第一章有理数复习(两课时)
第一章__有理数复习
1、计算:
(1)( 4) 5
=-20
(5)(4) 5 (0.25) =5
( 2)( 5) ( 7) =35 3 8 (3)( ) ( ) =1 8 3 1 ( 4)( 3) ( ) =1 3
3 5 ( (6) ) ( ) (2) 5 6
4
-4 -3 –2 –1
0
1
2
3
4
• [基础练习] • 1☆-5的相反数是 5 ;-(-8)的相反数 是 -8 ; 6 - [+(-6)]=________; • 2☆若a和b是互为相反数,则2(a+b)=(C) A. –2a B .2b C. 0 D. 任意有理数 13 • 3★(1)如果a=-13,那么-a=______; 5.4 (2)如果-a=-5.4,那么a=______; 6 (3)如果-x=-6,那么x=______; -9 (4)-x=9,那么x=______.
即
1、填空: –2 (1)3-5=__; 8 (2)3-(-5)=__; –8 (3)(-3)-5=___;
减去一个数,等于加上这个数的相反数.
a-b=a+(-b)
2 (4)(-3)-(-5)=____;
(5)-6-(-6)=___; 0
3)有理数的乘法法则
两数相乘,同号得正,异号得负, 并把绝对值相乘; 任何数同0相乘,都得0. ① 几个不等于0的数相乘,积的符号 由负因数的个数决定,当负因数有奇 数个时,积为负;当负因数有偶数个 时,积为正. ② 几个数相乘,有一个因数为0, 积就为0.
-3 5、若(x-1)2+|y+4|=0,则x+y=______
-1或-5 6、已知|x|=3,|y|=2,且x<y,则x+y=____
第一章 有理数复习
第一章 有理数复习主备人:黄玲 审核人:督办领导: 使用时间:内容分析:本章概述了正数与负数、有理数、相反数、绝对值等概念,以及有理数的加、减、乘、除、乘方的运算方法与运算律。
【学习目标】1、理解五个重要概念:有理数、数轴、相反数、绝对值、倒数。
2、使学生提高辨别概念能力,能正确地使用这些概念解决问题。
3、能正确比较两个有理数的大小。
4、会进行有理数的加、减、乘、除、乘方的运算5、鼓励学生自己回顾本单元的学习内容。
并与同伴交流在本单元学习中的收获和不足,培养他们的反思意识。
【学习重难点】重点:负数、相反数、绝对值等概念的理解与应用,有理数的运算 难点:对绝对值概念的理解与应用,乘方运算 【教学过程设计】 一、前置学习 (一)【正负数】_____________统称整数,试举例说明 _____________统称分数,试举例说明 ____________统称有理数。
有理数的分类五种:1、把下列各数填在相应额大括号内:1,-0.1,-789,25,0,-20,-3.14,-590,6/7正整数集{ …} 正有理数集{ …} 负有理数集{ …} 负整数集{ …} 自然数集{ …} 正分数集{ …} 负分数集{ …}2、某种食用油的价格随着市场经济的变化涨落,规定上涨记为正,则-5.8元的意义是 ;如果这种油的原价是76元,那么现在的卖价是 。
(二)【数轴】 规定了 、 、 的直线,叫数轴 1、如图所示的图形为四位同学画的数轴,其中正确的是( )2、在数轴上画出表示下列各数的点,并按从大到小的顺序排列,用“>”号连接起来。
4,-|-2|, -4.5, 1, 0有理数有理数3、下列语句中正确的是( )A、数轴上的点只能表示整数 B、数轴上的点只能表示分数C、数轴上的点只能表示有理数 D、所有有理数都可以用数轴上的点表示出来 4、①比-3大的负整数是____;②已知m是整数且-4<m<3,则m为______。
《有理数》教案 (新版)新人教版
本资源为2021年制作,是一线教师经过认真研究,综合教学中遇到的各种问题,总结而来。
是一个非常实用的资源。
资源以课本为依托,以教学经验为蓝本,经过二次备课和实践研究,将教学环节进一步细化,综合同课异构的课堂结构,统一编写而成。
欢迎您下载使用!第一章有理数单元教学内容1.本单元结合学生的生活经验,列举了学生熟悉的用正、负数表示的实例,•从扩充运算的角度引入负数,然后再指出可以用正、负数表示现实生活中具有相反意义的量,使学生感受到负数的引入是来自实际生活的需要,体会数学知识与现实世界的联系.引入正、负数概念之后,接着给出正整数、负整数、正分数、负分数集合及整数、分数和有理数的概念.2.通过怎样用数简明地表示一条东西走向的马路旁的树、•电线杆与汽车站的相对位置关系引入数轴.数轴是非常重要的数学工具,它可以把所有的有理数用数轴上的点形象地表示出来,使数与形结合为一体,揭示了数形之间的内在联系,从而表达出以下4个方面的作用:〔1〕数轴能反映出数形之间的对应关系.〔2〕数轴能反映数的性质.〔3〕数轴能解释数的某些概念,如相反数、绝对值、近似数.〔4〕数轴可使有理数大小的比较形象化.3.对于相反数的概念,•从“数轴上表示互为相反数的两点分别在原点的两旁,且离开原点的距离相等〞来说明相反数的几何意义,同时补充“零的相反数是零〞作为相反数意义的一局部.4.正确理解绝对值的概念是难点.根据有理数的绝对值的两种意义,可以归纳出有理数的绝对值有如下性质:〔1〕任何有理数都有唯一的绝对值.〔2〕有理数的绝对值是一个非负数,即最小的绝对值是零.〔3〕两个互为相反数的绝对值相等,即│a│=│-a│.〔4〕任何有理数都不大于它的绝对值,即│a│≥a,│a│≥-a.〔5〕假设│a│=│b│,那么a=b,或a=-b或a=b=0.三维目标1.知识与技能〔1〕了解正数、负数的实际意义,会判断一个数是正数还是负数.〔2〕掌握数轴的画法,能将数在数轴上表示出来,•能说出数轴上点所表示的解.〔3〕理解相反数、绝对值的几何意义和代数意义,•会求一个数的相反数和绝对值.〔4〕会利用数轴和绝对值比较有理数的大小.2.过程与方法经过探索有理数运算法那么和运算律的过程,体会“类比〞、“转化〞、“数形结合〞等数学方法.3.情感态度与价值观使学生感受数学知识与现实世界的联系,鼓励学生探索规律,并在合作交流中完善标准语言.重、难点与关键1.重点:正确理解有理数、相反数、绝对值等概念;会用正、•负数表示具有相反意义的量,会求一个数的相反数和绝对值.2.难点:准确理解负数、绝对值等概念.3.关键:正确理解负数的意义和绝对值的意义.课时划分1.1 正数和负数 2课时1.2 有理数 5课时1.3 有理数的加减法 4课时1.4 有理数的乘除法 5课时1.5 有理数的乘方 4课时第一章有理数〔复习〕 2课时[教学反思]学生对展开图通过各种途径有了一些了解,但仍不能把平面与立体很好的结合;在遇到问题时,多数学生不愿意自己探索,都要寻求帮助。
人教版七年级数学上册第一章《有理数》复习PPT课件
2/ 3 化简(1)-|-2/3|=___ ;
1/
由绝对值求数
3. 若|a|=3,则a=____ -1 ±3 ;|a+1|=0,则a=____ 若|a+1|=3,则a=____ 2,-4
1 4、已知a>0,ab<0,化简|a-b+4|-|b-a-3|=_____ 。
5、若
a a
> ,若 =1,则a____0
×
×
考点二:有理数的分类
一、按整数、分数分类:
整数
正整数 0 负整数 正分数 负分数
二、按正数、负数分类:
正有理数
正整数
正分数
有 理 数
有 理 数
0 负有理数
分数
负整数 负分数
1、0和正数 叫非负数 2、0和负数 叫非正数
3、0和负整数 叫非正整数
4、0和正整数叫非负整数 也叫自然数
分数 。 5、有限小数和无限循环小数属于_____
下列各式中用了哪条运算律?如何用字母表示? 1、(-4) × 8=8 ×(-4) ab=ba 乘法交换律: 2、[(-8)+5]+(-4)=(-8)+[5+(-4)] 加法结合律:( a+b)+c=a+(b+c) 2 1 2 1 3、 (6) [ ( )] (6) (6) ( ) 3 2 3 2 分配律: a(b+c)=ab+bc 4、[29×(-5/6)] ×(-12)=29×[(-5/6) ×(-12)] 乘法结合律:(ab)c=a(bc) 5、(-8)+(-9)=(-9)+(-8) 加法交换律: a+b=b+a
乘法三结合 1、积为整数结合 解 题 技 能
第一章有理数复习
第一章:有理数复习【一】知识要点 【1】有理数的分类 1.2.按正负分【例题1】(1)把下列各数进行分类 ① 0 ②-5 ③ 1 ④ 1.5 ⑤2 ⑥ 722- ⑦ -(-3)⑧ 312--⑨ -12018 ⑩ (-2)3整数集合( ) 分数集 合( )非负整数集合 ( ) 非负数集合( ) (2)下列说法正确的有( )个①0是最小的数 ②绝对值最小的数是0 ③任何数的绝对值都是正数 ④最大的负整数是-1 ⑤倒数等于它本身的有1,-1,0有理数正有理数负有理数温馨提示: 1.化简结果中含有π或无限不循环的小数都不是有理数 2.正数和零统称非负数,负数和零统称非正数 正整数正分数 负整数 负分数有理数【2】相关概念1.数轴:规定了原点、正方向、单位长度的一条直线2.相反数:3.绝对值①几何定义:一个数a 的绝对值就是数轴上表示这个数a 的点离开原点的距离,绝对值越大离原点越远②代数定义:⎩⎨⎧≤-≥=)0()0(a a a a a (注意0)4.倒数:若两个数的积是1,那么这两个数互为倒数5.科学计数法6.近似数和有效数字7.数的大小比较方法:数轴上从左到右依次递增,数轴上的点与实数..是一一对应 ①代数定义:只有符号不同......的两个数叫做相反数 ②几何定义:数轴上在原点的两旁,到原点距离相等的两个点代表的数互为相反数③求一个数或式子的相反数,就在它的前面加上‘-’④a 的相反数是-a ,a-b 的相反数是-(a-b )=b-a,a+b 的相反数是-(a+b)=-a-b (注意括号),相反数等于它本身的只有0 ⑤性质:若a,b 互为相反数,则a+b=0,或a=-b 1、非负数的绝对值等于它本身,非正数的绝对值是它的相反数 2、绝对值符号去掉规律:非负数各项不变号,非正数各项都变号 3、一个数的绝对值(或者平方)等于正数.............,那么这个数有两个..①a,b 互为倒数 ab=1②倒数等于它本身只有±1,切记0没有倒数形式:ax10n (a 是整数位数只有一位的数,n 是整数), 当a ≥10时,n=原数整数位数-1 , 当a <1时,n=-(原数第一个非0数字前所有0的个数) ①保留近似数的方法有:四舍五入法、进一法、去尾法 ②近似数可以用计数单位或科学计数法表示 ③有效数字是从左边第一个不是零的数字起以后的所有数字都是这个数的有效数字 ④通过测量得到的数都是近似数 ①差法 ②数轴法 ③两个负的绝对值法 ④平方法 ⑤商法8.非负数性质【例题2】正负数应用(1)如果提高10分表示+10分,那么下降8分表示____,不升不降用___表示. (2)巴黎与北京的时间差为-7时(正数表示同一时刻比北京时间早的时数),如果北京时间是7月2日14:00,那么巴黎时间是()A. 7月2日21时B. 7月2日7时C. 7月1日7时D. 7月2日5时 (3)某项科学研究,以45分钟为1个时间单位,并记每天上午10时为0,10时以前记为负,10时以后记为正,例如9:15记为-1,10:45记为1等等,依此类推,上午7:45应记为【例题3】数轴、相反数、绝对值、倒数、非负数应用(1)已知 a ,b 互为相反数,c ,d 互为倒数,m-1的绝对值是2,则m dccd b a -+-+222=(2)在数轴上到表示-1的点的距离为7个单位长度的点有_____个,它们表示27(4)绝对值不大于2的整数有________,它们的和是 ,积是 ((6)已知|x|=4,|y|=2且y <0,则x+y 的值为(7) ①π-14.3=②20171-2018131-4121-311-21++++。
有理数全章复习(按知识点分类复习)
第一章 有理数全章复习考点一:用正负数表示相反意义的量1、 七年级一班某次数学测验的平均成绩为80分,数学老师以平均成绩为基准,记作0,把小龙、小聪、小梅、小莉、小刚这五位同学的成绩简记为+10,–15,0,+20,–2.问这五位同学的实际成绩分别是多少分2、如果规定收入为正,支出为负.收入500 元记作500元,那么支出237元应记作( ) A .-500元B .-237元C .237元D .500元3.有4包真空小包装火腿,每包以标准克数〔450克〕为基准,超过的克数记作正数,不足的克数记作负数,以下数据是记录结果,其中表示实际克数最接近标准克数的( )A .+2B .-3C .+3D .+44.某商店出售三种不同品牌的大米,米袋上分别标有质量如下表:现从中任意拿出两袋不同品牌的大米,这两袋大米的质量最多相差 ( )A .B .C .D .考点二:有理数的分类1、_______、_______和_________成为整数,__________和__________统称为分数。
___________和_________统称为有理数。
练习稳固:1、在–2,+3.5,0,32-,–0.7,11中.负分数有……………………〔 〕 A 、l 个 B 、2个 C 、3个 D 、4个2、不超过3)23(-的最大整数是………………………………………〔 〕 A 、–4 B –3 C 、3 D 、43.在数8.3、-4、0、-〔-5〕、+6、-|-10|、1中,正数有____ 个; 4、以下说法中正确的个数有 ( )①一个有理数不是整数就是分数 ②一个有理数不是正数就是负数 ③一个整数不是正的,就是负的 ④一个分数不是正的,就是负的A 1B 2C 3D 45、在数+8.3,-4,-0.8,0,90,-|-24|中,__________是正数,____________不是整数。
6、比132-大而比123小的所有整数的和为 __________ 。
人教版-数学-七年级上册-第一章 有理数 单元复习导学案及教学反思(第2课时)
5.计算:
(1) (2)
教
与
学
反
思
你有什么收获?
教学反思:
全章复习的目的是使学生进一步系统掌握基础知识、基本技能和基本方法,进一步提高综合运用数学知识灵活地分析和解决问题的能力因此,在选择教学内容时我们注意了下面两个方面:第一,既加强基础,又提高能力和发展智力;第二,既全面复习,又突出重点。
(六)、科学记数法、近似数及有效数字
(1)把一个大于10的数记成a×10n的形式(其中a是整数数位只有一位的数),叫做科学记数法.
(2)对一个近似数,从左边第一个不是0的数字起,到末位数字止,所有的数字都称为这个近似数的有效数字。
达
标
测
评
1.33=;( )2=;-52=;22的平方是;
2.下列各式正确的是()
习
过
程
.知识回顾
(五)、有理数的运算
(1)有理数加法法则:
(2)有理数减法法则:
(3)有理数乘法法则:
(4)有理数除法法则:
(5)有理数的乘方:
求的积的运算,叫做有理数的乘方。
即:an=aa…a(有n个a)
从运算上看式子an,可以读作;从结果上看式子an可以读作.
有理数混合运算顺序:(1)(2)(3)
7.近似数0.4062精确到位,有个有效数字.
8. 5.47×105精确到位,有个有效数字
【拓展训练】:
1. 3.4030×105保留两个有效数字是,精确到千位是。
2.用四舍五入法求30951的近似值(要求保留三个有效数字),结果是。
3.已知 =3, =4,且 ,求 的值。
4.下列说法正确的是()
A.如果 ,那么 B.如果 ,那么
第1章有理数复习(2)
92 51 41
(3) 0.5
2 4 1 1 3 5 2 3
1 2 4 1 1 ( ) ( ) ( ) 2 3 5 2 3
b
(b≠0)
法则2:
两数相除,同号得正,异号得负,并把绝 对值相除。0除以任何一个不等于0的数,都 得0。
例3
计算:
3 9 3 20 4 5 20 5 94 3
(-12)÷(-3) 4 =
24 3 2 2 16
3 1 1 2 1 2 4 2 4
1 1 1 1 4 4 2 6 12
3 4 3 5 3 6
2
课堂作业:
1 ( 2 ) 8 ( ) 5 ( 0.25) 4 1 1 ( 3 ) 0.5 3 (2.75) 7 4 2
解:(1)−(−12) − ( − 25) − 18+
( − 10) = 12+25+(−18)+(−10) = (12+25)+ [(−18)+(−10)] = 37+(−28) = 9
1 (2) ( ) 5 ( 0.25) 8 4 1 8+( )( 5 0.25 + ) 4 1 8+0.25 +[( )( 5 ] ( ) + ) 4 33 21 ( )3 4 4
1 1 (3) 0.5 3 ( 2.75) 7 4 2 1 13 11 15 ( ) ( ) 2 4 4 2 1 13 11 15 [( ) ( ) ( )] 2 4 4 2 26 15 ( ) 4 2 1
第一章《有理数》复习总结
第一章《有理数》复习总结有理数是整数和分数的统称,包括正数、负数和零。
有理数可以表示为p/q的形式,其中p和q都是整数,且q不等于0。
p称为分子,q称为分母。
1.有理数的大小比较:(1)对于同号的有理数,绝对值越大,数值越大;(2)对于异号的有理数,正数大于负数,绝对值越小,数值越大。
2.有理数的加减乘除:(1)加法:拆分有理数,按照整数部分和小数部分相加;(2)减法:将减数变为相反数,再进行加法运算;(3)乘法:分别计算分子和分母的乘积,然后化简;(4)除法:将除数变为倒数,再进行乘法运算。
3.有理数的约分和化简:(1)约分:将分子和分母同时除以最大公因数,使得分数不可再约分;(2)化简:将带有分数线的有理数化为最简形式。
4.有理数的绝对值:(1)正数的绝对值是其本身;(2)负数的绝对值是其相反数;(3)零的绝对值是零。
5.有理数的相反数:(1)正数的相反数是负数;(2)负数的相反数是正数;(3)零的相反数是零。
6.计算混合数的值:(1)将整数部分和小数部分分开,分别计算;(2)将结果相加或相减,得到最终的结果。
7.有理数的乘方:(1)有理数的整数次方,将底数连乘或连除相应次数;(2)底数是分数,将底数化为整数的形式进行计算。
8.有理数的乘法逆元:(1)有理数的乘法逆元是其倒数;(2)除零外,任意非零有理数的乘法逆元存在。
9.有理数的混合运算:(1)先进行括号内的运算,再进行乘除法运算,最后进行加减法运算;(2)若有多个加法或减法运算,按照从左到右的顺序进行。
10.有理数在坐标轴上的表示:(1)正数表示点在原点的右侧;(2)负数表示点在原点的左侧;(3)零表示点在原点。
有理数在数学中有着广泛的应用,比如在数轴上定位、计算中的加减乘除、分数和小数的运算等。
学好有理数不仅需要掌握各种运算规则和性质,还需要大量的练习和实践。
通过不断的练习和思考,可以提高解决实际问题的能力,培养思维和逻辑思维能力。
总之,有理数作为数学的一个重要概念,是我们平日生活中接触最多的数的形式。
初中数学第一章_有理数(复习)
考点综述
有理数是初中数学的基础内容,中考试题 中是必考内容之一,主要题型以填空、选 择、计算为主,主要考查有理数及其相关 概念,如:相反数、绝对值、倒数,会用 数轴比较大小,有理数的混合运算,科学 记数法的意义以及表示方法,近似数和有 效数字的意义,还有会按照题目要求取近 似数。
一、 有 理 数
1. 正整数、零、负整数 _____________统称整数,试举例说明。 2. 正分数、负分数 _____________统称分数,试举例说明。 整数、分数 3. _____________统称有理数。
有理数的分类表
有 理 数 整数 正整数 0 负整数 正分数
自然数
分数
负分数
有理数的分类
• 有理数的另一种分类
③用-a表示的数一定是( D )
A .负数 B. 正数 C .正数或负数 D.都不对 ④一个数的相反数是最小的正整数,那么这个数 是(A ) A .–1 B. 1 C .±1 D. 0
3.①互为相反的两个数在数轴上位于原点两旁(×) × ②在一个数前面添上“-”号,它就成了一个负数( ) ③ 只要符号不同,这两个数就是相反数(× )
选择题: 在数轴上,原点及原点左边所表示的数是( D ) A整数 B负数 C非负数 D非正数 下列语句中正确的是( D ) A数轴上的点只能表示整数 B数轴上的点 只能表示分数 C数轴上的点只能表示有理 数 D所有有理数都可以用数轴上的点表示 出来
ቤተ መጻሕፍቲ ባይዱ
三 、 相反数
5 -8 1. -5的相反数是__;-(-8)的相反数是__;a的 -a 相反数是__;0的相反数是__;-1/2的相反数 0 2 ±1 的倒数是__ ;倒数等于它本身的是___。 2. ①的若a和b是互为相反数,则a+b=( ) C A. –2a B .2b C. 0 D. 任意有理数 A 3. ②下列说法正确的是( ) A –1/4的相反数是0.25 ,B 4的相反数是-0.25, C 0.25的倒数是-0.25, D 0.25的相反数的倒数是-0.25
第一章有理数 单元复习(二)课件2022-2023学年人教版数学七年级上册
( 6)( 5) 52
3
二.有理数的乘除法
3 . 有 理 数 的 乘 除 混 合 运 算 乘除法统一为乘法
例2 计算:( 3) ( 7) (0.25) 7
45
2
解:原式=
(
3) ( 7) (4) 2
45
7
3 7 4 2 45 7
3 4 7 2 4 5 7
有理数 单元复习(二)
学习目标: 熟练地掌握有理数的加、减、乘、除、乘方及简单的
混合运算.
学习重点: 有理数的运算.
知识结构
有理数的运算
加法
转化 减法
交换律 结合律
分配律
乘法 乘方
除法 转化
一.有理数的加减法 1 . 有 理 数 的 加 法 先定符号,再算绝对值
(1)同号两数相加,取相同符号,并把绝对值相加.
43
3
解:原式= 8 1 2 2 0.25 3 1
43
3
对多个有理数相加减的题目,
8 1 0.25 2 2 3 1
4
33
要观察数的特征,要利用运 算律使计算简便.
86
2
四.有理数的混合运算
例4 计算:(2)( 7 3 5) (24)
12 4 6
解:原式= ( 7 9 10) (24)
12. 在数+8.3,-4,-0.8, 1 ,0,90, 34 ,-|-24|中,负数有______________________________,
5
3
分数有______________________________.
13. 某商店出售三种品牌的洗衣粉,袋上分别标有质量为(500±0.1) g,(500±0.2) g,(500±0.3) g 的
第一章有理数复习(公开课)
一、有理数的基本概念
1.正、负数 2.有理数 4.互为相反数 5.互为倒数 6.有理数的绝对值 7.有理数大小的比较 8.科学记数法、近似数
3.数轴
二、有理数的运算
加、减、乘、除、乘方运算
正数和负数
1.正数 大于0的数叫做正数
根据需要有时在正数前面也加上“+” 号
2.负数 在正数前面加“—”的数叫做负数
科学记数法、近似数
2..与实际完全符合的数是准确数,接近实际但又与实际 数值有差别的数叫近似数。
3.精确度: 一个近似数四舍五入到哪一位,就称这个数
精确到哪一位.
65.342(精确到十分位) 1.3999(精确到百分位) 近似数3.5万精确到 位 近似数5.47精确到 位
≈65.3 ≈1.40 千位 百分位
数轴
有理数a、b在数轴上的位置如图如图所示
. ..
b -a 0
.
a
-. b
1.指出a、b的符号
2.比较a、b、- a、-b的大小,并用大于号连接。
解:1. a的符号为“+”、b的符号为“-”
2. -b>a>-a>b
相反数
只有符号不同的两个数,其中一个是另一个的相反数。
1)数a的相反数是-a (a是任意一个有理数); 2)相反数是它本身的数是 0 ,一个数乘以-1就
3 , 0.6 , - )
4
负数集合:{-10,-8, -14 ,
3 4
,···}
整数集合:{ -10,6,|-5| ,40,-8,-(-3), 0,
3 -14, ···} 正分数集合{:, 0.6 ,
-
)
···}
4
数轴
17有理数复习1 (2)
针对性训练:
1、下列说法是否正确,请把错误的改正过来。
⑴0除以任何数都得零;()
⑵若a、b为有理数,且ac,b≠0,则a+b≠0;()
⑶如果有理数a≠0,则a×a>0;()
⑷ 的值相等;()
2、选择题:
⑴一个数的偶次幂与它的奇次幂互为相反数,这个数是()
A、1 B、-1 C、0 D、-1或0
⑵如果a、b互为相反数,x、y互为倒数,m的绝对值为1,那么代数式 的值是()
A、0 B、1 C、-1 D、2
⑶如果x<0,y>0,且|x|>|y|,那么x+y是()
A、正数B、负数C、0 D、正、负不能确定
(4)注意运算顺序,运算时先算乘方,如3×52=3×25=75;
(5)注意积与幂的区别:如2×2×2=8,23= 8,前者的8是积(乘法的结果),后者的8是幂(乘方的结果)
经典考题剖析:
1、今年我市二月份某一天的最低气温为-5oC,最高气温为13 oC,那么这一天的最高气温比最低气温高()
A.-18oC B.18oC C.13oC D.5oC
2、生物学指出,在生态系统中,每输人一个营养级的能量,大约只有10%的能量能够流动到下一个营养级,在H1→H2→H3→H4→H5→H6这条生物链中,(Hn表示第n个营养级,n=l,2,…,6),要使H6获得10千焦的能量,需要H1提供的能量约为()千焦
A.104B.105C106D 107
3、用四舍五入法把3.1415926精确到千分位是_______,用科学记数法表示302400,应记为_______,近似数3.0×105精确到_______位
七年级第一章有理数全章复习
七年级第一章有理数全章复习
第一章有理数
一、有理数分类
复习练习:
1、下面关于有理数的说法正确的是( A )
A. 整数集合和分数集合合在一起就是有理数集合
B. 正数集合与负数集合合在一起就构成整数集合
C. 正数和负数统称为有理数
D. 正数、负数和零统称为有理数
2、若两个有理数的和是正数,那幺一定有结论( D )
A. 两个加数都是正数
B. 两个加数有一个是正数
C. 一个加数正数,另外一个加数为零
D. 两个加数不能同为负数
4. 下面说法正确的有( B )
①一个有理数不是整数就是分数②一个有理数不是正数就是负数③一个整数不是正数就是负数④一个分数不是正数就是负数
A.1 个
B.2 个
C.3 个
D.4 个
二、数轴
1、像这样规定了原点、正方向和单位长度的直线叫做数轴.
2、数轴的三要素:原点、正方向、单位长度,缺一不可.
3、在数轴上比较两个有理数大小的法则:
①在数轴上表示的两个数,右边的数总比左边的大。
第一章有理数复习学案
第一章有理数复习学案篇一:第一章有理数复习学案(共三课时)第一章有理数的回顾教学目标:1:识记有理数的基本概念;2:能运用相关基础知识解决简单的数学问题;3:掌握并会运用有理数的运算规则和运算律进行计算。
教学重点和难点:有理数的基本概念和算法。
教学过程:1.它们被称为倒数。
一个与另一个相反。
a的反数是(a是任意有理数);0的对立面是若a、b互为相反数,则.若a+b=0,则2.数字轴上代表数字a点和原点的数字a的绝对值称为数字a。
记住做| a |。
由绝对值的定义可得:|a-b|表示数轴上a点到b点的。
正数的绝对值就是它;如果a>0,则a=a;一个负数的绝对值是它的;若a<0,则a=-a;一0的绝对值是.若a=0,则a=0;1)数字轴比较:在数轴上的两个数,右边的数总比左边的数;正数都大于,负数都小于;正数一切负数;2)两个负数,也就是说,如果a<0,B<0,a聚焦于B,那么a<B3)做差法:∵a-b>0,∴;4)商法:∵ A/b>1,b>0,∵八:科学记数法大于一0的数字以的形式记录,其中A为(1?A<10)。
这种计数方法叫做科学计数法,N是一个正整数。
注意:指数n与原数整数位数之间的关系。
同步测试:(1)使用科学符号表示以下数字:230000=134000000000=(2)以下用科学符号表示的数字是什么?364.315×10=1.02×10=九:大致数字接近准确数而不等于准确数的数。
同步测试:如果以下问题中的数据准确,则为()a.今天的气温是28cb.月球与地球的距离大约是38万千米c、小明身高约148厘米。
有800名七年级学生十:有效数字从一个数字来看,所有数字都是这个数字的有效数字。
近似数与准确数的接近程度可用精确度表示。
例如,如果近似数字为20400,则它有一个最接近的有效数字2例2。
在相应的集合中填写以下数字:1,-0.20,31,325,-789,0,-23.13,0.618,-2021.π5?};?};?};?}.整数集:{负集:{分数集:{有理集:{例3、按规律填数:(1)2,7,12,17,(),(),??(2)1,2,4,8,16,(),(),??例4。
第一章 有理数复习导学案(2课时)
第一章有理数复习导学案⑴一.具有相反意义的量与正负数1. 小明在一条东西走向的道路上的一棵梧桐树下,先向东走了12m,再向西走了21m,又向东走了30m,再向西走了17m,此时,小明在梧桐树的什么方向,距离梧桐树多远?2. 一批螺帽产品的内径要求可以有±0.02 mm的误差,现抽查5个样品,超过规定的毫米值记( ).A.1个B.2个C.3个D.5个二.有理数的概念与分类__________________统称有理数。
有理数有两种分类方式,分别是:__________________________________________⎧⎧⎪⎪⎨⎪⎪⎪⎨⎩⎪⎧⎪⎨⎪⎩⎩有理数或___________________________________⎧⎧⎨⎪⎩⎪⎪⎨⎪⎧⎪⎨⎪⎩⎩有理数3. 将下列各数填入相应的集合中:15、-15、-5、215、138-、0.1、0、-5.32、-80、123、-2.333. 正数集合:{…}负数集合:{…}整数集合:{…}分数集合:{…}正整数集{…};负分数集{…}4. 最大的负整数是;最小的正整数是;最大的非正数是;最大的非负数是.5.下面说法中正确的是( ).A.正整数和负整数统称整数B.分数不包括整数C.正分数,负分数,负整数统称有理数D.正整数和正分数统称正有理数三.数轴规定了、、的直线,叫数轴6. 数轴上表示-3的点离开原点的距离是_______个单位长度;数轴上与原点相距3个单位长度的点有________个,它们表示的数是_________.7.下列语句中正确的是()A.数轴上的点只能表示整数B.数轴上的点只能表示分数C.数轴上的点只能表示有理数D.所有有理数都可以用数轴上的点表示出来四.相反数像2和-2、-5和5、2.5和-2.5这样,只有不同的两个数叫做互为相反数;0的相反数是.一般地:若a为任一有理数,则a的相反数为.表示互为相反数的两个点(除0外)分别在原点O的两边,并且到原点的距离相等;互为相反数的两个数,和为0.8. a-b的相反数是.-(-5)= ;- (+4)= .9. 如果-a=-9,那么- a的相反数是.10. -a表示的数是()A.负数B.正数C.正数或负数D. a的相反数11. 下面各组数中,互为相反数的有( ).21①和21-②-(-6)和+(-6) ③-(-4)和+(+4) ④-(+1)和+(-1)⑤215+和+)215(-⑥137-和1(3)7--A .4组B .3组C .2组D .1组12.下列说法中正确的有( )①-3和+3互为相反数;②符号不同的两个数互为相反数;③互为相反数的两个数必定一个是正数,一个是负数;④的相反数是-3.14;⑤一个数和它的相反数不可能相等.A .0个B .1个C .2个D .3个或更多13.已知-1<a <0<1<b ,请按从小到大的顺序排列-1,-a ,0,1,-b 为 .14.在数轴上画出表示下列各数的点,并按从大到小的顺序排列,用“>”号连接起来. 4,-(-2), -4.5, 1, 0五.绝对值一般地,数轴上表示数a 的点与原点的 叫做数a 的绝对值,记作∣a ∣;一个正数的绝对值是 ;一个负数的绝对值是它的 ;0的绝对值是 . 两个相反数的绝对值相等.任一个有理数a 的绝对值用式子表示就是: .⑴当a 是正数(即a >0)时,∣a ∣= ;⑵当a 是负数(即a <0)时,∣a ∣= ; ⑶当a =0时,∣a ∣= ;以上结论反过来说........,也成立.... 15.绝对值小于4的整数中,最大的整数是______,最小的整数是______.16.下列判断中,错误的是( ).A .一个正数的绝对值一定是正数B .一个负数的绝对值一定是正数C .任何数的绝对值都是正数D .任何数的绝对值都不是负数17.若|x |=|y |,则x ,y 的关系是______.18.如果|x |=2,那么x =______;如果|-x |=2,那么x =______.19.当|a |=a 时,则a ______.绝对值最小的数是 .20.若|a -2|+|b +3|=0,则a =______,b =______.21.已知|x |=2,|y |=5,且x >y ,则x =______,y =______.22.如果3a >,则3______a -=,3______a -=23.如果22a a -=-,则a 的取值范围是( )A .a >0B .a ≥0C .a ≤0D .a <0.24.下列关系一定成立的是( ).A .若|m |=|n |,则m =nB .若|m |=n ,则m =nC ..若|m |=-n ,则m =nD .若m =-n ,则|m |=|n |25.式子|2x -1|+2取最小值时,x 等于( ).A .2B .-2C .21D .21- 26.若|x |>3,则x 的范围是______.27.若|x |+3=|x -3|,则x 的取值范围是______.28.若a a ≥,则a 的取值范围是: ;若a a ≤,则a 的取值范围是: .29. 若1aa =,则a 的取值范围是: ;若1aa =-,则a 的取值范围是: .30. 比较大小:-65与-7631. 已知-1<x <3,化简:215x x x --++-.32. 若│3x -6│=9,求x . 33.abc ≠0,求式子a b c a b c ++的值.第一章 有理数复习导学案⑵六.有理数的运算1.有理数加法法则:⑴如果a >0,b >0,那么a +b =+(│a │+│b │);⑵如果a <0,b <0,那么a +b =-(│a │+│b │); ⑶如果a >0,b <0,│a │>│b │,那么a +b =+(│a │-│b │);⑷如果a >0,b <0,│a │<│b │,那么a +b =-(│b │-│a │);⑸如果a >0,b <0,│a │=│b │,那么a +b =0; ⑹a +0=a .2.有理数减法法则:a -b =a +(-b )33. 两数相加,如果比每个加数都小,那么这两个数是( )A .同为正数B .同为负数C .一个正数,一个负数D .0和一个负数34.在数轴上表示的数8与-2这两个点之间的距离是 ( )A .6B .10C .-10D .-635.计算:()()()(1) 5.36 3.36+--+--(+) 12(2)511233---+--()()⑶()1130.2535844⎛⎫⎛⎫⎛⎫+-++-+- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ ⑷()()3401[15]477⎛⎫⎛⎫+-----+--+- ⎪ ⎪⎝⎭⎝⎭⑸(+335)+(+434)-(+125)+(-334) ⑹[1.8-(-1.2+2.1)-0.2]-(-1.5)⑺(-2.5)+(+56)+(-12)+(+116) ⑻()()1.4 3.6 5.2 4.3 1.5⎡--+-⎤--⎣⎦3.有理数乘法法则:⑴如果a >0,b >0,那么a •b =+(│a │•│b │);⑵如果a <0,b <0,那么a •b = +(│a │•│b │); ⑶如果a >0,b <0,那么a •b =- (│a │•│b │);⑷a •0=0.4.有理数除法法则:a ÷b =a •1b5.有理数的乘方:求 的积的运算,叫做有理数的乘方.即:a n =aa …a (有n 个a ) 从运算上看式子a n ,可以读作 ;从结果上看式子a n 可以读作 .6.有理数混合运算顺序:⑴⑵⑶36. 两个非零有理数的和为零,则它们的商是( )A .0B .-1C .+1D .不能确定37.一个数和它的倒数相等,则这个数是( )A .1B .-1C . ±1D . ±1和038. (-2)11+(-2)10的值是( )A .-2B .(-2)21C .0D .-21039. 下列说法正确的是( )A .如果a b >,那么22a b >B .如果22a b >,那么a b >C .如果a b >,那么22a b >D .如果a b >,那么a b >40.若a 、b 互为相反数,c 、d 互为倒数,则(a +b )3-3(cd )4=________.41.平方等于它本身的有理数是___________,立方等于它本身的有理数是_____________.42. 1-2+3-4+5-6+……+2001-2002的值是____________.43. 已知a =3,2b =4,且a b >,求a b +的值.44.计算: ⑴12-(-18)+(-7)-15 ⑵3342293⎛⎫-÷⨯- ⎪⎝⎭⑶ (-1)10×2+(-2)3÷4 ⑷ (-10)4+[(-4)2-(3+32)×2]⑸25171()24(5)138612⎡⎤--+⨯÷-⎢⎥⎣⎦⑹ 2310110.25(0.5)()(1)82-÷-+-⨯-七.科学记数法、近似数及有效数字⑴把一个大于10的数记成a ×10n 的形式(其中a 是整数数位只有一位的数),叫做科学记数法. ⑵对一个近似数,从左边第一个不是0的数字起,到末位数字止,所有的数字都称为这个近似数的有效数字。
人教版七年级数学上册第一章 有理数 解答题复习(二)解析版
第1章有理数解答题复习(二)1.已知a的相反数是2,b的绝对值是3,c的倒数是﹣1.(1)写出a,b,c的值;(2)求代数式3a(b+c)﹣b(3a﹣2b)的值.2.计算:(﹣5)×(﹣2)+(﹣2)2÷4.3.老师在黑板上写出如图所示的算式(1)嘉嘉在“□”中填入﹣6,请帮他计算“◇”中填入的数字;(2)淇淇说,“□”和“◇”填入的一定是两个不同的数,淇淇的说法对吗?请说明理由.4.如图.在一条不完整的数轴上一动点A向左移动4个单位长度到达点B,再向右移动7个单位长度到达点C.(1)若点A表示的数为0,求点B、点C表示的数;(2)若点C表示的数为5,求点B、点A表示的数;(3)如果点A、C表示的数互为相反数,求点B表示的数.5.我们常用的数是十进制数,如4657=4×103+6×102+5×101+7×100,数要用10个数码(又叫数字):0、1、2、3、4、5、6、7、8、9,在电子计算机中用的二进制,只要两个数码:0和1,如二进制中110=1×22+1×21+0×20等于十进制的数6,110101=1×25+1×24+0×23+1×22+0×21+1×20等于十进制的数53.那么二进制中的数101011等于十进制中的哪个数?6.计算:﹣23+6÷3×圆圆同学的计算过程如下:原式=﹣6+6÷2=0÷2=0请你判断圆圆的计算过程是否正确,若不正确,请你写出正确的计算过程.7.计算:﹣14+16÷(﹣2)3×|﹣3﹣1|.8.观察下列关于自然数的等式:2×0+1=12①,4×2+1=32②,8×6+1=72③,16×14+1=152④,根据上述规律解决下列问题:(1)完成第五个等式:32×+1=;(2)写出你猜想的第n个等式(用含n的式子表示),并验证其正确性.9.计算:﹣16÷(﹣2)3﹣|﹣|×(﹣8)+[1﹣(﹣3)2].10.计算:(﹣2)3÷+3×|1﹣(﹣2)2|.11.26﹣(﹣+)×(﹣6)2.12.我们知道一个数x的绝对值的几何意义是:在数轴上表示这个数x的点离原点(表示数0)的距离,x的绝对值表示为|x|,也可以写成|x﹣0|,比如|2|=|2﹣0|=2;在数轴上表示两个数x,y的点之间的距离可以表示为|x﹣y|,比如,表示3的点与﹣1的点之间的距离表示为|3﹣(﹣1)|=|3+1|=4;|x+2|+|x﹣1|可以表示点x与点1之间的距离跟点x与﹣2之间的距离的和,根据图示易知:当点X 的位置在点A和点B之间(包含点A和点B)时,点X与点A的距离跟点X和点B的距离之和最小,且最小值为3,即|x+2|+|x﹣1|的最小值是3,且此时x的值为﹣2≤x≤1请根据以上阅读,解答下列问题:(1)|x+1|+|x﹣2|的最小值是,此时x的值为;(2)|x+2|+|x|+|x﹣1|的最小值是,此时x的值为;(3)当|x+1|+|x|+|x﹣2|+|x﹣a|的最小值是4.5时,求出a的值及x的值.13.计算:﹣14÷×(﹣)+[(﹣3)2﹣(1﹣23)×2].14.观察下列式子(1)根据上述规律,请猜想,若n为正整数,则n=(2)证明你猜想的结论.15.(﹣)2÷(﹣)4×(﹣1)6﹣(1+1﹣2)×48.16.小明早晨跑步,他从自己家出发,向东跑了2km到达小彬家,继续向东跑了1.5km到达小红家,然后又向西跑了4.5km到达学校,最后又向东,跑回到自己家.(1)以小明家为原点,以向东为正方向,用1个单位长度表示1km,在图中的数轴上,分别用点A表示出小彬家,用点B表示出小红家,用点C表示出学校的位置;(2)求小彬家与学校之间的距离;(3)如果小明跑步的速度是250m/min,那么小明跑步一共用了多长时间?17.﹣0.52+﹣|﹣32﹣9|﹣(﹣1)3×.18.计算6÷(﹣),方方同学的计算过程如下,原式=6+6=﹣12+18=6.请你判断方方的计算过程是否正确,若不正确,请你写出正确的计算过程.19.阅读材料,回答下列问题:数轴是学习有理数的一种重要工具,任何有理数都可以用数轴上的点表示,这样能够运用数形结合的方法解决一些问题.例如,两个有理数在数轴上对应的点之间的距离可以用这两个数的差的绝对值表示;在数轴上,有理数3与1对应的两点之间的距离为|3﹣1|=2;在数轴上,有理数5与﹣2对应的两点之间的距离为|5﹣(﹣2)|=7;在数轴上,有理数﹣2与3对应的两点之间的距离为|﹣2﹣3|=5;在数轴上,有理数﹣8与﹣5对应的两点之间的距离为|﹣8﹣(﹣5)|=3;……如图1,在数轴上有理数a对应的点为点A,有理数b对应的点为点B,A,B两点之间的距离表示为|a﹣b|或|b﹣a|,记为|AB|=|a﹣b|=|b﹣a|.(1)数轴上有理数﹣10与﹣5对应的两点之间的距离等于;数轴上有理数x与﹣5对应的两点之间的距离用含x的式子表示为;若数轴上有理数x与﹣1对应的两点A,B之间的距离|AB|=2,则x等于;(2)如图2,点M,N,P是数轴上的三点,点M表示的数为4,点N表示的数为﹣2,动点P表示的数为x.①若点P在点M,N之间,则|x+2|+|x﹣4|=;若|x+2|+|x﹣4|═10,则x=;②根据阅读材料及上述各题的解答方法,|x+2|+|x|+|x﹣2|+|x﹣4|的最小值等于.20.李阿姨的月工资是7000元(未扣税),扣除5000元免税项目后的部分需要按3%的税率缴纳个人所得税.(1)李阿姨月工资的个人所得税是多少元?(2)李阿姨将实领工资中的5000元存入银行,带着本月工资的余额到一家手机店购买了一部打八折的手机,买完手机后余下500元,这部手机打折前的价格是多少元?(3)李阿姨带着500元来到了另一家正在搞促销活动的商场,李阿姨在该商店购物付款后余下32元,付款后发现商场是这样规定的:购物不超过500元,不打折;购物超过500元但不超过600元,所购全部商品九折销售;购物超过600元,所购商品全部七五折,李阿姨在该商场可能购买了原价多少钱的商品?第1章有理数解答题复习(二)参考答案与试题解析1.【分析】(1)根据a的相反数是2,b的绝对值是3,c的倒数是﹣1,可以求得a、b、c的值;(2)先对题目中的式子化简,然后将(1)a、b、c的值代入即可解答本题.【解答】解:(1)∵a的相反数是2,b的绝对值是3,c的倒数是﹣1,∴a=﹣2,b=±3,c=﹣1;(2)3a(b+c)﹣b(3a﹣2b)=3ab+3ac﹣3ab+2b2=3ac+2b2,∵a=﹣2,b=±3,c=﹣1,∴b2=9,∴原式=3×(﹣2)×(﹣1)+2×9=6+18=24.【点评】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.2.【分析】根据有理数的乘法和加减法可以解答本题.【解答】解:(﹣5)×(﹣2)+(﹣2)2÷4=10+4÷4=10+1=11.【点评】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.3.【分析】(1)可设“◇”中填入的数字是x,得到方程7×(﹣6)﹣5x=38,解方程即可求解;(2)可设“□”和“◇”中填入的数字是y,得到方程7y﹣5y=38,解方程即可求解.【解答】解:(1)设“◇”中填入的数字是x,依题意有7×(﹣6)﹣5x=38,解得x=﹣16.故“◇”中填入的数字是﹣16;(2)设“□”和“◇”中填入的数字是y,依题意有7y﹣5y=38,解得y=19.故“□”和“◇”填入的可能是两个相同的数19.【点评】考查了有理数的混合运算,关键是根据题意得到相应的方程,解方程即可求解.4.【分析】(1)依据点A表示的数为0,利用两点间距离公式,可得点B、点C表示的数;(2)依据点C表示的数为5,利用两点间距离公式,可得点B、点A表示的数;(3)依据点A、C表示的数互为相反数,利用两点间距离公式,可得点B表示的数.【解答】解:(1)若点A表示的数为0,∵0﹣4=﹣4,∴点B表示的数为﹣4,∵﹣4+7=3,∴点C表示的数为3;(2)若点C表示的数为5,∵5﹣7=﹣2,∴点B表示的数为﹣2,∵﹣2+4=2,∴点A表示的数为2;(3)若点A、C表示的数互为相反数,∵AC=7﹣4=3,∴点A表示的数为﹣1.5,∵﹣1.5﹣4=﹣5.5,∴点B表示的数为﹣5.5.【点评】本题考查了数轴和有理数的运算,关键是能根据题意列出算式,是一道比较容易出错的题目.5.【分析】利用新定义得到101011=1×25+0×24+1×23+0×22+1×21+1×20,然后根据乘方的定义进行计算.【解答】解:101011=1×25+0×24+1×23+0×22+1×21+1×20=43,所以二进制中的数101011等于十进制中的43.【点评】本题考查了有理数的乘方:有理数乘方的定义:求n个相同因数积的运算,叫做乘方.6.【分析】圆圆的计算过程错误,写出正确的解题过程即可.【解答】解:圆圆的计算过程不正确,正确的计算过程为:原式=﹣8+=﹣.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.7.【分析】原式先计算乘方及绝对值运算,再计算乘除运算,最后算加减运算即可得到结果.【解答】解:原式=﹣1+16÷(﹣8)×4=﹣1﹣8=﹣9.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.8.【分析】(1)观察已知等式确定出第五个等式即可;(2)归纳总结得到一般性规律,验证即可.【解答】解:(1)根据题意得:32×30+1=312;故答案为:30;312;(2)根据题意得:2n(2n﹣2)+1=(2n﹣1)2,∵左边=22n﹣2n+1+1,右边=22n﹣2n+1+1,∴左边=右边.【点评】此题考查了有理数的混合运算,弄清题中的规律是解本题的关键.9.【分析】原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果.【解答】解:原式=﹣16÷(﹣8)﹣×(﹣8)+(1﹣9)=2+﹣8=﹣5.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.10.【分析】根据有理数混合运算的运算顺序,即可求出结论.【解答】解:原式=﹣8×+3×|1﹣4|,=﹣10+3×3,=﹣10+9,=﹣1.【点评】本题考查了有理数的混合运算,牢记有理数混合运算顺序是解题的关键.11.【分析】原式先计算乘方运算,再计算乘法运算,最后算加减运算即可得到结果.【解答】解:原式=26﹣(﹣+)×36=26﹣28+33﹣6=25.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.12.【分析】(1)根据绝对值的几何意义,得出|x+1|+|x﹣2|的最小值;(2)根据绝对值的几何意义,得出|x+2|+|x|+|x﹣1|的最小值;(3)画出数轴,分四种情况进行讨论:当a=1.5且0≤x≤1.5或a=﹣1.5且﹣1≤x≤0时,当a =﹣0.5,x=﹣1或a=0.5,x=﹣0.5时,|x+1|+|x|+|x﹣2|+|x﹣a|的最小值是4.5.【解答】解:(1)根据绝对值的几何意义可得,当﹣1≤x≤2时,|x+1|+|x﹣2|的最小值是3,故答案为:3,﹣1≤x≤2;(2)根据绝对值的几何意义可得,当x=0时,|x+2|+|x|+|x﹣1|的最小值是3,故答案为:3,x=0;(3)如图,当a=1.5且0≤x≤1.5或a=﹣1.5且﹣1≤x≤0时,|x+1|+|x|+|x﹣2|+|x﹣a|的最小值是4.5,∴当|x+1|+|x|+|x﹣2|+|x﹣a|的最小值是4.5时,a=1.5且0≤x≤1.5或a=﹣1.5且﹣1≤x≤0.如图,当a=﹣0.5,x=﹣1或a=0.5,x=﹣0.5时,|x+1|+|x|+|x﹣2|+|x﹣a|的最小值是4.5,【点评】本题主要考查了数轴以及绝对值的几何意义的运用,一个数x的绝对值的几何意义是:在数轴上表示这个数x的点离远点(表示数0)的距离,x的绝对值表示为|x|.解题时注意分类思想的运用.13.【分析】原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果.【解答】解:原式=﹣1××(﹣)+9+14=23.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.14.【分析】(1)根据所给的4个算式,可得:若n为正整数,则n=(n+1)+.(2)用数学归纳法证明猜想的结论即可.【解答】(1)解:若n为正整数,则n=(n+1)+.(2)证明:∵右边=(n+1)+=+==n=左边,∴原等式成立.故答案为:(n+1)+.【点评】此题主要考查了探寻规律问题,以及有理数的混合运算,要熟练掌握,注意明确有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.15.【分析】原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果.【解答】解:原式=×16×1﹣(×48+×48﹣×48)=1﹣(66+64﹣132)=1﹣(﹣2)=3.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.16.【分析】(1)根据题意画出即可;(2)计算2﹣(﹣1)即可求出答案;(3)求出每个数的绝对值,相加可求小明一共跑了的路程,再根据时间=路程÷速度即可求出答案.【解答】解:(1)如图所示:(2)小彬家与学校的距离是:2﹣(﹣1)=3(km).故小彬家与学校之间的距离是3km;(3)小明一共跑了(2+1.5+1)×2=9(km),小明跑步一共用的时间是:9000÷250=36(分钟).答:小明跑步一共用了36分钟长时间.【点评】本题考查了数轴,有理数的加减运算,正数和负数,绝对值等知识点的应用,此题的关键是能根据题意列出算式,题目比较典型,难度适中,用的数学思想是转化思想,即把实际问题转化成数学问题,用数学知识来解决.17.【分析】根据有理数的乘法和加减法可以解答本题.【解答】解:﹣0.52+﹣|﹣32﹣9|﹣(﹣1)3×=﹣﹣|﹣9﹣9|+=﹣﹣18+2=﹣16.【点评】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.18.【分析】根据有理数的混合运算顺序,先算括号里面的,再根据除法法则进行计算即可.【解答】解:方方的计算过程不正确,正确的计算过程是:原式=6÷(﹣+)=6÷(﹣)=6×(﹣6)=﹣36.【点评】此题考查了有理数的除法,用到的知识点是有理数的除法、通分、有理数的加法,关键是掌握运算顺序和结果的符号.19.【分析】(1)根据绝对值的定义:数轴上有理数﹣10与﹣5对应的两点之间的距离等于5;数轴上有理数x与﹣5对应的两点之间的距离用含x的式子表示为|x+5|;若数轴上有理数x与﹣1对应的两点A,B之间的距离|AB|=2,则x等于1或﹣3;(2)①若点P在点M,N之间,则|x+2|+|x﹣4|=6;若|x+2|+|x﹣4|═10,则x=6或﹣4;②|x+2|+|x|+|x﹣2|+|x﹣4|的最小值,这个最小值=4﹣(﹣2)=6.【解答】解:(1)根据绝对值的定义:数轴上有理数﹣10与﹣5对应的两点之间的距离等于5;数轴上有理数x与﹣5对应的两点之间的距离用含x的式子表示为|x+5|;A,B之间的距离|AB|=2,则x等于1或﹣3,(2)①若点P在点M,N之间,则|x+2|+|x﹣4|=6;若|x+2|+|x﹣4|═10,则x=6或﹣4;②|x+2|+|x|+|x﹣2|+|x﹣4|的最小值,即x与4,2,0,﹣4之间距离和最小,这个最小值=4﹣(﹣4)=8.故答案为:5,|x+5|,1或﹣3;6,6或﹣4,8.【点评】本题考查的是绝对值的定义,涉及到数轴、代数式等知识,难度较大.20.【分析】(1)根据题意可以求得李阿姨月工资的个人所得税是多少元;(2)根据题意可以求得部手机打折前的价格是多少元;人教版七年级数学上册第一章有理数解答题复习(二)解析版(3)根据题意,利用分类讨论的数学思想可以解答本题.【解答】解:(1)(7000﹣5000)×3%=60(元),答:李阿姨月工资的个人所得税为60元;(2)(7000﹣60﹣5000﹣500)÷0.8=1800(元),答:这部手机打折前的价格是1800元;(3)若李阿姨带购物不超过500元,则李阿姨购物500﹣32=468元的商品;若李阿姨购物超过500元但不超过600元,则李阿姨购物468÷0.9=520元的商品;若李阿姨购物超过600元,则李阿姨购物468÷75%=624元.【点评】本题考查有理数的混合运算,解答本题的关键是明确题意,列出相应的式子,求出相应问题的结果.- 11 - / 11。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课题:第一章有理数复习(两课时)
【复习目标】:复习整理有理数有关概念和有理数的运算法则,运算律等有关知识;【复习重点】:有理数概念和有理数的运算;
【复习难点】:对有理数的运算法则的理解;
【导学指导】:
一、知识回顾
(一)正负数
有理数的分类:
_____________统称整数,试举例说明。
_____________统称分数,试举例说明。
____________统称有理数。
(二)数轴规定了、、的直线,叫数轴(三)相反数的概念
像2和-2、-5和5、2.5和-2.5这样,只有不同的两个数叫做互为相反数;0的相反数是。
一般地:若a为任一有理数,则a的相反数为-a
相反数的相关性质:
1、相反数的几何意义:
表示互为相反数的两个点(除0外)分别在原点O的两边,并且到原点的距离相等。
2、互为相反数的两个数,和为0。
(四)绝对值
一般地,数轴上表示数a的点与原点的叫做数a的绝对值,记作∣a∣;
一个正数的绝对值是;
一个负数的绝对值是它的;
0的绝对值是 .
任一个有理数a的绝对值用式子表示就是:
(1)当a是正数(即a>0)时,∣a∣= ;
(2)当a是负数(即a<0)时,∣a∣= ;
(3)当a=0时,∣a∣= ;
【课堂练习】
1.把下列各数填在相应额大括号内:
7
1,-0.1,-789,25,0,-20,-3.14,-590,8
正整数集{…};正有理数集{…};
负有理数集{…};
负整数集{…};自然数集{…};
正分数集{ …};
负分数集{ …};
2.如图所示的图形为四位同学画的数轴,其中正确的是( )
3.在数轴上画出表示下列各数的点,并按从大到小的顺序排列,用“>”号连接起来。
4,-|-2|, -4.5, 1, 0
4.下列语句中正确的是( )
A.数轴上的点只能表示整数 B.数轴上的点只能表示分数
C.数轴上的点只能表示有理数 D.所有有理数都可以用数轴上的点表示出来
5. -5的相反数是 ;-(-8)的相反数是 ;- [+(-6
)]=
0的相反数是 ; a 的相反数是 ;
6. 若a 和b 是互为相反数,则a+b= 。
7.如果-x =-6,那么x =______;-x =9,那么x =_____
8. |-8|= ; -|-5|= ; 绝对值等于4的数是_______。
9.如果3>a ,则______3=-a ,______3=-a
10.有理数中,最大的负整数是 ,最小的正整数是 ,最大的非正数是 。
【要点归纳】:
【拓展训练】:
1.绝对值等于其相反数的数一定是( )
A .负数
B .正数
C .负数或零
D .正数或零
2. 已知a 、b 都是有理数,且|a|=a ,|b|=-b 、,则ab 是( )
A .负数; B.正数; C.负数或零; D.非负数
3.7=x ,则______=x ; 7=-x ,则______=x
4.如果a a 22-=-,则a 的取值范围是( )
A .a >O
B .a ≥O
C .a ≤O
D .a <O .
5.绝对值不大于11的整数有( )
A .11个
B .12个
C .22个
D .23个
【总结反思】:
课题:第一章 有理数复习(两课时)
一.知识回顾
(五)、有理数的运算
(1)有理数加法法则:
(2)有理数减法法则:
(3)有理数乘法法则:
(4)有理数除法法则:
(5)有理数的乘方:
求 的积的运算,叫做有理数的乘方。
即:a n =aa …a(有n 个a)
从运算上看式子a n ,可以读作 ;从结果上看式子a n 可以读作 . 有理数混合运算顺序:
(1)
(2)
(3)
(六)、科学记数法
(1)把一个大于10的数记成a ×10n 的形式(其中a 是整数数位只有一位的数),叫做科学记数法.
【课堂练习】:
1. 33= ;(2
1-)2= ;-52= ;22的平方是 ; 2.下列各式正确的是( )
A.225(5)-=-
B.1996(1)
1996-=- C.2003(1)
(1)0---= D.99
(1)10--=
3.计算: (1)12-(-18)+(-7)-15 (2)3
342293⎛⎫-÷⨯- ⎪⎝⎭
(3)(-1)10×2+(-2)3÷4 (4)(-10)4+[(-4)2-(3+32)×2]
4.用科学记数数表示:1305000000= ;-1020=
5. 120万用科学记数法应写成 ;2.4万的原数是 。
【要点归纳】:
【拓展训练】:
1.已知a =3,2
b =4,且a b >,求a b +的值。
2.下列说法正确的是( )
A.如果a b >,那么22a b >
B.如果22
a b >,那么a b > C.如果a b >,那么22
a b > D.如果a b >,那么a b > 3.计算:
(1)25171
()24(5)138612⎡⎤--+⨯÷-⎢⎥⎣⎦
(2)2310110.25(0.5)()(1)82-÷-+-⨯-
(3)1111212()342--⨯-
+ ;
(4) 6322111(0.5)[2(3)]0.5338---÷⨯----
-
4.已知a 与b 互为相反数,c 与d 互为倒数,求
13822+-+cd b a 的值.
5.若0a b c a -+-=,则220052009()
()a a b bc
-+-=_________
【总结反思】:。