人教版高中数学必修二第三章 直线与方程全章教案

合集下载

高中数学必修二《直线与方程》教案设计

高中数学必修二《直线与方程》教案设计

高中数学必修二《直线与方程》教案设计一、教学目标1.知识目标:o学生能够掌握直线的点斜式、两点式和一般式方程的表达形式及其相互转换。

o学生能够理解直线方程中斜率、截距的概念,并能根据给定条件求出直线方程。

o学生能够运用直线方程解决简单的几何问题,如求两直线的交点、判断两直线是否平行或垂直。

2.能力目标:o培养学生的逻辑思维能力和抽象思维能力,通过直线方程的学习,提高数学建模能力。

o提高学生的运算能力,能够熟练进行直线方程的推导和计算。

o增强学生的问题解决能力,能够运用所学知识解决实际问题。

3.情感态度价值观目标:o培养学生严谨的数学学习态度,注重逻辑推理和证明过程。

o激发学生的学习兴趣,鼓励学生积极探索数学奥秘,培养数学学习的自信心。

o培养学生的合作精神,通过小组讨论和合作学习,提高团队协作能力。

二、教学内容-重点:直线的点斜式、两点式和一般式方程的表达及相互转换;斜率、截距的概念及应用。

-难点:直线方程的应用,如求两直线的交点、判断两直线的位置关系。

三、教学方法-讲授法:用于直线方程的基本概念和理论的讲解。

-讨论法:通过小组讨论,加深学生对直线方程的理解和应用。

-案例分析法:通过具体案例分析,提高学生解决实际问题的能力。

-多媒体教学法:利用多媒体资源,如、动画等,直观展示直线方程的图形和推导过程。

四、教学资源-教材:《高中数学必修二》-教具:黑板、粉笔、直尺、圆规-多媒体资源:课件、直线方程推导动画、几何画板软件-实验器材:无需特定实验器材五、教学过程六、课堂管理1.小组讨论:每组4-5人,确保每组成员水平均衡,指定小组长负责协调讨论和记录。

2.维持纪律:明确课堂规则,如举手发言、不打断他人讲话等,对违规行为及时提醒和处理。

3.激励策略:对积极参与讨论、表现突出的学生给予表扬和奖励,如加分、小礼品等。

七、评价与反馈1.课堂小测验:每节课结束前进行小测验,检查学生对本节课内容的掌握情况。

2.课后作业:布置适量的课后作业,巩固所学知识,要求学生按时完成并提交。

高一数学必修二第三章直线与方程教案

高一数学必修二第三章直线与方程教案

高一数学必修二第三章直线与方程教案第三章直线与方程(1)直线的倾斜角定义:_轴正向与直线向上方向之间所成的角叫直线的倾斜角。

特别地,当直线与_轴平行或重合时,我们规定它的倾斜角为0度。

因此,倾斜角的取值范围是080(2)直线的斜率定义:倾斜角不是90的直线,它的倾斜角的正切叫做这条直线的斜率。

直线的斜率常用表示。

即。

斜率反映直线与轴的倾斜程度。

当直线l与_轴平行或重合时,=0,k=tan0=0;当直线l与_轴垂直时,=90,k不存在.当时,;当时,;当时,不存在。

注意:一条直线必有一个确定的倾斜角,但不一定有斜率,当时,;当时,;当时,不存在,当时即:斜率的取值范围为例1、给出下列命题:若直线倾斜角为,则直线斜率为;若直线倾斜角为,则直线的倾斜角为;直线的倾斜角越大,它的斜率越大;直线的斜率越大,其倾斜角越大;直线的倾斜角的正切值叫做直线的斜率。

其中正确命题的序号为例2、已知直线的倾斜角为,且,求直线的斜率过两点的直线的斜率公式:(P(_,y),P2(_2,y2),__2)注意下面四点:(1)当时,公式右边无意义,直线的斜率不存在,倾斜角为90;(2)k与P1、P2的顺序无关;(3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得;(4)求直线的倾斜角可由直线上两点的坐标先求斜率得到。

例3、已知点,求直线的斜率并判断倾斜角的范围。

例4、(三点共线问题)已知三点,证明这三点在同一条直线上例5、(最值问题)已知实数,满足,当时,求的最大值和最小值(3)直线方程点斜式:直线斜率k,且过点注意:当直线的斜率为0时,k=0,直线的方程是y=y。

当直线的斜率为90时,直线的斜率不存在,它的方程不能用点斜式表示但因l上每一点的横坐标都等于_,所以它的方程是_=_。

斜截式:,直线斜率为k,直线在y轴上的截距为b 两点式:直线两点,截矩式:其中直线与轴交于点,与轴交于点,即与轴、轴的截距分别为。

例6、根据条件写出下列各题中的直线的方程和值经过点,倾斜角2.经过点,且与轴垂直3.求倾斜角是直线的倾斜角的,且在轴上的截距为的直线的方程。

人教版高中必修2第三章直线与方程课程设计

人教版高中必修2第三章直线与方程课程设计

人教版高中必修2第三章直线与方程课程设计一、课程背景直线与方程是高中数学中重要的一部分,是建立高中数学基础的核心概念之一。

本章节的学习将为学生日后的学习打下深厚的基础,并在其它领域如物理和工程学中提供必不可少的应用。

二、学习目标1.学会描述直线所用的各种方法,并能尝试解决各种相关问题。

2.理解并掌握直线的斜率和截距的概念。

3.熟悉各种直线的性质及其方程的不同形式。

4.能运用直线的相关概念和应用来解决复杂的问题。

三、教学内容和步骤1. 直线的表示方法教学目标学生能够理解直线的各种描述方式,并能用这些方式描述一条直线。

教学步骤1.引入直线的概念及其定义。

2.以图形和数学表示的方式教授直线的描述方法。

3.给予学生练习并解释它们的应用场景。

教学方法1.讲解法,结合实例让学生理解各种描述方式。

2.实验演示和练习,让学生动手的体会直线的不同描述方法。

2. 直线的斜率和截距教学目标1.学生能够掌握直线的斜率和截距的概念。

2.能用斜率和截距确定直线的方程。

教学步骤1.介绍斜率和截距的概念及定义。

2.通过实例和图像说明斜率和截距的作用。

3.在实例和图片中演示如何用斜率和截距确定直线的方程。

4.给予学生练习并运用知识解决相关问题。

教学方法1.讲解法,结合实例和图像让学生理解概念。

2.练习法,让学生动手计算和确定方程。

3. 直线的不同形式的方程教学目标学生能够熟悉各种类型的直线方程形式,并能在不同的应用场景中灵活转换。

教学步骤1.介绍各种类型的直线方程。

2.演示如何将不同类型的方程转换为标准直线方程。

3.给予学生练习,让他们在不同的情况中灵活运用。

教学方法1.讲解法,结合实际问题让学生理解不同类型的方程。

2.计算和转换法,让学生灵活认识转换不同类型的方程。

4. 直线的性质和应用教学目标1.学生能够理解直线的各种性质。

2.能够解决与直线有关的问题。

教学步骤1.介绍与直线相关的其他数学和物理理论。

2.演示如何将这些理论与直线相结合以解决相关问题。

人教版高中数学必修2第三章直线与方程-《3.3.1两条直线的交点坐标》教案_001

人教版高中数学必修2第三章直线与方程-《3.3.1两条直线的交点坐标》教案_001

3.3.1 两条直线的交点坐标教学目的:使学生了解两条直线交点坐标的求法,会联立两条直线所表示的方程成方 程组求交点坐标。

教学重点:两直线交点坐标的求法。

教学难点:两直线交点坐标的求法。

教学过程一、复习提问平面内两条直线有什么位置关系?空间里呢?二、新课已知两条直线l 1:A 1x +B 1y +C 1=0l 2:A 2x +B 2y +C 2=0如何求它们的交点坐标呢?一般地将它们联立成方程组,若方程组有唯一的解,则两条直线相交,此解就是 交点的坐标;若方程组无解,则两条直线无公共点,此时两直线平行。

例1、求下列两条直线的交点坐标:l 1:3x +4y -2=0l 2:2x +y +2=0解:解方程组:⎩⎨⎧=++=-+0220243y x y x ,解得:⎩⎨⎧=-=22y x 所以两条直线的交点是M (-2,2)。

探究:当λ变化时,方程3x +4y -2+λ(2x +y +2)=0表示什么图形?图形有何特点?例2、判断下列各对直线的位置关系,如果相交,求出交点坐标:(1)l 1:x -y =0, l 2:3x +3y -10=0(2)l 1:3x -y +4=0, l 2:6x -2y =0(3)l 1:3x +4y -5=0, l 2:6x +8y -10=0解:(1)解方程组:⎩⎨⎧=-+=-010330y x y x ,解得:⎪⎪⎩⎪⎪⎨⎧==3535y x 所以,l 1,l 2相交,交点是M (35,35) (2)解方程组:⎩⎨⎧=-=+-026043y x y x ,①×2-② 得:9=0,矛盾!方程组无解,所以两直线无交点,l 1∥l 2(3)解方程组::⎩⎨⎧=-+=-+010860543y x y x ,①×2得:6x +8y -10=0,两个方程可以化为同一个方程,即它们表示同一条直线,l 1,l 2重合。

新课标高中数学人教A版必修2第三章直线与方程优秀教案

新课标高中数学人教A版必修2第三章直线与方程优秀教案

备课资料已知直线的倾斜角的取值范围,利用正切函数的性质,讨论直线斜率及其绝对值的变化情况:当0°≤α<90°时,作出y=tanα在[0°,90°)区间内的函数图象;由图象观察可知:当α∈[0°,90°),y=tanα>0,并且随着α的增大,y不断增大,|y|也不断增大.所以,当α∈[0°,90°)时,随着倾斜角α的不断增大,直线斜率不断增大,直线斜率的绝对值也不断增大.当90°<α<180°时,作出y=tanα在(90°,180°)区间内的函数图象;由图象观察可知:当α∈(90°,180°),y=tanα<0,并且随着α的增大,y=tanα不断增大,|y|不断减小.所以,当α∈(90°,180°)时,随着倾斜角α的不断增大,直线的斜率不断增大,但直线斜率的绝对值不断减小.第三章直线与方程本章教材分析直线与方程是平面解析几何初步的第一章,用坐标法研究平面上最简单的图形——直线.本章首先在平面直角坐标系中,介绍直线的倾斜角、斜率等概念;然后建立直线的方程:点斜式、斜截式、两点式、截距式等;通过直线的方程,研究直线间的位置关系:平行和垂直,以及两条直线的交点坐标、点到直线的距离公式等.解析几何研究问题的主要方法是坐标法,它是解析几何中最基本的研究方法.坐标法的基本特点是,首先用代数语言(坐标及其方程)描述几何元素及其关系,将几何问题代数化;解决代数问题,得到结果;分析代数结果的几何含义,最终解决几何问题.本章自始至终贯穿数形结合的思想.在图形的研究过程中,注意代数方法的使用;在代数方法的使用过程中,加强与图形的联系.直线是最基本、最简单的几何图形,它既能为进一步学习做好知识上的必要准备,又能为今后灵活地运用解析几何的基本思想和方法打好坚实的基础.只有学好本章才能为第四章的圆与方程做好准备和铺垫.教学中一定要注重由浅及深的学习规律,多采用变式教学,同时渗透常用的数学思想方法(数形结合、分类讨论、类比、推广、特殊化、化归等),体现由特殊到一般的研究方法,化难为易、化抽象为具体,深入浅出的引导学生自己发现规律,大胆质疑、积极思考、合作探究、激发他们学习的兴趣,教师合理诱导并且及时鼓励,使同学们能愉快的、轻松的学习,并且提高他们应用所学知识解决问题(尤其是实际问题)的能力,真正体现出“在用中学,在学中用,为用而学,学而能用”,这一点也正符合新课标的要求和精神.3.1 直线的倾斜角与斜率 3.1.1 倾斜角与斜率整体设计教学分析直线是最基本、最简单的几何图形,它既能为进一步学习作好知识上的必要准备,又能为今后灵活地运用解析几何的基本思想和方法打好坚实的基础.事实上,只有透彻理解并熟练掌握直线的倾斜角和斜率这两个基本概念,学生才能对直线及其位置进行定量的研究.对直线的倾斜角和斜率,必须要求学生理解它们的准确涵义和作用,掌握它们的导出,并在运用上形成相应的技能和熟练的技巧.本小节从一个具体的一次函数与它的图象入手,引入直线的倾斜角概念,注重了由浅及深的学习规律,并体现了由特殊到一般的研究方法.引导学生认识到之所以引入直线在平面直角坐标系中的倾斜角和斜率概念,是进一步研究直线方程的需要. 三维目标1.理解直线的倾斜角和斜率的定义,充分利用斜率和倾斜角是从数与形两方面刻划直线相对于x 轴倾斜程度的两个量这一事实,在教学中培养学生数形结合的数学思想.2.掌握经过两点P 1(x 1,y 1)和P 2(x 2,y 2)的直线的斜率公式:k=1212x x y y --(x 1≠x 2),培养学生树立辩证统一的观点,培养学生形成严谨的科学态度和求简的数学精神.3.培养和提高学生联系、对应、转化等辩证思维能力,认识事物之间的相互联系,培养相互合作意识,培养学生思维的严谨性,注意学生语言表述能力的训练. 重点难点教学重点:直线的倾斜角和斜率概念以及过两点的直线的斜率公式. 教学难点:斜率公式的推导. 课时安排 1课时教学过程导入新课思路1.如图1所示,在直角坐标系中,过点P 的一条直线绕P 点旋转,不管旋转多少周,它对x 轴的相对位置有几种情形?教师引入课题:直线的倾斜角和斜率.图1思路2.我们知道,经过两点有且只有(确定)一条直线.那么,经过一点P 的直线l 的位置能确定吗?这些直线有什么联系和区别呢?教师引入课题:倾斜角与斜率. 推进新课 新知探究 提出问题①怎样描述直线的倾斜程度呢?②图2中标出的直线的倾斜角α对不对?如果不对,违背了定义中的哪一条?图2③直线的倾斜角能不能是0°?能不能是锐角?能不能是直角?能不能是钝角?能不能是平角?能否大于平角?④日常生活中,还有没有表示倾斜程度的量? ⑤正切函数的定义域是什么? ⑥任何直线都有斜率么?⑦我们知道两点确定一条直线,那么已知直线上两点坐标,如何才能求出它的倾斜角和斜率呢?如:已知A(2,3)、B(-1,4),则直线AB 的斜率是多少?活动:①与交角有关.当直线l 与x 轴相交时,取x 轴作为基准,x 轴正向与直线l 向上方向之间所成的角α叫做直线l 的倾斜角.可见:平面上的任一直线都有唯一的一个倾斜角,并且倾斜角定了,直线的方向也就定了. ②考虑正方向.③动手在坐标系中作多条直线,可知倾斜角的取值范围是0°≤α<180°.在此范围内,坐标平面上的任何一条直线都有唯一的倾斜角,而每一个倾斜角都能确定一条直线的方向.倾斜角直观地表示了直线对x 轴正方向的倾斜程度.规定:当直线和x 轴平行或重合时,直线倾斜角为0°,所以倾斜角的范围是0°≤α<180°. ④联想小时候玩的滑梯,结合坡度比给出斜率定义,直线斜率的概念. 倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率,常用k 表示,即k=tanα. ⑤教师介绍正切函数的相关知识.⑥说明:直线与斜率之间的对应不是映射,因为垂直于x 轴的直线没有斜率. (倾斜角是90°的直线没有斜率)⑦已知直线l 上的两点P 1(x 1,y 1),P 2(x 2,y 2),且直线l 与x 轴不垂直,如何求直线l 的斜率?教学时可与教材上的方法一样推出. 讨论结果:①用倾斜角.②都不对.与定义中的x 轴正方向、直线向上方向相违背. ③直线的倾斜角能是0°,能是锐角,能是直角,能是钝角,不能是平角,不能大于平角. ④有,常用的有坡度比. ⑤90°的正切值不存在. ⑥倾斜角是90°的直线没有斜率.⑦过两点P 1(x 1,y 1)、P 2(x 2,y 2)的直线的斜率公式k=1212x x y y --.应用示例思路1例1 已知A(3,2),B(-4,1),C(0,-1),求直线AB,BC,CA 的斜率,并判断它们的倾斜角是钝角还是锐角.活动:引导学生明确已知两点坐标,由斜率公式代入即可求得k 的值; 而当k=tanα<0时,倾斜角α是钝角; 而当k=tanα>0时,倾斜角α是锐角;而当k=tanα=0时,倾斜角α是0°.解:直线AB 的斜率k 1=71>0,所以它的倾斜角α是锐角;直线BC 的斜率k 2=-0.5<0,所以它的倾斜角α是钝角; 直线CA 的斜率k 3=1>0,所以它的倾斜角α是锐角. 变式训练已知A(1,33),B(0,23),求直线AB 的斜率及倾斜角.解:k AB =3013233=--,∵直线倾斜角的取值范围是0°—180°,∴直线AB 的倾斜角为60°.例2 在平面直角坐标系中,画出经过原点且斜率分别为1,-1,2及-3的直线a,b,c,l.活动:要画出经过原点的直线a,只要再找出a 上的另外一点M.而M 的坐标可以根据直线a 的斜率确定.解:设直线a 上的另外一点M 的坐标为(x,y),根据斜率公式有:1=00--x y ,所以x=y.可令x=1,则y=1,于是点M 的坐标为(1,1).此时过原点和点M(1,1),可作直线a. 同理,可作直线b,c,l. 变式训练1.已知直线的倾斜角,求直线的斜率: (1)α=0°;(2)α=60°;(3)α=90°. 活动:指导学生根据定义直接求解. 解:(1)∵tan0°=0, ∴倾斜角为0°的直线斜率为0. (2)∵tan60°=3,∴倾斜角为60°的直线斜率为3.(3)∵tan90°不存在,∴倾斜角为90°的直线斜率不存在. 点评:通过此题训练,意在使学生熟悉特殊角的斜率.2.关于直线的倾斜角和斜率,下列哪些说法是正确的( ) A.任一条直线都有倾斜角,也都有斜率 B.直线的倾斜角越大,它的斜率就越大C.平行于x 轴的直线的倾斜角是0或π;两直线的倾斜角相等,它们的斜率也相等D.直线斜率的范围是(-∞,+∞) 答案:D思路2例1 求经过点A(-2,0),B(-5,3)的直线的斜率和倾斜角.解:k AB =)2(503----=1,即tanα=-1,又∵0°≤α<180°,∴α=135°.∴该直线的斜率是-1,倾斜角是135°.点评:此题要求学生会通过斜率公式求斜率,并根据斜率求直线的倾斜角. 变式训练求过下列两点的直线的斜率k 及倾斜角α. (1)P 1(-2,3),P 2(-2,8); (2)P 1(5,-2),P 2(-2,-2). 解:(1)∵P 1P 2与x 轴垂直,∴直线斜率不存在,倾斜角α=90°.(2)k=tanα=52)2(2-----=0,∴直线斜率为0,倾斜角α=0°.例2 已知三点A 、B 、C ,且直线AB 、AC 的斜率相同,求证:这三点在同一条直线上. 证明:由直线的斜率相同,可知直线AB 的倾斜角与AC 的倾斜角相等,而两直线过公共点A ,所以直线AB 与AC 重合,因此A 、B 、C 三点共线.点评:此题反映了斜率公式的应用,即若有共同点的两直线斜率相同,则可以判断三点共线. 变式训练1.若三点A(2,3),B(3,2),C(21,m)共线,求实数m 的值.解:k AB =2332--=-1,k AC =2213--m ,∵A 、B 、C 三点共线,∴k AB =k AC .∴2213--m =-1.∴m=29.2.若三点A(2,2),B(a,0),C(0,b)(ab≠0)共线,则a 1+b 1的值等于_____________. 答案:21例 3 已知三角形的顶点A(0,5),B(1,-2),C(-6,m),BC 的中点为D ,当AD 斜率为1时,求m 的值及|AD|的长.分析:应用斜率公式、中点坐标公式、两点间距离公式.解:D 点的坐标为(-25,22-m ),∴k AD =025522----m =1.∴m=7.∴D 点坐标为(-25,25).∴|AD|=225)255()25(22=-+. 变式训练过点P(-1,-1)的直线l 与x 轴和y 轴分别交于A 、B 两点,若P 恰为线段A 的中心,求直线l 的斜率和倾斜角.答案:k=-1,倾斜角为43π.知能训练课本本节练习1、2、3、4. 拓展提升已知点A(-2,3),B(3,2),过点P(0,-2)的直线l 与线段AB 有公共点,求直线l 的斜率k 的取值范围.分析:利用数形结合同时注意直线斜率不存在的特殊情形.答案:(-∞,34)∪(-25,+∞).课堂小结通过本节学习,要求大家:(1)掌握已知直线的倾斜角求斜率;(2)直线倾斜角的概念及直线倾斜角的范围; (3)直线斜率的概念;(4)已知直线的倾斜角(或斜率),求直线的斜率(或倾斜角)的方法. 作业习题3.1 A 组3、4、5.设计感想本节教学设计注重引导学生通过观察来获得新知,在实际教学中教师要及时引导,加强师生交流,学生通过自主观察、分析还是能得到正确结论的,要给学生充分的思考时间.备课资料备用习题1.已知A(-6,0),B(3,6),P(0,3),Q(-2,6),试判断直线AB 与PQ 的位置关系.解:直线AB 的斜率k 1=32,直线PQ 的斜率k 2=-23,因为k 1·k 2=-1,所以AB ⊥PQ.2.求m 值,使过点A(m,1),B(-1,m)的直线与过点P(1,2),Q(-5,0)的直线, (1)平行;(2)垂直.答案:(1)21;(2)-2.3.已知A(5,-1),B(1,1),C(2,3)三点,试判断△ABC 的形状. 活动:先让学生作图猜想,然后给出证明. 答案:由斜率乘积为-1易知为直角三角形.4.已知两直线l 1:y=2k(x+2),l 2:y=3k(x-2),它们与x 轴围成一个三角形,若使P(3,3)在这三角形内,求k 的范围.图5解:如图5,l 1、l 2分别是过定点A(-2,0),B(2,0)的动直线,易知k AP =53,k BP =3,k AQ =143,k BQ =103.要使P(3,3)在三角形内必有⎪⎩⎪⎨⎧<>,2,3k k k k AP PB 得103<k <1.(设计者:高建勇、杨海燕)3.1.2 两条直线平行与垂直的判定整体设计教学分析直线的平行和垂直是两条直线的重要位置关系,它们的判定,又都是由相应的斜率之间的关系来确定的,并且研究讨论的手段和方法也相类似,因此,在教学时采用对比方法,以便弄清平行与垂直之间的联系与区别.值得注意的是,当两条直线中有一条不存在斜率时,容易得到两条直线垂直的充要条件,这也值得略加说明. 三维目标1.掌握两条直线平行的充要条件,并会判断两条直线是否平行.掌握两条直线垂直的充要条件,并会判断两条直线是否垂直.培养和提高学生联系、对应、转化等辩证思维能力.2.通过教学,提倡学生用旧知识解决新问题,注意解析几何思想方法的渗透,同时注意思考要严密,表述要规范,培养学生探索、概括能力. 重点难点教学重点:掌握两条直线平行、垂直的充要条件,并会判断两条直线是否平行、垂直. 教学难点:是斜率不存在时两直线垂直情况的讨论(公式适用的前提条件). 课时安排 1课时教学过程导入新课思路1.设问(1)平面内不重合的两条直线的位置关系有哪几种?(2)两条直线的倾斜角相等,这两条直线是否平行?反过来是否成立?(3)“α=β”是“tanα=tanβ”的什么条件?根据倾斜角和斜率的关系,能否利用斜率来判定两条直线平行呢?思路2.上节课我们学习的是什么知识?想一想倾斜角具备什么条件时两条直线会平行、垂直呢?你认为能否用斜率来判断.这节课我们就来专门来研究这个问题.推进新课新知探究提出问题①平面内不重合的两条直线的位置关系有几种?②两条直线的倾斜角相等,这两条直线是否平行?反过来是否成立?③“α=β”是“tanα=tanβ”的什么条件?④两条直线的斜率相等,这两条直线是否平行?反过来是否成立?⑤l1∥l2时,k1与k2满足什么关系?⑥l1⊥l2时,k1与k2满足什么关系?活动:①教师引导得出平面内不重合的两条直线的位置关系有平行和相交,其中垂直是相交的特例.②数形结合容易得出结论.③注意到倾斜角是90°的直线没有斜率,即tan90°不存在.④注意到倾斜角是90°的直线没有斜率.⑤必要性:如果l1∥l2,如图1所示,它们的倾斜角相等,即α1=α2,tanα1=tanα2,即k1=k2.图1充分性:如果k1=k2,即tanα1=tanα2,∵0°≤α1<180°,0°≤α2<180°,∴α1=α2.于是l1∥l2.⑥学生讨论,采取类比方法得出两条直线垂直的充要条件.讨论结果:①平面内不重合的两条直线的位置关系有平行和相交,其中垂直是相交的特例.②两条直线的倾斜角相等,这两条直线平行,反过来成立.③“α=β”是“tanα=tanβ”的充要条件.④两条直线的斜率相等,这两条直线平行,反过来成立.⑤l1∥l2⇔k1=k2.⑥l1⊥l2⇔k1k2=-1.应用示例例1 已知A(2,3),B(-4,0),P(-3,1),Q(-1,2),判断直线BA与PQ的位置关系,并证明你的结论.解:直线BA的斜率k BA=)4(23---=0.5,直线PQ的斜率k PQ=)3(112----=0.5,因为k BA =k PQ .所以直线BA ∥PQ. 变式训练若A(-2,3),B(3,-2),C(21,m)三点共线,则m 的值为( )A.21B.-21C.-2D.2分析:k AB =k BC ,32122332-+=+--m ,m=21.答案:A例2 已知四边形ABCD 的四个顶点分别为A (0,0),B (2,-1),C(4,2),D(2,3),试判断四边形ABCD 的形状,并给出证明.解:AB 边所在直线的斜率k AB =-21, CD 边所在直线的斜率k CD =-21, BC 边所在直线的斜率k BC =23, DA 边所在直线的斜率k DA =23.因为k AB =k CD ,k BC =k DA ,所以AB ∥CD,BC ∥DA. 因此四边形ABCD 是平行四边形. 变式训练直线l 1:ax+3y+1=0,l 2:x+(a-2)y+a=0,它们的倾斜角及斜率依次分别为α1,α2,k 1,k 2.(1)a=_____________时,α1=150°; (2)a=_____________时,l 2⊥x 轴; (3)a=_____________时,l 1∥l 2;(4)a=_____________时,l 1、l 2重合; (5)a=_____________时,l 1⊥l 2.答案:(1)3 (2)2 (3)3 (4)-1 (5)1.5知能训练习题3.1 A 组6、7. 拓展提升问题:已知P (-3,2),Q (3,4)及直线ax+y+3=0.若此直线分别与PQ 的延长线、QP 的延长线相交,试分别求出a 的取值范围.(图2)图2解:直线l :ax+y+3=0是过定点A (0,-3)的直线系,斜率为参变数-a ,易知PQ 、AQ 、AP 、l 的斜率分别为:k PQ =31,k AQ =37,k AP =35,k 1=-a.若l 与PQ 延长线相交,由图,可知k PQ <k 1<k AQ ,解得-37<a <-31; 若l 与PQ 相交,则k 1>k AQ 或k 1<k AP ,解得a <-37或a >35; 若l 与QP 的延长线相交,则k PQ >k 1>k AP ,解得-31<a <35.课堂小结通过本节学习,要求大家:1.掌握两条直线平行的充要条件,并会判断两条直线是否平行.2.掌握两条直线垂直的充要条件,并会判断两条直线是否垂直.3.注意解析几何思想方法的渗透,同时注意思考要严密,表述要规范,培养学生探索、概括能力.4.认识事物之间的相互联系,用联系的观点看问题. 作业习题3.1 A 组4、5.设计感想本课通过探究两直线平行或垂直的条件,力求培养学生运用已有知识解决新问题的能力,以及数形结合能力.通过对两直线平行与垂直的位置关系的研究,培养了学生的成功意识,合作交流的学习方式,激发学生的学习兴趣.组织学生充分讨论、探究、交流,使学生自己发现规律,自己总结出两直线平行与垂直的判定依据,教师要及时引导、及时鼓励.备课资料 解析几何的应用解析几何又分为平面解析几何和空间解析几何.在平面解析几何中,除了研究有关直线的性质外,主要是研究圆锥曲线(圆、椭圆、抛物线、双曲线)的有关性质.在空间解析几何中,除了研究平面、直线有关性质外,主要研究柱面、锥面、旋转曲面.椭圆、双曲线、抛物线的有些性质,在生产或生活中被广泛应用.比如电影放映机的聚光灯泡的反射面是椭圆面,灯丝在一个焦点上,影片门在另一个焦点上;探照灯、聚光灯、太阳灶、雷达天线、卫星的天线、射电望远镜等都是利用抛物线的原理制成的.总的来说,解析几何运用坐标法可以解决两类基本问题:一类是满足给定条件点的轨迹,通过坐标系建立它的方程;另一类是通过方程的讨论,研究方程所表示的曲线性质.运用坐标法解决问题的步骤是:首先在平面上建立坐标系,把已知点的轨迹的几何条件“翻译”成代数方程;然后运用代数工具对方程进行研究;最后把代数方程的性质用几何语言叙述,从而得到原先几何问题的答案.(设计者:王清娥、杨海燕)3.2 直线的方程3.2.1 直线的点斜式方程整体设计教学分析直线方程的点斜式给出了根据已知一个点和斜率求直线方程的方法和途径.在求直线的方程中,直线方程的点斜式是基本的,直线方程的斜截式、两点式都是由点斜式推出的.从一次函数y=kx+b(k≠0)引入,自然地过渡到本节课想要解决的问题——求直线的方程问题.在引入过程中,要让学生弄清直线与方程的一一对应关系,理解研究直线可以从研究方程及方程的特征入手.在推导直线方程的点斜式时,根据直线这一结论,先猜想确定一条直线的条件,再根据猜想得到的条件求出直线的方程.三维目标1.掌握由一点和斜率导出直线方程的方法,掌握直线的点斜式方程,了解直线方程的斜截式是点斜式的特例;培养学生思维的严谨性和相互合作意识,注意学生语言表述能力的训练.2.引导学生根据直线这一结论探讨确定一条直线的条件,并会利用探讨出的条件求出直线的方程.培养学生形成严谨的科学态度和求简的数学精神.3.掌握直线方程的点斜式的特征及适用范围,培养和提高学生联系、对应、转化等辩证思维能力.重点难点教学重点:引导学生根据直线这一结论探讨确定一条直线的条件,并会利用探讨出的条件求出直线的方程.教学难点:在理解的基础上掌握直线方程的点斜式的特征及适用范围.课时安排1课时教学过程导入新课思路1.方程y=kx+b与直线l之间存在着什么样的关系?让学生边回答,教师边适当板书.它们之间存在着一一对应关系,即(1)直线l上任意一点P(x1,y1)的坐标是方程y=kx+b的解.(2)(x1,y1)是方程y=kx+b的解 点P(x1,y1)在直线l上.这样好像直线能用方程表示,这节课我们就来学习、研究这个问题——直线的方程(宣布课题).思路2.在初中,我们已经学习过一次函数,并接触过一次函数的图象,现在,请同学们作一下回顾:一次函数y=kx+b的图象是一条直线,它是以满足y=kx+b的每一对x、y的值为坐标的点构成的.由于函数式y=kx+b也可以看作二元一次方程,所以我们可以说,这个方程的解和直线上的点也存在这样的对应关系.这节课我们就来学习直线的方程(宣布课题).推进新课 新知探究 提出问题①如果把直线当做结论,那么确定一条直线需要几个条件?如何根据所给条件求出直线的方程?②已知直线l 的斜率k 且l 经过点P 1(x 1,y 1),如何求直线l 的方程? ③方程导出的条件是什么?④若直线的斜率k 不存在,则直线方程怎样表示?⑤k=11x x y y --与y-y 1=k(x-x 1)表示同一直线吗? ⑥已知直线l 的斜率k 且l 经过点(0,b),如何求直线l 的方程? 讨论结果:①确定一条直线需要两个条件: a.确定一条直线只需知道k 、b 即可;b.确定一条直线只需知道直线l 上两个不同的已知点.②设P(x ,y)为l 上任意一点,由经过两点的直线的斜率公式,得k=11x x y y --,化简,得y -y 1=k(x -x 1).③方程导出的条件是直线l 的斜率k 存在. ④a.x=0;b.x=x 1.⑤启发学生回答:方程k=11x x y y --表示的直线l 缺少一个点P 1(x 1,y 1),而方程y -y 1=k(x -x 1)表示的直线l 才是整条直线. ⑥y=kx+b. 应用示例思路1例1 一条直线经过点P 1(-2,3),倾斜角α=45°,求这条直线方程,并画出图形.图1解:这条直线经过点P 1(-2,3),斜率是k=tan45°=1.代入点斜式方程,得y-3=x+2,即x-y+5=0, 这就是所求的直线方程,图形如图1所示.点评:此例是点斜式方程的直接运用,要求学生熟练掌握,并具备一定的作图能力. 变式训练求直线y=-3(x-2)绕点(2,0)按顺时针方向旋转30°所得的直线方程. 解:设直线y=-3(x-2)的倾斜角为α,则tanα=-3,又∵α∈[0°,180°), ∴α=120°.∴所求的直线的倾斜角为120°-30°=90°.∴直线方程为x=2.例2 如果设两条直线l 1和l 2的方程分别是l 1:y=k 1x+b 1,l 2:y=k 2x+b 2,试讨论:(1)当l 1∥l 2时,两条直线在y 轴上的截距明显不同,但哪些量是相等的?为什么? (2)l 1⊥l 2的条件是什么?活动:学生思考:如果α1=α2,则tanα1=tanα2一定成立吗?何时不成立?由此可知:如果l 1∥l 2,当其中一条直线的斜率不存在时,则另一条直线的斜率必定不存在.反之,问:如果b 1≠b 2且k 1=k 2,则l 1与l 2的位置关系是怎样的?由学生回答,重点说明α1=α2得出tanα1=tanα2的依据.解:(1)当直线l 1与l 2有斜截式方程l 1:y=k 1x+b 1,l 2:y=k 2x+b 2时,直线l 1∥l 2⇔k 1=k 2且b 1≠b 2.(2)l 1⊥l 2⇔k 1k 2=-1. 变式训练判断下列直线的位置关系:(1)l 1:y=21x+3,l 2:y=21x-2; (2)l 1:y=35x,l 2:y=-53x.答案:(1)平行;(2)垂直.思路2例1 已知直线l 1:y=4x 和点P(6,4),过点P 引一直线l 与l 1交于点Q ,与x 轴正半轴交于点R ,当△OQR 的面积最小时,求直线l 的方程.活动:因为直线l 过定点P(6,4),所以只要求出点Q 的坐标,就能由直线方程的两点式写出直线l 的方程.解:因为过点P(6,4)的直线方程为x=6和y -4=k(x -6), 当l 的方程为x=6时,△OQR 的面积为S=72;当l 的方程为y -4=k(x -6)时,有R(k k 46-,0),Q (k k 46-,41624--k k ), 此时△OQR 的面积为S=21×k k 46-×41624--k k =)4()23(82--k k k .变形为(S -72)k 2+(96-4S)k -32=0(S≠72). 因为上述方程根的判别式Δ≥0,所以得S≥40. 当且仅当k=-1时,S 有最小值40.因此,直线l 的方程为y -4=-(x -6),即x +y -10=0.点评:本例是一道有关函数最值的综合题.如何恰当选取自变量,建立面积函数是解答本题的关键.怎样求这个面积函数的最值,学生可能有困难,教师宜根据学生的实际情况进行启发和指导. 变式训练如图2,要在土地ABCDE 上划出一块长方形地面(不改变方向),问如何设计才能使占地面积最大?并求出最大面积(精确到1 m 2)(单位:m ).图2解:建立如图直角坐标系,在线段AB 上任取一点P 分别向CD 、DE 作垂线,划得一矩形土地.∵AB 方程为2030x x +=1,则设P(x,20-32x )(0≤x≤30), 则S 矩形=(100-x)[80-(20-32x)] =-32(x-5)2+6 000+350(0≤x≤30),当x=5时,y=350,即P (5,350)时,(S 矩形)max =6 017(m 2).例2 设△ABC 的顶点A(1,3),边AB 、AC 上的中线所在直线的方程分别为x -2y +1=0,y=1,求△ABC 中AB 、AC 各边所在直线的方程.活动:为了搞清△ABC 中各有关元素的位置状况,我们首先根据已知条件,画出简图3,帮助思考问题.解:如图3,设AC 的中点为F ,AC 边上的中线BF :y=1.图3AB 边的中点为E ,AB 边上中线 CE :x -2y +1=0.设C 点坐标为(m ,n),则F(23,21++n m ). 又F 在AC 中线上,则23+n =1,∴n=-1.又C 点在中线CE 上,应当满足CE 的方程,则m -2n +1=0. ∴m=-3.∴C 点为(-3,-1).设B 点为(a,1),则AB 中点E(213,21++a ),即E(21a+,2). 又E 在AB 中线上,则21a+-4+1=0.∴a=5.∴B 点为(5,1).由两点式,得到AB ,AC 所在直线的方程AC :x -y +2=0,AB :x +2y -7=0. 点评:此题思路较为复杂,应使同学们做完后从中领悟到两点: (1)中点分式要灵活应用;(2)如果一个点在直线上,则这点的坐标满足这条直线的方程,这一观念必须牢牢地树立起来. 变式训练已知点M (1,0),N (-1,0),点P 为直线2x-y-1=0上的动点,则|PM|2+|PN|2的最小值为何?解:∵P 点在直线2x-y-1=0上,∴设P (x 0,2x 0-1).∴|PM|2+|PN|2=10(x 0-52)2+512≥512. ∴最小值为512.知能训练课本本节练习1、2、3、4. 拓展提升已知直线y=kx +k +2与以A(0,-3)、B(3,0)为端点的线段相交,求实数k 的取值范围.图4活动:此题要首先画出图形4,帮助我们找寻思路,仔细研究直线y=kx +k +2,我们发现它可以变为y -2=k(x +1),这就可以看出,这是过(-1,2)点的一组直线.设这个定点为P(-1,2).解:我们设PA 的倾斜角为α1,PC 的倾斜角为α,PB 的倾斜角为α2,且α1<α<α2. 则k 1=tanα1<k <k 2=tanα2.。

高中数学必修2第三章直线与方程全套教案

高中数学必修2第三章直线与方程全套教案

第三章直线与方程直线的倾斜角和斜率教学目标:知识与技能(1)正确理解直线的倾斜角和斜率的概念.(2)理解直线的倾斜角的唯一性.(3)理解直线的斜率的存在性.(4)斜率公式的推导过程,掌握过两点的直线的斜率公式.情感态度与价值观(1) 通过直线的倾斜角概念的引入学习和直线倾斜角与斜率关系的揭示,培养学生观察、探索能力,运用数学语言表达能力,数学交流与评价能力.(2) 通过斜率概念的建立和斜率公式的推导,帮助学生进一步理解数形结合思想,培养学生树立辩证统一的观点,培养学生形成严谨的科学态度和求简的数学精神.重点与难点:直线的倾斜角、斜率的概念和公式.教学用具:计算机教学方法:启发、引导、讨论.教学过程:(一)直线的倾斜角的概念我们知道, 经过两点有且只有(确定)一条直线. 那么, 经过一点P的直线l的位置能确定吗? 如图, 过一点P可以作无数多条直线a,b,c, …易见,答案是否定的.这些直线有什么联系呢?(1)它们都经过点P. (2)它们的‘倾斜程度’不同. 怎样描述这种‘倾斜程度’的不同?引入直线的倾斜角的概念:当直线l与x轴相交时, 取x轴作为基准, x轴正向与直线l向上方向之间所成的角α叫做直线l的倾斜角....特别地,当直线l与x轴平行或重合时, 规定α= 0°.问: 倾斜角α的取值X围是什么? 0°≤α<180°.当直线l与x轴垂直时, α= 90°.因为平面直角坐标系内的每一条直线都有确定的倾斜程度,引入直线的倾斜角之后, 我们就可以用倾斜角α来表示平面直角坐标系内的每一条直线的倾斜程度.如图, 直线a∥b∥c, 那么它们YXcbaO的倾斜角α相等吗? 答案是肯定的.所以一个倾斜角α不能确定一条直线.确定平面直角坐标系内的一条直线位置的几何要素: 一个点...P.和一个倾斜角......α..(二)直线的斜率:一条直线的倾斜角α(α≠90°)的正切值叫做这条直线的斜率,斜率常用小写字母k表示,也就是k = tanα⑴当直线l与x轴平行或重合时, α=0°, k = tan0°=0;⑵当直线l与x轴垂直时, α= 90°, k 不存在.由此可知, 一条直线l的倾斜角α一定存在,但是斜率k不一定存在.例如, α=45°时, k = tan45°= 1;α=135°时, k = tan135°= tan(180°-45°) = - tan45°= - 1.学习了斜率之后, 我们又可以用斜率来表示直线的倾斜程度.(三) 直线的斜率公式:给定两点P1(x1,y1),P2(x2,y2),x1≠x2,如何用两点的坐标来表示直线P1P2的斜率?可用计算机作动画演示: 直线P1P2的四种情况, 并引导学生如何作辅助线,共同完成斜率公式的推导.(略)斜率公式:对于上面的斜率公式要注意下面四点:(1)当x1=x2时,公式右边无意义,直线的斜率不存在,倾斜角α= 90°, 直线与x轴垂直;(2)k与P1、P2的顺序无关, 即y1,y2和x1,x2在公式中的前后次序可以同时交换, 但分子与分母不能交换;(3)斜率k可以不通过倾斜角而直接由直线上两点的坐标求得;(4) 当 y1=y2时, 斜率k = 0, 直线的倾斜角α=0°,直线与x 轴平行或重合. (5)求直线的倾斜角可以由直线上两点的坐标先求斜率而得到.(四)例题:例1 已知A(3, 2), B(-4, 1), C(0, -1), 求直线AB, BC, CA 的斜率, 并判断它们的倾斜角是钝角还是锐角.(用计算机作直线, 图略)分析: 已知两点坐标, 而且x1≠x2, 由斜率公式代入即可求得k 的值; 而当k = tanα<0时, 倾斜角α是钝角; 而当k = tanα>0时, 倾斜角α是锐角; 而当k = tanα=0时, 倾斜角α是0°.略解: 直线AB 的斜率k1=1/7>0, 所以它的倾斜角α是锐角; 直线BC 的斜率k2=-0.5<0, 所以它的倾斜角α是钝角; 直线CA 的斜率k3=1>0, 所以它的倾斜角α是锐角.例2 在平面直角坐标系中, 画出经过原点且斜率分别为1, -1, 2, 与-3的直线a, b, c, l. 分析:要画出经过原点的直线a, 只要再找出a 上的另外一点M. 而M 的坐标可以根据直线a 的斜率确定; 或者k=tanα=1是特殊值,所以也可以以原点为角的顶点,x 轴的正半轴为角的一边, 在x 轴的上方作45°的角, 再把所作的这一边反向延长成直线即可. 略解: 设直线a 上的另外一点M 的坐标为(x,y),根据斜率公式有 1=(y -0)/(x -0)所以 x = y可令x = 1, 则y = 1, 于是点M 的坐标为(1,1).此时过原点和点 M(1,1), 可作直线a.同理, 可作直线b, c, l.(用计算机作动画演示画直线过程)(五)练习: P91 1. 2. 3. 4. (六)小结:(1)直线的倾斜角和斜率的概念. (2) 直线的斜率公式. (七)课后作业: P94 习题3.1 1. 3. (八)板书设计:两条直线的平行与垂直教学目标 (一)知识教学理解并掌握两条直线平行与垂直的条件,会运用条件判定两直线是否平行或垂直. (二)能力训练通过探究两直线平行或垂直的条件,培养学生运用已有知识解决新问题的能力,以与数形结合能力.(三)学科渗透通过对两直线平行与垂直的位置关系的研究,培养学生的成功意识,合作交流的学习方式,激发学生的学习兴趣.重点:两条直线平行和垂直的条件是重点,要求学生能熟练掌握,并灵活运用.难点:启发学生, 把研究两条直线的平行或垂直问题, 转化为研究两条直线的斜率的关系问题.注意:对于两条直线中有一条直线斜率不存在的情况, 在课堂上老师应提醒学生注意解决好这个问题.教学过程(一)先研究特殊情况下的两条直线平行与垂直上一节课, 我们已经学习了直线的倾斜角和斜率的概念, 而且知道,可以用倾斜角和斜率来表示直线相对于x轴的倾斜程度, 并推导出了斜率的坐标计算公式. 现在, 我们来研究能否通过两条直线的斜率来判断两条直线的平行或垂直.讨论: 两条直线中有一条直线没有斜率, (1)当另一条直线的斜率也不存在时,两直线的倾斜角都为90°,它们互相平行;(2)当另一条直线的斜率为0时,一条直线的倾斜角为90°,另一条直线的倾斜角为0°,两直线互相垂直.(二)两条直线的斜率都存在时, 两直线的平行与垂直设直线L1和L2的斜率分别为k1和k2. 我们知道, 两条直线的平行或垂直是由两条直线的方向决定的, 而两条直线的方向又是由直线的倾斜角或斜率决定的. 所以我们下面要研究的问题是: 两条互相平行或垂直的直线, 它们的斜率有什么关系?首先研究两条直线互相平行(不重合)的情形.如果L1∥L2(图1-29),那么它们的倾斜角相等:α1=α2.(借助计算机, 让学生通过度量, 感知α1, α2的关系)∴tanα1=tanα2.即k1=k2.反过来,如果两条直线的斜率相等: 即k1=k2,那么tgα1=tgα2.由于0°≤α1<180°,0°≤α<180°,∴α1=α2.又∵两条直线不重合,∴L1∥L2.结论: 两条直线都有斜率而且不重合,如果它们平行,那么它们的斜率相等;反之,如果它们的斜率相等,那么它们平行,即注意: 上面的等价是在两条直线不重合且斜率存在........的前提下才成立的,缺少这个前提,结论并不成立.即如果k1=k2, 那么一定有L1∥L2; 反之则不一定.下面我们研究两条直线垂直的情形.如果L1⊥L2,这时α1≠α2,否则两直线平行.设α2<α1(图1-30),甲图的特征是L1与L2的交点在x轴上方;乙图的特征是L1与L2的交点在x轴下方;丙图的特征是L1与L2的交点在x轴上,无论哪种情况下都有α1=90°+α2.因为L1、L2的斜率分别是k1、k2,即α1≠90°,所以α2≠0°.,可以推出: α1=90°+α2.L1⊥L2.结论: 两条直线都有斜率........,如果它们互相垂直,那么它们的斜率互为负倒数;反之,如果它们的斜率互为负倒数,那么它们互相垂直,即注意: 结论成立的条件. 即如果k1·k2 = -1, 那么一定有L1⊥L2; 反之则不一定.(借助计算机, 让学生通过度量, 感知k1, k2的关系, 并使L1(或L2)转动起来, 但仍保持L1⊥L2, 观察k1, k2的关系, 得到猜想, 再加以验证. 转动时, 可使α1为锐角,钝角等).例题例1已知A(2,3), B(-4,0), P(-3,1), Q(-1,2), 试判断直线BA与PQ的位置关系, 并证明你的结论.分析: 借助计算机作图, 通过观察猜想:BA∥PQ, 再通过计算加以验证.(图略)解: 直线BA的斜率k1=(3-0)/(2-(-4))=0.5, 直线PQ的斜率k2=(2-1)/(-1-(-3))=0.5, 因为k1=k2=0.5, 所以直线BA∥PQ.例2 已知四边形ABCD的四个顶点分别为A(0,0), B(2,-1), C(4,2), D(2,3), 试判断四边形ABCD的形状,并给出证明. (借助计算机作图, 通过观察猜想:四边形ABCD是平行四边形,再通过计算加以验证)解同上.例3已知A(-6,0), B(3,6), P(0,3), Q(-2,6), 试判断直线AB与PQ的位置关系.解: 直线AB的斜率k1= (6-0)/(3-(-6))=2/3,直线PQ的斜率k2= (6-3)(-2-0)=-3/2, 因为k1·k2 = -1 所以AB⊥PQ.例4已知A(5,-1), B(1,1), C(2,3), 试判断三角形ABC的形状.分析: 借助计算机作图, 通过观察猜想: 三角形ABC是直角三角形, 其中AB⊥BC, 再通过计算加以验证.(图略)课堂练习P94 练习 1. 2.课后小结(1)两条直线平行或垂直的真实等价条件;(2)应用条件, 判定两条直线平行或垂直.(3) 应用直线平行的条件, 判定三点共线.布置作业 P94 习题3.1 5. 8. 板书设计直线的点斜式方程一、教学目标 1、知识与技能〔1〕理解直线方程的点斜式、斜截式的形式特点和适用X 围; 〔2〕能正确利用直线的点斜式、斜截式公式求直线方程。

必修2第三章直线与方程两条直线的交点坐标教案

必修2第三章直线与方程两条直线的交点坐标教案

3.3.1两条直线的交点坐标一、教学目标(一)知识教学点知道两条直线的相交、平行和重合三种位置关系,对应于相应的二元一次方程组有唯一解、无解和无穷多组解,会应用这种对应关系通过方程判断两直线的位置关系,以及由已知两直线的位置关系求它们方程的系数所应满足的条件.(二)能力训练点通过研究两直线的位置关系与它们对应方程组的解,培养学生的数形结合能力;通过对方程组解的讨论培养学生的分类思想;求出x后直接分析出y的表达式,培养学生的抽象思维能力与类比思维能力.(三)学科渗透点通过学习两直线的位置关系与它们所对应的方程组的解的对应关系,培养学生的转化思想.二、教材分析1.重点:两条直线的位置关系与它们所对应的方程组的解的个数的对应关系,本节是从交点个数为特征对两直线位置关系的进一步讨论.2.难点:对方程组系数中含有未知数的两直线的位置关系的讨论.3.疑点:当方程组中有一个未知数的系数为零时两直线位置关系的简要说明.三、活动设计分析、启发、诱导、讲练结合.四、教学过程(一)两直线交点与方程组解的关系设两直线的方程是l1: A1x+B1y+c1=0, l2: A2x+B2y+C2=0.如果两条直线相交,由于交点同时在两条直线上,交点的坐标一定是这两个方程的公共解;反之,如果这两个二元一次方程只有一个公共解,那么以这个解为坐标的点必是直线l1和l2的交点.因此,两条直线是否相交,就要看这两条直线的方程所组成的方程组是否有唯一解.(二)对方程组的解的讨论若A1、A2、B1、B2中有一个或两个为零,则两直线中至少有一条与坐标轴平行,很容易得到两直线的位置关系.下面设A1、A2、B1、B2全不为零.解这个方程组:(1)×B2得 A1B2x+B1B2y+B2C1=0,(3)(2)×B1得 A2B1x+B1B2y+B1C2=0.(4)(3)-(4)得(A1B2-A2B1)x+B2C1-B1C2=0.下面分两种情况讨论:将上面表达式中右边的A1、A2分别用B1、B2代入即可得上面得到y可把方程组写成即将x用y换,A1、A2分别与B1、B2对换后上面的方程组还原成原方程组.综上所述,方程组有唯一解:这时l1与l2相交,上面x和y的值就是交点的坐标.(2)当A1B2-A2B1=0时:①当B1C2-B2C1≠0时,这时C1、C2不能全为零(为什么?).设C2②如果B1C2-B2C1=0,这时C1、C2或全为零或全不为零(当C1、(三)统一通过解方程组研究两直线的位置关系与通过斜率研究两直线位置关系的结论说明:在平面几何中,我们研究两直线的位置关系时,不考虑两条直线重合的情况,而在解析几何中,由于两个不同的方程可以表示同一条直线,我们把重合也作为两直线的一种位置关系来研究.(四)例题例1 求下列两条直线的交点:l1:3x+4y-2=0, l2: 2x+y+2=0.解:解方程组∴l1与l2的交点是M(-2,2).例2已知下列各对直线的位置关系,如果相交,求出交点的坐标:(1)l: x-y=0, l: 3x+3y-10 ;(2)l: 3x-y+4=0 l: 6x-2y=0 ;(3)l: 3x+4y-5=0, l: 6x+8y-10=0解:(1)解方程组, 得所以,l与l相交,交点是M(, )(2)解方程组(1)×2-(2)得 9=0, 矛盾,方程组无解,所以量直线无公共点,l∥ l.(3)解方程组(1)×2得 6x+8y-10=0因此,(1)和(2)可以化成同一个方程,即(1)和(2)表示同一条直线,l与l重合(五)课堂练习:由学生完成,教师讲评课后小结(1)两直线的位置关系与它们对应的方程的解的个数的对应关系.(2)求两条直线交点的一般方法..五、布置作业1.教材第116页,习题3.3A组第1题六、板书设计1.判断下列各对直线的位置关系,如果相交,则求出交点的坐标:2. A和C取什么值时,直线Ax-2y-1=0和直线6x-4y+c=0(1)平行;(2)重合;(3)相交.解:(1)A=3,C≠-2;(2)A=3,C=-2;(3)A≠3.3.已知两条直线:l1:(3+m)x+4y=5-3m,l2:2x+(5+m)y=8.m为何值时,l1与l2:(1)相交;(2)平行;(3)重合.解:(1)m≠1且m≠-7;(2)m=-7;(3)m=-1.。

人教版高一数学必修二第三章 直线与方程教案

人教版高一数学必修二第三章 直线与方程教案

教学课题 人教版必修二第三章直线与方程一、知识框架3.1 直线的倾斜角与斜率1. 倾斜角与斜率(1)倾斜角(2)斜率定义 当直线l 与x 轴相交时,取x 轴作为基准,x 轴正向与直线l 向上方向之间所成的角α叫做直线l 的倾斜角.规定当直线l 与x 轴平行或重合时,规定直线的倾斜角为︒0 记法 α图示范围0°≤α<180° 作用(1)用倾斜角表示平面直角坐标系内一条直线的倾斜程度。

(2)确定平面直角坐标系中一条直线位置的几何要素是:直线上的一个定点以及它的倾斜角,二者缺一不可。

定义α≠90°一条直线的倾斜角α的正切值叫做这条直线的斜率 α=90° 斜率不存在③当直线l 1∥直线l 2时,可能它们的斜率都存在且相等,也可能斜率都不存在.④对于不重合的直线l 1,l 2,其倾斜角分别为α,β,有l 1∥l 2⇔α=β.(2)垂直如果两条直线都有斜率,且它们互相垂直,那么它们的斜率之积等于-1;如果它们的斜率之积等于-1,那么它们互相垂直.有12121-=⋅⇔⊥k k l l①当直线l 1⊥直线l 2时,可能它们的斜率都存在且乘积为定值-1,也可能一条直线的斜率不存在,而另一条直线的斜率为0;②较大的倾斜角总是等于较小倾斜角与直角的和.3.2 直线的方程1. 直线的点斜式方程(1)直线的点斜式方程①定义:如下图所示,直线l 过定点P (x 0,y 0),斜率为k ,则把方程)(00x x k y y -=-叫做直线l 的点斜式方程,简称点斜式.特别地,当倾斜角为︒0时,有0=k ,此时直线与x 轴平行或重合,方程为00=-y y 或者0y y =。

②说明:如下图所示,过定点P (x 0,y 0),倾斜角是90°的直线没有点斜式,其方程为x -x 0=0,或0x x =(2)直线的斜截式方程 ①定义:如下图所示,直线l 的斜率为k ,且与y 轴的交点为(0,b ),则方程b kx y +=叫做直线l 的斜截式方程,简称斜截式.②说明:左端y 的系数恒为1,一条直线与y 轴的交点(0,b )的纵坐标b 叫做直线在y 轴上的截距.倾斜角是︒90的直线没有斜截式方程.2. 直线的两点式方程(1)直线的两点式方程①定义:如图所示,直线l 经过点P 1(x 1,y 1),P 2(x 2,y 2)(其中x 1≠x 2,y 1≠y 2),则方程y -y 1y 2-y 1=121x x x x --叫做直线l 的两点式方程,简称两点式.②说明:与坐标轴垂直的直线没有两点式方程,当x 1=x 2时,直线方程为x =x 1;当y 1=y 2时,直线方程为y =y 1.(2)直线的截距式方程①定义:如图所示,直线l 与两坐标轴的交点分别是P 1(a,0),P 2(0,b )(其中a ≠0,b ≠0),则方程为1=+by a x 叫做直线l 的截距式方程,简称截距式.2. 利用三种直线方程求直线方程时,要注意这三种直线方程都有适用范围,利用它们都不能求出垂直于x 轴的直线方程。

必修二第三章直线与方程教案

必修二第三章直线与方程教案

第三章直线与方程一、概念理解:1.倾斜角: ①找α: 直线向上方向、x轴正方向;②平行: α=0°;③范围: 0°≤α<180°。

2.斜率: ①找k : k=tanα(α≠90°);②垂直: 斜率k不存在;③范围: 斜率k ∈R 。

斜率与坐标:①构造直角三角形(数形结合);②斜率k值于两点先后顺序无关;③注意下标的位置对应。

直线与直线的位置关系:①相交: 斜率(前提是斜率都存在)特例----垂直时: <1> ;<2> 斜率都存在时: 。

②平行: <1> 斜率都存在时: ;<2> 斜率都不存在时: 两直线都与x轴垂直。

③重合: 斜率都存在时: ;二、方程与公式:1.直线的五个方程:①点斜式: 将已知点直接带入即可;②斜截式: 将已知截距直接带入即可;③两点式: 将已知两点直接带入即可;④截距式: 将已知截距坐标直接带入即可;⑤一般式: , 其中A.B不同时为0在距离公式当中会经常用到直线的“一般式方程”。

2、求两条直线的交点坐标:直接将两直线方程联立, 解方程组即可(可简记为“方程组思想”)。

3.距离公式:①两点间距离: 推导方法: 构造直角三角形“勾股定理”;②点到直线距离: 推导方法: 构造直角三角形“面积相等”;③平行直线间距离: 推导方法: 在y轴截距代入②式;4.中点、三分点坐标公式: 已知两点①AB中点: 推导方法: 构造直角“相似三角形”;②AB三分点: 靠近A的三分点坐标靠近B的三分点坐标推导方法: 构造直角“相似三角形”。

三、中点坐标公式, 在求对称点、第四章圆与方程中, 经常用到。

三分点坐标公式, 用得较少, 多见于大题难题。

解题指导与易错辨析:1.解析法(坐标法):①建立适当直角坐标系, 依据几何性质关系, 设出点的坐标;②依据代数关系(点在直线或曲线上), 进行有关代数运算, 并得出相关结果;③将代数运算结果, 翻译成几何中“所求或所要证明”。

人教版高中数学必修2第三章直线与方程-《3.2.3直线的一般式方程》教案

人教版高中数学必修2第三章直线与方程-《3.2.3直线的一般式方程》教案

3.2.3 直线的一般式方程整体设计教学分析直线是最基本、最简单的几何图形,它是研究各种运动方向和位置关系的基本工具,它既能为进一步学习作好知识上的必要准备,又能为今后灵活地运用解析几何的基本思想和方法打好坚实的基础.直线方程是这一章的重点内容,在学习了直线方程的几种特殊形式的基础上,归纳总结出直线方程的一般形式.掌握直线方程的一般形式为用代数方法研究两条直线的位置关系和学习圆锥曲线方程打下基础.根据教材分析直线方程的一般式是本节课的重点,但由于学生刚接触直线和直线方程的概念,教学中要求不能太高,因此对直角坐标系中直线与关于x和y的一次方程的对应关系确定为“了解”层次.两点可以确定一条直线,给出一点和直线的方向也可以确定一条直线,由两个独立条件选用恰当形式求出直线方程后,均应统一到一般式.直线的一般式方程中系数A、B、C的几何意义不很鲜明,常常要化为斜截式和截距式,所以各种形式应会互化.引导学生观察直线方程的特殊形式,归纳出它们的方程的类型都是二元一次方程,推导直线方程的一般式时渗透分类讨论的数学思想,通过直线方程各种形式的互化,渗透化归的数学思想,进一步研究一般式系数A、B、C的几何意义时,渗透数形结合的数学思想.三维目标1.掌握直线方程的一般式,了解直角坐标系中直线与关于x和y的一次方程的对应关系,培养学生树立辩证统一的观点,培养学生形成严谨的科学态度和求简的数学精神.2.会将直线方程的特殊形式化成一般式,会将一般式化成斜截式和截距式,培养学生归纳、概括能力,渗透分类讨论、化归、数形结合等数学思想.3.通过教学,培养相互合作意识,培养学生思维的严谨性,注意学生语言表述能力的训练.重点难点教学重点:直线方程的一般式及各种形式的互化.教学难点:在直角坐标系中直线方程与关于x和y的一次方程的对应关系,关键是直线方程各种形式的互化.课时安排1课时教学过程导入新课思路1.前面所学的直线方程的几种形式,有必要寻求一种更好的形式,那么怎样的形式才能表示一切直线方程呢?这节课我们就来研究这个问题. 思路2.由下列各条件,写出直线的方程,并画出图形.(1)斜率是1,经过点A (1,8);(2)在x 轴和y 轴上的截距分别是-7,7;(3)经过两点P 1(-1,6)、P 2(2,9);(4)y 轴上的截距是7,倾斜角是45°.由两个独立条件请学生写出直线方程的特殊形式分别为y-8=x-1、77yx +-=1、121696++=--x y 、y=x+7,教师利用计算机动态显示,发现上述4条直线在同一坐标系中重合.原来它们的方程化简后均可统一写成:x-y+7=0.这样前几种直线方程有了统一的形式,这就是我们今天要讲的新课——直线方程的一般式. 推进新课 新知探究 提出问题①坐标平面内所有的直线方程是否均可以写成关于x,y 的二元一次方程?②关于x,y 的一次方程的一般形式Ax+By+C=0(其中A 、B 不同时为零)是否都表示一条直线?③我们学习了直线方程的一般式,它与另四种形式关系怎样,是否可互相转化? ④特殊形式如何化一般式?一般式如何化特殊形式?特殊形式之间如何互化?⑤我们学习了直线方程的一般式Ax+By+C=0,系数A 、B 、C 有什么几何意义?什么场合下需要化成其他形式?各种形式有何局限性?讨论结果:①分析:在直角坐标系中,每一条直线都有倾斜角α.1°当α≠90°时,它们都有斜率,且均与y 轴相交,方程可用斜截式表示:y=kx+b.2°当α=90°时,它的方程可以写成x=x 1的形式,由于在坐标平面上讨论问题,所以这个方程应认为是关于x 、y 的二元一次方程,其中y 的系数是零. 结论1°:直线的方程都可以写成关于x 、y 的一次方程.②分析:a 当B≠0时,方程可化为y=-B A x-B C ,这就是直线的斜截式方程,它表示斜率为-BA,在y 轴上的截距为-B C 的直线.b 当B=0时,由于A 、B 不同时为零必有A≠0,方程化为x=-AC,表示一条与y 轴平行或重合的直线.结论2°:关于x,y 的一次方程都表示一条直线.综上得:这样我们就建立了直线与关于x,y 的二元一次方程之间的对应关系.我们把Ax+By+C=0(其中A,B 不同时为0)叫做直线方程的一般式. 注意:一般地,需将所求的直线方程化为一般式.在这里采用学生最熟悉的直线方程的斜截式(初中时学过的一次函数)把新旧知识联系起来. ③引导学生自己找到答案,最后得出能进行互化.④待学生通过练习后师生小结:特殊形式必能化成一般式;一般式不一定可以化为其他形式(如特殊位置的直线),由于取点的任意性,一般式化成点斜式、两点式的形式各异,故一般式化斜截式和截距式较常见;特殊形式的互化常以一般式为桥梁,但点斜式、两点式、截距式均能直接化成一般式.各种形式互化的实质是方程的同解变形(如图1).图1⑤列表说明如下:应用示例例1 已知直线经过点A(6,-4),斜率为-34,求直线的点斜式和一般式方程.解:经过点A(6,-4)且斜率为-34的直线方程的点斜式方程为y+4=-34(x-6). 化成一般式,得4x+3y-12=0. 变式训练1.已知直线Ax+By+C=0,(1)系数为什么值时,方程表示通过原点的直线? (2)系数满足什么关系时,与坐标轴都相交? (3)系数满足什么条件时,只与x 轴相交? (4)系数满足什么条件时,是x 轴? (5)设P(x 0,y 0)为直线Ax+By+C=0上一点, 证明这条直线的方程可以写成A(x-x 0)+B(y-y 0)=0. 答案:(1)C=0; (2)A≠0且B≠0; (3)B=0且C≠0; (4)A=C=0且B≠0;(5)证明:∵P(x 0,y 0)在直线Ax+By+C=0上, ∴Ax 0+By 0+C+0,C=-Ax 0-By 0. ∴A(x-x 0)+B(y-y 0)=0.2.(2007上海高考,理2)若直线l 1:2x+my+1=0与l 2:y=3x-1平行,则m=____________. 答案:-32例2 把直线l 的方程x-2y+6=0化成斜截式,求出直线l 的斜率和它在x 轴与y 轴上的截距,并画出图形.解:由方程一般式x -2y +6=0, ① 移项,去系数得斜截式y=2x+3. ② 由②知l 在y 轴上的截距是3,又在方程①或②中,令y=0,可得x=-6. 即直线在x 轴上的截距是-6.因为两点确定一条直线,所以通常只要作出直线与两个坐标轴的交点(即在x 轴,y 轴上的截距点),过这两点作出直线l (图2).图2点评:要根据题目条件,掌握直线方程间的“互化”. 变式训练直线l 过点P(-6,3),且它在x 轴上的截距是它在y 轴上的截距的3倍,求直线l 的方程. 答案:x+3y-3=0或x+2y=0. 知能训练课本本节练习1、2、3. 拓展提升求证:不论m 取何实数,直线(2m -1)x -(m+3)y -(m -11)=0恒过一个定点,并求出此定点的坐标.解:将方程化为(x+3y-11)-m(2x-y-1)=0,它表示过两直线x+3y-11=0与2x-y-1=0的交点的直线系. 解方程组⎩⎨⎧=--=-+,012,0113y x y x ,得⎩⎨⎧==3,2y x .∴直线恒过(2,3)点. 课堂小结通过本节学习,要求大家:(1)掌握直线方程的一般式,了解直角坐标系中直线与关于x 和y 的一次方程的对应关系; (2)会将直线方程的特殊形式化成一般式,会将一般式化成斜截式和截距式; (3)通过学习,培养相互合作意识,培养学生思维的严谨性,注意语言表述能力的训练. 作业习题3.2 A 组11.。

新课程人教A版必修2第三章《直线与方程》全部教案 §3.2.3 直线的一般式方程

新课程人教A版必修2第三章《直线与方程》全部教案 §3.2.3 直线的一般式方程
巩固所学知识和方法。
学生独立完成,教师检查、评价。
问题
设计意图
师生活动
8、小结
使学生对直线方程的理解有一个整体的认识。
(1)请学生写出直线方程常见的几种形式,并说明它们之间的关系。
(2)比较各种直线方程的形式特点和适用范围。
(3)求直线方程应具有多少个条件?
(4)学习本节用到了哪些数学思想方法?
9、布置作业
二、教学重点、难点:
1、重点:直线方程的一般式。
2、难点:对直线方程一般式的理解与应用。
三、教学设想
问题
设计意图
师生活动
1、(1)平面直角坐标系中的每一条直线都可以用一个关于 的二元一次方程表示吗?
(2)每一个关于 的二元一次方程 (A,B不同时为0)都表示一条直线吗?
使学生理解直线和二元一次方程的关系。
学生独立完成。然后教师检查、评价、反馈。指出:对于直线方程的一般式,一般作如下约定:一般按含 项、含 项、常数项顺序排列; 项的系数为正; , 的系数和常数项一般不出现分数;无特加要时,求直线方程的结果写成一般式。
5、例6的教学
把直线 的一般式方程 化成斜截式,求出直线 的斜率以及它在 轴与 轴上的截距,并画出图形。
在直角坐标系中画直线时,通常找出直线下两个坐标轴的交点。
6、二元一次方程的每一个解与坐标平面中点的有什么关系?直线与二元一次方程的解之间有什么关系?
使学生进一步理解二元一次方程与直线的关系,体会直解坐标系把直线与方程联系起来。
学生阅读教材第105页,从中获得对问题的理解。
7、课堂练习
第105练习第2题和第3(2)
3.2.3直线的一般式方程
一、教学目标
1、知识与技能

人教版高中必修2第三章直线与方程教学设计

人教版高中必修2第三章直线与方程教学设计

人教版高中必修2第三章直线与方程教学设计一、教学目标本章教学的主要目标是:1.了解直线的定义、性质、类型及方程;2.熟悉在直线上的点、向量、角、距离等概念及计算方法;3.掌握直线的位置关系及其运用。

二、教学重点和难点本章的教学重点是:1.直线的定义、性质、类型及方程;2.直线上的点、向量、角、距离等概念及计算方法。

这些内容需要学生掌握,才能进一步理解直线的位置关系及其运用。

而本章的教学难点则是:1.直线的方程,特别是斜率截距式、两点式的推导和运用;2.直线的位置关系分析及其运用。

这两个难点需要较高的数学思维能力和逻辑推理能力。

三、教学过程设计1. 导入环节引导学生回忆前面学过的知识,如点、直线、向量等的基本概念和运算规律,并提出本章的教学主题:直线与方程。

2. 知识讲解2.1 直线的定义、特征、斜率和截距首先,讲解直线的定义和特征,包括直线的起点和终点、无限延长性等特征。

然后,介绍直线的斜率和截距,包括斜率的概念、计算方法,截距的概念、计算方法和物理意义。

2.2 直线的类型及方程其次,讲解不同类型的直线和对应的方程,包括水平直线、竖直直线、倾斜直线、直线的一般式、点斜式、斜截式和两点式等,强调各种直线方程的适用范围和联系。

2.3 直线上的点、向量、角、距离的计算方法最后,讲解直线上的点、向量、角、距离等的计算方法,包括向量的投影、角度差、距离公式等,并结合实例让学生掌握具体的计算方法和应用场景。

3. 课堂练习通过让学生做例题、练习题和考试题,在实际练习中加深学生对知识点的理解和掌握程度,同时培养学生的解题能力和应用能力。

4. 总结点拨在教学过程的最后,进行综合梳理和总结点拨,回顾本章的主要内容和重点难点,重点强调学生需要理解并掌握直线的概念、特征、方程及其应用,以及直线上点、向量、距离等的计算方法。

四、教学反思1.教学方法:在教学中应尽量结合实例,解释直观易懂,以便学生更好地理解和运用。

2.教学重点:要重点讲解直线的方程,尤其是斜率截距式、两点式的推导和运用,这是学生比较难理解和掌握的内容,需要反复讲解和实践练习。

新课标人教A版必修二第三章 直线与方程 (教案)

新课标人教A版必修二第三章 直线与方程 (教案)

第三章直线与方程章末归纳提升α与斜率k的对应关系和单调性是解题的易错点,应引起特别重视.(1)对应关系①α≠90°时,k=tan α.②α=90°时,斜率不存在.(2)单调性当α由0°→90°→180°(不含180°)变化时,k由0(含0)逐渐增大到+∞,然后由-∞逐渐增大到0.经过A(x1,y1),B(x2,y2)(x1≠x2)两点的直线的斜率公式k=y2-y1x2-x1(x1≠x2),应注意其适用的条件x1≠x2,当x1=x2时,直线斜率不存在.已知直线l过点P(-1,2),且与以A(-2,-3),B(3,0)为端点的线段相交.求直线l的斜率的取值范围.【思路点拨】本题主要考查斜率公式及数形结合思想.根据题意知l介于P A和PB之间,由数形结合知k l≤k PB或k l≥k AP,故由斜率公式求出k P A,k PB即可解决问题.【规范解答】∵P(-1,2),A(-2,-3),B(3,0),∴k P A =2---1--=5,k PB =2-0-1-3=-12, 当l 由P A 变化到与y 轴平行时,其倾斜角由α增至90°,斜率变化范围为[5,+∞),当l 由与y 轴平行变化到PB 的位置时,其倾斜角由90°增至β,斜率变化范围为⎝ ⎛⎦⎥⎤-∞,-12, ∴直线l 的斜率的取值范围是⎝ ⎛⎦⎥⎤-∞,-12∪[5,+∞).已知坐标平面内三点A (-1,1),B (1,1),C (2,3+1).(1)求直线AB ,BC ,AC 的斜率和倾斜角;(2)若D 为△ABC 的边AB 上一动点,求直线CD 的斜率k 的变化范围.【解】 (1)由斜率公式得直线AB 的斜率k AB =1-11--1=0, 直线BC 的斜率k BC =3+1-12-1=3,直线AC 的斜率k AC =3+1-12--1=33. 故可得AB 的倾斜角为0°,BC 的倾斜角为60°,AC 的倾斜角为30°.(2)如图所示,当斜率k 变化时,直线CD 绕C 点旋转,当直线CD 由CA 逆时针转到CB 时,直线CD 与AB 恒有交点,即D 在线段AB 上,此时k 由k AC增大到k BC ,故k 的取值范围为⎣⎢⎡⎦⎥⎤33,3.示所有的直线.直线方程的一般式则可以表示所有直线.在解题的时候,如果没有特别说明,最后的结果都要化成一般式.已知在第一象限的△ABC 中,A (1,1),B (5,1),∠A =60°,∠B =45°,求:(1)AB 边所在直线的方程;(2)AC 边与BC 边所在直线的方程.【思路点拨】 利用A 、B 两点求AB 边的方程―→点斜式求AC 、BC 的方程.【规范解答】 (1)∵A (1,1),B (5,1).∴AB ∥x 轴,∴AB 方程为y =1.(2)∵∠A =60°,∴k AC =3,∴AC 方程为y -1=3(x -1),即3x -y +1-3=0.∵∠B =45°,∴k BC =-1,∴BC 方程为y -1=-(x -5),即x +y -6=0.过点A (4,1)且在两坐标轴上的截距相等的直线方程是 ( )A .x +y =5B .x -y =5C .x +y =5或x -4y =0D .x -y =5或x +4y =0【解析】 当直线在两坐标轴上的截距a ,b 都不为零时,可设所求方程为x a+y b =1,将点A (4,1)代入得:4a +1b=1,又a =b ,解之得:a =b =5,所以所求方程为x +y -5=0.当a =b =0时直线过原点,又过点A (4,1),此时所求方程为:y =14x ,即x -4y =0,所以C 对.【答案】 C型.求解时,可以利用斜率之间的关系判定;若方程都是一般式,知道平行或垂直关系,求参数的值时也可用如下方法:直线l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0.(1)l 1∥l 2时,可令A 1B 2-A 2B 1=0,解得参数的值后,再代入方程验证,排除重合的情况;(2)l 1⊥l 2时,可利用A 1A 2+B 1B 2=0直接求参数的值.已知直线l 1:x +my +6=0,l 2:(m -2)x +3y +2m =0,求m 的值,使得:(1)l 1⊥l 2;(2)l 1∥l 2.【思路点拨】 已知两直线的方程中都含有参数,求不同的位置关系时参数的取值,可以利用平行(或垂直)的条件列方程求解.【规范解答】 法一 当m =0或2时,两直线既不平行,也不垂直;当m ≠0且m ≠2时,直线l 1,l 2的斜率分别为:-1m ,2-m 3.(1)若l 1⊥l 2,则-1m ·2-m 3=-1,解得m =12.(2)若l 1∥l 2,则由-1m =2-m 3得m =-1或m =3.又当m =3时,l 1与l 2重合,故m =3舍去.故l 1∥l 2时,m =-1.法二 (1)∵l 1⊥l 2,∴m -2+3m =0,∴m =12.(2)∵l 1∥l 2,∴3-m (m -2)=0且2m ≠6(m -2),故m =-1.已知直线l 的方程为3x +4y -12=0,分别求满足下列条件直线l ′的方程.(1)过点(-1,3),且与l 平行;(2)过点(-1,3),且与l 垂直.【解】 法一 由题设l 的方程可化为y =-34x +3,∴l 的斜率为-34.(1)由l ′与l 平行,∴l ′的斜率为-34.又∵l ′过(-1,3),由点斜式知方程为y -3=-34(x +1),即3x +4y -9=0.(2)由l ′与l 垂直,∴l ′的斜率为43,又过(-1,3),由点斜式可得方程为y -3=43(x +1),即4x -3y +13=0.法二 (1)由l ′与l 平行,可设l ′方程为3x +4y +m =0.将点(-1,3)代入上式得m =-9.∴所求直线方程为3x +4y -9=0.(2)由l ′与l 垂直,可设其方程为4x -3y +n =0.将(-1,3)代入上式得n =13.∴所求直线方程为4x -3y +13=0.章中,对称主要有以下四种:点点对称、点线对称、线点对称、线线对称,其中后两种可以化归为前两种类型,所以“点关于直线对称”是最重要的类型.转化思想是解决对称问题的主要思想方法,其他问题如角的平分线、光线反射等也可转化成对称问题.光线沿直线l 1:x -2y +5=0射入,遇到直线l :3x -2y +7=0后反射,求反射光线所在的直线方程.【思路点拨】 本题用光学原理得入射光线与反射光线关于直线l 对称,用求对称点的方法求出入射线上一点P 关于l 的对称点,再由两点式写出方程.【规范解答】 法一 由⎩⎨⎧ 3x -2y +7=0,x -2y +5=0得⎩⎨⎧ x =-1,y =2,即反射点M 的坐标为(-1,2).又取直线x -2y +5=0上一点P (-5,0),设点P 关于直线l 的对称点为P ′(x 0,y 0),由PP ′⊥l ,可知k PP ′=-23=y 0x 0+5, 而PP ′的中点Q 的坐标为⎝ ⎛⎭⎪⎫x 0-52,y 02,又Q 点在l 上,∴3·x 0-52-2·y 02+7=0. 联立⎩⎪⎨⎪⎧ y 0x 0+5=-23,32x 0-5-y 0+7=0,解得⎩⎪⎨⎪⎧ x 0=-1713,y 0=-3213,即P ′点坐标为⎝ ⎛⎭⎪⎫-1713,-3213. 反射光线过M (-1,2)和P ′⎝ ⎛⎭⎪⎫-1713,-3213. 根据直线的两点式方程可得反射光线所在直线的方程为29x -2y +33=0. 法二 设直线x -2y +5=0上任意一点P (x 0,y 0)关于直线l 的对称点P ′(x ,y ),则y 0-y x 0-x =-23.又PP ′的中点Q ⎝ ⎛⎭⎪⎫x +x 02,y +y 02在l 上,∴3×x +x 02-2×y +y 02+7=0,由⎩⎪⎨⎪⎧ y 0-y x 0-x =-23,3×x +x 02-y +y 0+7=0,得⎩⎪⎨⎪⎧ x 0=-5x +12y -4213,y 0=12x +5y +2813,代入直线x -2y +5=0整理得29x -2y +33=0即为所求的直线方程.求直线l 1:2x +y -4=0关于直线l :3x +4y -1=0的对称直线l 2的方程.【解】 解方程组⎩⎨⎧ 2x +y -4=0,3x +4y -1=0,得⎩⎨⎧ x =3,y =-2,所以直线l 1与l 相交,且交点为E (3,-2),E 也在直线l 2上,在直线l 1:2x +y -4=0上取点A (2,0),设点A 关于直线l 的对称点为B (x 0,y 0),于是有⎩⎪⎨⎪⎧ 3×2+x 02+4×0+y 02-1=0,y 0-0x 0-2=43,解得⎩⎪⎨⎪⎧ x 0=45,y 0=-85,即B ⎝ ⎛⎭⎪⎫45,-85. 故由两点式得直线l 2的方程为2x +11y +16=0.需选定一个标准,根据这个标准划分成几个能用不同形式解决的小问题,从而使问题得到解决.在本章中涉及到分类讨论的问题主要是由直线的斜率是否存在及直线的点斜式、斜截式、两点式、截距式的局限性引起的分类讨论问题.设直线l 的方程为(a +1)x +y +2-a =0(a ∈R )在两坐标轴上的截距相等,求直线l 的方程.【思路点拨】 分截距为零和不为零两类求解.【规范解答】 ①当2-a =0,即a =2时,直线经过原点,满足条件,此时直线的方程为:3x +y =0.②当a =-1时,直线在x 轴上无截距,不符合题意,故当a ≠-1且a ≠2时,由题意得:a -2a +1=a -2,解得:a =0.此时直线的方程为:x +y +2=0. 综上,所求直线方程为3x +y =0或x +y +2=0.过点P (-1,0),Q (0,2)分别作两条互相平行的直线,使它们在x 轴上的截距之差的绝对值为1,求这两条直线的方程.【解】 (1)当两条直线的斜率不存在时,两条直线的方程分别为x =-1,x =0,它们在x 轴上截距之差的绝对值为1,符合题意.(2)当两条直线的斜率存在时,设其斜率为k ,则两条直线的方程分别为y =k (x +1),y -2=kx .令y =0,得x =-1,x =-2k .由题意,得⎪⎪⎪⎪⎪⎪-1+2k =1,即k =1.所以所求直线的方程为y =x +1,y =x +2,即为x -y +1=0,x -y +2=0.综上可知,所求的直线方程为x =-1,x =0或x -y +1=0,x -y +2=0.。

高中数学必修2第三章直线与方程全套教案

高中数学必修2第三章直线与方程全套教案

高中数学:全套教案新课标人教A 版必修2讲义1: 空 间 几 何 体一、教学要求:通过实物模型,观察大量的空间图形,认识柱体、锥体、台体、球体及简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构.二、教学重点:让学生感受大量空间实物及模型,概括出柱体、锥体、台体、球体的结构特征.三、教学难点:柱、锥、台、球的结构特征的概括.四、教学过程:(一)、新课导入:1. 导入:进入高中,在必修②的第一、二章中,将继续深入研究一些空间几何图形,即学习立体几何,注意学习方法:直观感知、操作确认、思维辩证、度量计算.(二)、讲授新课:1. 教学棱柱、棱锥的结构特征:①、讨论:给一个长方体模型,经过上、下两个底面用刀垂直切,得到的几何体有哪些公共特征?把这些几何体用水平力推斜后,仍然有哪些公共特征?②、定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫棱柱. → 列举生活中的棱柱实例(三棱镜、方砖、六角螺帽).结合图形认识:底面、侧面、侧棱、顶点、高、对角面、对角线.③、分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等. 表示:棱柱ABCDE-A ’B ’C ’D ’E ’④、讨论:埃及金字塔具有什么几何特征?⑤、定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体叫棱锥.结合图形认识:底面、侧面、侧棱、顶点、高. → 讨论:棱锥如何分类及表示? ⑥、讨论:棱柱、棱锥分别具有一些什么几何性质?有什么共同的性质?★棱柱:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形★棱锥:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方.2. 教学圆柱、圆锥的结构特征:① 讨论:圆柱、圆锥如何形成?② 定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体叫圆柱;以直角三角形的一条直角边为旋转轴,其余两边旋转所成的曲面所围成的几何体叫圆锥.→结合图形认识:底面、轴、侧面、母线、高. → 表示方法③ 讨论:棱柱与圆柱、棱柱与棱锥的共同特征? → 柱体、锥体.④ 观察书P2若干图形,找出相应几何体;三、巩固练习:1. 已知圆锥的轴截面等腰三角形的腰长为 5cm,,面积为12cm,求圆锥的底面半径.2.已知圆柱的底面半径为3cm,,轴截面面积为24cm,求圆柱的母线长.3.正四棱锥的底面积为462cm ,侧面等腰三角形面积为62cm ,求正四棱锥侧棱.(四)、教学棱台与圆台的结构特征:①讨论:用一个平行于底面的平面去截柱体和锥体,所得几何体有何特征?②定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分叫做棱台;用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分叫做圆台.结合图形认识:上下底面、侧面、侧棱(母线)、顶点、高.讨论:棱台的分类及表示?圆台的表示?圆台可如何旋转而得?③讨论:棱台、圆台分别具有一些什么几何性质?★棱台:两底面所在平面互相平行;两底面是对应边互相平行的相似多边形;侧面是梯形;侧棱的延长线相交于一点.★圆台:两底面是两个半径不同的圆;轴截面是等腰梯形;任意两条母线的延长线交于一点;母线长都相等.④讨论:棱、圆与柱、锥、台的组合得到6个几何体. 棱台与棱柱、棱锥有什么关系?圆台与圆柱、圆锥有什么关系?(以台体的上底面变化为线索)2.教学球体的结构特征:①定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体,叫球体.结合图形认识:球心、半径、直径.→球的表示.②讨论:球有一些什么几何性质?③讨论:球与圆柱、圆锥、圆台有何关系?(旋转体)棱台与棱柱、棱锥有什么共性?(多面体)3. 教学简单组合体的结构特征:①讨论:矿泉水塑料瓶由哪些几何体构成?灯管呢?②定义:由柱、锥、台、球等几何结构特征组合的几何体叫简单组合体.4. 练习:圆锥底面半径为1cm cm,其中有一个内接正方体,求这个内接正方体的棱长. (补充平行线分线段成比例定理)(五)、巩固练习:1. 已知长方体的长、宽、高之比为4∶3∶12,对角线长为26cm, 则长、宽、高分别为多少?2. 棱台的上、下底面积分别是25和81,高为4,求截得这棱台的原棱锥的高3. 若棱长均相等的三棱锥叫正四面体,求棱长为a的正四面体的高.★例题:用一个平行于圆锥底面的平面去截这个圆锥,截得的圆台的上、下底面的半径的比是1:4,截去的圆锥的母线长为3厘米,求此圆台的母线之长。

人教版高中数学必修二第三章 直线与方程全章教案

人教版高中数学必修二第三章 直线与方程全章教案

人教版高中数学必修二第三章直线与方程全章教案目标3.1.1倾斜角与斜率课型新课在这节课中,学生将研究直线的倾斜角和斜率的概念,并掌握直线倾斜角的唯一性和直线斜率的存在性。

他们还将研究斜率公式的推导过程,并掌握过两点的直线的斜率公式。

教学内容备注1.自主研究2.质疑提问3.问题探究4.课堂检测5.小结评价3.1.2两条直线平行与垂直的判定课型新课在这节课中,学生将理解并掌握两条直线平行与垂直的条件,并能够运用条件判定两直线是否平行或垂直。

通过探究两直线平行或垂直的条件,培养学生运用正确知识解决新问题的能力,以及数形结合能力。

通过对两直线平行与垂直的位置关系的研究,培养学生的成功意识,合作交流的研究方式,激发学生的研究兴趣。

教学内容备注1.自主研究2.质疑提问3.问题探究4.课堂检测5.小结评价3.2.1直线的点斜式方程课型新课在这节课中,学生将理解直线方程的点斜式、斜截式的形式特点和适用范围,能正确利用直线的点斜式、斜截式公式求直线方程,并体会直线的斜截式方程与一次函数的关系。

教学内容备注1.自主研究2.质疑提问3.问题探究4.课堂检测5.小结评价3.2.2直线的两点式方程课型新课在这节课中,学生将掌握直线方程的两点式的形式特点及适用范围,了解直线方程截距式的形式特点及适用范围。

让学生在应用旧知识的探究过程中获得新的结论,并通过新旧知识的比较、分析、应用获得新知识的特点。

教学内容备注1.自主研究2.质疑提问3.问题探究4.课堂检测5.小结评价3.2.3直线的一般式方程课型新课在这节课中,学生将明确直线方程一般式的形式特征,会把直线方程的一般式化为斜截式,进而求斜率和截距,会把直线方程的点斜式、两点式化为一般式。

教学内容备注1.自主研究2.质疑提问3.问题探究4.课堂检测5.小结评价点斜式:y-y1=k(x-x1)。

斜截式:y=kx+b。

两点式:(y-y1)/(x-x1)=(y2-y1)/(x2-x1)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课题§3.1.1倾斜角与斜率课型新课
教学目标(1)正确理解直线的倾斜角和斜率的概念.(2)理解直线倾斜角的唯一性.(3)理解直线斜率的存在性.(4)斜率公式的推导过程,掌握过两点的直线的斜率公式.
教学过程教学内容备

一、自主学习
二、质疑提问
三、问题探究
四、课堂检测
五、小结评价
课题§3.1.2两条直线平行与垂直的判定课型新课
教学目标
(1)理解并掌握两条直线平行与垂直的条件,会运用条件判定两直线是否平行或垂直.
(2)通过探究两直线平行或垂直的条件,培养学生运用正确知识解决新问题的能力,以及数形结合能力.(3)通过对两直线平行与垂直的位置关系的研究,培养学生的成功意识,合作交流的学习方式,激发学生的学习兴趣.
教学过程教学内容备

一、自主学习
二、质疑提问
三、问题探究
四、课堂检测
五、小结评价
课题§3.2.1直线的点斜式方程课型新课
教学目标(1)理解直线方程的点斜式、斜截式的形式特点和适用范围;(2)能正确利用直线的点斜式、斜截式公式求直线方程;(3)体会直线的斜截式方程与一次函数的关系.
教学过程教学内容备

一、自主学习
二、质疑提问
三、问题探究
四、课堂检测
五、小结评价
课题§3.2.2直线的两点式方程课型新课
教学目标(1)掌握直线方程的两点式的形式特点及适用范围;(2)了解直线方程截距式的形式特点及适用范围。

(3)让学生在应用旧知识的探究过程中获得新的结论,并通过新旧知识的比较、分析、应用获得新知识的特点.
教学过程教学内容备

一、自主学习
二、质疑提问
三、问题探究
四、课堂检测
五、小结评价
课题§3.2.3直线的一般式方程课型新课
教学目标(1)明确直线方程一般式的形式特征;(2)会把直线方程的一般式化为斜截式,进而求斜率和截距;(3)会把直线方程的点斜式、两点式化为一般式.
教学过程教学内容备

一、自主学习
二、质疑提问
三、问题探究
四、课堂检测
五、小结评价
00
11
1212
().
.
.
1.
0.
y y k x x
y kx b
y y x x
y y x x
x y
a b
Ax By C
-=-
=+
--
=
--
+=
++=
点斜式:
斜截式:
两点式:
截距式:
一般式:
课题§3.3.1 两条直线的交点坐标课型新课
教学目标(1)直线和直线的交点,二元一次方程组的解。

(2)学习两直线交点坐标的求法,以及判断两直线位置的方法.
(3)掌握数形结合的学习法.(4)组成学习小组,分别对直线和直线的位置进行判断,归纳过定点的直线系方程.
教学过程教学内容备

一、自主学习
二、质疑提问
三、问题探究
四、课堂检测
五、小结评价1、直线与直线的位置关系及其判断(解方程组求交点坐标、系数是否成比
例)
2、求两直线的交点坐标,解二元一次方程组,能将几何问题转化为代数问
题来解决,并能进行应用。

3、直线系方程及应用。

课题§3.2.2 两点间的距离课型新课
教学目标(1).掌握直角坐标系两点间的距离,用坐标证明简单的几何问题。

(2).通过两点间距离公式的推导,能更充分体会数形结合的优越性。


(3).体会事物之间的内在联系,能用代数方法解决几何问题。

教学过程教学内容备

一、自主学习
二、质疑提问
三、问题探究
四、课堂检测。

相关文档
最新文档