被害者性别不同},最年轻的家庭成员不是被害者;根据{(4)同谋的年龄比被害者大},也不是同谋。
根据{(6)凶手不是最年轻的成员}也不是凶手。
于是,根据(4),只有以下三种可能(A代表同谋,V代表被害者,K代表凶手,W代表目击者):ⅠⅡⅢ最年长的家庭成员AAK次年长的家庭成员VKA次年轻的家庭成员KVV最年轻的家庭成员WWW根据{(5)父亲是最年长的成员。
},父亲是最年长者;从而母亲是次年长者。
根据{(2)最年长的成员和目击者性别不同。
}和上述的这些可能,最年轻的家庭成员是女儿;从而次年轻的家庭成员是儿子。
于是,从最年长的家庭成员到最年轻的家庭成员,上述三种可能就是:ⅠⅡⅢ父亲AAK母亲VKA儿子KVV女儿WWW根据{(3)最年轻的成员和被害者性别不同。
}Ⅰ不可能成立。
根据{(1)同谋和目击者性别不同。
}Ⅲ不可能成立。
因此,只有Ⅱ是可能的,也就是说,凶手是母亲。
【学海导航】高中数学第1轮第3章第22讲合情推理与演绎推理课件文(江苏专版)

从特殊到一般,是归纳的特 点.用归纳的方法导出结论一般 是以审题、经验和直觉为前提 的.本题从数表的特点出发,仔 细观察第一列的特征,不难发现 每行的第一个数的规律性.
【变式练习1】 根据下列5个图表及相应点的个数的变 化规律,归纳出第n个图中点的个数f(n) 与n的关系式f(n)=_______________.
在 等 边 CDE中 , CM = DM ,
Байду номын сангаас
所 以 E M = 3 C D= 1 B C= E F (小 前 提 ),
2
2
所 以 平 行 四 边 形 E F O M 为 菱 形 (结 论 ),
所以EO FM .
一条直线垂直于一个平面内的两条相交直线,
这 条 直 线 和 这 个 平 面 垂 直 (大 前 提 ).
又 E M C D, O M C D, E M O M = M (小 前 提 ),
所 以 C D 平 面 E O M (结 论 ), 从 而 C D E O .
而 FM C D= M , 所 以 EO 平 面 C D F .
本题考查直线与平面平行、直线与平面垂 直等基础知识,考查空间想象能力和推理论证 能力.分析上述推理过程,可以看出,推理的 前提是一般性命题:平行四边形的判定与性质、 线面平行的判定定理、线面平行的性质定理等, 这些大前提一般可以省略,结论是蕴含在前提 中的特殊位置关系.像这类推理证明题和其他 知识结合到一起,属于知识综合题.解决此类 题目时建立合理的解题思路是关键.
2
1证 明 : FO / /平 面 CDE; 2 设 BC= 3CD, 证 明 : EO 平 面 CDF .
【 证 明 】1 一 组 对 边 平 行 且 相 等 的 四 边 形 是
高中奥数推理题及答案

高中奥数推理题及答案在高中奥数竞赛中,推理题是一类常见的题型,它要求参赛者运用逻辑推理能力来解决问题。
以下是一些典型的高中奥数推理题及其答案:题目1:有5个盒子,分别标记为A、B、C、D和E。
每个盒子里都装有不同数量的球,但盒子外的标签都贴错了。
现在需要找出每个盒子里实际装有多少个球。
解答:首先,假设A盒子的标签是正确的,那么A盒子里应该有1个球。
但因为标签都贴错了,所以A盒子里不可能有1个球。
同理,其他盒子也不能有1个球。
因此,我们可以推断出每个盒子里至少有2个球。
接下来,我们考虑B盒子。
如果B盒子里有2个球,那么B盒子的标签应该是C,因为C盒子的标签是B,而C盒子里不可能有1个球。
这样,C盒子里应该有3个球。
但是,如果C盒子里有3个球,那么D盒子的标签应该是E,而E盒子的标签是D,这意味着D盒子里应该有5个球。
然而,这与我们的假设冲突,因为D盒子的标签是B,而不是E。
因此,B盒子里应该有3个球,C盒子里应该有2个球。
现在,我们可以确定D盒子里有4个球,因为E盒子的标签是D,而D盒子的标签是E。
最后,A盒子里有5个球,E盒子里有1个球。
题目2:在一个班级中,有3个学生:Alice、Bob和Charlie。
老师问他们每个人是否带了作业。
Alice说:“我没有带作业。
”Bob说:“Charlie带了作业。
”Charlie说:“Bob没有带作业。
”老师知道他们中有一个人说了真话,另外两个人说了假话。
请问谁带了作业?解答:如果Alice说了真话,那么Bob和Charlie都在说谎。
但Bob说Charlie带了作业,Charlie说Bob没有带作业,这与Alice说真话的情况矛盾。
如果Bob说了真话,那么Alice和Charlie都在说谎。
这意味着Alice 带了作业,Charlie没有带作业,这与Bob说Charlie带了作业的真话相矛盾。
因此,只能是Charlie说了真话,Bob和Alice都在说谎。
高中数学第二章推理与证明2.3数学归纳法精讲精练(含答案解析)

2.3数学归纳法考点学习目标核心素养数学归纳法的原理了解数学归纳法的原理数学抽象数学归纳法的应用能用数学归纳法证明一些简单的数学命题逻辑推理问题导学预习教材P92~P95,并思考下列问题:1.数学归纳法的概念是什么?2.数学归纳法的证题有几步?数学归纳法一般地,证明一个与正整数n有关的命题,可按下列步骤进行:①(归纳奠基)证明当n取第一个值n0(n0∈N*)时命题成立;②(归纳递推)假设n=k(k≥n0,k∈N*)时命题成立,证明当n=k+1时命题也成立.只要完成这两个步骤,就可以断定命题对从n0开始的所有正整数n都成立.上述证明方法叫做数学归纳法.■名师点拨(1)数学归纳法的两个步骤分别是数学归纳法的两个必要条件,二者缺一不可.步骤①是命题论证的基础,步骤②是判断命题的正确性能否递推下去的保证,这两个步骤缺一不可.如果缺少步骤②,无法对当n取n0以后的数时的结论是否正确作出判断;如果缺少步骤①这个基础,假设就失去了成立的前提,步骤②就没有意义了.(2)步骤②中,证明“当n=k+1时命题成立”的过程中,必须利用归纳假设,即必须用上“假设当n=k时命题成立”这一条件.判断正误(对的打“√”,错的打“×”)(1)与正整数n 有关的数学命题的证明只能用数学归纳法.( ) (2)数学归纳法的第一步n 0的初始值一定为1.( ) (3)数学归纳法的两个步骤缺一不可.( ) 答案:(1)× (2)× (3)√用数学归纳法证明“凸n 边形的内角和等于(n -2)π”时,归纳奠基中n 0的取值应为( )A .1B .2C .3D .4解析:选C.根据凸n 边形至少有3条边,知n ≥3,故n 0的取值应为3.用数学归纳法证明1+12+13+…+12n -1<n (n ∈N *且n >1)第一步要证明的不等式是____________,从n =k 到n =k +1时,左端增加了____________项.解析:当n =2时,1+12+13<2.当n =k 时到第2k -1项, 而当n =k +1时到第2k +1-1项,所以2k +1-1-(2k -1)=2k +1-2k =2·2k -2k =2k . 答案:1+12+13<2 2k用数学归纳法证明等式用数学归纳法证明:对任何正整数n ,13+115+135+163+…+14n 2-1=n2n +1成立.【证明】 ①当n =1时,左边=13,右边=12×1+1=13,故左边=右边,等式成立; ②假设当n =k (k ∈N *)时等式成立, 即13+115+135+163+…+14k 2-1=k2k +1. 那么当n =k +1时,利用归纳假设有: 13+115+135+163+…+14k 2-1+14(k +1)2-1=k2k+1+14(k+1)2-1=k2k+1+1(2k+2)2-1=k2k+1+1(2k+1)(2k+3)=k(2k+3)+1(2k+1)(2k+3)=2k2+3k+1(2k+1)(2k+3)=(2k+1)(k+1)(2k+1)(2k+3)=k+12(k+1)+1.故当n=k+1时,等式也成立.由①和②知,等式对任何正整数n都成立.用数学归纳法证明等式的方法用数学归纳法证明:1×4+2×7+3×10+…+n(3n+1)=n(n+1)2,其中n∈N*.证明:(1)当n=1时,左边=1×4=4,右边=1×22=4,左边=右边,等式成立.(2)假设当n=k(k∈N*)时等式成立,即1×4+2×7+3×10+…+k(3k+1)=k(k+1)2,那么当n=k+1时,1×4+2×7+3×10+…+k(3k+1)+(k+1)[3(k+1)+1]=k(k+1)2+(k+1)[3(k+1)+1]=(k+1)(k2+4k+4)=(k+1)[(k+1)+1]2,即当n=k+1时等式也成立.根据(1)和(2)可知等式对任何n∈N*都成立.用数学归纳法证明不等式求证:2+12·4+14·…·2n +12n >n +1,n ∈N *.【证明】 (1)当n =1时,左边=32,右边=2,左边>右边,所以不等式成立. (2)假设当n =k (k ∈N *)时,不等式成立, 即2+12·4+14·…·2k +12k>k +1. 则当n =k +1时,2+12·4+14·…·2k +12k ·2k +32(k +1)>k +1·2k +32(k +1)=2k +32k +1.要证当n =k +1时,不等式成立,只需证2k +32k +1≥k +2,即证2k +32≥(k +1)(k +2).由基本不等式,得2k +32=(k +1)+(k +2)2≥(k +1)(k +2),所以2k +32k +1≥k +2,所以当n =k +1时,不等式成立.由(1)(2)可知,对一切n ∈N *,原不等式均成立.用数学归纳法证明不等式问题的四个关键点用数学归纳法证明:122+132+142+…+1n 2<1-1n (n ≥2,n ∈N *). 证明:(1)当n =2时, 左式=122=14,右式=1-12=12.因为14<12,所以不等式成立.(2)假设n =k (k ≥2,k ∈N *)时, 不等式成立,即122+132+142+…+1k 2<1-1k , 则当n =k +1时,122+132+142+…+1k 2+1(k +1)2<1-1k +1(k +1)2=1-(k +1)2-k k (k +1)2=1-k 2+k +1k (k +1)2<1-k (k +1)k (k +1)2=1-1k +1, 所以当n =k +1时,不等式也成立.综上所述,对任意n ≥2的正整数,不等式都成立.归纳——猜想——证明已知点P n (a n ,b n )满足a n +1=a n ·b n +1,b n +1=b n1-4a 2n(n ∈N *)且点P 1的坐标为(1,-1).(1)求过点P 1,P 2的直线l 的方程;(2)试用数学归纳法证明:对n ∈N *,点P n 都在(1)中的直线l 上. 【解】 (1)由点P 1的坐标为(1,-1)知a 1=1,b 1=-1, 所以b 2=b 11-4a 21=13,a 2=a 1·b 2=13, 所以点P 2的坐标为⎝⎛⎭⎫13,13, 故直线l 的方程为2x +y =1.(2)①当n =1时,2a 1+b 1=2×1+(-1)=1,命题成立.②假设当n =k (k ∈N *)时,2a k +b k =1成立,则当n =k +1时,2a k +1+b k +1=2a k ·b k +1+b k +1=b k 1-4a 2k(2a k+1)=b k1-2a k =1-2a k 1-2a k =1, 故当n =k +1时,命题也成立.由①和②知,对任何n ∈N *,都有2a n +b n =1成立,即点P n 在直线l 上.“归纳—猜想—证明”的一般步骤已知数列{a n }满足S n +a n =2n +1.(1)写出a 1,a 2,a 3,推测a n 的表达式; (2)用数学归纳法证明所得结论.解:(1)由S n +a n =2n +1,得a 1=32,a 2=74,a 3=158,推测a n =2n +1-12n =2-12n (n ∈N *).(2)证明:a n =2-12n (n ∈N *).①当n =1时,a 1=2-121=32,结论成立.②假设当n =k (k ≥1,k ∈N *)时结论成立,即a k =2-12k ,那么当n =k +1时,a 1+a 2+…+a k +a k +1+a k +1=2(k +1)+1,因为a 1+a 2+…+a k =2k +1-a k ,所以2a k +1=a k +2,所以2a k +1=4-12k ,所以a k +1=2-12k +1,所以当n =k +1时结论成立.由①②知对于任意正整数n ,结论都成立.规范解答数学归纳法的应用(本题满分12分)给出四个等式: 1=1,1-4=-(1+2), 1-4+9=1+2+3,1-4+9-16=-(1+2+3+4), …(1)写出第5,6个等式,并猜测第n (n ∈N *)个等式; (2)用数学归纳法证明你猜测的等式.【解】 (1)第5个等式:1-4+9-16+25=1+2+3+4+5,(1分) 第6个等式:1-4+9-16+25-36=-(1+2+3+4+5+6),(2分) 第n 个等式为:12-22+32-42+…+(-1)n -1n 2 =(-1)n -1(1+2+3+…+n ). (4分)正确猜测此结论,是本题的基础.)(2)证明:①当n =1时,左边=12=1, 右边=(-1)0×1=1,左边=右边,等式成立.(6分)②假设n =k (k ≥1,k ∈N *)时,等式成立,即12-22+32-42+…+(-1)k -1k 2 =(-1)k -1(1+2+3+…+k ) =(-1)k -1·k (k +1)2.(7分)则当n =k +1时,12-22+32-42+…+(-1)k -1k 2+(-1)k (k +1)2 =(-1)k -1·k (k +1)2+(-1)k (k +1)2=(-1)k (k +1)⎣⎡⎦⎤(k +1)-k2 =(-1)k (k +1)[(k +1)+1]2=(-1)k (1+2+3+…+k +1). (10分)由n =k 到n =k +,1是本题的难点.)所以当n =k +1时,等式也成立,(11分) 根据①②可知,对∀n ∈N *等式均成立.(12分)(1)应用数学归纳法时,可按口诀“递推基础不可少,归纳假设要用到,突出形式明依据,总结定论莫忘掉”来检查要点.(2)在数学归纳法应用中,要明确当n =k +1时,等式两边的式子与n =k 时等式两边的式子的联系,增加的项为(-1)k (k +1)2.这样才可以正确求解.1.用数学归纳法证明:⎝⎛⎭⎫1-14⎝⎛⎭⎫1-19⎝⎛⎭⎫1-116·…·⎝⎛⎭⎫1-1n 2=n +12n (n ≥2,n ∈N *). 证明:①当n =2时, 左边=1-14=34,右边=2+12×2=34,所以左边=右边.所以当n =2时,等式成立.②假设当n =k (k ≥2,k ∈N *)时,等式成立, 即⎝⎛⎭⎫1-14⎝⎛⎭⎫1-19·…·⎝⎛⎭⎫1-1k 2=k +12k , 当n =k +1时,那么⎝⎛⎭⎫1-14⎝⎛⎭⎫1-19·…·⎝⎛⎭⎫1-1k 2⎣⎡⎦⎤1-1(k +1)2 =k +12k ⎣⎡⎦⎤1-1(k +1)2 =k +12k ·k (k +2)(k +1)2=k +22(k +1) =(k +1)+12(k +1),即当n =k +1时,等式也成立.根据①②可知,等式对任意n ≥2,n ∈N *都成立. 2.已知数列{a n }满足a 1=16,前n 项和S n =n (n +1)2a n .(1)求a 2,a 3,a 4的值;(2)猜想a n 的表达式,并用数学归纳法证明. 解:(1)因为a 1=16,前n 项和S n =n (n +1)2a n ,所以令n =2,得a 1+a 2=3a 2,所以a 2=12a 1=112.令n =3,得a 1+a 2+a 3=6a 3,所以a 3=120.令n =4,得a 1+a 2+a 3+a 4=10a 4,所以a 4=130.(2)猜想a n =1(n +1)(n +2),下面用数学归纳法给出证明.①当n =1时,左边:a 1=16=1(1+1)(1+2)=右边,结论成立;②假设当n =k (k ∈N *,k ≥1)时,结论成立, 即a k =1(k +1)(k +2),则当n =k +1时,S k =k (k +1)2·a k =k2(k +2),S k +1=(k +1)(k +2)2·a k +1,即S k +a k +1=(k +1)(k +2)2·a k +1,所以k2(k +2)+a k +1=(k +1)(k +2)2·a k +1,所以k (k +3)2·a k +1=k2(k +2),所以a k +1=1(k +2)(k +3),所以当n =k +1时结论成立.由①②可知,对一切n ∈N *都有a n =1(n +1)(n +2)成立.[A 基础达标]1.下面四个判断中,正确的是( )A .式子1+k +k 2+…+k n (n ∈N *),当n =1时,原式=1B .式子1+k +k 2+…+k n -1(n ∈N *),当n =1时,原式=1+k C .式子1+12+13+…+12n +1(n ∈N *),当n =1时,原式=11+12+13D .设f (n )=1n +1+1n +2+…+13n +1(n ∈N *),则f (k +1)=f (k )+13k +2+13k +3+13k +4解析:选C.A.当n =1时,原式=1+k ,错误;B.当n =1时,原式=1,错误;C.当n =1时,原式=11+12+13,正确;D.f (k +1)=f (k )+13k +2+13k +3+13k +4-1k +1,错误.故选C.2.用数学归纳法证明n +(n +1)+(n +2)+…+(3n -2)=(2n -1)2(n ∈N *)时,若记f (n )=n +(n +1)+(n +2)+…+(3n -2),则f (k +1)-f (k )等于( )A .3k -1B .3k +1C .8kD .9k解析:选C.因为f (k )=k +(k +1)+(k +2)+…+(3k -2),f (k +1)=(k +1)+(k +2)+…+(3k -2)+(3k -1)+3k +(3k +1),则f (k +1)-f (k )=3k -1+3k +3k +1-k =8k .3.用数学归纳法证明“当n 为正奇数时,x n +y n 能被x +y 整除”的第二步是( ) A .假设n =2k +1时正确,再推n =2k +3时正确(k ∈N *) B .假设n =2k -1时正确,再推n =2k +1时正确(k ∈N *) C .假设n =k 时正确,再推n =k +1时正确(k ∈N *) D .假设n ≤k (k ≥1)时正确,再推n =k +2时正确(k ∈N *)解析:选B.n ∈N *且为奇数,由假设n =2k -1(k ∈N *)时成立推证出n =2k +1(k ∈N *)时也成立,就完成了归纳递推.4.用数学归纳法证明不等式12+13+…+12n ≤n 时,从n =k 到n =k +1不等式左边增添的项数是( )A .kB .2k -1C .2kD .2k +1解析:选C.当n =k 时,不等式左边为12+13+14+…+12k ,共有2k -1项;当n =k +1时,不等式左边为12+13+14+…+12k +1,共有2k +1-1项,所以增添的项数为2k +1-2k =2k .5.对于不等式 n 2+n <n +1(n ∈N *),某同学应用数学归纳法的证明过程如下: (1)当n =1时,12+1<1+1,不等式成立.(2)假设当n =k (k ∈N *)时,不等式成立,即k 2+k <k +1.那么当n =k +1时,(k +1)2+(k +1)=k 2+3k +2<(k 2+3k +2)+(k +2)=(k +2)2=(k +1)+1,所以当n =k +1时,不等式也成立.根据(1)和(2),可知对于任何n ∈N *,不等式均成立. 则上述证法( ) A .过程全部正确 B .n =1验得不正确 C .归纳假设不正确D .从n =k 到n =k +1的证明过程不正确解析:选D.此同学从n =k 到n =k +1的证明过程中没有应用归纳假设.6.用数学归纳法证明“2n >n 2+1对于n ≥n 0的正整数n 都成立”时,第一步证明中的起始值n 0应取________.解析:验证法,当n =1时,2=2;当n =2时,22=4<22+1=5;当n =3时,23=8<32+1=10;当n =4时,24=16<42+1=17;当n =5时,25=32>52+1=26;当n =6时,26=64>62+1=37.答案:57.用数学归纳法证明122+132+…+1(n +1)2>12-1n +2.假设n =k 时,不等式成立,则当n =k +1时,应推证的目标不等式是________.解析:观察不等式左边的分母可知,由n =k 到n =k +1左边多出了1(k +2)2这一项.答案:122+132+…+1(k +1)2+1(k +2)2>12-1k +38.若f (n )=12+22+32+…+(2n )2,则f (k +1)与f (k )的递推关系式是________. 解析:因为f (k )=12+22+…+(2k )2,f (k +1)=12+22+…+(2k )2+(2k +1)2+(2k +2)2,所以f (k +1)-f (k )=(2k +1)2+(2k +2)2,即f (k +1)=f (k )+(2k +1)2+(2k +2)2.答案:f (k +1)=f (k )+(2k +1)2+(2k +2)29.已知数列{a n }中,a 1=5,S n -1=a n (n ≥2且n ∈N *).(1)求a 2,a 3,a 4并由此猜想a n 的表达式;(2)用数学归纳法证明{a n }的通项公式.解:(1)a 2=S 1=a 1=5,a 3=S 2=a 1+a 2=10,a 4=S 3=a 1+a 2+a 3=20.猜想a n =5×2n -2(n ≥2,n ∈N *).(2)证明:①当n =2时,a 2=5×22-2=5成立.②假设当n =k (k ≥2且k ∈N *)时猜想成立,即a k =5×2k -2,则n =k +1时,a k +1=S k =a 1+a 2+…+a k =5+5+10+…+5×2k -2=5+5(1-2k -1)1-2=5×2k -1. 故当n =k +1时,猜想也成立.由①②可知,对n ≥2且n ∈N *,都有a n =5×2n -2.于是数列{a n }的通项公式为a n =⎩⎪⎨⎪⎧5,n =1,5×2n -2,n ≥2且n ∈N *. [B 能力提升]10.凸n 边形有f (n )条对角线,则凸n +1边形对角线的条数f (n +1)为( )A .f (n )+n +1B .f (n )+nC .f (n )+n -1D .f (n )+n -2解析:选C.增加一个顶点,就增加n +1-3条对角线,另外原来的一边也变成了对角线,故f (n +1)=f (n )+1+n +1-3=f (n )+n -1.故应选C.11.用数学归纳法证明“5n -2n 能被3整除(n ∈N *)”的第二步中,n =k +1时,为了使用归纳假设,应将5k +1-2k+1变形为( )A .5(5k -2k )+3×2kB .(5k -2k )+4×5k -2kC .3(5k -2k )D .2(5k -2k )-3×5k解析:选A.假设当n =k (k ∈N *)时命题成立,即5k -2k 能被3整除.当n =k +1时,5k +1-2k +1=5×5k -2×2k =5(5k -2k )+5×2k -2×2k =5(5k -2k )+3×2k ,故选A. 12.求证:当n ≥1(n ∈N *)时,(1+2+…+n )·⎝⎛⎭⎫1+12+…+1n ≥n 2. 证明:(1)当n =1时,左边=右边,命题成立;当n =2时,左边=(1+2)⎝⎛⎭⎫1+12=92>22=右边,命题成立. (2)假设当n =k (k ≥2,k ∈N *)时,命题成立,即(1+2+…+k )⎝⎛⎭⎫1+12+…+1k ≥k 2, 则当n =k +1时,有左边=[(1+2+…+k )+(k +1)]·[(1+12+…+1k )+1k +1]=(1+2+…+k )·⎝⎛⎭⎫1+12+…+1k +(1+2+…+k )·1k +1+(k +1)·⎝⎛⎭⎫1+12+…+1k +1≥k 2+k (k +1)2·1k +1+1+(k +1)·⎝⎛⎭⎫1+12+…+1k =k 2+k 2+1+(k +1)·⎝⎛⎭⎫1+12+…+1k . 因为当k ≥2时,1+12+…+1k ≥1+12=32, 所以左边≥k 2+k 2+1+(k +1)×32=k 2+2k +1+32>(k +1)2=右边. 所以当n =k +1时,命题也成立.由(1)(2)知,当n ≥1时,原命题成立.13.(选做题)已知函数f (x )=ax -32x 2的最大值不大于16,且当x ∈⎣⎡⎦⎤14,12时,f (x )≥18. (1)求a 的值;(2)设0<a 1<12,a n +1=f (a n ),n ∈N *,证明:a n <1n +1. 解:(1)由题意,知f (x )=ax -32x 2=-32⎝⎛⎭⎫x -a 32+a 26. 因为f (x )max ≤16,所以f (x )max =f ⎝⎛⎭⎫a 3=a 26≤16,所以a 2≤1. 又当x ∈⎣⎡⎦⎤14,12时,f (x )≥18, 所以⎩⎨⎧f ⎝⎛⎭⎫12≥18f ⎝⎛⎭⎫14≥18,即⎩⎨⎧a 2-38≥18a 4-332≥18,解得a ≥1. 又因为a 2≤1,所以a =1.(2)证明:由(1)知,f (x )=x -32x 2. 下面用数学归纳法证明:①当n =1时,0<a 1<12,显然结论成立. 因为当x ∈⎝⎛⎭⎫0,12时,0<f (x )≤16, 所以0<a 2=f (a 1)≤16<13. 故当n =2时,原不等式也成立.②假设当n =k (k ≥2,k ∈N *)时,不等式0<a k <1k +1成立. 因为f (x )=x -32x 2的对称轴为直线x =13, 所以当x ∈⎝⎛⎦⎤0,13时,f (x )为增函数. 由0<a k <1k +1≤13,得0<f (a k )<f ⎝⎛⎭⎫1k +1. 于是0<a k +1=f (a k )<1k +1-32·1(k +1)2+1k +2-1k +2=1k +2-k +42(k +1)2(k +2)<1k +2. 所以当n =k +1时,原不等式也成立.综合①②,知对任意n ∈N *,不等式a n <1n +1都成立.。
2020年新高考III卷数学逻辑推理题及答案

2020年新高考III卷数学逻辑推理题及答案1. 题目分析与答案解析第一题:以下是一组数字序列: 1, 3, 6, 10, 15, 21...请问下一个数字是多少?解析:从第一项开始,每一项都比前一项多1,所以下一个数字是21 + 6 = 27。
答案:27第二题:某商场正在进行打折促销活动,折扣力度为7折(即商品价格打7折),购物满200元再减40元。
小明购买了一部手机,原价300元。
请问他实际需要支付多少钱?解析:首先,将商品价格打7折:300元 * 0.7 = 210元。
接着,考虑满200元再减40元的优惠。
由于小明购买的商品价格并没达到200元,所以无法再享受这个优惠。
因此,小明需要支付的金额是210元。
答案:210元第三题:某书店正在进行促销活动,原价为160元的教材打8折,折上折,再减30元。
小红购买了这本教材,请问她实际需要支付多少钱?解析:首先,将教材原价打8折:160元 * 0.8 = 128元。
接着,考虑再减30元的优惠。
小红可以享受折上折的优惠,所以需要使用优惠后的价格来计算。
128元 - 30元 = 98元。
因此,小红需要支付的金额是98元。
答案:98元2. 数学逻辑推理题讨论本卷共有三道数学逻辑推理题,涉及到计算和推论等方面的技能。
题目的答案解析已经给出,并且给出了具体计算过程,使读者能够理解和掌握解题方法。
数学逻辑推理题在高考中占有重要的一部分,考察学生的数学思维能力和逻辑推理能力。
通过做这些题目,可以培养学生的思维灵活性和解决问题的能力,同时也能提高他们的数学水平。
3. 结语通过解析2020年新高考III卷数学逻辑推理题,我们可以看到这一类题目涉及到数学计算和逻辑推理,需要学生掌握一定的数学知识和解题技巧。
希望本文的分析能对读者有所帮助,提高他们在数学逻辑推理题上的应试能力。
高中数学1.3.11逻辑推理

1.3.11逻辑推理学校:________班级:________姓名:________学号:________一、单选题(共10小题)1.甲、乙、丙三位同学获得某项竞赛活动的前三名,但具体名次未知.3人作出如下预测:甲说:我不是第三名;乙说:我是第三名;丙说:我不是第一名.若甲、乙、丙3人的预测结果有且只有一个正确,由此判断获得第三名的是()A.甲B.乙C.丙D.无法预测2.甲、乙、丙三人中,一人是律师,一人是医生,一人是记者.已知丙的年龄比医生大;甲的年龄和记者不同;记者的年龄比乙小.根据以上情况,下列判断正确的是()A.甲是律师,乙是医生,丙是记者B.甲是医生,乙是记者,丙是律师C.甲是医生,乙是律师,丙是记者D.甲是记者,乙是医生,丙是律师3.方舱医院的创设,在抗击新冠肺炎疫情中发挥了不可替代的重要作用.某方舱医院医疗小组有七名护士,每名护士从周一到周日轮流安排一个夜班.若甲的夜班比丙晚一天,丁的夜班比戊晚两天,乙的夜班比庚早三天,己的夜班在周四,且恰好在乙和丙的正中间,则周五值夜班的护士为()A.甲B.丙C.戊D.庚4.甲,乙,丙,丁四名学生,仅有一人阅读了语文老师推荐的一篇文章.当它们被问到谁阅读了该篇文章时,甲说:“丙或丁阅读了”;乙说:“丙阅读了”;丙说:“甲和丁都没有阅读”;丁说:“乙阅读了”.假设这四名学生中只有两人说的是对的,那么读了该篇文章的学生是()A.甲B.乙C.丙D.丁5.一位老师将三道题(一道三角题,一道数列题,一道立体几何题)分别写在三张卡纸上,安排甲、乙、丙三位学生各抽取一道.当他们被问到谁做立体几何题时,甲说:“我抽到的不是立体几何题”,乙说:“我喜欢三角,可惜没抽到”,丙说:“乙抽到的肯定不是数列题”.事实证明,这三人中只有一人说的是假话,那么抽到立体几何题的是()A.甲B.乙C..丙D.不确定6.关于甲、乙、丙三人参加高考的结果有下列三个正确的判断:①若甲未被录取,则乙、丙都被录取;②乙与丙中必有一个未被录取;③或者甲未被录取,或者乙被录取.则三人中被录取的是()A.甲B.丙C.甲与丙D.甲与乙7.一位老师有两个推理能力很强的学生甲和乙,他告诉学生他手里拿着与以下扑克牌中的一张相同的牌:黑桃:3,5,Q ,K 红心:7,8,Q 梅花:3,8,J ,Q 方块:2,7,9老师只给甲同学说这张牌的数字(或字母),只给乙同学说这张牌的花色,接着老师让这两个同学猜这是张什么牌:甲同学说:我不知道这是张什么牌,乙同学说:我也不知道这是张什么牌.甲同学说:现在我们知道了.则这张牌是()A .梅花3B .方块7C .红心7D .黑桃Q第8.甲、乙、丙、丁四人参加数学竞赛.赛后,他们四个人预测名次的谈话如下:甲:“丙第一名,我第三名”;乙:“我第一名,丁第四名”;丙:“丁第二名,我第三名”;丁没有说话.最后公布结果时,发现他们预测都只猜对了一半,则这次竞赛甲、乙、丙、丁的名次依次是()名.A .一、二、三、四B .三、一、二、四C .三、一、四、二D .四、三、二、一9.新高考的改革方案开始实施后,某地学生需要从化学,生物,政治,地理四门学科中选课,每名同学都要选择其中的两门课程.已知甲同学选了化学,乙与甲没有相同的课程,丙与甲恰有一门课相同,丁与丙也没有相同课程.则以下说法正确的是()A .丙没有选化学B .丁没有选化学C .乙丁可以两门课都相同D .这四个人里恰有2个人选化学10.甲、乙、丙三位教师分别在拉萨、林芝、山南的三所中学里教授语文、数学、英语,已知:①甲不在拉萨工作,乙不在林芝工作;②在拉萨工作的教师不教英语学科;③在林芝工作的教师教语文学科;④乙不教数学学科.可以判断乙工作的地方和教的学科分别是()A .拉萨,语文B .山南,英语C .林芝,数学D .山南,数学1.3.11逻辑推理参考答案一、单选题(共10小题)1.【答案】A【分析】若甲正确,则乙、丙均错误,从而可得甲为第三名,且乙、丙中必有一人正确,一人错误,再假设丙错误(则乙正确),可导出矛盾,从而可得丙为第二名,故得答案.【解答】解:若甲正确,则乙、丙均错误,故丙是第一名,乙是第二名,甲是第三名,与“甲说:我不是第三名”正确相矛盾,故甲错误,因此,甲为第三名;①于是乙、丙中必有一人正确,一人错误.若丙错误(则乙正确),即丙是第一名,而甲是第三名,故乙是第二名,与乙正确“我是第三名”矛盾,故丙正确,即丙不是第一名,为第二名;②由①②得:获得第一名的是:乙.故选:A.2.【答案】C【分析】由甲的年龄和记者不同,记者的年龄比乙小,得到丙是记者,由丙的年龄比医生大,得到乙不是医生,从而乙是教师,甲是医生.【解答】解:由甲的年龄和记者不同,记者的年龄比乙小,得到丙是记者,从而排除B和D;由丙的年龄比医生大,得到乙不是医生,从而乙是教师,甲是医生.故选:C.3.【答案】D【分析】根据题中给的提示,猜测乙在周几,然后根据其他提示,排除,假设排除,得到结果.【解答】解:因为己的夜班在周四,且恰好在乙和丙的正中间,所以乙可能在星期一,二,三,五,六,日.因为乙的夜班比庚早三天,所以乙可能在星期二,三,如果乙在星期三,则庚在周六,且丙在周五,庚比丙晚一天,但与甲的夜班比丙晚一天矛盾,则乙在周二,庚在周五,故选:D.4.【答案】B【分析】先阅读题意,再结合简单的合情推理逐一检验即可得解.【解答】解:①当读了该篇文章的学生是甲,则四位同学都错了,与题设矛盾,故读了该篇文章的学生不是甲,②当读了该篇文章的学生是乙,则丙,丁说的是对的,与题设相符,故读了该篇文章的学生是乙,③当读了该篇文章的学生是丙,则甲,乙,丙说的是对的,与题设矛盾,故读了该篇文章的学生不是丙,④当读了该篇文章的学生是丁,则甲说的是对的,与题设矛盾,故读了该篇文章的学生不是丁,综合①②③④得:读了该篇文章的学生是乙,故选:B.5.【答案】C【分析】采用反证法,分别假设甲乙丙说的是假话,进行判断即可.【解答】解:如果甲说的是假话,则甲抽到立体几何,乙丙说的是真话,则乙抽到数列,这与丙相矛盾,故甲是真话,若乙说的是假话,则乙抽到是三角题,则甲抽到数列题,丙抽到是立体几何,若丙说的是假话,则乙抽到是数列题,则甲抽到三角题,则丙抽到是立体几何,故那么抽到立体几何题的是丙,故选:C.6.【答案】D【分析】①若甲未被录取,则乙、丙都被录取;其逆否命题为:若乙、丙不都被录取,则甲被录取.假设丙被录取,①③不正确,不符合题意.假设乙被录取,即可得出结论.【解答】解:①若甲未被录取,则乙、丙都被录取;其逆否命题为:若乙、丙不都被录取,则甲被录取.由②乙与丙中必有一个未被录取.③或者甲未被录取,或者乙被录取.假设丙被录取,①③不正确,不符合题意.假设乙被录取,则①③都正确,因此甲乙都被录取.则三人中被录取的是甲乙.故选:D.7.【答案】C【分析】根据老师告诉甲牌的点数,告诉乙的是花色,结合甲乙对话进行推理判断即可.【解答】解:首先根据甲同学:“我不知道这张牌.”:由于甲只知道数字(或子母),所以可知点数不可能是2,5,9,K,J.因为要是这几个中的一个,乙就直接知道了是什么,因此可知这张牌的点数只可能为:3,7,8,Q(即牌肯定是重复出现的)其次根据乙同学:“我也不知道这张牌”:直接可以排除方块7,因为乙知道花色,若是方块就只能是方块7,故排除;故只剩下黑桃3,黑桃Q,红心7,红心8,红心Q,梅花3,梅花8,梅花Q,最后根据贾同学:“现在我们知道了.”可知所以这张牌的点数只可能,否则甲不可能知道,因此只剩下了红心7;故选:C.8.【答案】C【分析】本题可采用假设法,先假设甲猜的丙第一名正确,则甲猜的自己第三名错误,由此进行推理可得矛盾;从而有甲猜的丙第一名错误,则甲猜的自己第三名正确,由此进行推理可得结果.【解答】解:由题意,他们预测都只猜对了一半,则甲的猜测也是对一半,错一半.假设甲猜的丙第一名正确,则甲猜的自己第三名错误;则乙猜的乙第一名错误,则乙猜的丁第四名正确;则丙猜的丙第三名错误,则丙猜的丁第二名正确.由此可见,丁既是第二名,又是第四名,故此假设不正确.故甲猜的丙第一名错误,则甲猜的自己第三名正确;则丙猜的丙第三名错误,则丙猜的丁第二名正确.则乙猜的丁第四名错误,则乙猜的乙第一名正确;故甲第三名,乙第一名,丙第四名,丁第二名.故选:C.9.【答案】D【分析】根据题意合理推理,并作出合理的假设,最终得出正确结论.【解答】解:根据题意可得,∵甲选择了化学,乙与甲没有相同课程,∴乙必定没选化学;又∵丙与甲有一门课相同,假设丙选择了化学,而丁与丙无相同课程,则丁一定没选化学;若丙没选化学,又∵丁与丙无相同课程,则丁必定选择了化学.综上,必定有甲,丙或甲,丁这两种情况下选择化学.故选:D.10.【答案】B【分析】根据已知进行排除,最终得出结果即可.【解答】解:由乙不在林芝工作,而在林芝工作的教师教语文学科,则乙不教语文学科;又乙不教数学学科,所以乙教英语学科,而在拉萨工作的教师不教英语学科,故乙在山南教英语学科,故选:B.。
2020_2021学年高中数学第二章推理与证明2.1.1合情推理训练含解析新人教A版选修1_2

2.1.1 合情推理[A 组 学业达标]1.“鲁班发明锯子”的思维过程为:带齿的草叶能割破行人的腿,“锯子”能“锯”开木材,它们在功能上是类似的.因此,它们在形状上也应该类似,“锯子”应该是齿形的.该过程体现了( )A .归纳推理B .类比推理C .没有推理D .以上说法都不对解析:推理是根据一个或几个已知的判断来确定一个新的判断的思维过程,上述过程是推理,由性质类比可知是类比推理. 答案:B2.已知扇形的弧长为l ,半径为r ,类比三角形的面积公式S =底×高2,可知扇形面积公式为( ) A.r 22B.l 22 C.lr2D .无法确定解析:扇形的弧长对应三角形的底,扇形的半径对应三角形的高,因此可得扇形面积公式S =lr2. 答案:C3.“干支纪年法”是中国历法上自古以来就一直使用的纪年方法.干支是天干和地支的总称.甲、乙、丙、丁、戊、己、庚、辛、壬、癸十个符号叫天干,子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥十二个符号叫地支.把干支顺序相配正好六十为一周,周而复始,循环记录,这就是俗称的“干支表”.2019年是干支纪年法中的己亥年,那么2050年是干支纪年法中的( )A.丁酉年B.庚午年C.乙未年D.丁未年解析:天干是以10为构成的等差数列,地支是以12为公差的等差数列,2019年是干支纪年法中的己亥年,则2050的天干为庚,地支为午,故选B.答案:B4.n个连续自然数按规律排列下表:根据规律,从2 019到2 021箭头的方向依次为( )A.↓→B.→↑C.↑→D.→↓解析:观察特例的规律知:位置相同的数字都是以4为公差的等差数列,由可知从2019到2021为→↓,故应选D.答案:D5.如图所示,着色的三角形的个数依次构成数列{a n}的前4项,则这个数列的一个通项公式为( )A.a n=3n-1B.a n=3nC.a n=3n-2n D.a n=3n-1+2n-3解析:∵a1=1,a2=3,a3=9,a4=27,∴猜想a n=3n-1.答案:A6.观察下列等式:1=1,2+3+4=9,3+4+5+6+7=25,4+5+6+7+8+9+10=49,……照此规律,第五个等式应为________.解析:等式的左边是2n-1个连续自然数的和,最小的为序号n,右边是(2n-1)2.所以第5个等式为5+6+7+…+13=(2×5-1)2.答案:5+6+7+8+…+13=817.等差数列{a n}中,a n>0,公差d>0,则有a4·a6>a3·a7,类比上述性质,在等比数列{b n}中,若b n>0,q>1,写出b5,b7,b4,b8的一个不等关系:________.解析:将乘积与和对应,再注意下标的对应,有b4+b8>b5+b7.答案:b4+b8>b5+b78.已知△ABC的边长分别为a,b,c,内切圆半径为r,用S△ABC表示△ABC的面积,则S△ABC=12r (a +b +c ).类比这一结论有:若三棱锥A BCD 的内切球半径为R ,则三棱锥体积V A BCD =________.解析:内切圆半径r ――→类比内切球半径R .△ABC 周长a +b +c ――→类比棱锥A BCD 各面面积和. 答案:V A BCD =13R (S △ABC +S △ACD +S △BCD +S △ABD )9.如图所示,在长方形ABCD 中,对角线AC 与两邻边所成的角分别为α,β,则cos 2α+cos 2β=1,则在立体几何中,给出类比猜想.解析:在长方形ABCD 中,cos 2α+cos 2β=⎝ ⎛⎭⎪⎫a c 2+⎝ ⎛⎭⎪⎫b c 2=a 2+b 2c 2=c 2c 2=1.于是类比到长方体中,猜想其体对角线与共顶点的三条棱所成的角分别为α,β,γ, 则cos 2α+cos 2β+cos 2γ=1.证明如下:cos 2α+cos 2β+cos 2γ=⎝ ⎛⎭⎪⎫m l 2+⎝ ⎛⎭⎪⎫n l 2+⎝ ⎛⎭⎪⎫g l 2=m 2+n 2+g 2l 2=l 2l 2=1. [B 组 能力提升]1.将正整数排成下表: 1 2 3 4 5 6 7 8 910 11 12 13 14 15 16 ……则在表中数字2 019出现在( )A.第44行第78列B.第45行第82列C.第44行第77列D.第45行第83列解析:第n行有2n-1个数字,前n行的数字个数为1+3+5+…+(2n-1)=n2.∵442=1 936,452=2 025,且1 936<2 019<2 025,∴2 019在第45行.又2 025-2 019=6,且第45行有2×45-1=89个数字,∴2 019在第89-6=83列.答案:D2.古希腊人常用小石子在沙滩上摆成各种形状来研究数.比如:他们研究过图(1)中的1,3,6,10,…,由于这些数能够表示成三角形,将其称为三角形数;类似地,称图(2)中的1,4,9,16,…,这样的数为正方形数.下列数中既是三角形数又是正方形数的是( )A.289 B.1 024C.1 225 D.1 378解析:记三角形数构成的数列为{a n},则a1=1,a2=3=1+2,a3=6=1+2+3,a4=10=1+2+3+4,可得通项公式为a n=1+2+3+…+n=n(n+1)2.同理可得正方形数构成的数列的通项公式为b n =n 2.将四个选项的数字分别代入上述两个通项公式,使得n 都为正整数的只有1 225. 答案:C3.类比平面内一点P (x 0,y 0)到直线Ax +By +C =0(A 2+B 2≠0)的距离公式,猜想空间中一点P (x 0,y 0,z 0)到平面Ax +By +Cz +D =0(A 2+B 2+C 2≠0)的距离公式为d =________.解析:类比平面内点到直线的距离公式 d =|Ax 0+By 0+C |A 2+B2,易知答案应填|Ax 0+By 0+Cz 0+D |A 2+B 2+C 2.答案:|Ax 0+By 0+Cz 0+D |A 2+B 2+C24.在平面中,△ABC 的∠ACB 的平分线CE 分△ABC 面积所成的比S △AEC S △BEC=AC BC,将这个结论类比到空间:在三棱锥A BCD 中,平面DEC 平分二面角A CD B 且与AB 交于E ,则类比的结论为________.解析:平面中的面积类比到空间为体积, 故S △AEC S △BEC类比成V A CDE V B CDE.平面中的线段长类比到空间为面积, 故AC BC类比成S △ACD S △BDC.故有V A CDE V B CDE =S △ACD S △BDC.答案:V A CDE V B CDE =S △ACD S △BDC5.已知椭圆具有以下性质:若M ,N 是椭圆C 上关于原点对称的两个点,点P 是椭圆上任意一点,若直线PM ,PN 的斜率都存在,并记为k PM ,k PN ,那么k PM 与k PN 之积是与点P 的位置无关的定值.试对双曲线x 2a 2-y 2b 2=1写出具有类似的性质,并加以证明.解析:类似的性质为:若M ,N 是双曲线x 2a2-y 2b 2=1上关于原点对称的两个点,点P 是双曲线上任意一点,若直线PM ,PN 的斜率都存在,并记为k PM ,k PN ,那么k PM 与k PN 之积是与点P 的位置无关的定值.证明如下:设点M ,P 的坐标为(m ,n ),(x ,y ), 则N (-m ,-n ).∵点M (m ,n )在已知双曲线上, ∴n 2=b 2a 2m 2-b 2.同理y 2=b 2a2x 2-b 2.则k PM ·k PN =y -n x -m ·y +nx +m =y 2-n 2x 2-m 2=b 2a 2·x 2-m 2x 2-m 2=b 2a 2(定值).。
高中数学思想之演绎推理

演绎推理例1: 请你把不等式“若21,a a 是正实数,则有21122221a a a a a a +≥+”推广到一般情形,并证明你的结论。
答案: 推广的结论:若 n a a a ,,,21 都是正数, n n n n a a a a a a a a a a a ++≥+++-211212322221 证明: ∵n a a a ,,,21 都是正数 ∴ 122212a a a a ≥+,211222a a a a ≥+ ………,1212--≥+n n n n a a a a ,n n a a a a 2112≥+ n n n n a a a a a a a a a a a ++≥+++-211212322221例2:已知:23150sin 90sin 30sin 222=++ ; 23125sin 65sin 5sin 222=++ 通过观察上述两等式的规律,请你写出一般性的命题: _____________________________________________________=23 ( * ) 并给出( * )式的证明。
答案:一般形式: 23)120(sin )60(sin sin 222=++++ ααα 证明:左边 = 2)2402cos(12)1202cos(122cos 1 +-++-+-ααα = )]2402cos()1202cos(2[cos 2123 ++++-ααα = -+-+- 240cos 2cos 120sin 2sin 120cos 2cos 2[cos 2123ααα]240sin 2sin α = ]2sin 232cos 212sin 232cos 212[cos 2123ααααα+----= 右边=23 例3已知,a b c >> 求证:114.a b b c a c+≥--- 证明:a c a c a b b c a b b c a b b c a b b c ---+--+-+=+----224b c a b a b b c --=++≥+=--,()a b c >> 1144,.a c a c a b b c a b b c a c--∴+≥∴+≥----- 例4若a 、b 、c 是不全相等的正数,求证:∵a ,b ,c ∈R +,abc 成立.上式两边同取常用对数,得例5若定义在实数集R 上的函数()y f x =满足:①对于任意x R ∈,()()f x f x -=-;②函数()y f x =在[0,)+∞上递增求证:函数()y f x =在实数集上R 递增(定义法)证明:任取12,x x R ∈且12x x <(1)若120x x ≤<,则由②可知12()()f x f x <(2)若120x x <≤,则120x x ->-≥,由②可知12()()f x f x ->-由①可得12()()f x f x ->-,即12()()f x f x <(3)若120x x <<,则由前两种情况的证明可知,12()(0),(0)()f x f f f x <<∴12()()f x f x <综上,对于任意的12,x x R ∈且12x x <,总有12()()f x f x <成立∴函数()y f x =在实数集上R 递增课外练习基础题:1.有一段演绎推理是这样的:“直线平行于平面,则平行于平面内所有直线;已知直线 b ⊆/平面α,直线a ≠⊂平面α,直线b ∥平面α,则直线b ∥直线a ”的结论显然是错误的,这是因为 ( )A.大前提错误B.小前提错误C.推理形式错误D.非以上错误答案:A 。
高中数学 专题2.1.1 合情推理练习(含解析)新人教A版选修1-2(2021年整理)

2016-2017学年高中数学专题2.1.1 合情推理练习(含解析)新人教A版选修1-2编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2016-2017学年高中数学专题2.1.1 合情推理练习(含解析)新人教A版选修1-2)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2016-2017学年高中数学专题2.1.1 合情推理练习(含解析)新人教A版选修1-2的全部内容。
合情推理班级:姓名:_____________1.某同学在电脑上打下了一串黑白圆,如图所示,,按这种规律往下排,那么第36个圆的颜色应是( )A。
白色B.黑色C。
白色可能性大D.黑色可能性大2.已知数列{a n}满足a0=1,a n=a0+a1+a2+…+a n—1(n≥1),则当n≥1时,a n等于( )A。
2n B。
n(n+1)C。
2n-1 D.2n-1【解析】选C。
a0=1,a1=a0=1,a2=a0+a1=2a1=2,a3=a0+a1+a2=2a2=4,a4=a0+a1+a2+a3=2a3=8,…,猜想n≥1时,a n=2n—1.3。
给出下列三个类比结论:①类比a x·a y=a x+y,则有a x÷a y=a x—y;②类比log a(xy)=log a x+log a y,则有sin(α+β)=sinαsinβ;③类比(a+b)2=a2+2ab+b2,则有(a+b)2=a2+2a·b+b2。
其中结论正确的个数是()A。
0 B.1 C。
2 D.3【解析】选C.根据指数的运算法则知a x÷a y=a x-y,故①正确;根据三角函数的运算法则知:sin(α+β)≠sinαsinβ,②不正确;根据向量的运算法则知:(a+b)2=a2+2a·b+b2,③正确.4。
人教A版高中数学选修一第二章推理与证明答案.docx

第二章合情推理与演绎推理答案 2.1.1 合情推理与演绎推理(1)1、d n a a n )1(1-+=2、B3、A4、()nn n n )1(1169411+-++-+-+Λ 5、θθθn cos 23cos 22cos 2 6、V+F —E=2 7、解:9)5(,5)4(,2)3(,0)2(====f f f f可以归纳出每增加一条直线,交点增加的个数为原有直线的条数 4)4()5(,3)3()4(,2)2()3(=-=-=-∴f f f f f f 猜测得出1)1()(-=--n n f n f 有)1(432)2()(-++++=-n f n f Λ)2)(1(21)(-+=∴n n n f 因此)2)(1(21)(,5)4(-+==n n n f f8、解:4211223⨯=432212233⨯=+44332122333⨯=++4544321223333⨯=+++()414321223333+=+++++n n Λ由此可以有求和的一般公式为()414321223333+=+++++n n Λ2.1.2合情推理与演绎推理(2)1、C2、D3、D4、类比5、(1)圆柱面(2)两个平行平面6、()()()x C x S x S 22= ()()()()()y S x C y C x S y x S +=+7、在等比数列{}n a 中,若q p n m +=+,()*,,,Nq p n m ∈,则q p n ma a a a⋅=⋅8、(1)(平面)在平行四边形中,对角线互相平分;(立体)在平行六面体中,对角线相交于同一点,且在这一点互相平分;(2)(平面)在平行四边形中,各对角线长的平方和等于各边长的平方和;(立体)在平行六面体中,各对角线长的平方和等于各棱长的平方和;(3)(平面)圆面积等于圆周长与半径之积的1/2;(立体)球体积等于球面积与半径之积的1/3;(4)(平面)正三角形外接圆半径等于内切圆半径的2倍,(立体)正四面体的外接球半径等于内切球半径的3倍。
高考数学推理真题及解析

高考数学推理真题及解析高考数学是每一位考生所必须面对的考试科目之一,在考试中,推理题占据了一定的比重。
推理题要求考生具有较强的逻辑思维能力和分析问题的能力。
下面就给大家介绍一些历年高考数学推理题的真题及解析,供大家参考。
真题一:已知命题p:如果a>0,则a^2>0,记为p:a>0→a^2>0。
命题q:如果a^2>0,则a>0,记为q:a^2>0→a>0。
现在给出三个命题:1. p∧q2. p∨q3. q→p请判断以上三个命题的真假。
解析:首先要弄清楚∧、∨和→的含义:∧表示“与”,两个命题均为真,整体为真;∨表示“或”,两个命题中有一个为真,整体为真;→表示“蕴含”,前件为真而后件为假,整体为假。
否则整体为真。
1. p∧q:根据p和q的定义,a>0→a^2>0且a^2>0→a>0均成立。
所以p∧q为真。
2. p∨q:a>0→a^2>0、a^2>0→a>0至少有一个成立,所以p∨q为真。
3. q→p:a^2>0→a>0成立,所以q→p为真。
综上所述,1、2、3命题均为真。
真题二:已知A、B、C、D四种颜色,每个字母代表一种颜色,且颜色之间满足以下条件:1. A和C不同色;2. B和D不同色;3. C和D同色或者A和B同色。
那么,请问ABCDD这五个字母分别代表什么颜色?解析:根据题意,根据第3个条件,C和D同色或者A和B同色。
假设C和D同色,由于A和C不同色,故A和B同色,即A和B同色,所以B和D同时不同色,与已知条件冲突。
所以C和D不同色,那么A和B同色。
综上所述,ABCDD分别代表同色。
以上就是历年高考数学推理题的部分真题及解析,希木对大家备考高考数学推理题有所帮助。
考生们在备考过程中一定要注重理论知识的掌握和解题技巧的训练,相信大家一定可以在考试中取得优异的成绩。
加油!。
2020年高考理科数学《推理与证明》题型归纳与训练及参考答案

2020年高考理科数学《推理与证明》题型归纳与训练合情推理与演绎推理 题型一 归纳推理1 与数字有关的等式的推理 【易错点】例1观察下列等式:⎝⎛⎭⎫sin π3-2+⎝⎛⎭⎫sin 2π3-2=43×1×2;⎝⎛⎭⎫sin π5-2+⎝⎛⎭⎫sin 2π5-2+⎝⎛⎭⎫sin 3π5-2+⎝⎛⎭⎫sin 4π5-2=43×2×3; ⎝⎛⎭⎫sin π7-2+⎝⎛⎭⎫sin 2π7-2+⎝⎛⎭⎫sin 3π7-2+…+⎝⎛⎭⎫sin 6π7-2=43×3×4; ⎝⎛⎭⎫sin π9-2+⎝⎛⎭⎫sin 2π9-2+⎝⎛⎭⎫sin 3π9-2+…+⎝⎛⎭⎫sin 8π9-2=43×4×5; …照此规律,⎝⎛⎭⎫sin π2n +1-2+⎝⎛⎭⎫sin 2π2n +1-2+⎝⎛⎭⎫sin 3π2n +1-2+…+⎝⎛⎭⎫sin 2n π2n +1-2=__________. 【答案】 43×n ×(n +1)【解析】观察等式右边的规律:第1个数都是43,第2个数对应行数n ,第3个数为n +1.2 与不等式有关的推理例2已知a i >0(i =1,2,3,…,n ),观察下列不等式: a 1+a 22≥a 1a 2; a 1+a 2+a 33≥3a 1a 2a 3; a 1+a 2+a 3+a 44≥4a 1a 2a 3a 4; …照此规律,当n ∈N *,n ≥2时,a 1+a 2+…+a nn ≥______. 【答案】na 1a 2…a n【解析】 根据题意得a 1+a 2+…+a n n ≥n a 1a 2…a n (n ∈N *,n ≥2). 3 与数列有关的推理 例3观察下列等式:1+2+3+…+n =12n (n +1); 1+3+6+…+12n (n +1)=16n (n +1)(n +2); 1+4+10+…+16n (n +1)(n +2)=124n (n +1)(n +2)(n +3); …可以推测,1+5+15+…+124n (n +1)(n +2)(n +3)=____________________. 【答案】1120n (n +1)(n +2)(n +3)(n +4)(n ∈N *) 【解析】 根据式子中的规律可知,等式右侧为 15×4×3×2×1n (n +1)(n +2)(n +3)(n +4) =1120n (n +1)(n +2)(n +3)(n +4) (n ∈N *). 4 与图形变化有关的推理例4某种树的分枝生长规律如图所示,第1年到第5年的分枝数分别为1,1,2,3,5,则预计第10年树的分枝数为( )A .21B .34C .52D .55 【答案】 D【解析】由2=1+1,3=1+2,5=2+3知,从第三项起,每一项都等于前两项的和,则第6年为8,第7年为13,第8年为21,第9年为34,第10年为55,故选D.【思维点拨】 归纳推理问题的常见类型及解题策略(1)与数字有关的等式的推理.观察数字特点,找出等式左右两侧的规律及符号可解. (2)与不等式有关的推理.观察每个不等式的特点,注意是纵向看,找到规律后可解.(3)与数列有关的推理.通常是先求出几个特殊现象,采用不完全归纳法,找出数列的项与项数的关系,列出即可.(4)与图形变化有关的推理.合理利用特殊图形归纳推理得出结论,并用赋值检验法验证其真伪性. 题型二 类比推理例1(1)等差数列{a n }的公差为d ,前n 项的和为S n ,则数列⎩⎨⎧⎭⎬⎫S n n 为等差数列,公差为d2.类似地,若各项均为正数的等比数列{b n }的公比为q ,前n 项的积为T n ,则等比数列{nT n }的公比为( )A.q 2 B .q 2 C.q D.nq【答案】C【解析】由题设,得T n =b 1·b 2·b 3·…·b n =b 1·b 1q ·b 1q 2·…·b 1q n -1=b n 1q1+2+…+(n -1)=(1)21n nn b q-.∴nT n =121n b q-,∴等比数列{nT n }的公比为q ,故选C.(2)在平面上,设h a ,h b ,h c 是△ABC 三条边上的高,P 为三角形内任一点,P 到相应三边的距离分别为P a ,P b ,P c ,我们可以得到结论:P a h a +P b h b +P ch c=1.把它类比到空间,则三棱锥中的类似结论为______________________. 【答案】P a h a +P b h b +P c h c +P dh d=1 【解析】设h a ,h b ,h c ,h d 分别是三棱锥A -BCD 四个面上的高,P 为三棱锥A -BCD 内任一点,P 到相应四个面的距离分别为P a ,P b ,P c ,P d ,于是可以得出结论:P a h a +P b h b +P c h c +P dh d=1.【思维点拨】 (1)进行类比推理,应从具体问题出发,通过观察、分析、联想进行类比,提出猜想.其中找到合适的类比对象是解题的关键.(2)类比推理常见的情形有平面与空间类比;低维的与高维的类比;等差数列与等比数列类比;数的运算与向量的运算类比;圆锥曲线间的类比等. 题型三 演绎推理例1数列{a n }的前n 项和记为S n ,已知a 1=1,a n +1=n +2n S n(n ∈N *).证明: (1)数列⎩⎨⎧⎭⎬⎫S n n 是等比数列;(2)S n +1=4a n . 【答案】略【解析】(1)∵a n +1=S n +1-S n ,a n +1=n +2n S n ,∴(n +2)S n =n (S n +1-S n ),即nS n +1=2(n +1)S n . ∴S n +1n +1=2·S n n ,又S 11=1≠0,(小前提) 故⎩⎨⎧⎭⎬⎫S n n 是以1为首项,2为公比的等比数列.(结论)(大前提是等比数列的定义,这里省略了) (2)由(1)可知S n +1n +1=4·S n -1n -1(n ≥2),∴S n +1=4(n +1)·S n -1n -1=4·n -1+2n -1·S n -1=4a n (n ≥2),(小前提)又a 2=3S 1=3,S 2=a 1+a 2=1+3=4=4a 1,(小前提) ∴对于任意正整数n ,都有S n +1=4a n .(结论)(第(2)问的大前提是第(1)问的结论以及题中的已知条件)【思维点拨】演绎推理是由一般到特殊的推理,常用的一般模式为三段论,演绎推理的前提和结论之间有着某种蕴含关系,解题时要找准正确的大前提,一般地,当大前提不明确时,可找一个使结论成立的充分条件作为大前提. 直接证明与间接证明 题型四分析法 例1已知a >0,求证:a 2+1a 2-2≥a +1a-2.【答案】略 【解析】要证a 2+1a 2-2≥a +1a -2,只要证a 2+1a 2+2≥a +1a+2, 0>a ,故只要证⎝⎛⎭⎫a 2+1a 2+22≥⎝⎛⎭⎫a +1a +22, 即a 2+1a 2+4a 2+1a 2+4≥a 2+2+1a 2+22⎝⎛⎭⎫a +1a +2, 从而只要证2a 2+1a2≥2⎝⎛⎭⎫a +1a , 只要证4⎝⎛⎭⎫a 2+1a 2≥2⎝⎛⎭⎫a 2+2+1a 2,即a 2+1a 2≥2, 而上述不等式显然成立,故原不等式成立.【思维点拨】分析法的证明思路:先从结论入手,由此逐步推出保证此结论成立的充分条件,而当这些判断恰恰都是已证的命题(定义、公理、定理、法则、公式等)或要证命题的已知条件时命题得证. 题型五 综合法例1已知函数f (x )=ln(1+x ),g (x )=a +bx -12x 2+13x 3,函数y =f (x )与函数y =g (x )的图象在交点(0,0)处有公共切线.(1)求a ,b 的值; (2)证明:f (x )≤g (x ). 【答案】a =0,b =1.【解析】(1)f ′(x )=11+x,g ′(x )=b -x +x 2, 由题意得⎩⎪⎨⎪⎧g (0)=f (0),f ′(0)=g ′(0),解得a =0,b =1.(2)证明:令h (x )=f (x )-g (x )=ln (x +1)-13x 3+12x 2-x (x >-1), h ′(x )=1x +1-x 2+x -1=-x 3x +1,∵x >-1,∴当-1<x <0时,h ′(x )>0; 当x >0时,h ′(x )<0.则h (x )在(-1,0)上为增函数,在(0,+∞)上为减函数. h (x )max =h (0)=0,h (x )≤h (0)=0,即f (x )≤g (x ).【思维点拨】综合法是一种由因导果的证明方法,即由已知条件出发,推导出所要证明的等式或不等式成立.因此,综合法又叫做顺推证法或由因导果法,其逻辑依据是三段论式的演绎推理方法,这就要保证前提正确,推理合乎规律,才能保证结论的正确性. 题型六 反证法例1 等差数列{}a n 的前n 项和为S n ,a 1=1+2,S 3=9+3 2.(1)求数列{}a n 的通项a n 与前n 项和S n ;(2)设b n =S nn (n ∈N *),求证:数列{}b n 中任意不同的三项都不可能成为等比数列. 【答案】(1)S n =n (n +2)(2)证明略.【解析】(1)由已知得⎩⎨⎧a 1=2+1,3a 1+3d =9+32,∴d =2.故a n =2n -1+2,S n =n (n +2). (2)证明:由(1)得b n =S nn=n + 2. 假设数列{b n }中存在三项b p ,b q ,b r (p ,q ,r ∈N *,且互不相等)成等比数列,则b 2q =b p b r .即(q +2)2=(p +2)(r +2). ∴(q 2-pr )+2(2q -p -r )=0.∵p ,q ,r ∈N *,∴⎩⎪⎨⎪⎧q 2-pr =0,2q -p -r =0,∴⎝⎛⎭⎫p +r 22=pr ,(p -r )2=0,∴p =r ,与p ≠r 矛盾. ∴数列{b n }中任意不同的三项都不可能成等比数列.【思维点拨】(1)适用范围:当一个命题的结论是以“至多”“至少”“唯一”或以否定形式出现时,宜用反证法来证.(2)关键:在正确的推理下得出矛盾,矛盾可以是与已知条件矛盾,与假设矛盾,与定义、公理、定理矛盾,与事实矛盾等,推导出的矛盾必须是明显的.【巩固训练】合情推理与演绎推理 题型一 归纳推理1.将自然数0,1,2,…按照如下形式进行摆列:根据以上规律判定,从2 016到2 018的箭头方向是( )【答案】A【解析】从所给的图形中观察得到规律:每隔四个单位,箭头的走向是一样的,比如说,0→1,箭头垂直指下,4→5箭头也是垂直指下,8→9也是如此,而2 016=4×504,所以2 016→2 017也是箭头垂直指下,之后2 017→2 018的箭头是水平向右,故选A.2.如图,有一个六边形的点阵,它的中心是1个点(算第1层),第2层每边有2个点,第3层每边有3个点,…,依此类推,如果一个六边形点阵共有169个点,那么它的层数为( )A .6B .7C .8D .9 【答案】C【解析】由题意知,第1层的点数为1,第2层的点数为6,第3层的点数为2×6,第4层的点数为3×6,第5层的点数为4×6,…,第n (n ≥2,n ∈N *)层的点数为6(n -1).设一个点阵有n (n ≥2,n ∈N *)层,则共有的点数为1+6+6×2+…+6(n -1)=1+6·n (n -1)2=3n 2-3n +1,由题意,得3n 2-3n +1=169,即(n +7)·(n-8)=0,所以n =8,故共有8层.3.观察下列等式:12=1; 12-22=-3; 12-22+32=6;12-22+32-42=-10; …依此规律,第n 个等式可为________【答案】12-22+32-42+…+(-1)n +1n 2=(-1)n +1·n (n +1)2【解析】第n 个等式的左边第n 项应是(-1)n +1n 2,右边数的绝对值为1+2+3+…+n =n (n +1)2, 故有12-22+32-42+…+(-1)n +1n 2=(-1)n +1·n (n +1)2. 题型二 类比推理1.若数列{}a n 是等差数列,则数列{}b n ⎝⎛⎭⎫b n =a 1+a 2+…+a n n 也为等差数列.类比这一性质可知,若正项数列{}c n 是等比数列,且{}d n 也是等比数列,则d n 的表达式应为( )A .d n =c 1+c 2+…+c nnB .d n =c 1·c 2·…·c nn C .d n =nc n 1+c n 2+…+c nnnD .d n =nc 1·c 2·…·c n【答案】D【解析】若{a n }是等差数列,则a 1+a 2+…+a n =na 1+n (n -1)2d ,∴b n =a 1+(n -1)2d =d 2n +a 1-d2,即{b n }为等差数列;若{c n }是等比数列,则c 1·c 2·…·c n =c n 1·q 1+2+…+(n -1)=c n 1·q n (n -1)2,∴d n =nc 1·c 2·…·c n =c 1·q n -12,即{d n }为等比数列,故选D .2.在平面几何中:△ABC 的∠C 内角平分线CE 分AB 所成线段的比为AC BC =AEBE .把这个结论类比到空间:在三棱锥A -BCD 中(如图),平面DEC 平分二面角A -CD -B ,且与AB 相交于E ,则得到类比的结论是______【答案】AE EB =S △ACDS △BCD【解析】由平面中线段的比转化为空间中面积的比可得AE EB =S △ACD S △BCD .题型三 演绎推理1.甲、乙、丙、丁四位同学一起去向老师询问成语竞赛的成绩,老师说:你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看后甲对大家说:我还是不知道我的成绩,根据以上信息,则()A.乙可以知道四人的成绩B.丁可以知道四人的成绩C.乙、丁可以知道对方的成绩D.乙、丁可以知道自己的成绩【答案】D【解析】由甲说:“我还是不知道我的成绩”可推知甲看到乙、丙的成绩为“1个优秀、1个良好”.乙看丙的成绩,结合甲的说法,丙为“优秀”时,乙为“良好”;丙为“良好”时,乙为“优秀”,可得乙可以知道自己的成绩.丁看甲的成绩,结合甲的说法,甲为“优秀”时,丁为“良好”;甲为“良好”时,丁为“优秀”,可得丁可以知道自己的成绩.故选D.2.已知函数y=f(x)满足:对任意a,b∈R,a≠b,都有af(a)+bf(b)>af(b)+bf(a),试证明:f(x)为R上的单调增函数.【答案】证明略【解析】设x1,x2∈R,取x1<x2,则由题意得x1f(x1)+x2f(x2)>x1f(x2)+x2f(x1),∴x1[f(x1)-f(x2)]+x2[f(x2)-f(x1)]>0,[f(x2)-f(x1)](x2-x1)>0,∵x1<x2,∴f(x2)-f(x1)>0,f(x2)>f(x1).∴y=f(x)为R上的单调增函数.3.袋中装有偶数个球,其中红球、黑球各占一半.甲、乙、丙是三个空盒,每次从袋中任意取出两个球,将其中一个球放入甲盒,如果这个球是红球,就将另一个球放入乙盒,否则就放入丙盒.重复上述过程,直到袋中所有球都被放入盒中,则()A.乙盒中黑球不多于丙盒中黑球B.乙盒中红球与丙盒中黑球一样多C.乙盒中红球不多于丙盒中红球D.乙盒中黑球与丙盒中红球一样多【答案】B【解析】取两个球往盒子中放有4种情况:①红+红,则乙盒中红球数加1;②黑+黑,则丙盒中黑球数加1;③红+黑(红球放入甲盒中),则乙盒中黑球数加1;④黑+红(黑球放入甲盒中),则丙盒中红球数加1.因为红球和黑球个数一样多,所以①和②的情况一样多.③和④的情况完全随机.③和④对B选项中的乙盒中的红球数与丙盒中的黑球数没有任何影响.①和②出现的次数是一样的,所以对B 选项中的乙盒中的红球数与丙盒中的黑球数的影响次数一样.综上,选B. 直接证明与间接证明 题型四分析法1.分析法又称执果索因法,若用分析法证明:“设a >b >c ,且a +b +c =0,求证b 2-ac <3a ”索的因应是( )A .a -b >0B .a -c >0C .(a -b )(a -c )>0D .(a -b )(a -c )<0【答案】C【解析】由于a >b >c ,且a +b +c =0,所以0,0,a c b a c ><=--且,b 2-ac <3a ⇔b 2-ac <3a 2⇔(a +c )2-ac <3a 2⇔a 2+2ac +c 2-ac -3a 2<0⇔ -2a 2+ac +c 2<0⇔2a 2-ac -c 2>0⇔ (a -c )(2a +c )>0⇔(a -c )(a -b )>0.2.若P =a +a +7,Q =a +3+a +4(a ≥0),则P ,Q 的大小关系是( )A .P >QB .P =QC .P <QD .由a 的取值确定【答案】C【解析】不妨设P <Q ,∵要证P <Q ,只要证P 2<Q 2,只要证2a +7+2a (a +7)<2a +7+2·(a +3)(a +4), 只要证a 2+7a <a 2+7a +12, 只要证0<12,∵0<12成立,∴P <Q 成立.3.要使3a -3b <3a -b 成立,则a ,b 应满足( )A .ab <0且a >bB .ab >0且a >bC .ab <0且a <bD .ab >0且a >b 或ab <0且a <b 【答案】D【解析】要使3a -3b <3a -b 成立,只要(3a -3b )3<(3a -b )3成立,即a -b -33a 2b +33ab 2<a -b 成立,只要3ab 2<3a 2b 成立,只要ab 2<a 2b 成立,即要ab (b -a )<0成立, 只要ab >0且a >b 或ab <0且a <b 成立. 题型五 综合法1.设a ,b ,c 均为正实数,则三个数a +1b ,b +1c ,c +1a ( ) A .都大于2B .都小于2C .至少有一个不大于2D .至少有一个不小于2【答案】D【解析】∵a >0,b >0,c >0, ∴⎝⎛⎭⎫a +1b +⎝⎛⎭⎫b +1c +⎝⎛⎭⎫c +1a =⎝⎛⎭⎫a +1a +⎝⎛⎭⎫b +1b +⎝⎛⎭⎫c +1c ≥6, 当且仅当a =b =c =1时,“=”成立,故三者不能都小于2,即至少有一个不小于2.2.如果a a +b b >a b +b a 成立,则a ,b 应满足的条件是__________________________. 【答案】a ≥0,b ≥0且a ≠b【解析】∵a a +b b -(a b +b a )=a (a -b )+b (b -a ) =(a -b )(a -b ) =(a -b )2(a +b ).∴当a ≥0,b ≥0且a ≠b 时,(a -b )2(a +b )>0. ∴a a +b b >a b +b a 成立的条件是a ≥0,b ≥0且a ≠b . 3.若a ,b ,c 是不全相等的正数,求证: lga +b 2+lg b +c 2+lg c +a 2>lg a +lg b +lg c . 【答案】证明略【解析】∵a ,b ,c ∈(0,+∞), ∴a +b 2≥ab >0,b +c 2≥bc >0,a +c 2≥ac >0. 由于a ,b ,c 是不全相等的正数, ∴上述三个不等式中等号不能同时成立, ∴a +b 2·b +c 2·c +a2>abc >0成立. 上式两边同时取常用对数,得 lg ⎝⎛⎭⎫a +b 2·b +c 2·c +a 2>lg abc ,∴lga +b 2+lg b +c 2+lg c +a2>lg a +lg b +lg c .题型六反证法1.用反证法证明命题:若a+b+c为偶数,则“自然数a,b,c恰有一个偶数”时正确反设为() A.自然数a,b,c都是奇数B.自然数a,b,c都是偶数C.自然数a,b,c中至少有两个偶数D.自然数a,b,c中都是奇数或至少有两个偶数【答案】D【解析】由于“自然数a,b,c中恰有一个偶数”的否定是“自然数a,b,c都是奇数或至少有两个偶数”,故选D.2.用反证法证明命题“已知a,b为实数,则方程x3+ax+b=0至少有一个实根”时,要做的假设是()A.方程x3+ax+b=0没有实根B.方程x3+ax+b=0至多有一个实根C.方程x3+ax+b=0至多有两个实根D.方程x3+ax+b=0恰好有两个实根【答案】A【解析】用反证法证明命题的步骤中第一步是假设命题的反面成立,而“方程x3+ax+b=0至少有一个实根”的反面是“方程x3+ax+b=0没有实根”,故选A.3.已知四棱锥S-ABCD中,底面是边长为1的正方形,又SB=SD=2,SA=1.(1)求证:SA⊥平面ABCD;(2)在棱SC上是否存在异于S,C的点F,使得BF∥平面SAD?若存在,确定F点的位置;若不存在,请说明理由.【答案】略【解析】(1)证明由已知得SA2+AD2=SD2,∴SA⊥AD.同理SA⊥AB.又AB∩AD=A,AB⊂平面ABCD,AD⊂平面ABCD,∴SA⊥平面ABCD.(2)解假设在棱SC上存在异于S,C的点F,使得BF∥平面SAD.∵BC∥AD,BC⊄平面SAD.11∴BC∥平面SAD.而BC∩BF=B,∴平面FBC∥平面SAD.这与平面SBC和平面SAD有公共点S矛盾,∴假设不成立.∴不存在这样的点F,使得BF∥平面SAD.12。
高中数学专题 推理与证明(完整知识点梳理及经典例题答案详解)

专题——推理与证明【知识概要】本章知识网络:一.考纲目标掌握合情推理与演绎推理;熟练的运用综合法和分析法、反证法证题;信息转化、逻辑分析;数学归纳法;数学归纳法的证明思路;初始值的确定. 二.知识梳理1.合情推理包括归纳推理和类比推理. 2.归纳推理(1)概念:根据一类事物的部分对象具有某种性质,推出这类事物的所有对象都具有这种性质的推理,叫做归纳推理(简称归纳). (2)特点:归纳是从特殊到一般的过程. (3) 归纳推理的思维过程大致如图:3.类比推理(1)概念:根据两类不同事物之间具有某些类似(或一致)性,推测其中一类事物具有与另一类事物类似(或相同)的性质的推理,叫做类比推理(简称类比). (2) 4.演绎推理(1)概念:根据一般性原理(或逻辑规则)导出特殊情况下的结论的推理,叫做演绎推理. (2)特征:当前提为真时,结论必然为真. (3)“三段论”是演绎推理的一般模式:推理与证明推理 证明合情推理 演绎推理 归纳类比 综合法 分析法 反证法直接证明 间接证明 数学归纳法M——P (M是P)①S——M (S是M)②S——P (S是P)③其中:①大前提——已知的一般原理;②小前提——所研究的特殊情况;③结论——根据一般原理,对特殊情况作出的判断.5.直接证明(1)综合法①定义:利用已知条件和某些数学定义、公理、定理等,经过一系列的推理论证,最后推导出所要证明的结论成立,这种证明方法叫做综合法(也叫由因导果法).②框图表示:P⇒Q1→Q1⇒Q2→Q2⇒Q3→…→Q n⇒Q(其中P表示已知条件、已有的定义、公理、定理等,Q表示要证的结论).(2)分析法①定义:从要证明的结论出发,逐步寻求使它成立的充分条件,直至最后,把要证明的结论归结为判定一个明显成立的条件(已知条件、定理、定义、公理等)为止.这种证明方法叫做分析法(也叫执果索因法).②框图表示:Q⇐P1→P1⇐P2→P2⇐P3→…→得到一个明显成立的条件.6.间接证明(1)反证法:假设原命题不成立,经过正确的推理,最后得出矛盾,因此说明假设错误,从而证明了原命题成立,这样的证明方法叫做反证法.(2)反证法的一般步骤是:反设——推理——矛盾——原命题成立。
推理能力面试题及答案高中

推理能力面试题及答案高中1. 题目一:- 问题:在一个小镇上,有三家商店,分别是A、B和C。
A商店的老板喜欢穿红色衣服,B商店的老板喜欢穿蓝色衣服,C商店的老板喜欢穿绿色衣服。
一天,一个目击者声称看到穿红色衣服的人在B商店偷了东西。
请问,目击者看到的是谁?- 答案:目击者看到的是A商店的老板。
因为只有A商店的老板穿红色衣服,而B商店的老板喜欢穿蓝色衣服,所以目击者不可能在B商店看到穿红色衣服的人。
2. 题目二:- 问题:在一次聚会上,有四个人:Alice、Bob、Charlie和David。
Alice说:“我没有拿糖果。
” Bob说:“Charlie拿了糖果。
” Charlie说:“David拿了糖果。
” David说:“Bob和Charlie中至少有一个人拿了糖果。
” 如果只有两个人说了真话,那么谁拿了糖果?- 答案:David和Charlie说了真话,Bob和Alice说了假话。
因为如果Alice说了真话,那么Bob和Charlie中至少有一个人说了真话,David的话也是真的,这与题目中只有两个人说真话的条件不符。
所以Alice拿了糖果,Bob没有拿,Charlie和David说了真话。
3. 题目三:- 问题:在一个逻辑谜题中,有五种颜色的球:红、绿、蓝、黄、紫。
每种颜色的球都有特定的重量,但颜色和重量之间没有直接关系。
如果红球比绿球重,绿球比蓝球重,蓝球比黄球重,黄球比紫球重,那么哪种颜色的球最重?- 答案:红球最重。
根据题目中的逻辑关系,红球比绿球重,绿球比蓝球重,依此类推,可以推断出红球是所有颜色中重量最大的。
4. 题目四:- 问题:在一个逻辑游戏中,有四个角色:国王、骑士、骗子和平民。
国王总是说真话,骑士有时说真话有时说谎,骗子总是说谎,平民有时说谎有时说真话。
现在有两个人,A和B。
A说:“我是国王。
” B说:“A是骗子。
” 请问A和B各是什么角色?- 答案:A是骑士,B是骗子。
因为如果A是国王,他会说真话,那么B的陈述就是假的,这与题目条件不符。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题11 推理案例1.一次数学考试后,甲说:我是第一名,乙说:我是第一名,丙说:乙是第一名。
丁说:我不是第一名,若这四人中只有一个人说的是真话且获得第一名的只有一人,则第一名的是()A.甲B.乙C.丙D.丁【答案】C【解析】假设甲说的是真话,则第一名是甲,那么乙说谎,丙也说谎,而丁说的是真话,而已知只有一个人说的是真话,故甲说的不是真话,第一名不是甲;假设乙说的是真话,则第一名是乙,那么甲说谎,丙说真话,丁也说真话,而已知只有一个人说的是真话,故乙说谎,第一名也不是乙;假设丙说的是真话,则第一名是乙,所以乙说真话,甲说谎,丁说的是真话,而已知只有一个人说的是真话,故丙在说谎,第一名也不是乙;假设丁说的是真话,则第一名不是丁,而已知只有一个人说的是真话,那么甲也说谎,说明甲也不是第一名,同时乙也说谎,说明乙也不是第一名,第一名只有一人,所以只有丙才是第一名,故假设成立,第一名是丙。
本题选C。
2.西安市为了缓解交通压力,实行机动车限行政策,每辆机动车每周一到周五都要限行一天,周末(周六和周日)不限行某公司有五辆车,每天至少有四辆车可以上路行驶.已知车周四限行,车昨天限行,从今天算起,两车连续四天都能上路行驶,车明天可以上路,由此可知下列推测一定正确的是()A.今天是周四B.今天是周六C.车周三限行D.车周五限行【答案】A【解析】首先考查选项A:若今天是周四,五辆车分别在周一,周三,周二,周五,周四,满足题意,据此可排除B,C,D,故选A.3.在学校举行一次年级排球赛比赛中,李明、张华、王强三位同学分别对比赛结果的前三名进行预测:李明预测:甲队第一,乙队第三张华预测:甲队第三,丙队第一王强预测:丙队第二、乙队第三其中只有一个人的预测是正确的,则得到的前三名按顺序为:A.丙、甲、乙B.甲、丙、乙C.丙、乙、甲D.乙、甲、丙【答案】C【解析】李明预测:甲队第一,乙队第三则前三名的顺序为:甲,丙,乙,王强预测:丙队第二、乙队第三则前三名的顺序为:甲,丙,乙,张华预测:甲队第三,丙队第一则前三名的顺序为:丙,乙,甲,根据题意得到张华预测的是准确的,故正确顺序为丙,乙,甲.故答案为:C.4.在中国决胜全面建成小康社会的关键之年,如何更好地保障和改善民生,如何切实增强政策“获得感”,成为年全国两会的重要关切.某地区为改善民生调研了甲、乙、丙、丁、戊个民生项目,得到如下信息:①若该地区引进甲项目,就必须引进与之配套的乙项目;②丁、戊两个项目与民生密切相关,这两个项目至少要引进一个;③乙、丙两个项目之间有冲突,两个项目只能引进一个;④丙、丁两个项目关联度较高,要么同时引进,要么都不引进;⑤若引进项目戊,甲、丁两个项目也必须引进.则该地区应引进的项目为()A.甲、乙B.丙、丁C.乙、丁D.甲、丙【答案】B【解析】由②知丁、戊两个项目至少要引进一个,若引进戊项目,则由⑤可知甲、丁两个项目也必须引进;由①④可知必须引进乙、丙两个项目,与③矛盾,所以不能引进戊项目,因此必须引进丁项目.由④可知必须引进丙项目;由③可知不能引进乙项目;由①可知不能引进甲项目.故该地区只能引进丙、丁两个项目.故选B.5.某校实行选科走班制度,张毅同学的选择是物理、生物、政治这三科,且物理在层班级,生物在层班级,该校周一上午课程安排如下表所示,张毅选择三个科目的课各上一节,另外一节上自习,则他不同的选课方法有()第一节第二节第三节第四节地理层2班化学层3班地理层1班化学层4班生物层1班化学层2班生物层2班历史层1班物理层1班生物层3班物理层2班生物层4班物理层2班生物层1班物理层1班物理层4班政治1班物理A层3班政治2班政治3班A.8种B.10种C.12种D.14种【答案】B【解析】张毅不同的选课方法如下:(1)生物B层1班,政治1班,物理A层2班;(2)生物B层1班,政治1班,物理A层4班;(3)生物B层1班,政治2班,物理A层1班;(4)生物B层1班,政治2班,物理A层4班;(5)生物B层1班,政治3班,物理A层1班;(6)生物B层1班,政治3班,物理A层2班;(7)生物B层2班,政治1班,物理A层3班;(8)生物B层2班,政治1班,物理A层4班;(9)生物B层2班,政治3班,物理A层1班;(10)生物B层2班,政治3班,物理A层3班;共10种,故选B.6.在侦破某一起案件时,警方要从甲、乙、丙、丁四名可疑人员中查出真正的嫌疑人,现有四条明确信息:(1)此案是两人共同作案;(2)若甲参与此案,则丙一定没参与;(3)若乙参与此案,则丁一定参与;(4)若丙没参与此案,则丁也一定没参与.据此可以判断参与此案的两名嫌疑人是()A.丙、丁B.乙、丙C.甲、乙D.甲、丁【答案】A【解析】假设参与此案的两名嫌疑人是丙、丁,符合题意,故A正确;假设参与此案的两名嫌疑人是乙、丙,则由乙参与此案,得丁一定参与,不合题意,故B错误;假设参与此案的两名嫌疑人是甲、乙,则由乙参与此案,得丁一定参与,不合题意,故C错误;假设参与此案的两名嫌疑人是甲、丁,则由甲参与此案,则丙一定没参与,丙没参与此案,则丁也一定没参与,不合题意,故D错误;故选:A.7.长郡中学某次高三文数周测,张老师宣布这次考试的前五名是:邓清、武琳、三喜、建业、梅红,然后让五人分别猜彼此名次邓清:三喜第二,建业第三;武琳:梅红第二,邓清第四;三喜:邓清第一,武琳第五;建业:梅红第三,武琳第四;梅红:建业第二,三喜第五张老师说:每人的两句话都是一真一假已知张老帅的话是真的,则五个人从一到五的排名次序为()A.邓清、武琳、三喜、建业、梅红B.邓清、梅红、建业、武琳、三喜C.三喜、邓清、武琳、梅红、建业D.梅红、邓清、建业、武琳、三喜【答案】B【解析】假设邓清说话中:三喜第二为真,建业第三为假.则:梅红说话中:建业第二为真,三喜第五为假.这与邓清说话中:三喜第二为真,建业第三为假矛盾.所以邓清说话中:三喜第二为假,建业第三为真.则:梅红说话中:建业第二为假,三喜第五为真.则:三喜说话中:邓清第一为真,武琳第五为假则:武琳说话中:梅红第二为真,邓清第四为假.则:建业说话中:梅红第三为假,武琳第四为真.故选:B8.甲、乙、丙、丁四位同学参加一次数学智力竞赛,决出了第一名到第四名的四个名次.甲说:“我不是第一名”;乙说:“丁是第一名”;丙说:“乙是第一名”;丁说:“我不是第一名”. 成绩公布后,发现这四位同学中只有一位说的是正确的,则获得第一名的同学为()A.甲B.乙C.丙D.丁【答案】A【解析】当甲获得第一名时,甲、乙、丙说的都是错的,丁说的是对的,符合条件;当乙获得第一名时,甲、丙、丁说的都是对的,乙说的是错的,不符合条件;当丙获得第一名时,甲和丁说的是对的,乙和丙说的是错的,不符合条件;当丁获得第一名时,甲、乙说的都是对的,乙、丁说的都是错的,不符合条件.故选:A.9.从计算器屏幕上显示的数为0开始,小明进行了五步计算,每步都是加1或乘以2.那么不可能是计算结果的最小的数是( )A.12B.11C.10D.9【答案】B【解析】由题意,列出树形图,如图所示由树形图可知,不可能是计算结果的最小数是11,故选B.10.甲、乙、丙、丁四个孩子踢球打碎了玻璃。
甲说:“是丙或丁打碎的。
”乙说:“是丁打碎的。
”丙说:“我没有打碎玻璃。
”丁说:“不是我打碎的。
”他们中只有一人说了谎,请问是()打碎了玻璃。
A.甲B.乙C.丙D.丁【答案】D【解析】假设甲打碎玻璃,甲、乙说了谎,矛盾,假设乙打碎了玻璃,甲、乙说了谎,矛盾,假设丙打碎了玻璃,丙、乙说了谎,矛盾,假设丁打碎了玻璃,只有丁说了谎,符合题意,所以是丁打碎了玻璃;故选:D11.2018年暑假期间哈六中在第5届全国模拟联合国大会中获得最佳组织奖,其中甲、乙、丙、丁中有一人获个人杰出代表奖,记者采访时,甲说:我不是杰出个人;乙说:丁是杰出个人;丙说:乙获得了杰出个人;丁说:我不是杰出个人,若他们中只有一人说了假话,则获得杰出个人称号的是A.甲B.乙C.丙D.丁【答案】B【解析】若甲获个人杰出代表奖,则甲、乙、丙三人同时回答错误,丁回答正确,不满足题意;若乙获个人杰出代表奖,则甲、丙,丁回答正确,只有乙回答错误,满足题意;若丙获个人杰出代表奖,则乙、丙回答错误,甲、丁回答正确,不满足题意;若丁获个人杰出代表奖,则甲、乙回答正确,丙、丁回答错误,不满足题意,综上,获得杰出代表奖的是乙,故选B.12.某校有四件作品参加航模类作品比赛.已知这四件作品中恰有两件获奖,在结果揭晓前,甲、乙、丙、丁四位同学对这四件参赛作品的获奖情况预测如下.甲说:“同时获奖.”乙说:“不可能同时获奖.”丙说:“获奖.”丁说:“至少一件获奖”如果以上四位同学中有且只有两位同学的预测是正确的,则获奖的作品是()A.作品与作品B.作品与作品C.作品与作品D.作品与作品【答案】D【解析】乙,丁预测的是正确的,甲,丙预测的是错误的;丙预测错误,∴C不获奖;丁预测正确,A,C至少一件获奖,∴A获奖;甲预测错误,即A,B不同时获奖,∴B不获奖;∴D获奖;即获奖的作品是作品A与作品D.故选:D.13.乒乓球比赛结束后,错过观看比赛的某记者询问进入决赛的甲、乙、丙、丁四名运动员谁是冠军的获得者.甲说:我没有获得冠军;乙说:丁获得了冠军;丙说:乙获得了冠军;丁说:我也没有获得冠军。
这时裁判员过来说:他们四个人中只有一个人说的假话。
则获得冠军的是________________.【答案】乙【解析】若获得冠军是甲,则甲、乙、丙三人同时回答错误,丁回答正确,不满足题意;若获得冠军是乙,则甲、丙,丁回答正确,乙回答错误,满足题意;若获得冠军是丙,则乙、丙回答错误,甲,丁回答正确,不满足题意;若获得冠军是丁,则甲、乙回答正确,丙、丁回答错误,不满足题意.综上,获得冠军是乙.故答案为:乙.14.某运动队从四位运动员中选拔一人参加某项赛事,在选拔结果公布前,甲、乙、丙、丁四位教练对这四位运动员预测如下:甲说:“是被选中”;乙说:“是被选中”;丙说:“均未被选中”;丁说:“是被选中”.若这四位教练中只有两位说的话是对的,则获得参赛资格的运动员是____.【答案】B【解析】假设甲说的话是对,则乙说的话不对,若丁说的话是对,则被选中,丙说的话是对,与只有两位说的话是对的矛盾,若丁说的话不对,则被选中, 丙说的话不对,与只有两位说的话是对的矛盾,从而甲说的话不对,即均未被选中,因此丁说的话不对,因此乙、丙说的话都对,即被选中,获得参赛资格的运动员是B.15.在某艺术团组织的“微视频展示”活动中,该团体将从微视频的“点赞量”和“专家评分”两个角度来进行评优.若视频的“点赞量”和“专家评分”中至少有一项高于视频,则称视频不亚于视频.已知共有部微视频展,如果某微视频不亚于其他部视频,就称此视频为优秀视频.那么在这部微视频中,最多可能有__________个优秀视频.【答案】5【解析】记这5部微视频为,设这5部微视频为先退到2部微视频的情形,若的点赞量>的点赞量,且的专家评分>的专家评分,则优秀视频最多可能有2部;再考虑3部的情形,若的点赞量>的点赞量>的点赞量,且的专家评分>的专家评分>的专家评分,则优秀视频最多可能有3部;以此类推可知:这5部微视频中,优秀视频最多可能有5部.故答案为:516.某次考试结束,甲、乙、丙三位同学聚在一起聊天,甲说:“你们的成绩都没有我高”乙说:“我的成绩一定比丙高·”丙说:“你们的成绩都比我高·”成绩公布后,三人成绩互不相同且三人中恰有一人说得不对,若将三人成绩从高到低排序,则甲排在第___名。