水泥企业余热发电技术介绍

合集下载

水泥余热发电技术及控制

水泥余热发电技术及控制

两种窑型:余热发电窑: 采用立式余热锅炉和补汽式汽轮发电机组的二级余热发电系统。

立式余热锅炉彻底解决了卧式余热锅炉漏风及炉内温度场实际分布与锅炉设计时所假想的温度完全不相同的问题,可以大大提高锅炉蒸汽产量;篦冷机或立式余热锅炉排出的200℃左右废气余热可以充分回收并用以发电。

这样可使吨熟料余热发电量在熟料热耗不变的前提下提高到195千瓦小时以上,使水泥窑综合能耗达到同规模预分解窑的能耗水平。

预分解窑及预热器窑: 为了克服带补燃锅炉的中低温余热发电系统存在的缺点,采用补汽式汽轮机组,充分回收200℃以下的废气余热,同时补燃锅炉应当以煤矸石等劣质煤或垃圾为燃料,除节约优质煤外,还可为水泥生产提供原料,降低发电成本,进一步提高经济效益。

三种发电模式:中空窑高温余热发电预分解窑及带补燃锅炉的中低温余热发电纯低温余热发电中低温余热发电主要是回收利用预分解窑或悬浮预热器窑窑头冷却机200℃废气、窑尾400℃废气,用于发电或热电联供。

余热电站一般采用4.5MW(不等)汽机装机容量,所涉及到的控制系统主要是MCS(模拟量控制)和SCS(顺序控制),在控制方案中,逻辑(顺序)控制占多数,主要是各电器设备的逻辑启停;模拟量控制回量以常规PID为主,水位控制以减温水控制回路以串级控制算法为主。

下文简要谈谈纯低温余热发电的控制方案。

一、生产工艺窑头篦冷机和窑尾预热器来的废气,通过锅炉与锅炉内布置的过热器、蒸发器、省煤器产生热交换,加热水产生高压饱和蒸汽,带动汽轮机转动做功,从而带动发电机发电。

一般主机为两台余热锅炉(窑头AQC锅炉和窑尾SP锅炉)和一套汽轮发电机组。

为减轻废气对AQC锅炉的磨损,在锅炉前设置了沉降室、AQC炉输灰系统除去烟气中的粉尘,SP炉设机械振打解决粉尘附着问题。

AQC省煤器出水分两路:一路进入AQC汽包,另一路进SP锅炉省煤器。

AQC锅炉产生的主蒸气和SP锅炉产生的主蒸气混合后进汽轮机进汽口。

SP锅炉汽包进水由AQC 省煤器供给,当AQC锅炉未投用时也可由锅炉给水泵直接供给而独立运行。

水泥余热发电普及知识

水泥余热发电普及知识
22
2012年3月30日
循环水流程
23
2012年3月30日
汽轮机是将水蒸汽的内能转换成汽轮机的机械能。 汽轮机是将水蒸汽的内能转换成汽轮机的机械能。
12
2012年3月30日
发电机
发电机是将转子的动能转换成电能。 发电机是将转子的动能转换成电能。
13
2012年3月30日
工质的性能
为何选水为工质? 为何选水为工质?
量大, 量大,廉价 比热大
水的汽化 水蒸气的过热 水蒸气的膨胀
9
2012年3月30日
能量的品质
10
2012年3月30日
余热锅炉
320℃废气
300℃过热蒸汽 126℃热水 200℃废气
锅炉是将废气的热能传递给水和水蒸汽。 锅炉是将废气的热能传递给水和水蒸汽。
11
2012年3月30日
汽轮机
320 ℃, 1.0MPa n=3000转/分 过热蒸汽
0.0068MPa饱和蒸汽
8
2012年3月30日
能量传递与转换
能量守恒定律 能量的传递和转换过程中可能伴随着物质形态的变化 热传递,是热从温度高的物体传到温度低的物体, 热传递,是热从温度高的物体传到温度低的物体,或者 从物体的高温部分传到低温部分的过程。 从物体的高温部分传到低温部分的过程。 能量的转换是指能量从一种形式的能量转变为另一种形 式的能量,即一个物体对另一个物体做功。 式的能量,即一个物体对另一个物体做功。
5
2012年3月30日
对水泥生产线的影响
对窑头袋除尘器的影响 对窑头排风机的影响 对窑尾高温风机的影响 对原料磨烘干能力的影响 对窑尾袋收尘的影响 对窑操的影响? 对窑操的影响?
6

水泥窑余热发电概述

水泥窑余热发电概述

水泥窑余热发电概述水泥窑余热发电概述水泥窑余热发电技术是直接对水泥窑在熟料煅烧过程中窑头窑尾排放的余热废气进行回收,通过余热锅炉产生蒸汽带动汽轮发电机发电。

一条日产5000吨水泥熟料生产线每天可利用余热发电21-24万度,可解决约60%的熟料生产自用电,产品综合能耗可下降约18%,每年节约标准煤约2.5万吨,减排二氧化碳约6万吨。

水泥纯低温余热发电技术是指在新型干法水泥熟料生产线生产过程中,通过余热回收装置——余热锅炉将水泥窑窑头、窑尾排出大量的低品位废气余热进行热交换回收,产生过热蒸汽推动汽轮机实现热能向机械能的转换,从而带动发电机发出电能,窑头锅炉所发电能供水泥生产过程中使用。

水泥窑纯低温余热发电背景随着水泥熟料煅烧技术的发展,发达国家水泥工业节能技术水平发展很快,低温余热在水泥生产过程中被回收利用,水泥熟料热能利用率已有较大的提高。

但我国由于节能技术、装备水平的限制和节能意识影响,在窑炉工业企业中仍有大量的中、低温废气余热资源未被充分利用,能源浪费现象仍然十分突出。

新型干法水泥熟料生产企业中由窑头熟料冷却机和窑尾预热器排出的350℃左右废气,其热能大约为水泥熟料烧成系统热耗量的35%,低温余热发电技术的应用,可将排放到大气中占熟料烧成系统热耗35%的废气余热进行回收,使水泥企业能源利用率提高到95%以上。

项目的经济效益十分可观。

我国是世界水泥生产和消费的大国,近年来新型干法水泥生产发展迅速,技术、设备、管理等方面日渐成熟。

目前国内已建成运行了大量2000t/d以上熟料生产线,新型干法生产线与其他窑型相比在热耗方面有显著的降低,但新型干法水泥生产对电能的消耗和依赖依然强劲,因此,新型干法水泥总量的增长对水泥工业用电总量的增长起到了推动作用,一定程度上加剧了电能的供应紧张局面。

而目前国内运行的新型干法水泥熟料生产线采用余热发电技术来节能降耗的企业极少,再者,国内由于经济潜力增长加剧了电力短缺的矛盾,刺激了煤电项目的增长,一方面煤电的发展会加速煤炭这种有限资源的开采、消耗,另一方面煤电生产产生大量的CO2等温室气体,加剧了对大气的环境污染。

中国水泥窑余热发电技术

中国水泥窑余热发电技术

中国水泥窑余热发电技术中国水泥窑余热发电技术摘要:水泥工业是高耗能的工业。

在水泥生产中,水泥窑在350℃左右排放大量中低温废气,约占燃料总热输入的30%。

如果直接排放到大气中,会造成严重的能源浪费。

利用低温余热发电技术对该部分中低温废气余热进行回收利用。

产生的高温过热蒸汽进入汽轮机发电。

发电机的输出功率可满足水泥生产线和水泥厂自身的生活用电,并积极实施节能减排措施。

与火力发电厂相比,余热发电不需要燃烧煤炭等燃料,不产生二氧化碳等环境污染物。

关键词:水泥窑;余热发电技术;前言:节能减排是我国经济社会发展的一项长期战略方针,也是一项极其紧迫的任务。

回收余热,降低能耗,对我国节能减排和环境保护的发展战略具有重要的现实意义。

同时,余热利用在改善工作条件、节约能源、增产、提高产品质量、降低生产成本等方面发挥着越来越重要的作用。

其中一些已经成为工业生产的一部分。

20世纪六七十年代以来,余热利用技术在世界范围内得到了迅速发展。

目前,我国的余热利用技术也取得了长足的进步,但与世界先进水平仍有一定的差距,有的余热没有得到充分利用,有的余热在使用中存在着许多问题。

1目的要求1.1降低能耗环境。

在水泥熟料燃烧过程中,窑尾预热器和窑头熟料冷却器排放的低温废气余热占水泥熟料燃烧总热量的30%以上,造成严重的能源浪费。

一方面,水泥生产消耗大量热能,另一方面,水泥生产也需要大量电力。

将400℃以下低温废气余热转化为电能用于水泥生产,可使水泥熟料生产综合电耗降低60%或30%以上。

对于水泥生产企业来说,可以大大减少从社会发电厂购买的电力,或者大大减少水泥生产企业燃烧的燃料。

自备电厂发电可以大大降低水泥生产的能耗;避免了水泥窑余热直接排入大气的热岛现象;同时可以降低社会发电厂或水泥生产企业自用电厂的燃料消耗,减少CO2等燃烧废弃物的排放,有利于环境保护。

1.2政策的推行提供技术支持。

自然资源如能源、原材料、水、土地等,随着经济的发展,资源有限之间的矛盾越来越明显。

水泥厂中低温纯余热发电技术及其应用

水泥厂中低温纯余热发电技术及其应用
降低能源消耗成本。
环保减排
减少温室气体和其他污染物的 排放,减轻对环境的压力,符 合绿色低碳的发展趋势。
提高能源利用效率
将原本被浪费的余热转化为电 能,提高了能源的利用效率。
增加经济效益
通过回收利用余热,为企业创 造额外的经济效益,提高市场
竞争力。
技术挑战
技术成熟度
尽管技术上可行,但该技术在实际应用中的 成熟度有待进一步提高。
发电技术。
纯余热发电技术通常采用热电转 换、热光转换等新型能源转换技
术,将余热直接转换为电能。
纯余热发电技术具有高效、环保、 节能等优点,是未来能源利用的
重要方向之一。
03
水泥厂中低温余热发电技术应用
余热发电技术在水泥厂中的应用
水泥厂余热资源丰富
经济效益显著
水泥生产过程中产生大量余热,这些 余热可用于发电,降低能源消耗。
技术发展前景广阔
随着环保要求的提高和能源结构的调整,纯余热 发电技术在水泥厂中的应用前景十分广阔。
3
促进产业升级
纯余热发电技术的应用有助于水泥产业升级,提 高能源利用效率,推动行业绿色发展。
04
水泥厂中低温纯余热发电技术优势与
挑战
技术优势
高效节能
利用水泥厂排放的余热进行发 电,减少对新鲜燃料的依赖,
02
水泥厂中低温余热发电技术原理
余热发电技术概述
余热发电技术是指利用工业生产过程中产生的余热,通过热能转换和发电技术,将 其转化为电能的技术。
余热发电技术具有高效、环保、节能等优点,是工业节能减排的重要手段之一。
余热发电技术可根据不同的工业领域和生产工艺,采用不同的热能转换方式和发电 技术。
中低温余热发电技术原理

水泥厂中低温纯余热发电技术及其应用

水泥厂中低温纯余热发电技术及其应用

水泥厂中低温纯余热发电技术及其应用水泥生产过程中,会产生大量的热能,其中包括高温热能和低温热能。

高温热能可以用于熟料烧成和余热发电等领域,而低温热能则一般会直接
排放到大气中,造成了能源的浪费和环境的污染。

针对水泥厂低温热能的利用问题,近年来出现了一种新的技术——低
温纯余热发电技术。

该技术利用温差生成电能,可以将水泥厂低温废热转
化为电能,从而实现能源的再利用。

该技术的原理是利用温差发电模块,将低温废热转化为电能。

一般来说,该技术需要在50℃以下的低温环境下才能工作。

通过将低温废热与
环境温度形成温差,可以驱动热电材料中的电子流动,产生电压和电流。

该技术在水泥厂中的应用,可以解决低温废热无法利用的问题,提高
能源利用效率。

同时,还可以减少水泥生产对环境的影响,促进可持续发展。

需要注意的是,低温纯余热发电技术在应用中要考虑到设备的成本和
维护成本,以及与水泥生产过程的配合问题。

只有在成本和效益相协调的
情况下,才能更好地推广和普及该技术。

水泥窑余热发电(五篇)

水泥窑余热发电(五篇)

水泥窑余热发电(五篇)第一篇:水泥窑余热发电水泥窑余热发电水泥厂余热资源的特点是流量大、品位低。

在宁国水泥厂4000t /d生产线上,预热器(PH)和冷却机(AQC)出口废气流量和温度分别为258550Nm3/h、340℃和306600Nm3/h、238℃,其中部分预热器废气用来烘干燃煤和原料。

针对上述特点,热力系统采用减速式两点混气式汽轮机,利用参数较低的主蒸汽和闪蒸汽的饱和蒸汽发电;根据余热资源的工艺状况设置两台余热锅炉,保证能够充分利用余热资源;应用热水闪蒸技术,设置一台高压闪蒸器和一台低压闪蒸器,闪蒸出的饱和蒸汽混入汽轮机做功;对现有AQC进行废气二次循环改造。

由于PH出口废气还要用于烘干原料,因此未设省煤器,只设蒸发器和过热器。

加强系统密封。

系统采用先进的DCS集散控制系统进行操作控制,具有功能齐全、自动控制、操作简便等特点。

工艺流程图(见图31)工艺流程两台高效余热锅炉,AQC锅炉和PH锅炉将水泥生产过程中随废气排放到大气中的热能吸收,产生压力为25Kg/cm2、温度为335℃-350℃、蒸发量为31.1t/h的过热蒸汽及二级低压饱和蒸汽并进入汽轮机,进行能量转换,拖动发电机向电网输送电力。

PH锅炉为强制循环、烟气流向为水平、管程流向为垂直、管列形式为循排、传热管为光管、除灰装置为振打系统;AQC锅炉为自然循环、烟气自上而下、管程流向为水平、管列形式为错排、传热管为螺旋翅管、除灰装置为吹灰器。

运转状况及效果该项目设计指标为发电机组装机容量6480kw,按吨熟料发电量33.07KWh/T,发电机组相对水泥窑的运转率为90%计算,设计年发电量4087万KWh。

从1998年3月至1999年3月,平均吨熟料发电量为34.24KWh/T(设计值为33.07KWh/T)发电机组相对水泥窑的运转率达到90.45%,实现系统安全、稳定、高效运行。

截止到1999年3月底累计发电4800万KWh,各项经济指标均达到并超过了设计水平,实现产值2160万元,实现金热发电投产当年达产达标。

水泥厂余热发电冷却原理

水泥厂余热发电冷却原理

水泥厂余热发电冷却原理
水泥厂生产过程中,熟料需要经过高温煅烧而产生大量的废气和余热。

如何有效地利用这些废气和余热是水泥厂节能环保的重要一环。

其中,余热发电技术成为了一种可行的方法。

水泥厂余热发电的基本原理是利用余热驱动蒸汽涡轮机发电。

一般情况下,水泥厂的余热发电系统包括余热回收、换热器、蒸汽涡轮机和冷却系统。

具体来说,废气在通过烟囱排放之前会先进入余热回收系统,通过余热回收器进行余热回收。

余热回收器通常采用板式或者管式结构,其主要作用是使废气与水接触,使热量传递到水中,从而使水变成蒸汽。

蒸汽在经过换热器后,会通过蒸汽涡轮机转化为电能。

换热器将从余热回收器中流出的热水与进入换热器的冷水进行热交换,使冷水变成热水,从而增加余热回收的效率。

最后,冷却系统用于冷却蒸汽涡轮机排出的高温蒸汽。

冷却系统通常采用冷却水作为冷却介质,通过冷却水对高温蒸汽进行冷却,从而使高温蒸汽变成低温蒸汽,再进入换热器回收余热。

总之,水泥厂余热发电冷却原理就是通过余热回收、换热和冷却系统的相互配合,利用废气中的余热驱动蒸汽涡轮机发电,同时使高温蒸汽通过循环冷却,从而实现能源的高效利用。

- 1 -。

余热发电技术

余热发电技术

第一节大型干法水泥纯低温余热发电技术概述一、掌握内容1、复合闪蒸补汽式纯低温余热发电系统工艺流程2、复合闪蒸补汽式纯低温余热发电废气的取热方法3、纯低温余热发电技术一是在新型干法生产线生产过程中,通过余热回收装置(余热锅炉)将窑头、窑尾排出大量地品位的废气渔人进行回收换热,产生过热蒸汽推动汽轮机实现热能-机械能的转换,再带动发电机发出电能,并供给水泥生产过程中的用电负荷从而不仅大大提高了水泥生产过程中能源的利用水平,对于保护环境,提高企业的经济效益,提升产品的市场竞争力,起到了巨大的促进作用。

4、纯低温余热发电技术的特点是在不提高水泥生产过程中能耗指标的前提下,完全利用水泥煅烧过程中产生的余热进行回收,最大限度的提高水泥生产过程中热能的利用效率,另外配制纯低温余热发电系统将对原油水泥工艺系统不产生影响当两个系统接口计合理,将融和成为一个更优的大系统。

二、了解内容1、水泥余热发电应用的历史条件和发展方向2、国内余热发电已普遍采用的几种热力循环系统、循环参数及废气取热方式的特点和存在的主要问题讲解资料一、发展水泥窑余热发电技术的目的1. 1降低能耗、保护环境水泥熟料锻烧过程中,由窑尾预热器、窑头熟料冷却机等排掉的400c以下低温废气余热,其热量约占水泥熟料烧成总耗热量30%以上,造成的能源浪费非常严重。

水泥生产,一方面消耗大量的热能(每吨水泥熟料消耗燃料折标准煤为100〜115kg),另一方面还同时消耗大量的电能(每吨水泥约消耗90〜115kwh)。

如果将排掉的400℃以下低温废气余热转换为电能并回用于水泥生产,可使水泥熟料生产综合电耗降低60%或水泥生产综合电耗降低30%以上,对于水泥生产企业:可以大幅减少向社会发电厂的购电量或大幅减少水泥生产企业燃烧燃料的自备电厂的发电量以大大降低水泥生产能耗;可避免水泥窑废气余热直接排入大气造成的热岛现象,同时由于减少了社会发电厂或水泥生产企业燃烧燃料的自备电厂的燃料消耗,可减少CO2等燃烧废物的排放而有利于保护环境。

水泥余热发电简介演示

水泥余热发电简介演示

化工生产领域
化工生产过程中会产生大 量的高温废气和废水,通 过余热回收技术可以将其 转化为电能。
04
水泥余热发电的经济效益与社 会效益
经济效益分析
节约能源
水泥余热发电可以充分利用水泥生产 过程中的余热,减少能源浪费,降低 能源消耗成本。
创造额外收益
余热发电可以为企业创造额外的收益 ,用于支持企业的其他业务和发展。
02
余热收集技术主要通过 高效换热器将废气余热 转化为热能。
03
余热锅炉技术主要是将 热能转化为蒸汽,以供 后续的发电过程使用。
04
蒸汽轮机技术主要是将 蒸汽转化为机械能,以 驱动发电机产生电能。
余热发电系统组成
废气收集系统主要负责收集水泥 生产过程中的废气,并将其导入 余热锅炉。
余热锅炉系统主要由高效换热器 、锅炉本体等组成,将废气余热 转化为蒸汽。
降低生产成本
通过余热发电,可以减少对传统能源 的依赖,降低生产成本,提高企业经 济效益。
社会效益分析
促进可持续发展
水泥余热发电符合可持续发展的 理念,有利于减少对环境的污染
和破坏。
改善能源结构
余热发电可以改善能源结构,减少 对传统能源的依赖,提高能源利用 效率。
增加就业机会
余热发电项目需要专业的技术人员 和管理人员,可以增加就业机会, 促进当地经济发展。
在水泥熟料生产线上,高温废气和冷却废水的余热可以用于发电,提高能源利用 效率。
水泥窑协同处置过程中的余热利用
水泥窑可以协同处置城市垃圾、污泥等废弃物,同时回收废弃物中的热量进行发 电。
钢铁生产领域应用
高炉煤气余热回收
高炉煤气是钢铁生产过程中的主要副 产品之一,通过余热回收技术,可以 将高炉煤气中的热量转化为电能。

水泥企业余热发电技术介绍

水泥企业余热发电技术介绍

根据汽轮机进汽参数,考虑利用废气 余热生产水蒸气所需传热温差的要求, 水泥窑余热品位应当确定为:
高温废气余热:废气温度大于650℃ 中温废气余热:废气温度350~650℃ 低温废气余热:废气温度小于350℃
3国内余热发电系统简介
3.1熟料生产线余热分布 2500t/d水泥生产线
窑尾废气:169000Nm3/h--340℃----200℃ 窑头废气:142000Nm3/h--230℃----104℃
朗肯循环过程图(T-S图)
汽轮机排汽2(一般为绝对压力0.007-0.01MPa并含有10-5%的水分的3945℃饱和蒸汽及水的混合物)经凝汽器凝结成水3后(水温不变)在经凝结 水泵升压至锅炉给水压力(由于泵做功,使水温升高1-2℃),在锅炉内通 过吸收热量,使水变成给水压力下的饱和温度5,继续加热变成饱和蒸汽6 ,再继续加热为给水压力下的过热蒸汽1,过热蒸汽进入汽轮机推动汽轮 机做功后自汽轮机排汽排出2,完成一个热力循环。
17.61 535
0.82 0.007
39 2229.65
0.8579 12457.07
3.28 403.69
临界 22.01
590 100000
1000 2087.94
2068.9
1601.14
14.75
100
150.33
4648.99 6264.88
21.62 575
0.82 0.007
39 2244.07
0.8639 13439.83
3.12 374.17
2.3水泥窑低温余热电站汽轮机汽耗率
蒸汽参数采用0.69~0.98MPa—300~340℃时,汽 轮机汽耗率为:每KWh发电量消耗蒸汽6.1~ 5.5Kg—汽机叶片为全三维叶片;

水泥厂余热发电技术介绍0708

水泥厂余热发电技术介绍0708

水泥厂余热发电技术介绍0708
水泥厂余热发电技术介绍0708
水泥烧结过程产生的余热具有高温、大量、热能密度高等特点,具有垂直发电的优点,可以有效利用水泥厂内部的温度高于外部的余热,从而产生电力,将余热能转换为电力,水泥厂热能发电技术的应用,可以实现工业园区的零排放,节约能源,改善生态环境,有效减少空气污染物的排放,改善人们自然大气和环境健康。

而且,水泥工厂余热发电技术比传统燃料发电技术具有更低的成本、更安全、更可靠的操作等优势,在发电技术发展史上还有价值观,带来更多的技术创新。

具体来说,水泥工厂余热发电技术主要包括余热发电技术、热能转换技术及应用技术三部分:
1、余热发电技术:包括余热回收系统、余热回收设备、余热利用机械、电气及控制相关设备;
2、热能转换技术:主要指热能转换器中的一种,如余热发电机、内燃机、热能耦合系统等;。

2024年水泥余热发电市场发展现状

2024年水泥余热发电市场发展现状

2024年水泥余热发电市场发展现状引言水泥产业是我国重要的基础产业之一,但在水泥生产过程中会产生大量的余热。

这些余热如果不能有效利用,不仅会造成资源的浪费,还会对环境造成负面影响。

水泥余热发电技术的出现,为水泥产业的可持续发展提供了新的机遇。

本文将对水泥余热发电市场的发展现状进行分析。

水泥余热发电技术概述水泥生产过程中产生的余热主要来自于水泥窑和水泥磨。

水泥窑是水泥生产过程中的关键设备,其中熟料制备需要将石灰石等原料在高温下进行煅烧,产生大量的余热。

水泥磨是水泥生产过程中的另一个重要环节,磨矿机械产生的机械能也可以转化为余热。

水泥余热发电技术通过收集和利用这些余热,将其转化为电能,实现能源的再利用。

水泥余热发电市场的发展现状技术发展水平水泥余热发电技术在我国的应用起步较早,已经取得了一定的技术进展。

目前,我国已经建立了一批水泥余热发电装置,先进的发电设备能够将水泥生产过程中的余热转化为电能,提高能源利用效率。

然而,与发达国家相比,我国在水泥余热发电技术的研发和应用上仍存在一定差距,需要进一步加大科研力度和技术投入。

市场容量和潜力水泥行业是我国能源消耗的重要行业之一,也是我国水泥余热发电市场的潜在市场。

根据统计数据,我国年产水泥超过20亿吨,而水泥生产过程中的余热可利用率仅为30%左右。

因此,水泥余热发电市场具有巨大的潜力和发展空间,可以为我国节能减排和绿色发展做出重要贡献。

政策支持政府对水泥余热发电技术的发展给予了积极支持。

目前,我国已经出台了一系列的政策措施,包括财政补贴、税收优惠和项目审批加速等,以鼓励水泥企业利用余热发电。

政策的支持为水泥余热发电市场的发展提供了有力保障,并为相关企业创造了良好的投资环境。

市场竞争格局水泥余热发电市场竞争格局相对集中,部分大型水泥企业在该领域具有较强的竞争优势。

这些企业利用自身的规模经济和技术实力,推动了水泥余热发电技术的发展。

然而,市场竞争也存在一定问题,如部分企业技术水平相对滞后,缺乏核心竞争力。

水泥厂余热发电原理

水泥厂余热发电原理

水泥厂余热发电原理水泥厂是工业生产中能源消耗较大的行业之一,而水泥生产过程中会产生大量的余热。

为了提高能源利用效率和减少环境污染,水泥厂常常运用余热发电技术,将过程中产生的余热转化为电能。

水泥生产中产生余热的主要过程有四个:熟料烧结系统中的烧结窑,水泥磨系统的磨机,废气制冷系统的废气冷却器和废气净化器。

首先,熟料烧结系统中的烧结窑是水泥生产过程中能耗最大的环节。

烧结窑中的高温燃烧过程会产生大量的废气和余热。

这些废气和余热进入废气制冷系统。

其次,废气冷却器是废气制冷系统的核心设备。

废气从烧结窑中进入废气冷却器,与冷却器中的循环水进行热交换,使废气温度下降。

在热交换过程中,循环水被加热并转化为蒸汽。

然后,经过废气冷却器之后的废气进入废气净化器,进行尾气净化处理。

废气净化器是为了达到环保排放标准,去除废气中的污染物和尾气中的有害物质。

最后,余热发电系统的核心设备是汽轮机。

经过废气净化器处理后的废气,可进入汽轮机中进行发电。

废气中的高温高压蒸汽能够为汽轮机提供动力。

汽轮机是将热能转化为机械能的装置,通过高速旋转的轴转动发电机,从而产生电能。

在水泥厂的余热发电系统中,还有一些辅助设备和系统。

例如,蒸汽产生系统用于将废气中的蒸汽采集和储存,并进行调压。

发电机通过机械能转化为电能,并将电能输送到水泥厂的电网中。

此外,还有控制系统用于实时监测和控制余热发电系统的运行,以确保系统的安全和稳定。

总之,水泥厂余热发电是一种能够提高能源利用效率和减少环境污染的技术。

通过将水泥生产过程中产生的余热转化为电能,不仅可以为水泥厂提供自身消耗的电能,还可以向周边地区供应清洁能源。

水泥厂余热发电系统的实施,不仅有利于推动水泥工业的可持续发展,也有助于实现绿色产业转型和低碳经济的建设。

水泥厂余热发电

水泥厂余热发电

水泥厂余热发电
水泥厂余热发电是指利用水泥生产过程中产生的烟气、废热等余热来发电。

水泥生产过程中,熟料烧成过程中的排放气体温度较高,烟气中含有大量的热能,可以通过余热发电技术将烟气中的热能转化为电能。

水泥厂余热发电的具体步骤如下:
1. 收集烟气:通过烟囱或热交换器等设备,收集水泥生产过程中产生的烟气。

2. 预处理烟气:将收集到的烟气进行预处理,如除尘、脱硫等,以减少对发电设备的损害。

3. 热能回收:将预处理后的烟气通过余热锅炉等设备,将烟气中的热能转化为高温高压蒸汽。

4. 发电:将高温高压蒸汽输入蒸汽轮机,蒸汽轮机通过转动发电机产生电能。

5. 余热利用:蒸汽经过蒸汽轮机后,其余的低温低压蒸汽可以用于水泥生产过程中的烘干等。

1
水泥厂余热发电的优势包括节能环保、资源综合利用等。

通过利用水泥生产过程中产生的余热发电,既可以减少水泥生产过程中的能耗和排放,还可以减少对传统能源的依赖,提高能源利用效率。

2。

水泥工业纯低温余热发电技术及其效益分析

水泥工业纯低温余热发电技术及其效益分析

水泥工业纯低温余热发电技术及其效益分析水泥工业是我国能源消耗最大的行业之一,同时也是排放大量CO2的行业。

在水泥生产过程中,熟料的制备需要大量的煤炭或其他化石能源,并且会产生大量烟尘、氢氧化钙蒸汽以及高温余热等有害物质。

传统的水泥生产工艺中,高温余热并没有被有效地利用,导致能源浪费和环境污染的问题日益凸显。

因此,开发水泥工业纯低温余热发电技术具有重要的意义。

纯低温余热发电技术是指在较低温度下,通过对水泥生产过程中的余热进行回收利用,将其转化为电能的技术。

该技术的核心是热力循环工艺,通过热交换和蒸汽发电装置,将热能转化为机械能,进而驱动发电机产生电能。

水泥工业的纯低温余热主要来自两个方面:一是熟料冷却的过程中,熟料从窑头到窑尾的过程中会释放很多的热量;二是分解炉中石灰石分解产生的高温石灰比较少,而未反应的石灰和石灰须在窑中长距离高温、长寿命的保温层耐火砖参与烧结时,会释放很多的热量。

纯低温余热发电技术的效益分析主要包括经济效益和环境效益两个方面。

从经济效益来看,纯低温余热发电技术可以将水泥工业中原本浪费的热能转化为电能,减少了水泥企业的能源消耗。

这不仅可以降低企业的生产成本,提高企业的竞争力,还可以通过售电获取额外的经济收益。

此外,该技术还可以提高水泥工业的能源利用效率,降低水泥生产的碳排放,符合国家的节能减排政策。

从环境效益来看,纯低温余热发电技术可以有效减少水泥工业的大气污染和温室气体排放。

水泥工业是我国重要的大气污染源和温室气体排放源之一,通过利用纯低温余热发电技术,可以减少煤炭的使用量,降低煤炭燃烧所产生的大气污染物和CO2的排放。

此外,该技术还可以减少石灰石的制备过程中产生的氧化钙蒸汽,降低对大气的污染。

总的来说,水泥工业纯低温余热发电技术的应用具有巨大的经济效益和环境效益。

通过将水泥生产过程中原本浪费的热能转化为电能,可以提高水泥企业的能源利用效率,降低生产成本,增加经济收益,同时减少温室气体排放,改善环境质量,符合可持续发展的要求。

水泥厂余热发电原理

水泥厂余热发电原理

水泥厂余热发电原理
水泥厂余热发电是利用水泥生产过程中产生的高温废气余热来发电的一种方法。

其原理主要包括以下几个步骤:
1. 水泥生产中的高温废气收集:水泥生产过程中,包括煤磨、煤烧、熟料球磨、水泥磨等环节,都会产生大量高温废气。

首先需要将这些高温废气进行收集,通过管道或系统将其输送到余热发电设备。

2. 废气余热回收:在余热发电设备中,废气被引导进入余热锅炉或余热交换器。

在这个过程中,废气与水或其他工质进行热交换,使废气的余热被转移到工质中。

3. 工质汽化发电:经过热交换后,工质会因为余热的作用而汽化变为高温蒸汽。

这些高温蒸汽会驱动汽轮机转动,汽轮机的转动运动会产生机械能。

4. 机械能发电:转动的汽轮机将机械能转化为电能。

汽轮机与发电机相连,在汽轮机的转动力的驱动下,发电机会产生电流,并将电能输出。

5. 排放废气处理:经过废气余热回收后,废气中的热能已被充分利用,但废气中可能仍含有些许污染物。

为了保护环境,水泥厂余热发电设备还需要配备排放废气处理设备,如除尘器、脱硫器等,对废气进行净化处理,以保证废气排放符合环保要求。

通过以上几个步骤,水泥厂能够将生产过程中产生的高温废气充分利用,转化为电能,实现了能源的再生利用,减少了对传统能源的需求,同时也减少了对环境的影响。

这种利用水泥厂余热发电的方式,不仅提高了水泥生产的能源利用效率,还具有较高的经济效益和环保效益。

水泥厂余热发电原理

水泥厂余热发电原理

水泥厂余热发电原理水泥生产过程中会产生大量的余热,这些余热如果不加以利用会造成能源的浪费。

而水泥厂余热发电就是利用水泥生产过程中的余热来进行发电,从而实现能源的高效利用。

水泥生产中主要有煤磨煤粉和熟料煅烧两个主要环节。

煤磨煤粉环节是将煤炭粉碎成煤粉,并将其送入炉内与热风进行混合燃烧,产生高温热风。

而熟料煅烧环节是将石灰石和粉煤灰等原料在高温下进行反应,形成熟料。

这两个环节产生的高温热风就是余热的主要来源。

水泥厂余热发电系统主要包括余热烟气收集、余热烟气回收和发电装置三个部分。

首先,余热烟气收集。

水泥厂煤磨煤粉和熟料煅烧过程中产生的高温热风经过排气管道排出,这些烟气中含有大量的热能。

因此,需要在排烟口处设置余热烟气收集装置,将烟气引导到余热回收设备中。

常见的收集装置有烟道、热管等。

这些收集装置的设计要考虑到烟气的流速、温度和压力等参数,以保证烟气能够被有效地收集。

其次,余热烟气回收。

收集到的高温烟气需要通过余热回收装置来回收其中的热能。

常见的热能回收方式有直接利用和间接利用两种方式。

直接利用是指将高温烟气直接与工作介质(如水、有机液体等)进行热交换,使介质升温,然后直接用于发电或其他用途。

间接利用是指通过换热器将高温烟气热量传递给介质,使介质的温度上升,然后再用于发电或其他用途。

根据实际情况和经济性考虑,选择适合的余热回收方式。

最后,发电装置。

余热回收装置将高温烟气中的热量传递给工作介质后,介质的温度升高。

通过将介质中的热能转化为机械能,再进一步转化为电能来实现发电。

常见的发电装置有蒸汽涡轮发电机组和有机朗肯循环发电机组。

蒸汽涡轮发电机组通过高温烟气产生蒸汽,然后推动涡轮旋转,最终带动发电机产生电能。

有机朗肯循环发电机组通过高温烟气产生有机工质的蒸汽,然后推动涡轮旋转,最终带动发电机产生电能。

水泥厂余热发电原理的核心是利用水泥生产过程中产生的高温热风,通过回收和利用热能来进行发电。

这不仅可以降低水泥生产过程中的能源消耗,减少环境污染,还可以提高水泥厂的能源利用效率,降低生产成本,实现可持续发展。

水泥行业余热发电简介

水泥行业余热发电简介

在水泥熟料生产过程中,水泥窑的窑头和窑尾产生大量废气(废热),在废气排出的地方安装余热锅炉,分别称为AQC锅炉和SP锅炉。

在余热锅炉内,废气与水进行热交换,使水产生一定温度和压力的过热蒸汽,过热蒸汽进入汽轮发电机组进行发电。

主要设备有凝汽式汽轮机、发电机、SP余热锅炉和AQC余热锅炉。

窑头及窑尾废气经余热锅炉后,沉降的炉灰经收集回用水泥生产系统。

窑头采用FU 拉链机将收下的炉灰送回到熟料输送系统;窑尾采用螺旋输送机将料灰送回到生料输送系统
1 窑头AQC余热锅炉
它是利用窑头冷却机产生的废气热量将水加热成饱和水或蒸汽的锅炉,为立式布置,自然循环。

由于冷却机废气中粉尘为熟料颗粒,粉尘粘附性不强,所以不设置清灰装置。

换热管采用螺旋翅片管,大大增加了换热面积,使得锅炉体积大幅下降,降低了投资成本。

在AQC余热锅炉前端设置了高温沉降室,大大减轻了废气对AQC余热锅炉的磨损。

2 窑尾SP锅炉
SP余热锅炉为立式布置,机械振打,自然循环,整个锅炉的振打形式为连续式,清灰较为均匀,同时设计有合理的灰斗,避免了因清灰原因造成废气中含尘浓度突然增大而引起风机跳停,该锅炉最具特点的地方是采用自然循环方式,省掉了二台强制循环热水泵,降低了运行成本,提高了系统可靠性。

立式的结构形式,在节约了占地面积的同时,也方便了废气管道的布置。

3 应急处置措施
为了保证电站故障不影响水泥窑生产,余热锅炉废气管道及发电系统汽水管道均考虑了应急处理措施。

余热锅炉均保留原有烟道,加装旁通阀,一旦余热锅炉或电站发生事故时,可以将余热锅炉从水泥生产系统中解列,从而不影响水泥生产的正常运行。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.2火力发电厂的标准煤耗及汽耗率
前述的转换效率用于火力发电厂时,则反应为:发电用蒸汽参数不同,发电煤耗也 不同,即转换效率不同,例如:
国内目前的中压火电厂(单机为3~25MW的小型火电厂),发电用蒸汽参数 一般为3.43MPa—435℃,其发电标准煤耗为540~580g/Kwh,转换效率约为 21~23%(反映在汽轮机汽耗率上为:每KWh发电量消耗蒸汽为4.73Kg—汽 机叶片为老红旗叶片);
P=1.0MPa时,水加热至Tb=179.9℃才形成蒸汽 P=1.27MPa时,水加热至Tb=191.6℃才形成蒸汽 P=2.45MPa时,水加热至Tb=216.7℃才形成蒸汽 P=0.1MPa时,水加热至Tb=100℃才形成蒸汽 P=0.007MPa时,水加热至Tb=39.2℃才形成蒸汽
高温废气进入(tfj)
t
蒸汽流出(t z) 压力为P
tfj
tz
废气
{tmin
tb 水及水蒸汽 tb
常温水流入(tg ) 压力为P
低温废气流出(tfc)
tfc tg
L
水及水蒸汽的变化过程示意图
在上述三个变化过程中,水变为蒸汽的温度称为饱 和温度(tb),其对应的水称为饱和水、蒸汽为饱和 蒸汽;第三个过程结束后产生的蒸汽为过热蒸汽,过 热蒸汽温度tz与饱和温度tb之差(tz-tb)称为水蒸气过 热度。对于不同的压力P,饱和温度tb是不同的。在水 及水蒸气被热源(废气)加热过程中,热源与水及水 蒸气间必将存在换热温差,并且热源温度必须高于水 及水蒸气温度,同时在此换热过程中的某一位置存在 最小温差点,此点称为换热温差窄点△tmim.
饱和温度 ℃
120.23 133.54 143.62 151.85 179.88 187.96 201.73
222.9
247.51
1.2主蒸汽压力与余热锅炉废气出口温度的关系
P=1.0MPa时 T=179.9℃+Δtmin P=1.27MPa时 T=191.6℃+Δtmin P=2.45MPa时 T=216.7℃+Δtmin P=0.1MPa时 T=100℃+Δtmin P=0.075MPa时 T=89.2℃+Δtmin Δtmin由锅炉设计确定
80年代水泥生产发展新型干法窑为主,由于水泥窑增加了预热器 及分解炉,窑尾烟气温度大幅度降低,对余热发电系统提出了一 个难题,1995年带补燃锅炉余热发电系统在鲁南投入生产,1997 年日本赠送了全套的纯中低温余热发电系统,中国进入了纯低温 余热发电系统时代。
1水及水蒸汽的基本知识
水在某一恒定压力下进行加热,在此过程中一般来讲 有如下三个过程: ➢ 第一个过程,水在常温下被逐步加热至某一温度tb,在此温 度下水开始逐渐产生蒸汽,其蒸汽温度与水温相同为tb; ➢ 第二个过程,水继续被加热时水温tb将不再变化,而产生 的温度为tb的蒸汽将不断增加至水全部变为蒸汽; ➢ 第三个过程,水全部变为蒸汽后继续加热,则水蒸气的温 度将不断升高至tz。
锅炉
主蒸汽压力 主蒸汽温度 锅炉入口废气量 锅炉入口废气温度 饱和蒸汽焓 饱和水焓 过热器传热面积 蒸发器传热面积 省煤器段给水温度 省煤器出口废气温度 省煤器传热面积 总面积
汽轮机
进汽压力 进汽温度 高压缸效率 排汽压力 排汽温度 实际排汽焓 排汽干度 发电量 汽轮机汽耗 标准煤耗
MPa ℃ Nm3/h ℃ kJ/kg kJ/kg m2 m2 ℃ ℃ m2 m2
水及水蒸气压力与饱和温度关系表
绝对压力 MPa
0.001
0.005
0.007
0.009
0.01
0.02
0.05
0.1
0.16
饱和温度 ℃
6.982
32.9
39.02 43.79 45.83 60.09 81.35 99.63 113.32
绝对压力 MPa
0.2
0.3
0.4
0.5
1
1.2
1.6 2.45 3.82
2蒸汽参数与发电能力的关系
2.1热的质即热量转换为电量的能力 1Kg/h-1000℃的热水,其含有的热量为1000Kcal/h(是热量的量),
这个热量理论上转化为电量的最大能力为N=[1-273/(1000+ 273)]×1000×4.1868/3600=0.9135kW(热量的质),理论转换效率为 0.9135×860/1000=78.56%。 10Kg/h-100℃的热水,其含有的热量同样为1000Kcal/h,但这个热 量理论上转化为电量的最大能力为N=[1-273/(100+ 273)]×1000×4.1868/3600=0.3118kW,理论转换效率为 0.3118×860/1000=26.8%。
国内目前的高压火电厂(单机为25~100MW的中型火电厂),发电用蒸汽参 数一般为9.81MPa—550℃,其发电标准煤耗为380~420g/Kwh,转换效率约 为29~33%(反映在汽轮机汽耗率上为:每KWh发电量消耗蒸汽为4.3Kg—汽 机叶片为老红旗叶片);
国内目前的超高压、亚临界火电厂(单机为200~600MW的大型火电厂),发 电用蒸汽参数一般为16~18MPa—555~575℃,其发电标准煤耗为300~ 330g/Kwh,转换效率约为37~41%(反映在汽轮机汽耗率上为:每KWh发电 量消耗蒸汽为3.45Kg—汽机叶片为老红旗叶片);
水泥企业余热发电技 术介绍
水泥余热发电的发展历程
在20世纪20-30年代,回转窑废气温度为800-900℃,熟料热耗为 7400kJ/kg KJ/kg,发电能力110kWh左右,装机容量小于3000kW, 技术落后。
20世纪80年代,采用了带有回热的朗肯循环系统,运行参数提高 到2.5MPa左右,单机容量达到了3000kW,发电指标达到了熟料热 耗6700-7400kJ/kg,吨熟料发电量100-130kWh,国产第一代水泥窑 余热发电专用锅炉和国产的1500、3000kW汽轮发电机也满足了水 泥余热发电系统的需要。
低压 1.5 355
10000Leabharlann 10002791.97 851.74 210.04
1873.21 100
150.29 2356.78 4440.03
1.11 340
相关文档
最新文档