测控电路实验指导书
测控技术实验指导书
实验一单片机程序设计基础一.实验设备硬件使用的是单片机SS-8051高级单片机实验仪,软件使用的是Keil uv2软件开发环境。
二.实验目的熟悉单片机的调试环境与指令系统三.实验内容自编一个汇编小程序,使用Keil uv2软件开发环境,进行编译、调试、运行程序。
Keil uv2 操作流程的简单说明:1.NEW PROJECT ↙,建一个新的项目,取项目名并存于F:盘下(最好在F盘下建一个自己的文件夹)。
在出现的对话框中选Atmel/AT89c51 芯片型号;或者可以从File/ devices database 的对话框中选择芯片型号。
2.FILE/ NEW ↙,建立一个新文件,在打开的窗口下输入程序,取文件名并存盘。
3.选中Source Group1点击鼠标右键,在出现的菜单中选中 Add Files to Group ` Source Group1`,将文件加入到项目中。
4.选中Target1点击鼠标右键,在出现的菜单中选中Options for Target ` Target1`:●在出现的对话框中打开output项的对话框,选中`Great HEX File`,以保证编译时能生成.HEX文件,为后续下载程序做准备。
●在出现的对话框中打开debug项的对话框,选中`Use Simulator`,采用仿真方式。
5.Project/Build target或Rebuild all target files, 编译所输入的程序,检查语法错误,更改错误直至无错为止。
6.Debug/ ‘Start/Stop Debug Session’↙,开始调试程序,检查逻辑错误。
实验二51单片机的串行通信实验一.实验内容连线并编制程序,完成单片机与PC机通信的功能。
二.实验目的1. 了解单片机串口通信的基本功能;2. 了解单片机与PC机串口通信的硬件接口电路;3. 学会单片机和PC机串口程序的编制和调试。
三.实验电路四.连线方法实验三V/F转换电路实验一、实验内容V/F转换电路的调试。
测控电路实验指导书
实验一差动放大器实验实验二信号放大电路实验实验三信号运算电路实验实验四电压比较器实验实验五电阻链分相细分实验实验六幅度调制及解调实验实验七移相电桥实验实验八脉宽调制电路实验实验九调频及鉴频实验实验十开关电容滤波器实验实验十一开关式相乘调制及解调实验实验十二精密全波整流及检波实验实验十三开关式全波相敏检波实验实验十四锁相环单元实验实验十五分频器单元实验实验十六锁相环应用实验––频率合成实验实验十七可控硅触发调压实验测控电路部分实验一差动放大器实验一、实验目的1.加深对差动放大器性能的理解。
2.学习差动放大器的主要性能指标的测试方法。
二、实验原理图1-1是差动放大器的实验电路图。
它由两个元件参数相同的基本共射放大电路组成。
当 开关K 拨向左边时,构成典型的差动放大器。
调零电位器Rp 用来调节T 1,T 2管的静态工作点,使得输入信号U i =0时,双端输出电压Uo=0。
图1-1差动放大器实验电路图当开关K 拨向右边时,构成具有恒流源的差动放大器。
它用晶体管恒流源代替发射极电阻Re ,可以进一步提高差动放大器抑制共模信号的能力。
1.静态工作点的估算典型电路: (认为U B1=U B2≈0);I C1=I C2=½I E 恒流源电路: ;C321C2C1I I I == 2.差模电压放大倍数和共模电压放大倍数当差动放大器的射极电阻R E 足够大,或采用恒流源电路时,差模电压放大倍数A d 由输出端方式决定,而与输入方式无关。
双端输出:R E =∞,W 电位器在中心位置时,Pbe B CiOd R )1(21r R R U U A ββ+++-=∆∆=单端输出:diC1d1A 21U U A ==∆∆EBE EE E R U U I -≈||E3BEEE CC 212E3C3R U U U R R R I I -++≈≈|)|(d i C2d2A 21U U A -=∆∆=当输入共模信号时,若为单端输出,则有ECE p be B C iC1C2C12R R )2R R 2)(1(r R R U U A A -≈++++-=∆∆==ββ若为双端输出,在理想情况下 0U U A iOd2=∆∆=,实际上由于元件不可能完全对称,因此Ac 也不会绝对等于零。
测控专业测试技术试验指导书
实验一滤波器的特性一、实验目的1、了解 RC无源和有源滤波器的种类、基本结构及特性2、分析和对比无源和有源滤波器的滤波特性二、原理说明滤波器是对输入信号的频率具有选择性的一个二端口网络,它允许某些频率(通常是某个频带范围)的信号通过,而其它频率的信号受到衰减或抑制,这些网络可以由RLC元件或RC元件构成的无源滤波器,也可以由RC元件和有源器件构成的有源滤波器,滤波器可分为低通滤波器(LPF)、高通滤波器(HPF)、带通滤波器(BPF)和带阻滤波器(BEF)四种1、低通滤波器低通滤波器是指低频信号能通过而高频信号不能通过的滤波器,图1(a)、(b)即为典型的二阶无源和有源滤波器原理图图1 (a)无源低通滤波器 (b)有源低通滤波器2、高通滤波器只要将低通滤波器滤波网络中的电阻、电容互换即可变成高通滤波器,如图2(a)、(b)所示,高通滤波器的性能与低通滤波器相反,其频率响应和低通滤波器是“镜像”关系。
图2 (a) 无源高通滤波器 (b) 有源高通滤波器3、带阻滤波器带阻滤波器是在一定的频率范围内信号不能通过(或受到很大的衰减),而在其它范围内信号都能顺利通过。
常用在抗干扰设备中。
典型原理图为3(a)、(b)所示图3(a)无源带阻滤波器 (b) 有源带阻滤波器4、带通滤波器这种滤波电路的作用是只允许在一定通频带范围内的信号通过,而比通频带下限频率低或比上限频率高的信号都被阻断。
典型电路的原理图如4(a)、(b)所示图4 (a) 无源带通滤波器 (b) 有源带通滤波器三、实验设备(1)二阶低通滤波器①无源低通滤波器首先计算其中心频率f。
实验电路如图1(a)所示,函数信号发生器输出端接二阶低通滤波器的输入端,调节信号发生器,令其输出为U1=1V的正弦波,改变频率,使其在中心频率左侧和右侧变化,并维持U1=1V不变,测量输出电压U2,记入表1-1(a)中。
表 1-1(a)实验电路如图1(b)所示重复上面的实验步骤,记入表1-1(b)中表 1-1(b)实验电路如图2(a)、(b),重复上面二阶低通滤波器的操作,并记录实验数据,数据表格自拟。
测控电路实验指导书
测控电路实验指导书测控教研室刘宝华实验一 运算放大器应用一、 实验设备计算机、MULTISIM二、 实验目的1. 熟悉MULTISIM 软件的基本设计流程,包括原理图绘制、器件参数设置。
2. 熟悉MULTISIM 软件的基本仿真分析方法。
3. 熟悉运算放大器的基本应用设计,包括比例、加减、比较等电路。
三、 实验内容1.设计反向比例放大电路,要求:输入电阻大于10K Ω,增益等于10+学号末位,并绘制幅频响应曲线。
2.设计同相比例放大电路,要求:输入电阻大于100K Ω,增益等于10+学号末位,并绘制幅频响应曲线。
3.设计减法电路,实现2123in in out V V V -=其中1in V 是峰值为0.1V ,频率为1KHz 的正弦信号,2in V 是峰值为0.3V ,频率为1KHz 的正弦信号。
用示波器记录输入波形和输出波形。
四、 试验结果(要求:作出实验指导书中给出的电路图,并说明该电路的工作原理,给出结果的波形。
)1. 设计反向比例放大电路2.设计同相比例放大电路3.设计减法电路实验二信号的调制与解调电路设计一、实验设备计算机、MULTISIM二、实验目的1.了解mulitisim软件电路设计与仿真的步骤。
2.熟悉和掌握调幅式电路的调制、解调的工作原理。
3.利用AD633AN乘法器验证调幅式电路的调制原理。
三、实验内容1.运用电子技术来设计AM电路,通过实验完成功能验证。
2.学会对电子电路的检测和排除电路故障,进一步熟悉常用电子仪器的使用,提高分析问题和解决问题的能力。
3.总结实验的收获与体会。
四、试验结果(要求:作出实验指导书中给出的电路图,并说明该电路的工作原理,给出结果的波形。
)1.实验电路与波形(1)A M调制电路原理图(2)A M调制与解调原理图(3)利用AD633AN乘法器实现AM调制2、实验电路工作原理AM调制原理:是指对信号进行幅度调制。
该电路图是在原信号上乘以一个高频的余弦信号,在频域上的效果就是将原信号的频谱移动到ω处,以适合信道传输的最佳频率范围。
测控电路实验指导书(DOC)
《测控电路》实验指导书王月娥编写电子工程与自动化学院目录实验一典型放大器的设计 (5)实验二精密检波和相敏检波实验 (8)实验三信号转换电路实验 (12)实验四细分电路实验 (14)《测控电路》课程实验教学大纲一、制定实验教学大纲的依据根据本校《2011级本科指导性培养计划》和《测控电路》课程教学大纲制定。
二、本实验课在专业人才培养中的地位和作用《测控电路》是测控技术与仪器专业专业任选课。
电路实验技能是从事测控行业工作者的一项基本功。
本实验课的教学目的就在于加强学生对《测控电路》课程有关理论知识的掌握以及测控电路实验技能和实验方法的训练。
三、本实验课讲授的基本实验理论1、如何基于集成运算放大器设计模拟运算电路、电桥放大器以及仪用放大电路。
2、幅度调制与解调电路的原理。
3、信号转换电路原理。
4、电阻链细分电路的原理。
四、本实验课学生应达到的能力1、培养学生独立分析电路的能力。
2、培养学生独立设计、搭接电路的动手能力。
3、培养学生使用典型电工电子学仪器的技能。
4、培养学生处理测量数据和撰写实验报告的能力。
五、学时、教学文件学时:本课程总学时为32学时,其中实验为8学时,占总学时的25%。
六、实验考核办法与成绩评定根据学生做实验的情况及实验报告,由指导教师给出成绩,成绩按优、良、中、及格、不及格五档给分。
以15%的比例计入课程总成绩。
七、仪器设备及注意事项注意事项:注意人身安全,保护设备。
八、实验项目的设置及学时分配制定人:审核人:批准人:注意事项为了顺利完成实验任务,确保人身、设备的安全,培养学生严谨、踏实、实事求是的科学作风和爱护国家财产的优秀品质。
要求每个学生在实验时,必须注意如下事项:一、实验前必须充分预习,认真阅读实验指导书,明确实验任务及要求,弄清实验原理,拟定好实验方案,做好分工。
二、使用仪器设备前,必须熟悉其性能,预习操作方法及注意事项,并在使用时严格遵守操作规程。
做到准确操作。
三、实验接线要认真检查,确定无误方可接通电源。
电子称测控电路课程设计指导书
《测控电路》课程设计指导书一、课程设计的目的和意义《测控电路课程设计》是测控技术及仪器专业的一项专业实践环节,是《测控电路》理论课的有益补充。
《测控电路》是一门实践性很强的课程,在理论学习同时,要求学生掌握合理选择和使用常用电子仪器、测绘电路、调试电路、分析电路、测试电路性能和排除简单故障的能力,并通过设计加深对理论内容的理解。
本课程设计主要通过完成设计任务熟悉工业生产和科学研究中常用的测量和控制电路的设计流程和设计方法,使学生学会如何运用所学的单元电路,实现电路的总体思想,围绕具体测控任务设计、调试电路。
还要了解各种电子器件和集成电路的工作原理、构成,最终实现设计要求,并完成相应的电路。
使学生能把理论知识有效地应用于解决实际问题,培养学生的实际动手能力。
二、课程设计的基本要求通过本课程设计使学生熟悉怎样运用电子技术来解决测量与控制中的任务。
主要通过完成设计任务熟悉测控电路的设计流程和设计方法,熟练使用常用电子仪器,熟悉常用电子元器件的选择,掌握电路的实际制作工艺,掌握电路的调试方法,掌握排除简单电路故障的能力。
具体要求:1.课程设计前,指导教师布置课程设计内容及要求;2.题目为设计类型,只给出电路框图及要求,学生自己设计具体电路;3.指导教师安排答疑时间;4.实验每组2人,学生独立完成;5.根据设计的电路,安装、调试电路;6.电路调试成功后,指导教师检查记录;7.记录所用设备和测试数据,分析结果;8.学生在两周内完成设计和调试,写出设计说明书和电路板。
课程设计最后一天由指导教师组织答辩。
三、课程设计的内容及安排1.设计项目名称:有源滤波器电路设计2.课程设计主要内容:1)根据设计要求,设计电路,通过计算和查表,选择合适的运算放大器、电阻、电容等元器件。
2)按照设计的电路,安装电路。
3)对电路进行调试。
4)学习绘制电路原理图软件,画出电路原理图和印刷电路板图。
5)总结、讨论。
6)写出设计说明书3.进度安排第一周完成设计计算和安装电路,第二周完成电路调试,数据记录、印刷电路板图绘制、设计说明书和答辩。
测控电路实验
测控电路课程实验指导书仪器科学与工程系·2010年6月目录测控电路课程实验指导书 (1)1. 测控电路课程实验概述 (2)1.1 测控电路课程实验简介 (2)1.2 课程实验内容概述 (3)2. 实验一有源滤波器的设计和调整 (4)2.1 实验目的 (4)2.2 实验原理 (4)2.3 实验仪器设备列表 (8)2.4 实验操作要求 (9)2.5 实验报告要求 (9)3. 实验二调制信号的整流检波 (10)3.1 实验目的 (10)3.2 实验原理 (10)3.3 实验仪器设备列表 (13)3.4 实验操作要求 (13)3.5 实验报告要求 (13)4. 实验三集成锁相环的频率合成 (14)4.1 实验目的 (14)4.2 实验原理 (14)4.3 实验仪器设备列表 (18)4.4 实验操作要求 (18)4.5 实验报告要求 (19)5. 实验四可编程增益放大器的设计与调整 (20)5.1 实验目的 (20)5.2 实验原理 (20)5.3 实验仪器设备列表 (23)5.4 实验操作要求 (23)5.5 实验报告要求 (23)1.测控电路课程实验概述1.1 测控电路课程实验简介测控系统主要由传感器、测量控制电路(简称测控电路)和执行机构三部分组成。
在测控系统中电路是最灵活的部分,它具有便于放大、便于转换、便于传输、便于适应各种使用要求的特点。
测控系统乃至整个机器和生成系统的性能在很大程度上取决于测控电路。
测控电路主要包括信号放大电路、信号调制解调电路、信号分离电路、信号运算电路、信号转换电路、信号细分与辨向电路、电量测量电路、连续信号控制电路、逻辑与数字控制电路等。
实际上,测控电路是模拟电子技术和数字电子技术的进一步延伸与扩展,主要讨论一些典型常见的电路。
因此学好模电和数电是基础,其中运算放大器是测控电路的一个核心部件。
通过测控电路课程的学习,应当使学生在了解测控电路特点、功用、类型及发展趋势的基础上,掌握测量与控制电路中的基本电路类型,包括放大电路,调制与解调电路,信号分离、运算和转换电路,细分和辨向电路,逻辑控制和连续信号控制电路等,通过对一些典型测控系统工作原理的分析,使学生认识到测控电路在整个测控系统中的重要性。
《测控电路设计》实验指导书
实验三
1、实验目的
仪用放大器的设计
通过实验牢固掌握三运放仪用放大器的构成和工作原理,学习根据设计要求设计并调试三运放 结构仪用放大器,成功设计制作符合设计要求的三运放结构仪用放大器。通过设计制作加深对相关 基础理论知识的理解,为今后实际设计、应用打下坚实的基础。
2、实验内容
设计制作一三运放结构的仪用放大器,要求放大器的差模增益为 100 倍以内可调节,共模抑制 比大于 70dB。
5
实验二
1、实验目的
多谐振荡器功能及指标的测试
实验旨在使学生进一步了解基于电容充放电原理及比较器的多谐振荡器的工作原理及一般构成 原则。通过分析实验电路及实验中的应用,从中学习信号发生器的设计思想及工作原理。
2、实验内容
分析所提供实验电路的工作原理及设计思路,搭建并调试实验电路,测试电路中规定测试点的 波形,验证理论输出波形是否与实际相符;根据电路参数计算输出信号的频率值,测量输出信号的 频率,验证理论值与实测值是否相符。
3、实验原理及方法
实验电路如图 2.1 所示,电路的工作原理为:设初始状态 Vo=“1” ,此时通过 R3 向电容 C1 充 电,当 C1 充电至使 V-的电位与 V+相等时,比较器 LM111 翻转,Vo=“0”=VOL,比较电平随之下 降。而后电容 C1 开始放电,V-的电位逐步下降,当 V-下降至比较电平时,LM111 翻转,Vo=“1” =VOH,这一过程周而复始,Vo 即为方波。方波的频率与时间常数 R3C1,比较器的输出电平及 R1, R2 和 R4 的阻值有关。定量分析要求学生自行完成。
3、实验原理及方法
二阶无限增益多路反馈巴特沃思型有源低通滤波器的电路形式见图 1.1。 主要工作是设计确定元 件参数,并通过调试修正参数值直至滤波器指标达到设计要求。设计方法如下:
测控电路实验指导书
测控电路实验指导书注意事项为了顺利完成实验任务,确保人身、设备的安全,培养学生严谨、踏实、实事求是的科学作风和爱护国家财产的优秀品质。
要求每个学生在实验时,必须注意如下事项:一、实验前必须充分预习,认真阅读实验指导书,明确实验任务及要求,弄清实验原理,拟定好实验方案,做好分工。
二、使用仪器设备前,必须熟悉其性能,预习操作方法及注意事项,并在使用时严格遵守操作规程。
做到准确操作。
三、实验接线要认真检查,确定无误方可接通电源。
初学或没有把握时,应请指导教师审查同意后再接通电源。
使用过程中需要改线时,需先断开电源,才可拆、接线。
四、实验中应注意观察实验现象,认真记录实验结果(数据、波形及其他现象)。
实验记录经指导教师审阅签字后,才可拆除实验线路。
此记录应附在实验报告后,作为原始记录的依据。
五、实验过程中发生任何破坏性异常现象,(例如元器件冒烟、发烫有气味或仪器设备出现异常),应立即切断电源,保护现场,及时报告指导教师,不得自行处理。
等待查明原因、排除故障、教师同意后,才能继续进行实验。
如发生事故,应自觉填写事故报告单,总结经验,吸取教训。
损坏仪器、器材,要服从实验室和指导教师对事故的处理。
六、实验结束后,关掉仪器设备的电源开关,再拉闸,并将工具、导线、仪器整理好,方可离开实验室。
七、遵守实验室纪律,注意保持实验室整洁、安静。
不做与实验内容无关的事。
八、进行指定内容之外的实验,要经过指导教师的同意。
不得乱动其他组的仪器设备、器材和工具。
借用器材如有损坏、丢失,要按实验室规定赔偿。
九、实验后,应按要求认真书写实验报告,并按时交给教师。
十、每次实验结束,学生轮流协助实验室打扫卫生和整理仪器。
以增强参与管理意识。
实验一电桥放大电路一、实验目的1.了解金属箔式应变片的应变效应,电桥工作原理,放大器性能。
2.通过实验,可以理论联系实际,增加学生对传感器的感性认识。
3.学生在实验中,要掌握一些基本传感器的使用方法,深化理论知识。
测控电路实验指导书
实验目录实验一 RC有源滤波器实验 (2)实验二比例求和运算电路实验 (4)实验三积分与微分电路实验 (8)实验四电压比较电路实验 (10)实验五电压/频率转换电路实验 (12)实验六隔离放大电路实验 (14)实验七 PWM调制控制直流电机实验 (16)实验八温度测量实验 (18)实验九电流/电压转换电路实验* (20)*选做实验实验一 RC有源滤波器实验实验目的1.熟悉有源滤波器构成及其特性;2.学会测量有源滤波器幅频特性。
;仪器及设备1.示波器;2.信号发生器。
;预习要求1.预习教材有关滤波器内容;2.分析图一、图二、图三所示电路,写出它们的增益特性表达式;3.计算图一、图二电路的截止频率,图三的中心频率;4.画出三个电路的幅频特性曲线;5.设计报告要求的电路,准备用实验测试验证。
实验内容1.低通滤波器实验电路如图一所示。
图一低通滤波器按表1内容测量并记录填表。
表1i2.高通滤波器实验电路如图二所示。
图二高通滤波器按表2二内容测量并记录填表。
3.实验电路如图三所示。
图三带阻滤波器(1)实测电路中心频率;(2)以实测中心频率为中心,测出电路幅频特性。
实验报告1.整理数据,画出各电路曲线,与理论计算绘制的曲线比较,分析误差原因。
2.如何组成带通滤波器?试设计一中心频率为300Hz,带宽为200Hz的带通滤波器,并搭接电路,测试验证。
实验二比例求和运算电路实验实验目的1.掌握用集成运算放大器组成比例,求和电路的特点及功能;2.学会上述电路的测试和分析方法。
实验仪器1.数字万用表;2.示波器;3.信号发生器。
预习要求1.计算表1.1中地V o和Af。
2.估算表1.3的理论值。
3.估算表1.4、1.5中的理论值。
4.计算表1.6中的V o值5.计算表1.7中的V o值。
实验内容1.电压跟随器图2.1 电压跟随器实验电路如图2.1所示。
按表2.1内容实验并测量记录。
2.反相比例放大器图2.2 反相比例放大器实验电路如图2.2所示。
电路实验指导书(2019.6.10)
电路实验指导书南京工程学院电力工程学院供用电教研室目录第一部分:理论部分 (1)第一章电工测量的基本知识 (1)第一节电工仪表的基本原理与组成 (1)第二节仪表的误差及准确度 (5)第三节电工仪表的标志及技术要求 (10)第四节电工测量的基本知识 (14)第五节测量误差及消除方法 (15)第六节实验数据的处理 (19)第二章磁电系仪表 (21)第一节磁电系测量机构 (21)第二节磁电系电流表 (24)第三节磁电系电压表 (26)第四节欧姆表 (28)第五节万用表 (31)第三章电磁系仪表 (33)第一节电磁系测量机构 (33)第二节电磁系电流表和电压表 (38)第四章电动系仪表 (41)第一节电动系测量机构 (41)第二节功率表 (45)第五章直流单臂电桥 (55)第六章电量与电参数的测量 (58)第一节电压与电流的测量 (58)第二节功率的测量 (61)第三节电阻的测量 (66)第四节电感的测量 (69)第五节电容的测量 (72)第二部分:实验台操作 (75)实验须知 (75)实验一电阻元件的伏安特性及电源的工作状态 (77)实验二叠加定理和替代定理 (82)实验三戴维南定理 (85)实验四受控源特性测试 (88)实验五无源二端网络参数测定 (92)实验六阻抗并联及复联电路、功率因数的提高 (95)实验七互感电路 (100)实验八 RLC串联电路的谐振 (105)实验九三相星形负载和三角形负载 (110)实验十三相电路的功率测量 (114)实验十一 RC串联电路的方波响应 (119)实验十二 RLC串联电路的方波响应 (123)第三部分:上机操作 (126)第一章概述 (126)第二章 Multisim12系统 (129)第三章 Multisim12的基本操作 (141)第一节定制用户界面 (141)第二节元件的操作 (143)第三节元件的操作 (144)第四章 Multisim在电路分析中的应用 (146)第一节电阻元件伏安特性的仿真分析 (146)第二节用DC Sweep分析直接测量电阻元件的伏安特性 (149)第三节受控源的仿真演示 (155)第四节戴维南和诺顿等效电路的仿真分析 (161)第五节电路节点电压的仿真分析 (164)第六节交流电路参数的仿真测定 (166)第七节三相电路的仿真分析 (169)第八节电容特性的仿真测试 (171)第九节电感电压特性的仿真测试 (173)第十节RLC串联电路的谐振 (175)第十一节LC并联电路的谐振 (177)第十二节LC二阶动态变化过程的仿真分析 (178)第一部分:理论部分第一章电工测量的基本知识在电能的生产、传输、分配和使用等各个环节中,都需要通过电工仪表对系统的运行状态(如电能质量、负荷情况等)加以监控,从而保证系统安全而又经济地运行,所以人们常把电工仪表和测量称作电力工业的眼睛和脉搏。
测控电路实验指导书
目录实验一集成运算放大器的基本应用 (1)实验二交流放大器的基本应用 (7)实验三比较器 (11)实验四电桥放大电路 (16)实验五 RC有源滤波器 (22)实验六、锁相环及频率调制与解调电路 (28)实验七、模拟乘法器及调幅与检波电路 (31)实验八半波/全波精密检波整流电路 (34)实验九、相位调制与解调实验 (37)实验十、脉冲宽度调制实验 (41)实验十一压频/频压转换实验 (44)实验十二仪表放大实验 (48)附录一、DRVI使用说明 (50)附录二、电阻色环识别 (52)附录三、实验主板的说明 (53)实验一 集成运算放大器的基本应用一、实验目的:了解集成运算放大器的特性与使用方法;掌握集成运算放大器的基本应用。
二、实验内容:1. 反相放大器反相放大器是最基本的集成运算放大器应用电路。
如图1-1所示:闭环电压增益: 2VF 1A =R R − 输入电阻: Ri=R1 输出电阻: Ro ≈01.1 所需元件与设备:传感器实验主板;放大器OP07(1个);电阻:10K Ω(棕黑黑红)×2,20K Ω(红黑黑红)×1,51K Ω(绿棕黑红)×1;跳线若干;1.2实验步骤:(1) 选择线路板反相放大器部分;(2) 将R=10K Ω电阻的两端用跳线分别接入R_IN ,构成图1-1反相放大器电路; (3) 接通电源,IN 输入直流电压,在DRVI 中观测电压输出值, 验证闭环电压增益(VF A ); 注:用DIVI 观测的电压不要超过5V ,DRVI 的操作见附录一,(4) 改变电压的输入,验证闭环电压增益(VF A );改变R2的值(改为20K 或51K ),重复上述步骤。
图1-1 反相放大器 图1-2 同相放大器2. 同相放大器同相放大器也是最基本的集成运算放大器应用电路。
如图1-2所示:闭环电压增益: A VF =1+ 12R R 输入电阻: R i =r ic ; r ic 为运放本身同相输入端对地的共模输入电阻,一般为108Ω输出电阻: R o ≈02.1 所需元件与设备:传感器实验主板;放大器OP07(1个);电阻:10K Ω(棕黑黑红)×2,20K Ω(红黑黑红)×1,51K Ω(绿棕黑红)×1;跳线若干;2.2实验步骤:(1)选择线路板同相放大器部分;(2)将R=10K Ω电阻的两端用跳线分别接入R_IN ,构成图1-3同相放大器电路;(3)接通电源,Vi 输入直流电压,在DRVI 中观测电压输出值,验证闭环电压增益(A VF ); (4)改变电压的输入,验证闭环电压增益(A VF );(5)改变R 2的值(改为20K 或51K ),重复上述步骤。
实验十三开关式全波相敏检波实验(测控电路实验指导书)
实验十三 开关式全波相敏检波实验一、实验目的1、了解双边带调幅信号的形成及解调原理;2、掌握开关式全波相敏检波电路的构成及工作原理;3、掌握开关式全波相敏检波电路的特性。
二、实验原理调制信号、载波信号、双边带调幅信号分别如图所示,当调制信号0U X >时,双边带调幅波的相位极性与载波的相位极性相同,当调制信号0U X <时,双边带调幅波的相位极性与载波的相位极性相反,调制信号X U 改变符号时,其调幅波信号相位改变0180。
要使原信号得到解调,检波电路就必须具有判别信号相位和选频的能力。
包络检波电路是不能满足这一要求的,必须采用相敏检波电路,相敏检波电路又称同步检波电路 (一)实验电路框图如图13-1所示高频载波信号(正弦波)经移相器进行相位调整,然后经开关式全波相敏整流电路进行全波整流,再经低通滤波器取出低频成分,信号经放大电路放大从而获得解调信号。
低通滤波器放大电路双边带调幅(DSB)信号输入开关式全波整流电路解调输出载波信号输入移相器图13-1 实验电路框图(二)实验电路分析 电路原理图如图13-2所示i U 为高频载波信号输入端,1R ,2R ,1N 构成过零比较器,对高频载波信号整形,1N 输出开关控制信号(方波)如图13-6所示,控制开关场效应管的通断。
s U 为双边带调幅波输入端,3R ,4R ,5R ,2N 构成放大倍数受开关管Q 控制的放大器,当c U 为高电平时,放大器的放大倍数为 -1;当c U 为低电平时,放大器的放大倍数为 +1。
其对s U 双边带调幅波的整流后的信号波形如图13-7所示。
图13-2 全波相敏整流电路图三、实验设备 1、测控电路(二)实验挂箱2、函数信号发生器3、虚拟示波器四、实验内容及步骤 1、把5V ±、12V ±直流电源接入“测控电路二”实验挂箱2、在“1U 幅度调制单元”的“调制信号输入”端及“载波输入”端分别加入调制信号(正弦波),载波信号(正弦波),调制信号为Z 3KH .1,P P 1V -左右的正弦波(把本挂箱的U12单元的电源开关拨到“开”方向,利用“U12信号产生单元”产生此正弦波,U12单元的电位器W1用来调节信号幅度,电位器W2用来调节信号频率);载波信号为Z 20.5KH 左右,P P 4.0V -的正弦波(从实验屏上的函数信号发生器接入)。
测控系统原理与设计实验指导书
实验一温控系统设计实验一、实验要求:利用实验仪上显示电路、键盘或开关电路、A/D、D/A转换电路,模拟空调恒温控制。
可以利用实验仪上的电位器模仿温度变化,制冷和加热可以控制直流电机模仿压缩机或加热器的运行。
要求可以用键盘或开关设定恒温温度,当外界温度超过设定温度1℃时,就要启动制冷压缩机。
当前温度要能够显示,可以用LED显示当前温度。
二、实验目的:了解闭环控制的基本原理;培养综合运用单片机控制的能力和技巧。
四、实验说明ADC0809是8位A/D转换器,其输出数字量的范围是0~255(FFH),这与人对温度的识别习惯不相吻合,所以应考虑将输出值进一步转换到如0~100的温度范围(设温度传感器的量程是0~100℃)。
另外有兴趣的同学可深入考虑如下两点:(1)将当前温度显示用两位数字表示;(2)当前温度与设定温度相差越大,则压缩机的转速越快,这是闭环控制的基本原理。
五、实验步骤:(如源程序、流程图或调试中遇到的问题和解决方法等)六、实验结果和体会:实验二 步进电机控制系统设计实验一、实验要求:由P1口控制步进电机,编写程序输出脉冲序列控制步进电机实现正转、反转、加速和减速等功能。
二、实验目的:了解步进电机控制的基本原理;掌握控制步进电机转动的编程方法;了解脉宽调制(PWM )的原理。
四、实验说明步进电机驱动原理是通过对每组线圈中的电流的顺序切换来使电机作步进式旋转。
切换是通过单片机输出脉冲信号来实现的。
所以调节脉冲信号的频率就可以改变步进电机的转速,改变各相脉冲的先后顺序,就可以改变电机的转向。
步进电机的转速应由慢到快逐步加速。
电机驱动方式可以采用双四拍(AB DA CD BC AB →→→→)方式,也可以采用单四拍(A D C B A →→→→)方式。
为了旋转平稳,还可以采用单、双八拍方式(A DA D CD C BC B AB A →→→→→→→→)。
各种工作方式的时序图如下:(高电平有效): 上图中示意的脉冲信号是高电平有效,但实际控制时公共端是接在VCC 上,所以实际控制脉冲是低电平有效。
07电信测控电路实验指导书_实验4
实验四 综合实验一、实验目的1、熟悉仪表放大器和集成电压-频率变换器件的工作原理。
2、能够根据需要设计测量放大电路和电压-频率变换电路。
3、利用实验数据,验证所学理论知识。
二、使用仪器与器材双线示波器、信号源、数字万用表、直流稳压源、实验电路板、元器件若干。
三、实验任务1.电压-频率变换电路实验电路如下图所示。
该图采用高性价比的KA331作为电压-频率变换的核心芯片,其实验图如图3。
电容全部都为0.01uF ,精密可调电阻R p 为10k ,其它参数如图所示。
图3 KA331组成的电压-频率变换电路按上原理图接好线后调节精密可调电阻,将输入直流电压5v转换为5kHz的方波信号输出,然后按下表调整输入电压,测量其输出方波频率,并画出电压-频率曲线。
2.测量放大电路实验中采用高性能、低价格专用仪表放大芯片AD623作为测量放大器,放大倍数为20倍,自行查资料如何使用AD623芯片并画出电路原理图。
四、实验内容1、将自己学号最后两位数值乘以K作为信号源输出直流电压值(mV)。
号数为01~09的K取50,其他的K取10。
比如学号为0605020101,那么换算的放大器输入直流电压值为50mV,学号为0605020115,那么换算的放大器输入直流电压值为150mV。
当换算的直流电压值超过250mV,则将其值减半,比如学号为0605020109,那么换算的放大器输入直流电压值为225mV。
其它的依此类推。
2、在测量放大电路中调节精密可调电阻Rp ,使得放大倍数为20。
3、在电压-频率变换电路中调节精密可调电阻,测试在不同输入直流电压条件下的频率输出。
4、将自己学号最后两位数按要求处理后测量其放大器输出和V-F变换后的输出。
五、实验报告1、画出符合自己要求的测量放大电路原理图。
2、画出ka331内部结构框图并简要说明V-F变换原理并写出电压-频率变换公式。
3、。
将V-F变换表格式测试数据进行处理,以频率为横坐标,输出电压为纵坐标,绘出频率——电压关系曲线,并对实验数据进行简要分析。
实验十 开关电容滤波器实验(测控电路实验指导书)
实验十 开关电容滤波器实验一、实验目的1、熟悉及掌握集成开关电容滤波器的构成原理及应用2、掌握滤波器的滤波特性 二、实验原理及电路 1、集成滤波器MF10芯片简介集成滤波器MF10芯片内部框图及其引脚图如图10-1所示开关电容集成滤波器MF10是一种通用型开关电容滤波器集成电路,依外部接法不同,可实现低通、高通、带通、带阻和全通等滤波特性。
开关电容集成滤波器无需外接决定滤波频率的电阻和电容,其滤波频率仅由输入时钟clk f 决定,通常时钟频率clk f 应高于信号频率的50倍或100倍。
其内部集成了两组MF5,两个MF5既可分别构成两个独立的二阶开关电容滤波器,又可级联成四阶开关电容滤波器。
其内部框图及引脚图如图10-1所示,第4(17)脚为内部运放反相输入端A INV (B INV );第5(16)脚为求和输入端SIA (SIB );第1(20)脚为低通输出端LPA (LPB );第2(19)脚为带通输出端BPA (BPB );第3(18)脚为带阻/全通/高通输出端)HPB /AP /N (HPA /AP /N ,第10(11)脚为时钟输入端)CLKB (CLKA ;图10-1MF10内部框图及引脚图第12脚用于设定时钟频率c l k f 与滤波器的频率0f 的比值;当第12脚接高电平时,500=f f clk ,则500clk f f =;接地时,1000=f fclk ,则1000clk f f =;只要在时钟输入端)CL K B (CL K A 控制输入的时钟频率,就可以改变滤波频率,这样可以实现滤波频率的数字控制。
滤波器的Q 值通过外接电阻设定。
2、电路说明实验电路原理图如图10-2所示。
短接1J 的1-2,2J 的1-2,3J 的2-3,4J 的1-2时,则构成二阶低通滤波器; 短接1J 的1-2,2J 的1-2,3J 的2-3,4J 的4-5时,则构成二阶高通滤波器; 短接1J 的1-2,2J 的1-2,3J 的2-3,4J 的2-3时,则构成二阶带通滤波器; 短接1J 的2-3,2J 的1-2,3J 的1-2,4J 的4-5时,则构成二阶带阻滤波器; 短接1J图10-2 开关电容滤波器实验电路图三、实验设备1、测控电路(二)实验挂箱2、函数信号发生器3、虚拟示波器四、实验内容及步骤 1、测控电路(二)实验挂箱接入5V ±直流电源;2、时钟信号的观察把“U10 开关电容滤波器”单元的“时钟信号”端接入示波器,观察时钟信号的波形; 3、调节信号发生器,使之输出正弦信号,接入输入端,输出端接示波器,按照前面“电路说明”部分,通过切换短路帽分别接成低通、高通、带通、带阻、全通滤波器,用虚拟示波器同时观察输入信号与输出信号,改变输入信号的频率,记录输出信号的幅度及相位随输入信号频率变化的情况。
测控电路试验指导书
ro=0
图 2-2 同相比例放大器
带宽
fBW=∞
图 2-3 电压跟随器
对理想运放,该电路的输出电压与输入电压之间的关系为:U0= Ui, 图中 R1= RF,用以减少漂移和起保护作用。一般一般 RF 取 10KΩ,RF 太小起不到保护作 用,太大则影响到跟随性。
2.高输入阻抗放大电路:
1) 同相交流放大电路 电路如图 2-4 所示。电容 C2 将运算放大器两输入端之间的交流电压作用于电阻 R1 的两端。
2)同相比例放大器 电路如图 2-2 所示。 对理想运放,该电路的输出电压与输入电压之间的关系为:
(1
RF R1
)U i
,其中 R2
当 R1 时,U0 Ui ,即得到电压跟随器。
3)电压跟随器 电路如图 2-3 所示。
R1
//
RF
.
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,通系电1,力过根保管据护线生高0不产中仅工资2艺料22高试2可中卷以资配解料置决试技吊卷术顶要是层求指配,机置对组不电在规气进范设行高备继中进电资行保料空护试载高卷与中问带资题负料2荷试2,下卷而高总且中体可资配保料置障试时2卷,32调需3各控要类试在管验最路;大习对限题设度到备内位进来。行确在调保管整机路使组敷其高设在中过正资程常料1工试中况卷,下安要与全加过,强度并看工且25作尽52下可22都能护可地1关以缩于正小管常故路工障高作高中;中资对资料于料试继试卷电卷连保破接护坏管进范口行围处整,理核或高对者中定对资值某料,些试审异卷核常弯与高扁校中度对资固图料定纸试盒,卷位编工置写况.复进保杂行护设自层备动防与处腐装理跨置,接高尤地中其线资要弯料避曲试免半卷错径调误标试高方中等案资,,料要编试求5写、卷技重电保术要气护交设设装底备备置。4高调、动管中试电作线资高气,敷料中课并设3试资件且、技卷料中拒管术试试调绝路中验卷试动敷包方技作设含案术,技线以来术槽及避、系免管统不架启必等动要多方高项案中方;资式对料,整试为套卷解启突决动然高过停中程机语中。文高因电中此气资,课料电件试力中卷高管电中壁气资薄设料、备试接进卷口行保不调护严试装等工置问作调题并试,且技合进术理行,利过要用关求管运电线行力敷高保设中护技资装术料置。试做线卷到缆技准敷术确设指灵原导活则。。:对对在于于分调差线试动盒过保处程护,中装当高置不中高同资中电料资压试料回卷试路技卷交术调叉问试时题技,,术应作是采为指用调发金试电属人机隔员一板,变进需压行要器隔在组开事在处前发理掌生;握内同图部一纸故线资障槽料时内、,设需强备要电制进回造行路厂外须家部同出电时具源切高高断中中习资资题料料电试试源卷卷,试切线验除缆报从敷告而设与采完相用毕关高,技中要术资进资料行料试检,卷查并主和且要检了保测解护处现装理场置。设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。
[测控电路]实验指导书要点
[测控电路]实验指导书要点测控电路实验指导书适⽤专业:测控技术与仪器重庆科技学院2014年5⽉前⾔⼀、实验⽬的:测控电路是⼀门⼯程技术基础性质的课程,因此实验⽅法的学习是本门课教学过程中的⼀个必不可少的环节。
其⽬的为:(⼀)依据理论课的内容对重要的原理加以验证,巩固和加深所学的理论知识,使学⽣更深⼊,形象地理解掌握所学知识。
(⼆)熟悉典型测控电路的特性。
(三)熟悉电⼦线路的调试技术。
(四)学会处理实验数据,分析实验结果,编写实验报告;培养严谨、实事求是的科学作风,并从实验结果中分析出正确结论。
(五)学会查找实验故障,并排除故障。
(六)培养科学的⼯作态度,即认真地按要求完成操作。
做到细致、周密,并勤于动⼿,善于思考。
⼆、实验要求:(⼀)进⼊实验室以前,必须复习与此次实验的有关理论知识。
了解本次实验的实验⽬的、原理、内容、仪器及注意事项等,并完成理论分析与计算,并做好预习报告。
(⼆)进⼊实验后,⾸先认真检查仪器、设备是否齐全、完好。
(三)实验中遇有异常⽓味和危险现象时,应⽴即切断电源并通知指导教师,只有在找出故障后⽅可继续实验。
实验室规则1 进⼊实验室后,按预先编号⼩组进⼊相应实验台,⾃觉遵守纪律,做实验时不得⼤声喧哗和打闹,不准做其他有碍实验的活动。
进⾏实验时,如违反实验室各项规定,指导教师有权停⽌实验。
2 实验时⼀定要亲⾃动⼿,独⽴操作,对实验数据与波形要认真、实事求是地做以记录,善始善终。
对⽆故缺课者原则上不予补做,并以实验不及格处理。
3 测量数据和使⽤仪器时应注意设备及⼈⾝安全,要特别⼩⼼,防⽌触电故事的发⽣。
4 要以主⼈翁的态度爱护实验设备、仪器、仪表,按操作规程使⽤,不得⽆⽬的乱旋乱开,不得乱动与本次实验⽆关的仪器、设备。
对违章使⽤造成仪器、仪表损坏者,视情节轻重按学校的有关规定严肃处理。
⽬录实验⼀:典型运算放⼤器电路特性实验 (4)实验⼆热电偶测温及三运放电路特性实验 (6)实验三相敏检波电路实验 (8)实验四:PWM及BUCK电路特性实验特性实验 (14)实验五:有源滤波器设计 (16)实验⼀:典型运算放⼤器电路特性实验实验类型:验证实验要求:必修⼀、实验⽬的1.熟悉和掌握同相、反相及差分放⼤器电路的⼯作原理。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
目录第一次实验实验二信号放大电路实验 (1)第二次实验实验六幅度调制及解调实验 (6)实验七移相电桥实验 (19)第三次实验实验八脉宽调制电路实验 (20)实验十一开关式相乘调制及解调实验 (12)第四次实验实验十二精密全波整流及检波实验 (14)实验十三开关式全波相敏检波实验 (16)第五次实验实验十四锁相环单元实验 (18)实验十五分频器单元实验 (34)实验二 信号放大电路实验一、实验目的1.研究由集成运算放大器组成的基本放大电路的功能。
2.了解运算放大器在实际应用时应考虑的一些问题。
二、实验原理集成运算放大器是一种具有电压放大倍数高的直接耦合多级放大电路。
当外部接入不同的线性或非线性元器件组成输入和负反馈电路时,可以灵活地实现各种特定的函数关系。
在线性应用方面,可以组成反相比例放大器,同相比例放大器,电压跟随器,同相交流放大器,自举组合电路,双运放高共模抑制比放大电路,三运放高共模抑制比放大电路等。
理想运算放大器的特性:在大多数情况下,将运放视为理想运放,就是将运放的各项技术指标理想化,满足下列条件(如表2-1所示)的运算放大器称为理想运放。
失调与漂移均为零等。
理想运放在线性应用时的两个重要特性:(1)输出电压U O 与输入电压之间满足关系式:U 0=A ud (U +-U -),而U 0为有限值,因此,(U +-U -)=0,即U +=U -,称为“虚短”。
(2)由于r i =∞,故流进运放两个输入端的电流可视为零,即称为“虚断”。
这说明运放对其前级吸取电流极小。
以上两个特性是分析理想运放应用电路的基本原则,可简化运放电路的计算。
1.基本放大电路: 1)反向比例放大器电路如图2-1所示。
对理想运放,该电路的输出电压与输入电压之间的关系为:i 1F O U R R U -=,为了减少输入级偏置电流引起的运算误差,在同相输入端应接入平衡电阻R 2=R 1∥R F图2-1 反向比例放大器 图2-2 同相比例放大器2)同相比例放大器电路如图2-2所示。
对理想运放,该电路的输出电压与输入电压之间的关系为:i 1FO )U R R 1(U +=,其中R 2= R 1∥R F 。
当R 1→∞时,U 0= U i ,即得到如图2-3所示的电压跟随器。
3)电压跟随器电路如图2-3所示。
对理想运放,该电路的输出电压与输入电压之间的关系为:U0= Ui ,图中R1= RF ,用以减少漂移和起保护 作用。
一般R F 取10K Ω,R F 太小起不到保护作用,太大则影响到跟随性。
图2-3电压跟随器2.高输入阻抗放大电路: 1) 同相交流放大电路电路如图2-4所示。
电容C 2将运算放大器两输入端之间的交流电压作用于电阻R 1的两端。
对理想运放,两输入端是虚短的(近似等电位),即R 1的两端等电位,没有信号电流通过R 1,因此,对交流而言,R 1可以看作无穷大。
图2-4 同相交流放大电路 图2-5 自举组合电路该电路的输出电压与输入电压之间的关系为:i 223O )U WC /1R R 1(U ++=,为了减少失调电压,应满足R 3= R 1+ R 2输入阻抗:1123i in jwC 1)KR //()R (R 1KZ Z +++=其中:K 为运算放大器的开环放大倍数; Z i 为运算放大器的开环输入阻抗。
2)自举组合电路电路如图2-5所示。
这种利用反馈电路来减少向输入回路索取电流,从而提高输入阻抗的电路称为自举电路。
对理想运放,该电路的输出电压与输入电压之间的关系为:i 25O U R R U -=;O 64O2U R R U -= 输入电阻:2121i R R R R R -=当R 1= R 2,R 5= 2R 2,R 4= R 6时,则11i2i O22I R U R U U I ==-=,即I 1将全部由I 2提供,输入回路无电流,输入阻抗为无穷大。
3.高共模抑制比放大电路1)双运放高共模抑制比放大电路电路如图2-6所示。
对理想运放,该电路的输出电压与输入电压之间的关系为:i256i14612O U R R U R R R R U -=,其中R 3=R 1∥R 2,R 7=R 4∥R 5∥R 6。
当5412R R R R =,U i1=U i2时,输出电压为零,共模信号得到了抑制。
图2-6 双运放高共模抑制比放大电路2)三运放高共模抑制比放大电路电路如图2-7所示。
三运放高共模抑制比放大电路又称测量放大器、仪表放大器等。
它的输入阻抗高,易于与各种信号源相匹配。
它的输入失调电压和输入失调电流及输入偏置电流小,并且漂移小,稳定性好。
其共模抑制比大,能适于在大的共模电压的背景下对微小差值信号进行放大。
图中改变电位器R F1的阻值,则可以改变对差模信号的放大倍数;R 5,R F2,R 6用于调零,当 R 1=R 2, R 3=R 4,R 7=R 8时则CMRRic 37id F1137O U R R U )R R 21(R R U K ++-=ic C id U GU K +-=其中,G 是整个放大器对差模信号的增益: C K 是整个放大器对共模信号的增益: K CMRR 是运算放大器N 3的共模抑制比整个放大器的共模抑制比:CM RR F11CCM R K R R 21K G K ∙+==)(图2-7 三运放高共模抑制比放大电路37F11R R )R R 2(1G +=CM RR37C 1R R K K ∙=三、实验设备1.测控电路实验箱2.示波器3.函数信号发生器4.直流电压表四、实验内容及步骤实验前熟悉相应的实验单元,认清实验单元的信号输入及输出端口,打开实验箱上相应单元的电源。
1.反向比例放大器(1)在实验挂箱上找到“U1通用的单元电路”,打开本单元电源开关,按图2-1搭好电路,输入端U i接地,用万用表测量输出端U O,调节本单元的电位器,使输出为零。
(2)调节信号发生器,使之输出f=1KHz的正弦信号,接入本单元的输入端,实验时要注意输入的信号幅度以确保集成运放工作在线性区,用示波器观测U i及输出电压U O的相位关系,2.同相比例放大器(1)在实验挂箱上找到“U1通用的单元电路”,打开本单元电源开关,按图2-2搭好电路,信号输入端接地,进行调零。
3.电压跟随器(1)在实验挂箱上找到“U1通用的单元电路”,打开本单元电源开关,按图2-3搭好电路,信号输入端接地,进行调零。
4.同相交流放大电路(1)在实验箱上找到“U13同相交流放大电路”单元。
(2)实验步骤同内容1,将结果记入表下表中。
5.自举组合电路1)在实验挂箱上找到“U12自举组合电路”的实验单元,信号输入端接地,进行调零。
2)实验步骤同内容1,将结果记入表下表中。
6.双运放高共模抑制比放大电路1)在实验挂箱上找到U9的实验单元,信号输入端接地,进行调零。
2)在U i1及U i2的两端输入正弦波信号,测量相应的U0,并用示波器观测U0与U i的幅值7.三运放高共模抑制比放大电路1)在实验挂箱上找到U14的实验单元,两信号输入端均接地,调节本单元的电位器W2,使输出端U0电压为零。
2)在U i1及U i2的两端输入正弦波信号,并用示波器观测U0与U i的幅值及相位关系,同五、思考题1.自举组合电路一般应用于那种场合?2.对测量放大电路的基本要求是什么?3.按照图2-7给定的电路参数,假设已调零,试计算当R D1=5KΩ时,放大器的差模增益?六、实验报告要求1.整理以上实验数据,画出波形图(注意波形间的相位关系)。
2.将理论值计算结果和实测数据相比较分析产生误差的原因。
3.分析和讨论实验中出现的现象和问题。
实验六幅度调制及解调实验一、实验目的1.理解幅度调制与检波的原理。
2.掌握用集成乘法器构成调幅与检波电路的方法。
二、实验原理实验电路图如图6-2所示。
调幅就是用低频调制信号去控制高频载波信号的幅度,使高频载波信号的振幅按调制信号变化。
而检波则是从调幅波中取出低频信号。
振幅调制信号按其不同频谱结构分为普通调幅(AM)信号,抑制载波的双边带调制(DSB)信号,单边带调制(SSB)信号。
此实验主要涉及普通调幅(AM)及检波原理。
三、实验设备1.测控电路实验箱2.函数信号发生器3.示波器四、实验内容及步骤1.打开实验箱中U5,U6单元的电源开关。
2.调幅波的观察(1)把“U15信号产生单元”短路帽JP1,JP2拨到“VCC”方向,调节此单元的电位器(电位器RP2调节信号幅度,电位器RP1调节信号频率),使之输出频率为1.3KHz、幅值为1Vp-p 的正弦波信号,接入“U5调幅单元”的调制波输入端。
(2)调节实验箱低的函数信号发生器,使之输出频率为100KHz、幅值为4.0Vp-p的正弦波信号,接入“U5调幅单元”的载波输入端。
图6-1 普通调幅(AM)波波形(3)“U5调幅单元”的输出端接入示波器CH1,调节“U5调幅单元”的电位器W,在示波器上观测到如图6-1所示的普通调幅(AM)波。
3.解调波的观察(1)在保持调幅波的基础上,将“U5调幅单元”的输出端接入“U6解调单元”的调幅波输入端,把输入“U5调幅单元”的载波信号接入“U6解调单元”载波输入端。
(2)“U6解调单元”的输出端接入示波器的CH2,调节“U6解调单元”的电位器W1,观测到解调信号。
五、实验注意事项为了得到更好的实验效果,实验时,外加信号的幅度不宜过大,请按照“实验内容及步骤”说明部分做实验。
六、思考题集成乘法器调幅及解调电路有何特点?试简述它们的工作原理。
七、实验报告要求1.根据观察结果绘制相应的波形图,并作详细分析。
2.其它体会与意见。
图6-2 幅度调制与解调单元实验七 移相电桥实验一、实验目的1.掌握移相电桥的工作原理和应用。
2.熟悉移相电桥单元的使用方法。
二、实验原理实验电路图如图7-1所示。
令U i 输入端的正弦信号为∙i U =θ∠m U ,则∙O U =C)R 2arctg (U W m ϖθ-∠,其中ω为信号的角频率,R W 为电位器W 的有效电阻值。
因此当改变电位器的阻值时,∙o U 将相对于∙i U 可以移相0º~180º,移相过程中,幅值U m 不变。
图7-1 移相电桥实验电路图三、实验设备1.测控电路实验箱2.函数信号发生器 3.示波器四、实验内容及步骤1.打开直流稳压电源±12V 电源开关 2.调节信号发生器,使之输出f i =40KHz ,4.0V P-P 左右的正弦信号,接入“U18移相电桥单元”的输入端U i 。
3.本单元的输入端U i 和输出端Uo 分别接入示波器的CH1和CH2,调节电位器W ,观测“Uo ”端波形的移相情况。
六、实验报告要求1.整理实验数据,记录相应的波形。