棱柱、棱锥、棱台的结构特征 课件

合集下载

棱柱、棱锥和棱台的结构特征 PPT课件 1 人教课标版

棱柱、棱锥和棱台的结构特征 PPT课件 1 人教课标版

理解棱柱的定义
问题
⑤棱柱除底面以外的面都是平行四 边形吗? 答:是.
E′ F′ A′ B′
D′
C′
⑥为什么定义中要说“其余各面都 是四边形,并且相邻两个四边形的公共 边都互相平行,”而不简单的只说“其 余各面是平行四边形呢”?
答:满足“有两个面互相平行,其 余各面都是平行四边形的几何体”这样 说法的还有右图情况,如图所示.所以 定义中不能简单描述成“其余各面都是 平行四边形”.
E
F A
D
C B
棱锥的结构特征
如何描述下图的几何结构特征?
S 顶点
棱锥
几何画板—棱锥
侧面
有一个面是多边形,其余 各面都是有一个公共顶点的三 角形,由这些面所围成的多面 体叫棱锥.
侧棱
D
C 底面
B
A
S A
B
D C

2、棱锥的分类: 按底面多边形的边数,可以分为三 棱锥、四棱锥、五棱锥、……
3、棱锥的表示方法:用表示顶点和底面 的字母表示,如四棱锥S-ABCD。

几何画板—球
以半圆的直径所在直线为旋 转轴,半圆面旋转一周形成的旋 转体叫做球体,简称球.
半径
O
球心
几何体的分类
柱体
锥体
台体

多面体
旋转体
练习 1、下列命题是真命题的是( A ) A 以直角三角形的一直角边所在的直线为轴 旋转所得的几何体为圆锥; B 以直角梯形的一腰所在的直线为轴旋转所 得的旋转体为圆台; C 圆柱、圆锥、棱锥的底面都是圆; D 有一个面为多边形,其他各面都是三角形 的几何体是棱锥。 2、过球面上的两点作球的大圆,可以作 ( 1或无数多 )个。
例题 长方体AC1中,AB=3,BC=2,BB1=1, 由A到C1在长方体表面上的最短距离是多少?

棱柱、棱锥、棱台的结构特征课件

棱柱、棱锥、棱台的结构特征课件

⑤错误,如图所示四棱锥被平面截成的两部分都是棱锥.
【答案】 (1)③④ (2)②③④ 【名师点评】 解决这类与多面体的概念有关的命题真假 判定的问题,关键在于理解并掌握棱柱、棱锥、棱台的概 念、准确把握它们的结构特征.
跟踪训练
1.给出下列几个命题:
①棱柱的侧面都是平行四边形;
②棱锥的侧面为三角形,且所有侧面都有一个公共顶点;
跟踪训练
4.如图,将装有水的长方体水槽固定底面一边后倾斜一 个小角度,则倾斜后水槽中的水形成的几何体是( ) A.棱柱 B.棱台 C.棱柱与棱锥的组合体 D.不能确定 解析:选A.长方体水槽固定底面一边后倾斜,水槽中的水 形成的几何体始终有两个互相平行的平面,而其余各面都 是四边形,并且每相邻两个四边形的公共边互相平行,这 符合棱柱的定义.
跟踪训练
3.某城市中心广场主题建筑是一三棱锥,且所有边长均 为10 m,如图所示,其中E、F分别为AD、BC的中点. (1)画出该几何体的表面展开图,并注明字母; (2)为迎接国庆,城管部门拟对该建筑实施亮化工程,现 预备从底边BC中点F处分别过AC、AB上某点向AD中点E 处架设LED灯管,所用灯管长度最短为多少?
棱柱、棱锥、棱台的结构特征
1.空间几何体 (1)空间中的物体都占据着空间的一部分,若只考虑物体 的形状和大小,而不考虑其他因素,那么由这些物体抽象 出来的__空__间__图__形___就叫做空间几何体. (2)多面体 定义:由若干个平面多边形围成的几何体叫做多面体.围 成多面体的各个多边形叫做多面体的面;相邻两个面的公 共边叫做多面体的棱;棱与棱的公共点叫做多面体的 _顶__点___.
题型三 多面体的表面展开图
例3 如图是三个几何体的侧面展开图,请问各是什 么几何体?

【课件】棱柱、棱锥、棱台的结构特征

【课件】棱柱、棱锥、棱台的结构特征

棱柱的表示:
用表示底面各顶点的字母表示 棱柱ABC- A'B'C'
C'
A'
B'
D' A'
C' B'
D'
E'
C'
A' B'
A
C
D
BA
C B
三棱柱
四棱柱
E DC
A五棱柱B
棱柱的结构特征
思考:对于棱柱,
1.侧棱长相等吗? 相等
侧面是什么四边形?
平行四边形
E' F'
A'
D' C'
B'
2.两个底面多边形是什么关系? E D
C’ B’
有两个面互相平行,
其余各面都是四边形,

并且每相邻两个四边形

的公共边都互相平行。
ED
侧棱 F
C
A
B
侧面
顶点
棱柱的结构特征
1.棱柱的概念:
棱柱的底面:两个互相平行的面. 底面
简称底.
E' D'
F'
C'
棱柱的侧面:其余各面.
A'
B' 侧
棱柱的侧棱:


棱 ED
相邻侧面的公共边. F
棱柱的顶点:
【解析】面最少的棱柱是三棱柱,它有 5 个面;顶点最少的一个棱台 是三棱台,它有 3 条侧棱.
5.画一个三棱台,再把它分成: (1)一个三棱柱和另一个多面体; (2)三个三棱锥,并用字母表示.
【解析】画三棱台一定要利用三棱锥. (1)如图①所示,三棱柱是棱柱 A′B′C′-AB″C″,另一个多

棱柱、棱锥、棱台的结构特征 课件

棱柱、棱锥、棱台的结构特征 课件

(续表)
多面体
定义
图形及表示
相关概念
上底面:原棱锥的
_截__面___;
用一个_平__行__于__棱_ _锥__底__面_ 的 平 面
棱台 去截棱锥,底面
下底面:原棱锥的
__底__面__; 侧面:其余各面;
与截面之间 部分叫做棱台

上图可记作:棱台 _A_B_C__D_-_A_′_B_′C__′D__′ ____
答案:不一定.如图 D1.
图 D1 点评:判定棱台的步骤:先看上下两个平面是否平行,再 看各条侧棱延长后是否交于一点,只具备其中一条的不是棱台. 今后可以证明:如果两底面的对应边平行且成比例,那么这个 几何体是棱台.
题型 1 棱柱、棱锥、棱台的结构特征 【例 1】 给出下列四种说法: ①棱柱的棱都相互平行且相等;
棱柱
棱锥
都是平行四 (有公共顶点的)
侧面的特征
边形
三角形
棱台 都是梯形
相互平行且 侧棱的特征
相等
相交于一点
同一方向延长 后交于一点
【变式与拓展】 1.如图 1-1-1,长方体 ABCD -A1B1C1D1. (1)这个长方体是棱柱吗?如果是,是几棱柱?为什么? (2)用平面 BCNM 把这个长方体分成两部分,各部分形成的 几何体还是棱柱吗?如果是,是几棱柱,并用符号表示;如果 不是,说明理由.
图 D2
[方法·规律·小结] 棱柱的两个本质特征. (1)有两个面(底面)相互平行. (2)其余各面(侧面)每相邻两个面的公共边(侧棱)都互相平 行. 因此,棱柱有两个面互相平行,其余各面都是平行四边形, 棱柱必须满足有两个面互相平行,其余各面都是四边形,并且 每相邻两个四边形的公共边都互相平行.但是要注意“有两个 面互相平行,其余各面都是平行四边形的几何体”不一定是棱 柱.

棱柱、棱锥、棱台的结构特征课件

棱柱、棱锥、棱台的结构特征课件

多面体的平面展开图
给出两个几何体,如图1-1-2:
图1-1-2 (1)画出两个几何体的平面展开图; (2)图①是侧棱长为2 3 的正三棱锥D-ABC,∠ADB=∠BDC=∠CDA= 40°,过A作截面AEF分别交BD,CD于E,F,求截面三角形AEF周长的最小 值.
【精彩点拨】 (1)将几何体沿着某些棱剪开,然后伸展到平面上.
棱柱、棱锥、棱台的结构特征
(1)下列命题中正确的是________.(填序号) ①有两个面平行,其余各面都是四边形的几何体叫棱柱; ②棱柱的一对互相平行的平面均可看做底面; ③三棱锥的任何一个面都可看做底面; ④棱台各侧棱的延长线交于一点.
(2)关于如图 1-1-1 所示几何体的正确说法的序号为________.
_底__面__和_截__面__分别叫 台.如:上、下底面分别是四边 三棱台(由三棱
做棱台的下底面和上 形 A′B′C′D′、四边形
锥截得),四棱
底面
ABCD 的四棱台,可记为棱台 台,…
_A_B__C_D_A__′B_′_C_′_D_′______
判断(正确的打“√”,错误的打“×”) (1)有一个底面为多边形,其余各面都是有一个公共顶点的三角形,由这些 面所围成的几何体是棱锥.( ) (2)用一个平面去截棱锥,棱锥底面与截面之间的部分是棱台.( ) (3)棱柱的侧面都是平行四边形,而底面不是平行四边形.( ) (4)棱柱的侧棱都相等,侧面都是全等的平行四边形.( ) 【答案】 (1)√ (2)× (3)× (4)×
棱柱、棱锥、棱台的结构特征
教材整理 1 空间几何体的定义、分类及相关概念 1.空间几何体的定义及分类 (1)定义:如果我们只考虑这些物体的_形__状_和_大__小_,而不考虑其他因素,那 么由这些物体抽象出来的_空__间__图__形__就叫做空间几何体. (2)分类:常见的空间几何体有_多__面__体__与_旋__转__体_两类.

课件11:§1.1 第1课时 棱柱、棱锥、棱台的结构特征

课件11:§1.1 第1课时 棱柱、棱锥、棱台的结构特征

公共点
新知预习
知识点二 多面体
多面体 定义
图形及表示
有两个面互相平
行,其余各面都是
四边形,并且每相
棱柱 邻两个四边形的公 共边都互相平行, 如图可记作:棱柱 由这些面所围成的 ABCDEF- 多面体叫作棱柱 A′B′C′D′E′F′
相关概念 底面(底):两个互 相平行的面;侧 面:其余各面; 侧棱:相邻侧面 的公共边;顶点: 侧面与底面的公 共顶点
当有4个顶点时,可围成4个面,所以一个多面体至少应 有4个面,而且这样的面必是三角形,故C也是真命题; 对于D,只有当截面与底面平行时才对. 【答案】(1)C (2)D
课堂探究 类型二 简单几何体的判定 例2 如图所示,长方体ABCD-A1B1C1D1.
(1)这个长方体是棱柱吗?如果是,是几棱柱?为什么?
新知预习
棱锥
有一个面是多
边形,其余各面
底面(底):多边形面;
都是有一个公 共顶点的三角
侧面:有公共顶点的 各个三角形面;侧棱: 相邻侧面的公共边;
形,由这些面所 如图可记作:棱 顶点:各侧面的公共
围 成 的 多 面 体 锥 S-ABCD 顶点
叫作棱锥
新知预习
棱台
用一个平行于 棱锥底面的平 面去截棱锥,底 面与截面之间 的部分叫作棱 台
新知预习
2.空间几何体的分类
多面体
旋转体
定义
由若干个平面多边形围成的 几何体
由一个平面图形绕它所在 平面内的一条定直线旋转 所形成的封闭几何体
图形
新知预习
2.空间几何体的分类 多面体
旋转体
面:围成多面体的各个多
相 关 边形;棱:相邻两个面的 轴:形成旋转体所绕的

棱柱、棱锥、棱台的结构特征 课件

棱柱、棱锥、棱台的结构特征   课件

相 关 概 念
上底面:原棱锥的截面; 下底面:原棱锥的底面; 侧面:其余各面; 侧棱:相邻侧面的公共边; 顶点:侧面与上(下)底面的公共顶点
分 类
①依据:由几棱锥截得; ②举例:三棱台(由三棱锥截得)、四棱台 (由四棱锥截得)……
如图棱台可记 作:棱台 ABCD-A'B'C'D'
4.做一做:下列几何体中,
棱柱、棱锥、棱台的结构特征
一、空间几何体的定义、分类及相关概念 【问题思考】 1.观察下面两组物体,你能说出各组物体的共同点吗?
(1)
(2)
提示:(1)几何体的表面由若干个平面多边形组成. (2)几何体的表面可由平面图形绕其所在平面内的一条定直线旋 转而成.
2.如图,观察几何体,它有几个面?几个顶点?几条棱?有没有比它 的面、顶点、棱更少的几何体?
多面体的表面展开与折叠 【例2】 如图是三个几何体的表面展开图,请问它们是什么几何 体?
思路分析:几何体的侧面展开图的特点→紧扣概念→还原为原几 何体
解:①五棱柱;②五棱锥;③三棱台.如图所示.
反思感悟1.解答此类问题要结合多面体的结构特征发挥空间想 象能力和动手能力.
2.若给出多面体画其展开图时,常常给多面体的顶点标上字母,先 把多面体的底面画出来,再依次画出各侧面.
提示:4个面,4个顶点,6条棱.没有比它的面、顶点、棱更少的几 何体.
3.填空: 空间几何体的定义及分类 (1)定义:如果只考虑物体的形状和大小,而不考虑其他因素,那么 由这些物体抽象出来的空间图形叫做空间几何体. (2)分类:常见的空间几何体有多面体与旋转体两类.
4.填写下表: 类别 多面体
定义
答案:①③④⑤
防范措施在解答关于空间几何体概念的判断题时,要注意紧扣定 义,切忌只凭图形主观臆断.同时立体几何问题中也要注意分类讨 论思想的应用,否则就会因审题片面而出错.

棱柱、棱锥、棱台的结构特征课件

棱柱、棱锥、棱台的结构特征课件

[归纳总结] 对多面体概念的理解,注意以下几个方面: (1)多面体是由平面多边形围成的,不是由圆面或其它曲面围成,也不是由空间多边形围成. (2)本章所说的多边形,一般包括它内部的平面部分,故多面体是一个“封闭”的几何体. (3)围成一个多面体至少要有四个面. (4)规定:在多面体中,不在同一面上的两个顶点的连线叫做多面体的对角线,不在同一面上的两
『规律方法』 (1)紧扣棱柱的结构特征进行有关概念辨析 ①两个面互相平行; ②其余各面是四边形; ③相邻两个四边形的公共边互相平行. (2)多注意观察一些实物模型和图片便于反例排除.
命题方向2 ⇨棱锥、棱台的结构特征
下列关于棱锥、棱台的说法: (1)棱台的侧面一定不会是平行四边形; (2)棱锥的侧面只能是三角形; (3)由四个面围成的封闭图形只能是三棱锥; (4)棱锥被平面截成的两部分不可能都是棱锥. 其中正确说法的序号是__(1_)_(_2_)(_3_)___.
(1)借助周围空间中的几何体和动手制作直观教具,作为直观支柱帮助建立空间观念;(2)加强作图 和识图能力培养;(3)加强几何语言与图形、文字语言的转换训练;(4)注意平面几何知识与立体 几何知识的沟通与区分;(5)注重训练推理语言的规范性;(6)借助可能的多媒体展示,培养直观 想象能力.
如图是三个几何体的侧面展开图,请问各是什么几何体?
[归纳总结] 棱柱的简单性质: (1)侧棱互相平行且相等;侧面都是平行四边形. (2)两个底面与平行于底面的截面是全等的多边形,如图①所示.
(3)过不相邻的两条侧棱的截面是平行四边形,如图②所示.
棱柱概念的推广 (1)斜棱柱:侧棱不垂直于底面的棱柱叫做斜棱柱. (2)直棱柱:侧棱垂直于底面的棱柱叫做直棱柱. (3)正棱柱:底面是正多边形的直棱柱叫做正棱柱. (4)平面六面体:底面是平行四边形的四棱柱叫做平行六面体,即平行六面体的六个面都是平行四

课件9:1.1.2 棱柱、棱锥和棱台的结构特征

课件9:1.1.2 棱柱、棱锥和棱台的结构特征

题型二:简单几何体中的计算问题 [典例] 正三棱锥的底面边长为 3,侧棱长为 2 3,求正三棱锥的高.
[解] 作出正三棱锥如图,SO 为其高,连接 AO,作 OD⊥AB 于 点 D,则点 D 为 AB 的中点. 在 Rt△ADO 中,AD=32,∠OAD=30°,
3 故 AO=cos∠2OAD= 3. 在 Rt△SAO 中,SA=2 3,AO= 3, 故 SO= SA2-AO2=3,其高为 3.
延长线交于一点;④有两个面互相平行,其余各面都是梯形,则此几何体是棱台.
A.①
B.②
C.③
D.④
(2)下列命题:
①各侧面为矩形的棱柱是长方体;②直四棱柱是长方体;
③侧棱与底面垂直的棱柱是直棱柱;④各侧面是矩形的直四棱柱为正四棱
柱.其中正确的是________(填序号).
[解析] (1)棱锥的侧面是有公共顶点的三角形,但是各侧棱不一定相等,故 ①②不正确;棱台是由平行于棱锥底面的平面截棱锥底面得到的,故各个侧 棱的延长线一定交于一点,③正确;棱台的各条侧棱必须交于一点故④错误. (2)①中一定为直棱柱但不一定是长方体;②直四棱柱的底面可以是任意的四 边形不一定是矩形;③符合直棱柱的定义;④中的棱柱为一般直棱柱,它的 底面不一定为正方形. [答案] (1) C (2) ③
(3) 凸 多 面 体 : 把 一 个 多 面 体 的 任 意 一 个 面 延 展 为 平 面 , 如 果 其 余 的 各
面 都在这个平面的同一侧 ,则这样的多面体就叫做凸多面体.
2.棱柱、棱锥、棱台
名称
棱柱
棱锥
棱台
定义
条件:①有两个
互相平行 的面;
条件:①有一个 棱锥被 平行于
面是 多边形 ;

高中数学《棱柱、棱锥、棱台的结构特征 》课件

高中数学《棱柱、棱锥、棱台的结构特征 》课件

17
课前自主预习
课堂互动探究
课堂达标自测
课后课时精练
数学 ·必修2
解析 棱柱是由一个平面多边形沿某一方向平移而形 成的几何体,因而侧面是平行四边形,故①对.
棱锥是由棱柱的一个底面收缩为一个点而得到的几何 体,因而其侧面均是三角形,且所有侧面都有一个公共点, 故②对.
棱台是棱锥被平行于底面的平面所截后,截面与底面之 间的部分,因而其侧面均是梯形,且所有的侧棱延长后均相 交于一点(即原棱锥的顶点),故③错④对.⑤显然正确.
所以(1)为五棱柱,(2)为五棱锥,(3)为三棱台.
29
课前自主预习
课堂互动探究
课堂达标自测
课后课时精练
数学 ·必修2
拓展提升 空间几何体的展开图
(1)解答空间几何体的展开图问题要结合多面体的结构 特征发挥空间想象能力和动手能力.
(2)若给出多面体画其展开图,常常给多面体的顶点标 上字母,先把多面体的底面画出来,然后依次画出各侧面.
数学 ·必修2
第一章 空间几何体
1.1 空间几何体的结构 1.1.1 棱柱、棱锥、棱台的结构特征
1
课前自主预习
课堂互动探究
课堂达标自测
课后课时精练
数学 ·必修2
课前自主预习
2
课前自主预习
课堂互动探究
课堂达标自测
课后课时精练
数学 ·必修2
知识点一 空间几何体的定义、分类及相关概念 1.空间几何体的定义
(3)若是给出表面展开图,则按上述过程逆推.
30
课前自主预习
课堂互动探究
课堂达标自测
课后课时精练
数学 ·必修2
【跟踪训练 3】 根据如下图所给的平面图形,画出立 体图.

《基本立体图形》立体几何初步 PPT教学课件(第1课时棱柱、棱锥、棱台的结构特征)

《基本立体图形》立体几何初步 PPT教学课件(第1课时棱柱、棱锥、棱台的结构特征)

③棱台的侧棱所在直线均相交于同一点. 解析:棱锥是由棱柱的一个底面收缩为一个点而得到的几何体,因
而其侧面均是三角形,且所有侧面都有一个公共点,故①对.棱台
是棱锥被平行于底面的平面所截后,截面与底面之间的部分,因而
其侧面均是梯形,且所有的侧棱延长后均相交于一点(即原棱锥的顶
点),故②错,③对.因而正确的有①③. 答案:①③
栏目 导引
第八章 立体几何初步
4.一个棱柱有 10 个顶点,所有的侧棱长的和为 60 cm,则每 条侧棱长为__________cm. 解析:因为棱柱有 10 个顶点,所以棱柱为五棱柱,共有五条侧 棱,所以侧棱长为650=12(cm). 答案:12
栏目 导引
第八章 立体几何初步
空间几何体的平面展开图
(1)水平放置的正方体的六个面分别用
“前面、后面、上面、下面、左面、右面”表示,
如图是一个正方体的平面展开图(图中数字写在
正方体的外表面上),若图中的“2”在正方体的
上面,则这个正方体的下面是( )
A.1
B.9
C.快
D.乐
栏目 导引
第八章 立体几何初步
(2)如图是三个几何体的侧面展开图,请问各是什么几何体?
【解】 (1)选 B.由题意,将正方体的展开图还原成 正方体,“1”与“乐”相对,“2”与“9”相对,“0” 与“快”相对,所以下面是“9”.
栏目 导引
第八章 立体几何初步
(2)题图①中,有 5 个平行四边形,而且还有两个全等的五边形, 符合棱柱的特点;题图②中,有 5 个三角形,且具有共同的顶 点,还有一个五边形,符合棱锥的特点;题图③中,有 3 个梯 形,且其腰的延长线交于一点,还有两个相似的三角形,符合 棱台的特点,把侧面展开图还原为原几何体,如图所示:

高中数学课件 棱柱、棱锥、棱台的结构特征

高中数学课件   棱柱、棱锥、棱台的结构特征

2.“练一练”尝试知识的应用点(请把正确的答案写在横线
上).
(1)如图中的几何体叫做
,PA,PB叫它的
,平
面PBC,平面PCD叫它的
,平面ABCD叫它的
.
(2)棱柱的顶点最少有
个,侧棱最少有
最少有
条.
(3)下列几何体中,是棱柱的是
(填序号).
条,棱
【解析】(1)观察该几何体为四棱锥,根据棱锥的结构特征可知 PA,PB叫它的侧棱,平面PBC,平面PCD叫它的侧面,平面 ABCD叫它的底面. 答案:四棱锥 侧棱 侧面 底面 (2)最简单的棱柱是三棱柱,有6个顶点,3条侧棱,9条棱. 答案:6 3 9 (3)根据棱柱的定义知,这4个几何体都是棱柱. 答案:①②③④
总结解决概念辨析题的关注点. 1.下面描述中,不是棱锥的结构特征的为( ) A.三棱锥有四个面是三角形 B.棱锥都是有两个面是互相平行的多边形 C.棱锥的侧面都是三角形 D.棱锥的侧棱相交于一点
2.下列说法中正确的是( ) A.有两个面平行,其余各面都是四边形的几何体叫棱柱 B.有两个面平行,其余各面都是平行四边形的几何体叫棱柱 C.有一个面是多边形,其余各面都是梯形的几何体叫棱台 D.有一个面是多边形,其余各面都是有一个公共顶点的三角形 的几何体叫棱锥
【解题指南】1.将几何体折叠后,根据三条线段的位置关系可 判断正确选项. 2.将该几何体的展开图折起,折成立体图形,每个面上标上对应 的字母,然后根据题目要求判断求解. 3.将三棱柱沿一条侧棱剪开,展到一个平面上,转化为平面内两 点间的距离.
【解析】1.选B.由图可知,折叠后三条线段在相邻的三个平面 内,并且互相平行,故排除A,C.又由原平面图知,只有两个平面 是空白的,排除D,故选B.

棱柱、棱锥、棱台的结构特征 课件

棱柱、棱锥、棱台的结构特征 课件

[规律方法] 多面体展开图问题的解题策略 1绘制展开图:绘制多面体的表面展开图要结合多面体的几何特征,发 挥空间想象能力或者是亲手制作多面体模型.在解题过程中,常常给多面体的 顶点标上字母,先把多面体的底面画出来,然后依次画出各侧面,便可得到 其表面展开图. 2由展开图复原几何体:若是给出多面体的表面展开图,来判断是由哪 一个多面体展开的,则可把上述过程逆推.同一个几何体的表面展开图可能是 不一样的,也就是说,一个多面体可有多个表面展开图.
[棱锥、棱台的定义举反例直接判断关于棱锥、棱台结构特征的某些
说法不正确.
(2)直接法:
棱锥
棱台
定底面 只有一个面是多边形,此面即为底面 两个互相平行的面,即为底面
看侧棱 相交于一点
延长后相交于一点
多面体的表面展开图
[探究问题] 1.棱柱的侧面展开图是什么图形?正方体的表面展开图又是怎样的? [提示] 棱柱的侧面展开图是平行四边形;正方体的表面展开图如图:
相关概念 底面(底):两个互相 ___平__行___的面 侧面:其余各面 侧棱:相邻侧面的 ___公__共__边__ 顶点:侧面与底面 的_公__共__顶__点_____
有一个面是___多__边__形__,
其余各面都是有一个公 棱
共顶点的___三__角__形__,由 锥
这些面所围成的多面体 如图可记作:
几 多面体 围成的几何体,
何 叫做多面体

相关概念
面:围成多面体的各个 ___多__边__形____ 棱:相邻两个面的 ___公___共__边______ 顶点:__棱__与__棱___的公共 点
由一个平面图形绕 空
着它所在平面内的 间
一条_定__直__线__旋转 几 旋转体

高中数学《棱柱、棱锥、棱台的结构特征 》课件

高中数学《棱柱、棱锥、棱台的结构特征 》课件

14
课前自主预习
课堂互动探究
课堂达标自测
课后课时精练
数学 ·必修2
3.(教材改编,P7,T2)有两个面平行的多面体不可能是 ()
A.棱柱 B.棱锥 C.棱台 D.以上都错
15
课前自主预习
课堂互动探究
课堂达标自测
课后课时精练
数学 ·必修2
课堂互动探究
16
课前自主预习
课堂互动探究
课堂达标自测
课后课时精练
课堂达标自测
课后课时精练
数学 ·必修2
解析 ①正确,棱台的侧面一定是梯形,而不是平行四 边形;
②正确,由四个平面围成的封闭图形只能是三棱锥; ③错误,如图所示四棱锥被平面截成的两部分都是棱 锥.
21
课前自主预习
课堂互动探究
课堂达标自测
课后课时精练
数学 ·必修2
探究 2 对棱柱、棱锥、棱台的识别与判断 例 2 如图长方体 ABCD-A1B1C1D1,
数学 ·必修2
探究 1 对棱柱、棱锥、棱台概念的理解 例 1 下列命题中,真命题有__①__②__④__⑤____. ①棱柱的侧面都是平行四边形; ②棱锥的侧面为三角形,且所有侧面都有一个公共点; ③棱台的侧面有的是平行四边形,有的是梯形; ④棱台的侧棱所在直线均相交于同一点; ⑤多面体至少有四个面.
(2)截后的各部分都是棱柱,分别为棱柱 BB1F-CC1E 和棱柱 ABFA1-DCED1.
因而真命题有①②④⑤.
18
课前自主预习
课堂互动探究
课堂达标自测
课后课时精练
数学 ·必修2
拓展提升 关于棱柱、棱锥、棱台结构特征问题的解题方法
(1)根据几何体的结构特征的描述,结合棱柱、棱锥、 棱台的定义进行判断,注意判断时要充分发挥空间想象能 力,必要时做几何模型通过演示进行准确判断.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

练一练:
1.下列说法中正确的是( C ) A.有两个面平行,其余各面都是四边形的几何体叫棱柱. B.有两个面平行,其余各面都是平行四边形的几何体叫棱柱. C.有两个面互相平行,其余各面都是四边形,并且每相邻两 个四边形的公共边都互相平行的几何体叫棱柱. D.用一个平面去截棱锥,底面与截面之间的部分组成的几何 体叫棱台.

顶点:侧面与底面的公共顶点叫做棱柱的
顶点。
侧棱 F
棱柱的表示:底面是三角形、四边形、五边形……的棱 A
柱分别叫做三棱柱、四棱柱、五棱柱……我们用表示底面各 顶点的字母表示棱柱,如六棱柱
ABCDEF-A′B′C′D′E′F′.
ED
B
侧面
C
顶点
想一想:倾斜后 的几何体还是柱 体吗?
E’ F’ A’
D’ C’
2.下列说法错误的是( D) A.多面体至少有四个面 B.九棱柱有9条侧棱,9个侧面,侧面为平行四边形 C.长方体、正方体都是棱柱 D.三棱柱的侧面为三角形 3.一个棱柱有10个顶点,所有的侧棱长的和为60 cm, 则每条侧棱长为__1_2__c_m___.
4.下列结论正确的是( ) (A)有两个面平行,其余各面都是四边形的几何体是棱柱 (B)一个棱柱至少有五个面,六个顶点、九条棱 (C)一个棱锥至少有四个面、四个顶点、四条棱 (D)棱锥截去一个小棱锥后剩余部分是棱台 解:选B.由棱柱的定义知,A不正确;棱数最少的三棱锥 有四个面、四个顶点、六条棱,∴C不正确;对于棱锥,用 不平行于底面的平面截去一个小棱锥后,剩余部分不是棱 台,∴D不正确;B正确.
探究1 多面体和旋转体
观察下面的图片,这些图片中的物体具有怎样的形状? 日常生活中,我们把这些物体的形状叫做什么?我们如 何描述它们的形状?
(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)
(10)
多面体: 一般的,把若干个平面多边形围成的 几何体叫做多面体。
面----围成多面体的各个多边形 棱----相邻两个面的公共边 顶点-----棱与棱的公共点 旋转体: 由一个平面绕它所在平面内的一条定
侧面:有公共顶点的各个三角形面叫做棱锥 的侧面
顶点:各个侧面的公共顶点叫做棱
侧面
锥的顶点。
侧棱:相邻侧面的公共边叫做棱 侧棱
D
C 底面
锥的侧棱。
A
B
棱锥可以表示为:棱锥S-ABCD
底面是三角形,四边形,五边形----的棱锥 分别叫三棱锥,四棱锥,五棱锥---
特殊的棱锥: 如果棱锥的底面为正多边形,且各侧面是全等的等腰三角形, 那么这样的棱锥称为正棱锥。 正棱锥各侧面底边上的高均相等,叫做正棱锥的斜高; 侧棱长等于底面边长的正三棱锥又称为正四面体。
拓展:
如图,截面BCEF将长方体分割成两部分, 这两部分是否为棱柱?
D1
E
C1
A1
F
B1
C D
A
B
课堂小结:
1.本节课重点 掌握多面体、旋转体的概念,棱柱、棱锥、棱台的概念(即 其结构特征),掌握与此相关的概念(如底面、侧面、侧棱、 顶点)。 2.注意棱柱中的侧棱是相互平行的。 3.棱台是由棱锥截得的,但截面要平行于棱锥的底面。
第1课时 棱柱、棱锥、棱台的结构特征
几何学是研究现实世界中物体的形状、大小和位置关系的数学 学科。空间几何体是几何学的重要组成部分,它在土木建筑、机械 设计、航海测绘等大量实际问题中有着广泛的应用。
形 状 与 大 小
如果我们只考虑物体占用空间部分的形状和 大小,而不考虑其它因素,那么由这些
物体抽象出来的空间图形,就叫做空间几 何体。
下底面
的公共点叫做棱台的顶点。
侧棱 A
B
棱台的表示:用表示底面的各顶点的字母
表示。 如:棱台ABCD-A’B’C’D’
底面是三角形,四边形,五边形----的棱台 分别叫三棱台,四棱台,五棱台---
议一议:2.判断下列几何体是不是棱台. 都不是棱台
判断一个几何体是否为棱台: ①各侧棱的延长线是否相交于一点; ②截面是否平行于原棱锥的底面。
B’
E
F A
D C
B
特殊的棱柱: 侧棱不垂直于底面的棱柱叫做斜棱柱;
种类较 多可要 记清
侧棱垂直于底面的棱柱叫做直棱柱;
底面是正多边形的直棱柱叫做正棱柱;
底面是平行四边形的四棱柱叫做平行六面体;
侧棱垂直于底面的平行六面体叫做直平行六面体;
底面是矩形的直平行六面体叫做长方体;
棱长都相等的长方体叫做正方体.
直线旋转所形成的封闭几何体

顶点
面 棱

探究2.棱柱的结构特征:
有两个面互相平行,其余各面都是四边形,每相邻两个四边形的 公共边互相平行,由这些面围成的图形叫做棱柱
底面:棱柱中,两个相互平行的面,叫
E’
做棱柱的底面,简称底。
F’ A’
D’ C’
B’
侧面:棱柱中除底面的各面。

侧棱:相邻侧面的公共边叫做棱柱的侧棱
议一议:1、下列几何体中是棱柱的有( C ) A.1个 B.2个 C.3个 D.4个
棱柱的结构特征: ①有两个面互相平行; ②其余各面是四边形; ③每相邻两个四边形的公共边都互相平行.
探究 3.棱锥的结构特征
有一个面是多边形,其余各面都是有一个公共
顶点的三角形,由这些面所围成的多面体叫做棱
底锥面. :棱锥中的多边形面叫做棱锥的底面或底。 S 顶点
探究4棱台的结构特征
用一个平行于棱锥底面的平面去截棱锥,底面 与截面之间的部分是棱台.
下底面和上底面:原棱锥的底面和截面
分别叫做棱台的下底面和上底面。

侧面:原棱锥的侧面也叫做棱台的侧 面(截后剩余部分)。
D’
顶点
底 C’ 面
侧棱:原棱锥的侧棱也叫棱台的侧棱 (截后剩余部分)。
A’
D
B
相关文档
最新文档