数字电子课程设计 数字钟

合集下载

数电课程设计数字电子钟.

数电课程设计数字电子钟.

数字电子技术课程设计数字电子钟指导老师:小组成员:目录摘要 (3)第一节系统概述 (4)第二节单元电路设计与分析 (6)第三节电路的总体设计与调试 (11)第四节设计总结 (13)附录部分芯片功能参数表 (14)参考文献 (17)摘要数字钟是一个将“时”,“分”,“秒”显示于人的视觉器官的计时装置。

它的计时周期为24小时,显示满刻度为23时59分59秒。

一个基本的数字钟电路主要由秒信号发生器、“时、分、秒、”计数器、译码器及显示器组成。

由于采用纯数字硬件设计制作,与传统的机械表相比,它具有走时准,显示直观,无机械传动装置等特点。

本设计中的数字时钟采用数字电路实现对“时”、“分”、“秒”的显示和调整。

通过采用各种集成数字芯片搭建电路来实现相应的功能。

具体用到了555震荡器,74LS90及与非,异或等门集成芯片等。

该电路具有计时的功能。

在对整个模块进行分析和画出总体电路图后,对各模块进行仿真并记录仿真所观察到的结果。

实验证明该设计电路基本上能够符合设计要求!关键词振荡器、计数器、译码显示器、Multisim第一节系统概述数字电子钟是由多块数字集成电路构成的,其中有振荡器,分频器,校时电路,计数器,译码器和显示器六部分组成。

振荡器和分频器组成标准秒信号发生器,不同进制的计数器产生计数,译码器和显示器进行显示,通过校时电路实现对时,分的校准。

1.1实验目的1).掌握组合逻辑电路、时序逻辑电路及数字逻辑电路系统的设计、安装、测试方法;2).进一步巩固所学的理论知识,提高运用所学知识分析和解决实际问题的能力;3).提高电路布局﹑布线及检查和排除故障的能力;4).培养书写综合实验报告的能力。

1.2 主要内容熟悉Multisim10.0仿真软件的应用;设计一个具有显示、校时、整点报时和定时功能的数字时钟,.能独立完成整个系统的设计;用Multisim10.0仿真实现数字时钟的功能。

1.3 系统设计思路与总体方案数字时钟基本原理的逻辑框图如下所示:系统方框图1由上图可以看出,振荡器产生的信号经过分频器作为产生秒脉冲,秒脉冲送入计数器,计数结果经过“时”、“分”、“秒”,译码器,显示器显示时间。

数字电子钟设计(电子集成专业类课程设计)

数字电子钟设计(电子集成专业类课程设计)

电子线路课程设计——数字时钟的设计与制作一、设计目标1.通过这次课程设计,进一步熟悉和掌握数电和模电知识,掌握multisim仿真软件的使用。

2.学习数字时钟的硬件设计原理,熟练各种电路应用。

3.培养独立分析问题和解决问题的能力和创新思维。

二、设计功能要求(1)时的技术要求为“24翻1”,分和秒的要求为60进制进位(2)准确计时,以数字形式显示时,分,秒的时间(3)具有校时功能,可以分别对时及分进行单独校对,能校正到标准时间(4)拓展功能:整点报时三、数字钟电路系统工作原理1.数字钟的构成石英晶振为主要部件的振荡器、分频器、计数器、校时电路、数码显示、整点报时电路。

数字钟实际上是一个对标准频率(1HZ)进行计数的计数电路。

由于计数的起始时间不可能与标准时间一致,故需要在电路上加一个校时电路。

同时标准的1HZ时间信号必须做到准确稳定。

通常使用石英晶体振荡器电路构成数字钟。

2.电路设计框图如下由图可见:本数字钟电路主要由振荡器,分频器,校时电路,时分秒计数器,译码显示器及整点报时电路构成。

3、工作原理①振荡电路:由石英振荡器产生的32768HZ高频脉冲信号作为数字钟的时间基准。

石英晶体振荡器的特点是振荡频率准确、电路结构简单,易调整。

用反相器和石英晶体构成振荡电路如下图。

利用两非门G1和G2自我反馈,使他们工作在现行状态,然后利用石英晶体JU来控制震荡频率,同时用电容C1来作为两个非门之间的耦合。

两个非门输入和输出之间并联的电阻R1和R2作为负反馈元件,由于反馈作用很小,可以近似认为非门的输出输入压降相等,电容C2是为了防止寄生振荡。

电路图如下:仿真图如下:②分频电路:分频器的功能主要有产生标准秒脉冲信号和提供功能扩展电路所需的信号。

(共经过15级2分频集成电路)我们实验用的是CD4060、74LS74,其中CD4060是14级分频器,将石英晶振的高频变为二分频,74LS74是D触发器,可以用作二分频。

数电课设-数字钟

数电课设-数字钟

数字钟一.基本功能1、设计一个数字钟,能够显示当前时间,分别用6个数码管显示小时、分钟、秒钟的时间,秒针的计数频率为1Hz,可由系统脉冲分频得到。

2、在整点进行提示,可通过LED闪烁实现,闪烁频率及花型可自己设计。

3、能够调整小时和分钟的时间,调整的形式为通过按键进行累加。

4、具有闹钟功能,闹钟时间可以任意设定(设定的形式同样为通过按键累加),并且在设定的时间能够进行提示,提示同样可以由LED闪烁实现。

二.扩展功能1、设计模式选择计数器,通过计数器来控制各个功能之间转换。

2、调整当前时间以及闹钟时间,在按键累加的功能不变的基础上,增加一个功能,即当按住累加键超过3秒,时间能够以4Hz的频率累加。

3、用LCD液晶屏来显示当前时间及功能模式。

library ieee;use ieee.std_logic_1164.all;use ieee.std_logic_unsigned.all;use ieee.std_logic_arith.all;entity clock isport(clk: in std_logic; --27M晶振key3,key2,key0: in std_logic:='1'; --时、分、模式按钮,下降沿触发ledg: o ut std_logic_vector(2 downto 0):="000"; --整点提示ledr: out std_logic_vector(2 downto 0):="000"; --闹铃hex7,hex6,hex5,hex4,hex3,hex2,hex0,hex1: out std_logic_vector(6 downto 0) --数码管显示);end;architecture a of clock issignal x: integer range 1 to 13500000:=1; --记27M的上升沿个数signal clka: std_logic; --1HZsignal temp1,temp2,temp3,temp4,temp5,temp6: std_logic_vector(3 downto 0):="0000"; --时分秒走时signal xianshi1,xianshi2,xianshi3,xianshi4,xianshi5,xianshi6:std_logic_vector(3 downto 0):="0000"; --数码管显示signal temp0: std_logic_vector(1 downto 0):="00"; --模式显示signal tfen1,tfen2,tshi1,tshi2,nfen1,nfen2,nshi1,nshi2: std_logic_vector(3 downto 0); --调时和闹铃时的分、时的个位和十位signal naoling1,naoling2,naoling3,naoling4: std_logic_vector(3 downto 0); --闹铃调时时的显示begin--分频,产生1HZ的时钟process(clk)beginif clk'event and clk='1' thenx<=x+1;if x=13500000 thenclka<=not clka; --27M每13500000个上升沿clka取反x<=1;end if;end if;end process;--模式选择器,用按键控制,有0、1、2 三种模式process(key0)beginif key0'event and key0='0' thenif temp0="10" then --模式2时,再按键则进入模式0temp0<="00";elsetemp0<=temp0+1;end if;end if;end process;--模式用数码管显示process(temp0)begincase temp0 iswhen "00" => hex0<="1000000";--显示0when "01" => hex0<="1111001";--显示1when "10" => hex0<="0100100";--显示2when others => hex0<="0000000";--显示全亮end case;end process;--模式1时,调时,调节时钟的分process(key2,temp0)beginif temp0="01" thenif key2'event and key2='0' thenif tfen1="1001" then --个位到9,十位加1if tfen2="0101" then --加到59,则归零tfen1<="0000";tfen2<="0000";elsetfen2<=tfen2+1;tfen1<="0000";end if;elsetfen1<=tfen1+1;end if;end if;end if;end process;--模式1时,调时,调节时钟的时process(key3,temp0)beginif temp0="01" thenif key3'event and key3='0' thenif tshi1="1001" then ----个位到9,十位加1tshi1<="0000";tshi2<=tshi2+1;elsif tshi1="0011" and tshi2="0010" then --到23,则归零tshi1<="0000";tshi2<="0000";elsetshi1<=tshi1+1;end if;end if;end if;end process;--模式2时,设定闹铃,设定时钟的分process(key2,temp0)beginif temp0="10" thenif key2'event and key2='0' thenif nfen1="1001" then ----个位到9,十位加1if nfen2="0101" then --加到59,则归零nfen1<="0000";nfen2<="0000";elsenfen2<=nfen2+1;nfen1<="0000";end if;elsenfen1<=nfen1+1;end if;end if;end if;end process;--模式2时,设定闹铃,设定时钟的时process(key3,temp0)beginif temp0="10" thenif key3'event and key3='0' thenif nshi1="1001" then ----个位到9,十位加1nshi1<="0000";nshi2<=nshi2+1;elsif nshi1="0011" and nshi2="0010" then --到23,则归零nshi1<="0000";nshi2<="0000";elsenshi1<=nshi1+1;end if;end if;end if;end process;--三种模式间的显示及传递process(clka,temp0)beginif temp0="01" then --模式1时,传递调时的时,分temp3<=tfen1;temp4<=tfen2;temp5<=tshi1;temp6<=tshi2;xianshi3<=temp3; --模式1时,显示时,分xianshi4<=temp4;xianshi5<=temp5;xianshi6<=temp6;elsif temp0="10" then --模式2时,传递闹铃的时,分naoling1<=nfen1;naoling2<=nfen2;naoling3<=nshi1;naoling4<=nshi2;xianshi3<=naoling1; --模式2时,显示闹铃的时,分xianshi4<=naoling2;xianshi5<=naoling3;xianshi6<=naoling4;elsifclka'event and clka='1' then --正常走时,即temp0=00if temp1="1001" then --秒的个位到9,十位加1if temp2="0101" then --秒到59,则归零,分的个位加1temp1<="0000";temp2<="0000";temp3<=temp3+1;if temp3="1001" then --分的个位到9,十位加1if temp4="0101" then --分到59,则归零,时的个位加1temp3<="0000";temp4<="0000";temp5<=temp5+1;if temp5="1001" then --时的个位到9,十位加1temp5<="0000";temp6<=temp6+1;elsif temp5="0011" and temp6="0010" then --时到23,则归零temp5<="0000";temp6<="0000";end if;elsetemp3<="0000";temp4<=temp4+1;end if;elsetemp3<=temp3+1;end if;elsetemp1<="0000";temp2<=temp2+1;end if;elsetemp1<=temp1+1;end if;----到设置的闹铃时则ledr(0--2)三个灯亮,一分钟后熄灭if temp3=naoling1 and temp4=naoling2 and temp5=naoling3 and temp6=naoling4 thenledr<="111";elseledr<="000";end if;----到整点时时则ledg(0--2)三个灯亮,一分钟后熄灭if temp3="0000" and temp4="0000" thenledg<="111";elseledg<="000";end if;--将走时传递给显示译码xianshi1<=temp1;xianshi2<=temp2;xianshi3<=temp3;xianshi4<=temp4;xianshi5<=temp5;xianshi6<=temp6;end if;end process;----数码管显示译码process(xianshi1,xianshi2,xianshi3,xianshi4,xianshi5,xianshi6) begincase xianshi1 iswhen "0000" => hex2<="1000000";when "0001" => hex2<="1111001";when "0010" => hex2<="0100100";when "0011" => hex2<="0110000";when "0100" => hex2<="0011001";when "0101" => hex2<="0010010";when "0110" => hex2<="0000010";when "0111" => hex2<="1111000";when "1000" => hex2<="0000000";when "1001" => hex2<="0010000";when others => hex2<="1000000";end case;case xianshi2 iswhen "0000" => hex3<="1000000";when "0001" => hex3<="1111001";when "0010" => hex3<="0100100";when "0011" => hex3<="0110000";when "0100" => hex3<="0011001";when "0101" => hex3<="0010010";when others => hex3<="1000000";end case;case xianshi3 iswhen "0000" => hex4<="1000000";when "0001" => hex4<="1111001";when "0010" => hex4<="0100100";when "0011" => hex4<="0110000";when "0100" => hex4<="0011001";when "0101" => hex4<="0010010";when "0110" => hex4<="0000010";when "0111" => hex4<="1111000";when "1000" => hex4<="0000000";when "1001" => hex4<="0010000";when others => hex4<="1000000";end case;case xianshi4 iswhen "0000" => hex5<="1000000";when "0001" => hex5<="1111001";when "0010" => hex5<="0100100";when "0011" => hex5<="0110000";when "0100" => hex5<="0011001";when "0101" => hex5<="0010010";when others => hex5<="1000000";end case;case xianshi5 iswhen "0000" => hex6<="1000000";when "0001" => hex6<="1111001";when "0010" => hex6<="0100100";when "0011" => hex6<="0110000";when "0100" => hex6<="0011001";when "0101" => hex6<="0010010";when "0110" => hex6<="0000010";when "0111" => hex6<="1111000";when "1000" => hex6<="0000000";when "1001" => hex6<="0010000";when others => hex6<="1000000";end case;case xianshi6 iswhen "0000" => hex7<="1000000";when "0001" => hex7<="1111001";when "0010" => hex7<="0100100";when others => hex7<="1000000";end case;hex1<="1111111"; ---关闭hex1数码管end process;end;。

数电课程设计-数字电子钟PPT课件

数电课程设计-数字电子钟PPT课件
5
3 设计方案的选择与论证
数字电子钟系统框图如下:
图3.1 数 字 电 子 钟 系 统 框 图
6
3 设计方案的选择与论证
3.1) 时间脉冲产生电路
振荡器是数字钟的核心。振荡器的稳定度及频率的 精确度决定了数字钟计时的准确程度。
由集成逻辑门与RC组成的时钟源振荡器或由集成 电路定时器555与RC组成的多谐振荡器作为时间 标准信号源。
本实验中采用4040来构成分频电路。CD4040计数 为最高为12级2进制计数器,可以将32767HZ的信 号先分频为8HZ,再分为1HZ的信号。如图4.1所示 ,可以直接实现振荡和分频的功能。
16
4 电路设计计算与分析
4.2) 时、分、秒计数器
数字钟的计数电路用两个六十进制计数电路和24进 制计数电路实现的。
数字电子钟设计目的数字电子钟设计目的设计任务和要求设计任务和要求设计方案的选择与论证设计方案的选择与论证电路设计计算与分析电路设计计算与分析元器件明细表元器件明细表11掌握数字钟的设计掌握数字钟的设计22熟悉集成电路的使用方法熟悉集成电路的使用方法11显示显示时时分分秒22可以可以2424小时制或小时制或1212小时制小时制
本设计校时电路是将各个位上的使能端引出接一个 单刀双掷开关,一端(1端)接低位的进位信号,另 一端(2端)接校时电路。校正某位上的时间时,可 以将相应位的开关接到2端,通过拨动校时电路就能 实现校时功能。
12
3 设计方案的选择与论证
3.5) 整点报时电路
一般时钟都应具备整点报时电路功能,即在时间出 现整点前数秒内,数字钟会自动报时,以示提醒。
J2是时校正开关。不校正时,J2开关是连接上面的 ,即连接正常计数。当校正时位时,首先截断正常的 计数通路,然后再进行人工出触发计数加到需要校正 的计数单元的输入端,校正好后,再转入正常计时状 态即可。

数电课程设计电子钟

数电课程设计电子钟

数电课程设计电子钟一、课程目标知识目标:1. 让学生掌握数字电路基础知识,理解电子钟的工作原理。

2. 使学生了解并掌握电子钟各组成部分的功能及相互关系。

3. 培养学生运用数字电路知识分析、设计简单电子系统的能力。

技能目标:1. 培养学生运用所学知识,设计并搭建电子钟的能力。

2. 培养学生运用电子仪器、设备进行测试、调试和故障排查的能力。

3. 培养学生团队协作、沟通表达及解决问题的能力。

情感态度价值观目标:1. 培养学生对电子技术产生兴趣,激发学生学习积极性。

2. 培养学生严谨的科学态度和良好的实验习惯。

3. 培养学生具备创新意识和实践能力,增强学生对我国电子科技发展的自豪感。

课程性质分析:本课程属于电子技术课程,通过设计电子钟,使学生将所学数字电路知识应用于实际项目中,提高学生的实践能力。

学生特点分析:学生具备一定的数字电路基础知识,具有较强的动手能力和探究欲望,对实际应用场景感兴趣。

教学要求:结合学生特点,注重理论与实践相结合,培养学生的动手能力、创新能力和团队协作能力。

通过课程目标分解,实现对学生知识、技能和情感态度价值观的全面提升。

二、教学内容1. 数字电路基础知识回顾:逻辑门、组合逻辑电路、时序逻辑电路等。

2. 电子钟工作原理:振荡器、分频器、计数器、显示电路等。

3. 电子钟各组成部分功能及相互关系:晶振、分频器、秒、分、时计数器、显示驱动等。

4. 电子钟设计流程:需求分析、电路设计、仿真测试、硬件搭建、调试优化等。

5. 教学大纲:(1)第一周:回顾数字电路基础知识,介绍电子钟工作原理及各部分功能。

(2)第二周:分析电子钟各组成部分的相互关系,讲解设计流程。

(3)第三周:分组讨论,确定设计方案,进行电路设计和仿真测试。

(4)第四周:硬件搭建,进行调试和优化,确保电子钟正常工作。

6. 教材章节及内容:(1)第四章:数字电路基础,涉及逻辑门、组合逻辑电路等。

(2)第五章:时序逻辑电路,涉及计数器、寄存器等。

数电课程设计数字钟

数电课程设计数字钟

数电课程设计数字钟一、课程目标知识目标:1. 理解数字钟的基本原理和组成,掌握数字电路基础知识;2. 学会运用组合逻辑电路设计数字钟的时、分、秒显示部分;3. 掌握数字钟的计时功能,了解其工作过程和调试方法;4. 了解数字钟在实际应用中的优势,如精确度、稳定性等。

技能目标:1. 能够运用所学知识,设计并搭建一个简单的数字钟电路;2. 培养动手实践能力,学会使用相关仪器、工具进行电路搭建和调试;3. 提高问题解决能力,能够分析并解决数字钟运行过程中出现的问题;4. 学会团队协作,与他人共同完成课程设计任务。

情感态度价值观目标:1. 培养学生对电子技术的兴趣,激发创新意识;2. 培养学生的耐心、细心和责任心,养成良好的学习习惯;3. 引导学生关注科技发展,认识数字技术在实际生活中的应用;4. 培养学生的环保意识,注意电子垃圾的处理和回收。

课程性质:本课程为实践性较强的课程,注重培养学生的动手能力和实际操作技能。

学生特点:学生已具备一定的数字电路基础知识,具有较强的求知欲和动手欲望。

教学要求:结合课程性质和学生特点,采用理论教学与实践操作相结合的方式,注重启发式教学,引导学生主动参与课程设计过程,提高学生的实践能力和创新能力。

通过课程目标的分解,确保学生能够达到预定的学习成果,为后续的教学设计和评估提供依据。

二、教学内容1. 数字钟原理及组成- 了解数字钟的基本工作原理- 掌握数字钟的各个组成部分,如振荡器、分频器、计数器、显示电路等2. 组合逻辑电路设计- 学习组合逻辑电路的设计方法- 应用组合逻辑电路设计数字钟的时、分、秒显示部分3. 数字电路基础知识- 复习数字电路基础知识,如逻辑门、触发器、计数器等- 了解不同类型数字电路的特点和应用4. 数字钟电路搭建与调试- 学习数字钟电路的搭建方法- 掌握数字钟电路的调试技巧,分析并解决常见问题5. 教学内容安排与进度- 第一周:数字钟原理及组成,数字电路基础知识复习- 第二周:组合逻辑电路设计,数字钟显示部分设计- 第三周:数字钟电路搭建,初步调试- 第四周:数字钟电路调试,优化与改进6. 教材章节及内容列举- 教材第三章:数字电路基础- 教材第四章:组合逻辑电路- 教材第五章:时序逻辑电路- 教材第六章:数字钟设计与实践教学内容科学、系统,注重理论与实践相结合,以学生动手实践为主,充分调动学生的积极性,培养实际操作能力。

数字电子钟课程设计

数字电子钟课程设计

数字电子钟 课程设计一、课程目标知识目标:1. 学生能理解数字电子钟的基本原理,掌握其组成结构,包括时钟芯片、数字显示管等;2. 学生能掌握数字电子时钟的电路连接方式,了解各部分功能及相互关系;3. 学生能运用所学知识分析并解决数字电子钟在实际应用中出现的问题。

技能目标:1. 学生能运用所学知识设计简单的数字电子钟电路,具备实际操作能力;2. 学生能通过查阅资料、合作交流等方式,提高自主学习能力和团队协作能力;3. 学生能运用数字电子钟的设计原理,进行创新设计,提高创新能力。

情感态度价值观目标:1. 学生对电子技术产生兴趣,树立学习信心,培养勇于探索、积极进取的精神;2. 学生认识到数字电子钟在生活中的广泛应用,了解科技发展对人类生活的影响,增强社会责任感;3. 学生在设计和制作过程中,培养耐心、细致的工作态度,提高审美观念。

本课程针对初中年级学生,结合电子技术学科特点,注重理论与实践相结合。

在教学过程中,关注学生个体差异,充分调动学生的主观能动性,培养其创新思维和实际操作能力。

通过本课程的学习,使学生能够将所学知识应用于实际生活,提高综合素养。

二、教学内容1. 数字电子钟原理及组成- 时钟芯片工作原理- 数字显示管工作原理- 数字电子钟的组成结构及功能2. 数字电子钟电路设计- 电路连接方法- 各组成部分的选型与参数- 电路图的绘制与解读3. 数字电子钟编程与调试- 基本编程知识- 编程控制数字显示- 电路调试与故障排查4. 数字电子钟的创新设计- 创新设计理念与方法- 功能拓展与优化- 设计实例分析教学内容依据课程目标,结合教材相关章节,按照以下进度安排:第一课时:数字电子钟原理及组成第二课时:数字电子钟电路设计第三课时:数字电子钟编程与调试第四课时:数字电子钟的创新设计在教学过程中,注重理论与实践相结合,引导学生通过观察、实践、思考,掌握数字电子钟的设计与应用。

同时,鼓励学生进行创新设计,提高其解决问题的能力和创新思维。

数字电子钟课程设计

数字电子钟课程设计
数字电子钟课程设计
一、教学内容
本节“数字电子钟课程设计”依据《电子技术》教材第九章“数字电路应用”的内容进行设计。主要内容包括:
1.数字电子钟的原理与设计:介绍数字电子钟的基本工作原理,引导学生了解时钟信号的产生、分频电路、计数器、显示电路等组成部分。
2. 555定时器应用:讲解555定时器在数字电子钟中的作用,如如何产生稳定的时钟信号。
21.信息技术应用:教授学生如何利用现代信息技术,如互联网资源、在线仿真工具等,来辅助学习和解决实际问题,提高学生的信息素养。
22.教学反馈收集:在课程结束后,收集学生对课程内容、教学方式、实践环节等方面的反馈,以利于教师不断优化教学方法和提升教学质量。
6.实际制作与测试:引导学生动手制作数字电子钟,并进行功能测试与优化。
2、教学பைடு நூலகம்容
7.电路优化与改进:探讨如何优化电子钟电路设计,包括降低功耗、提高显示清晰度、增强电路稳定性等方面。
8.故障分析与排除:分析数字电子钟可能出现的常见故障,如显示错误、计时不准确等,并教授相应的排查与解决方法。
9.创新设计:鼓励学生对电子钟进行创新设计,如增加闹钟功能、温度显示、定时开关等,提升学生的创新能力和实践能力。
13.成果展示与评价:组织学生进行成果展示,相互评价,培养学生表达能力和批判性思维,同时教师给予总结性评价和反馈。
14.知识拓展:介绍数字电子钟在生活中的应用,以及电子时钟的最新技术发展,激发学生对电子技术领域的兴趣和探索欲。
4、教学内容
15.实践技能培养:通过实际操作,加强学生对电子元器件的识别与使用、焊接技术、电路布局与布线等实践技能的掌握。
10.课程总结:对本章内容进行回顾,强调数字电子钟各部分电路的联系与作用,巩固学生的理论知识,提升实际操作技能。

数电课程设计报告数字钟的设计

数电课程设计报告数字钟的设计

数电课程设计报告第一章设计背景与要求设计要求第二章系统概述设计思想与方案选择各功能块的组成工作原理第三章单元电路设计与分析各单元电路的选择设计及工作原理分析第四章电路的组构与调试遇到的主要问题现象记录及原因分析解决措施及效果功能的测试方法,步骤,记录的数据第五章结束语对设计题目的结论性意见及进一步改进的意向说明总结设计的收获与体会附图电路总图及各个模块详图参考文献第一章设计背景与要求一.设计背景与要求在公共场所,例如车站、码头,准确的时间显得特别重要,否则很有可能给外出办事即旅行袋来麻烦;数字钟是一种用数字电路技术实现时、分、秒计时的装置,与机械式时钟相比具有更高的准确度和直观性,且无机械装置,具有更长的使用寿命,因此得到了广泛的使用;数字钟是一种典型的数字电路,包括了组合逻辑电路和时序电路;设计一个简易数字钟,具有整点报时和校时功能;1以四位LED数码管显示时、分,时为二十四进制;2时、分显示数字之间以小数点间隔,小数点以1Hz频率、50%占空比的亮、灭规律表示秒计时;3整点报时采用蜂鸣器实现;每当整点前控制蜂鸣器以低频鸣响4次,响1s、停1s,直到整点前一秒以高频响1s,整点时结束;4才用两个按键分别控制“校时”或“校分”;按下校时键时,是显示值以0~23循环变化;按下“校分”键时,分显示值以0~59循环变化,但时显示值不能变化;二.设计要求电子技术是一门实践性很强的课程,加强工程训练,特别是技能的培养,对于培养学生的素质和能力具有十分重要的作用;在电子信息类本科教学中,课程设计是一个重要的实践环节,它包括选择课题、电子电路设计、组装、调试和编写总结报告等实践内容;通过本次简易数字钟的设计,初步掌握电子线路的设计、组装及调试方法;即根据设计要求,查阅文献资料,收集、分析类似电路的性能,并通过组装调试等实践活动,使电路达到性能要求;第二章系统概述设计思想与方案选择方案一 ,利用数字电路中学习的六十进制和二十四进制计数器和三八译码器来实现数字中的时间显示;方案二,利用AT89S51单片机和74HC573八位锁存器以及利用C语言对AT89S51进行编程来实现数字钟的时间显示;由于方案一通过数电的学习我们都比较熟悉,而方案二比较复杂,涉及到比较多我们没学过的内容,所以选择方案一来实施;简易数字钟电路主体部分是三个计数器,秒、分计数器采用六十进制计数器,而时计数器采用二十四进制计数器,其中分、时计数器的计数脉冲由校正按键控制选择秒、分计数器的溢出信号或校正10Hz计数信号;计数器的输出通过七段译码后显示,同时通过数值判断电路控制蜂鸣器报时;各功能块的组成分频模块,60进制计数器模块,24进制计数器模块,4位显示译码模块,正点报时电路模块,脉冲按键消抖动处理模块工作原理一.简易数字钟的基本工作原理是对1Hz标准频率秒脉冲进行计数;当秒脉冲个数累计满60后产生一个分计数脉冲,而分计数脉冲累计满60后产生一个时计数脉冲,电路主要由3个计数器构成,秒计数和分计数为六十进制,时计数为二十四进制;将FPGA开发装置上的基准时钟OSC作为输入信号通过设计好的分频器分成1Hz~10MHz8个10倍频脉冲信号;1Hz的脉冲作为秒计数器的输入,这样实现了一个基本的计时装置;通过4位显示译码模块,可以显示出时间;时间的显示范围为00时00分~23时59分;二.当需要调整时间时,可使用数字钟的时校正和分校正进行调整,数字钟中时、分计数器都有两个计数脉冲信号源,正常工作状态时分别为时脉冲和分脉冲;校正状态时都为5~10Hz的校正脉冲;这两种状态的切换由脉冲按键控制选择器的S 端来实现;为了更准确的设定时间,需要对脉冲按键进消抖动处理;三.电路在整点前10 秒钟内开始控制蜂鸣器报时,可采用数字比较器或逻辑门判断分、秒计数器的状态码值,以不同频率的脉冲控制蜂鸣器的鸣响;第三章单元电路设计与分析各单元电路的选择1分频模块,设计一个8级倍率为10 的分频电路,输出频率分别为1Hz 、10Hz、100 Hz、1k Hz、10k Hz、100k Hz、1 MHz、10MHz8组占空比为50%的脉冲信号;260进制计数器模块,采用两片74161级联;324进制计数器模块,采用两片74161级联;44位显示译码模块,由分频器,计数器,数据选择器,七段显示译码,3-8线译码器构成一个4位LED数码显示动态扫描控制电路;其中4位计数器用74161,数据选择器用74153,七段显示译码器部分采用AHDL硬件描述语言设计;5正点报时电路模块,该模块采用与门和数据选择器74153构成6脉冲按键消抖动处理模块,采用D触发器实现消抖动,从而能够比较精确地设定时间;设计及工作原理分析1分频模块要输出8级频率差为10倍的分频电路,可采用十进制计数器级联实现;集成十进制计数器的类型很多,比较常用的有74160、74162、74190、74192和7490等;这里采用7490来实现分频,7490是二-五-十进制加计数器,片上有一个二进制计数器和一个异步五进制计数器;QA是二进制加计数器的输出,QB、QC、QD是五进制加计数器的输出,位序从告到低依次为D,C,B;该分频器一共用到7片7490,初始信号输入到第一片7490的CLKB 端口,QD输出端连接到CLKA端,作为输入,从QA引出1MHz的output端口,并引线到第二片7490的CLKB端口,依此类推,直到第七片7490连接完成如附图所示;每片7490相当于一个五进制计数器和一个二进制计数器级联实现了十进制加计数,从而实现分频;分频模块图如图所示分频模块内部结构图如下图所示260进制计数器模块采用两片74161级联,如图,下面一片74161做成十进制的,初始脉冲从CLK输入,ENT和ENP都接高电平,而QD与QA用作为与非门的两个输入,与非门输出分别连接到自身的LDN端与上面一片74161的CLK端;上面一片74161的QC和QA端作为与非门的两个输入通过输出连接到自身的LDN,ENT 和ENP接高电平;下面一片实现从0000到1001即0~9十个状态码的计数,当下面一片为1001状态时,自身的LDN为低电平,此时QD,QC,QB,QA的状态恢复到0000,即从0开始从新计数,而上面一片74161的CLK电平改变,上面一片74161开始计数为0001,实现从0000~到0101即0到5六个状态码的计数,当上面一片状态为0101时,LDN为低电平,此时计数器为0000;这样子通过两片74161就实现了一个六十进制计数器;下图为六十进制计数器模块的示意图由六十进制计数模块构成的秒分计数如下图,下面那块六十进制技术模块表示为妙,上面那块六十进制计数模块表示为分;当妙计数模块的状态为0101 1001时,向分计数模块进位, 即通过74153M的输入C1,此时74153M输出接到分计数模块的输入端 ,通过74153M作为选择器,实现进位控制;324进制计数器模块采用两片74161级联,如图,下面一片74161做成十进制的,初始脉冲从CLK输入,ENT和ENP都接高电平,而QD与QA用作为与非门的两个输入分别连接到自身的LDN端与上面一片74161的CLK端;上面一片74161的QB非门的一个输入通过输出连接到自身的LDN,ENT 和ENP接高电平,并且上面74161的QB端和下面一块74161的QC端通过与非门输出接到两片74161的清零端CLRN;下面一片实现从0000到1001即0~9十个状态码的计数,当下面一片为1001状态时,自身的LDN为低电平,此时QD,QC,QB,QA的状态恢复到0000,即从0开始从新计数,而上面一片74161的CLK电平改变,上面一片74161开始计数为0001,实现从0000~到0010即0到2三个状态码的计数,当上面一片状态为0010即2时,下面一片状态为0100即4时,两块74161的CLRN为低电平,此时两块74161的状态都为0000,即实现了23时过后显示00时;这样子通过两片74161就实现了一个24进制计数器;下图为24进制计数器模块示意图由二十四进制计数模块构成的时计数模块如图,下面那块六十进制技术模块表示为分,上面那块24进制计数模块表示为时;当分计数模块的状态为0101 1001时,向时计数模块进位, 即通过74153M的输入C1,此时74153M输出接到时计数模块的输入端 ,通过74153M作为选择器,实现进位控制;二十四进制计数模块构成的时计数模块44位显示译码模块由分频器,计数器,数据选择器,七段显示译码,3-8线译码器构成一个4位LED数码显示动态扫描控制电路;4位计数器由74161构成;如下图所示74161构成的4位计数器数据选择器采用两片74153 和一片74153M两片74153实现连在一起实现对四个数字的选择,而一片74153M实现对小数点的选择;如下图所示74153M构成的数据选择器两片74153构成的数据选择器七段显示译码器部分采用AHDL硬件描述语言设计,语句如下:subdesign ymqdata_in3..0 :input;a,b,c,d,e,f,g :output;begintabledata_in3..0 =>a,b,c,d,e,f,g;b"0000" =>1,1,1,1,1,1,0;b"0001" =>0,1,1,0,0,0,0;b"0010" =>1,1,0,1,1,0,1;b"0011" =>1,1,1,1,0,0,1;b"0100" =>0,1,1,0,0,1,1;b"0101" =>1,0,1,1,0,1,1;b"0110" =>0,0,1,1,1,1,1;b"0111" =>1,1,1,0,0,0,0;b"1000" =>1,1,1,1,1,1,1;b"1001" =>1,1,1,0,0,1,1;b"1010" =>1,1,1,0,1,1,1;b"1011" =>0,0,1,1,1,1,1;b"1100" =>1,0,0,0,1,1,0;b"1101" =>0,1,1,1,1,0,1;b"1110" =>1,0,0,1,1,1,1;b"1111" =>1,0,0,0,1,1,1;end table;end;整个四位显示译码模块如图所示5正点报时电路模块该模块采用与门和数据选择器74153构成,如下图所示;7个输入端口的与门控制A,当时间在59分51s,53s,55s,57s,59s的时候,A为高电平1,当秒的个位数为9时,B为高电平1,A为1,B为0时,输出C1低频率信号,A为1,B为1时输出C3高频率信号,实现整点的不同频率的报时电路;整点报时电路模块6脉冲按键消抖动处理模块采用D触发器实现消抖动,从而能够精确地设定时间;校正状态为5HZ的校正脉冲,分频器输出的10HZ通过T触发器得到5HZ的校正脉冲;如图脉冲按键消抖动处理模块通过T触发器得到的5HZ校正脉冲第四章电路的组构与调试遇到的主要问题1在用74161做二十四进制计数器时,没有深入考虑,打算采用第一片六进制,第二片四进制级联而成,结果出现问题;2时、分调整按键没有安装消抖动装置;3在设置简易数字钟的分时,时计数器也会进;现象记录及原因分析1虽然也能够计数实现二十四进制,但是不能与七段显示译码器配合使用,不能显示直观的数值,这样给用户带来不便;2在下载调试的时候,我要进行时分调整,但是有时按一下子脉冲键会进两个数值,这样子给时分的设置带来了麻烦,原因是按键没有采用消抖动装置;3在调试的时候,打算通过按键调整分,但是发现时计数器也会进位,这就不符合要求了,原因是调整分时,各计数器都按正常状况在计数,所以会按正常情况产生进位;解决措施及效果1仍然采用两片74161,第一片可以从0~9,第二片只能从0~2,而且当第二片为2的时候,第一片到4的话就都清零复位,这样不仅实现了二十四进制计数器,而且能与七段显示译码器配合使用,直观的显示数字;2在脉冲控制按键上加上了D触发器,这样子可以达到消抖动的效果;3加上选择器,把两路信号分开,当调整分的时候,不对时计数器产生进位,这样子就不会产生十进位了,解决了这个问题;功能的测试方法、步骤,记录的数据1简易数字钟的测试,将电路图连好后,分析与综合,仿真,编译,下载到仪器上,表示秒的小数点按1Hz,占空比50%跳动,分从0~59计数,分过了59后,向时计数器进1;2整点点报时功能的测试,到了整点,即59分51s,53s,55s,57s时蜂鸣器低频率间断性鸣响,59分59秒时,蜂鸣器高频率鸣响一次;3时、分调整功能的测试,按分调整键,分按一定的频率逐次加一,但是时显示不变;按时调整键,时按一定的频率逐次加一,但是分显示不变;第五章结束语对设计题目的结论性意见及进一步改进的意向说明简易数字钟的设计中,主要运用了分频器,六十进制计数器,二十四进制计数器,动态扫描显示电路,选择器,按键消抖以及门电路等数字电路方面的知识;可以在简易数字钟的基础上加上24小时和12小时转换功能,秒表功能,闹钟功能,这样更能满足人们的使用需求;总结设计的收获与体会简易数字钟的设计及实验当中,我坚持了下来,上学期的数电我学的并不好,而且对软件应用的接受能力不强,刚开始的时候做的很慢,看到别人都做好了,心里比较着急,于是,我找出了数电课本,复习所涉及的知识点,并练习所学软件,终于有了进步,可以更上同学们的进度,但数字钟的设计一直困扰我,看到别人拓展功能都做好了,自己基本的都还没做好,心里很急;在设计的过程中,碰到了很多的困难,遇到了很多问题,不断地思考与尝试,以及向同学和老师请教,但还是没能完全设计好,以后有时间还得多去实验室尝试,争取做好一些拓展功能;通过这次设计,对上学期学习的数字电路的相关知识得到了复习和巩固,也查阅了一些相关的资料,也加深了我对数字电路应用的理解,总之这次的电子技术课程设计受益匪浅;参考文献:基于FPGA的数字电路系统设计西安电子科技大学出版社数字电子技术基础电子工业出版社数字电路与逻辑设计实验及应用人民邮电出版社附图1.分频模块分频器仿真波形下图为分频器线路图2.60进制计数器模块60进制计数器仿真波形3.24进制计数器模块24进制计数器仿真波形4. 4位显示译码模块七段显示译码器模块七段显示译码器部分采用AHDL硬件描述语言设计,语句如下:subdesign ymqdata_in3..0 :input;a,b,c,d,e,f,g :output;begintabledata_in3..0 =>a,b,c,d,e,f,g;b"0000" =>1,1,1,1,1,1,0;b"0001" =>0,1,1,0,0,0,0;b"0010" =>1,1,0,1,1,0,1;b"0011" =>1,1,1,1,0,0,1;b"0100" =>0,1,1,0,0,1,1;b"0101" =>1,0,1,1,0,1,1;b"0110" =>0,0,1,1,1,1,1;b"0111" =>1,1,1,0,0,0,0;b"1000" =>1,1,1,1,1,1,1;b"1001" =>1,1,1,0,0,1,1;b"1010" =>1,1,1,0,1,1,1;b"1011" =>0,0,1,1,1,1,1;b"1100" =>1,0,0,0,1,1,0;b"1101" =>0,1,1,1,1,0,1;b"1110" =>1,0,0,1,1,1,1;b"1111" =>1,0,0,0,1,1,1;end table;end;整个4位显示译码模块四位显示译码模块。

数字电路课程设计数字电子钟

数字电路课程设计数字电子钟

数字电路逻辑设计课程设计学校:学院:专业班级:姓名:学号:同组人:课程设计题目数字电子钟设计要求1. 设计一个具有时、分、秒显示的电子钟(23小时59分59秒)。

2. 该电子钟应具有手动校时、校分得功能。

3. 整点报时。

从59分50秒起,每隔2s发出一次“嘟”的信号。

连续5次,最后1次信号结束即达到正点。

设计方案1. 数字电子钟基本工作原理和整体设计方案数字钟实际上是一个对标准频率进行计数的计数电路。

它的计时周期是24小时,由于计数器的起始时间不可能与标准时间(如北京时间)一致所以采用校准功能和报时功能。

数字电子钟是由石英晶体振荡器、分频器、计数器、译码器、显示器和校时电路组成,石英晶体振荡器产生的信号经过分频器作为秒脉冲,秒脉冲送入计数器,计数结果通过时、分、秒译码器显示时间。

秒脉冲是整个系统的时基信号,它直接决定计时系统的精度,将标准秒信号送入“秒计数器”,“秒计数器”采用60进制计数器,每累计60秒发出一个“分脉冲”信号,该信号将作为“分计数器”的时钟脉冲。

“分计数器”也采用60进制计数器,每累计60分钟,发出一个时脉冲信号,该信号将被送到时计数器。

时计数器采用24进制计时器,可实现对一天24小时的计时。

译码显示电路将“时”、“分”、“秒”计数器的输出状态通过显示驱动电路,七段显示译码器译码,在经过六位LED七段显示器显示出来。

整点报时电路时根据计时系统的输出状态产生一个脉冲信号,然后去触发一音频发生器实现报时。

校准电路时用来对“时”、“分”、“秒”显示数字进行校对调整的。

数字电子钟逻辑框图如下:2. 数字电子钟单元电路设计、参数计算和元件芯片选择(1)石英晶体振荡器和分频器石英晶体振荡器的特点是振荡频率准确、电路结构简单、频率易调整。

它还具有压电效应,在晶体的某一方向加一电场,则在与此垂直的方向产生机械振动,有了机械振动,就会在相应的垂直面上产生电场,从而机械振动和电场互为因果,这种循环过程一直持续到晶体的机械强度限止时,才达到最后稳定。

数电课程设计数字电子钟说明书

数电课程设计数字电子钟说明书

数字电子技术电路课程设计题目:数字钟课程设计学院:XXXXX专业:XXXXX班级:XXXX姓名:XXXX学号:XXXXX指导老师:XXXXX一、设计目的数字钟是一种用数字电子技术实现时,分,秒计时的装置,具有较高的准确性和直观性等各方面的优势,而得到广泛的应用。

此次设计数字电子钟是为了了解数字钟的原理,在设计数字电子钟的过程中,用数字电子技术的理论和制作实践相结合,进一步加深数字电子技术课程知识的理解和应用,同时学会使用Multisim电子设计软件。

二、设计要求1.显示时,分,秒,用24小时制2.能够进行校时,可以对数字钟进行调时间3.能够正点报时(用555产生断续音频信号);三、设计方案比较方案一、采用中小规模集成电路实现采用集成逻辑电路设计具有能实现,时、分、秒计时功能和定点报时功能,计时模块采用时钟信号触发,不需要程序控制。

方案二:EDA技术实现采用EDA作为主控制器外围电路进行电压,时钟控制、键盘和LED控制。

但此方案逻辑电路复杂,外围设备多,灵活性较低,不利于扩展方案三、单片机编程实现此方案采用单片机编程来设计和控制。

综上,根据自身的知识和方案比较,采用方案一,因为方案一简便灵活,扩展性好,同时符合此次数子电子知识设计的要求。

四、设计过程和说明1.数字电子钟计时和显示功能的实现(1)采用两片十进制计数器74LS160N扩展连接,设计60进制的计数器,显示0到59,在59时采用置数的方法,将两片74LS160N同时置数至0,以循环显示0到59。

(图)(2)24进制亦采用两片十进制计数器74LS160N扩展连接,设计24进制的计数器,显示0到23,在23时采用置数的方法,将两片74LS160N同时置数至0,以循环显示0到23(图)(3)利用秒钟的置数信号(为低电平),取反后作为分钟各位的使能端(EP和ET)的控制信号,以实现分秒之间的进位功能。

同理可以实现分时之间的进位功能(4)显示功能采用Multisim里面的DCD_HEX显示管进行时分秒的显示。

电子课程设计论文数字钟

电子课程设计论文数字钟

电子课程设计论文数字钟一、教学目标本课程旨在通过数字钟的设计与实现,让学生掌握电子电路的基本原理,提高动手实践能力,培养创新意识和团队协作精神。

具体目标如下:1.知识目标:(1)了解数字电路的基本组成和功能;(2)掌握常用数字集成电路的工作原理和应用;(3)熟悉电子设计的基本流程;(4)了解嵌入式系统的基本概念。

2.技能目标:(1)能够运用数字电路知识分析和解决实际问题;(2)具备基本的电子线路设计、搭建和调试能力;(3)学会使用电子设计软件进行电路仿真;(4)能够独立完成数字钟的设计与制作。

3.情感态度价值观目标:(1)培养学生对电子科技的兴趣和热情;(2)增强学生的团队协作能力和沟通能力;(3)培养学生的创新意识和自主学习能力;(4)提高学生的问题解决能力和实际操作能力。

二、教学内容本课程的教学内容主要包括以下几个部分:1.数字电路基础知识:数字电路的基本概念、数字逻辑电路、组合逻辑电路、时序逻辑电路等;2.常用数字集成电路:集成逻辑门、触发器、计数器、译码器等;3.电子设计流程:需求分析、电路设计、PCB布线、硬件调试等;4.嵌入式系统:嵌入式处理器、嵌入式软件、嵌入式系统设计等;5.数字钟设计与实现:时钟电路、显示电路、控制电路等。

三、教学方法为了提高教学效果,本课程将采用以下教学方法:1.讲授法:讲解基本概念、原理和知识点;2.案例分析法:分析实际案例,让学生更好地理解理论知识;3.实验法:动手实践,培养学生的实际操作能力;4.小组讨论法:分组讨论,培养学生的团队协作能力和沟通能力。

四、教学资源为了支持本课程的教学,我们将准备以下教学资源:1.教材:电子电路基础、数字电路设计、嵌入式系统设计等;2.参考书:电子电路、数字电路、嵌入式系统等相关书籍;3.多媒体资料:教学PPT、视频教程、网络资源等;4.实验设备:数字电路实验板、编程器、实验仪器等。

五、教学评估为了全面、客观地评估学生的学习成果,本课程将采取以下评估方式:1.平时表现:包括课堂参与度、小组讨论、提问回答等,占总评的30%;2.作业:包括课后练习、实验报告等,占总评的30%;3.考试成绩:包括期中考试和期末考试,占总评的40%。

数字电子课程设计数字钟

数字电子课程设计数字钟

数字电路课程设计报告目录一、………设计课题二、………设计任务三、………设计要求四、………分析及设计过程五、………组装及调试过程六、………参考文献(各芯片功能)七、………设计心得及总结一、设计课题多功能数字钟电路设计.二、设计任务1给定的主要器件:芯片数量芯片数量555 1 74ls191 1 74ls90 2 74ls74 1 74ls92 1 74ls00 2 74ls47 42实验原理图:三、数字钟的功能要求①基本功能以数字形式显示时、分、秒的时间,为节省器件,其中秒的个位可以用发光二极管指示,小时的十位亦可以用发光二极管指示,灯亮为“1”,灯灭为“0”。

小时计数器的计时要求为“12翻1”。

要求手动快速校时、校分或慢校时、慢校分。

②扩展功能定时控制,其时间自定;仿广播电台整点报时;触摸报整点时数或自动报整点时数。

2、设计步骤与要求:①拟定数字钟电路的组成框图,要求设计优化,电路功能多,器件少,成本低。

②设计并安装各单元电路,要求布线整齐、美观,便于级联与调试。

③测试数字钟系统的逻辑功能,使满足设计功能的要求。

④画出数字钟系统的整机逻辑电路图。

⑤写出课程设计实验报告。

四、设计分析于过程本课题是数字电路中计数、分频、译码、显示及时钟振荡器等组合逻辑电路与时序逻辑电路的综合应用。

通过学习,要求掌握多功能数字钟电路的设计方法、装调技术及数字钟的扩展应用。

1、数字钟的功能要求(1)基本功能:①准确计时,以数字形式显示时、分、秒的时间;②小时的计时要求为“12翻1”,分和秒的计时要求为60进位;③校正时间。

(2)扩展功能①定时控制;②仿广播电台整点报时;③报整点时数;④触摸报整点时数。

2、数字钟电路系统的组成框图如图S1-1所示,数字钟电路系统由主体电路和扩展电路两大部分所组成。

其中主体电路完成数字钟的基本功能,扩展电路完成数字钟的扩展功能。

系统的工作原理是:振荡器产生的稳定的高频脉冲信号,作为数字钟的时间基准,然后经分频器输出标准秒脉冲。

数字电子课程设计数字时钟-精品

数字电子课程设计数字时钟-精品

数字电子钟是一种用数字显示秒﹑分﹑时的记时装置,与传统的机械钟相比,他具有走时准确﹑显示直观﹑无机械传动装置等优点,因而得到了广泛的应用:小到人们的日常生活中的电子手表,大到车站﹑码头﹑机场等公共场所的大型数显电子钟。

本课程设计要用通过简单的逻辑芯片实现数字电子钟。

要点在于用555芯片连接输出为一秒的多谐振荡器用于时钟的秒脉冲,用74LS160(10进制计数器)74LS00(与非门芯片)等连接成60和24进制的计数器,再通过七段数码管显示,构成了简单数字电子钟。

关键词:数字电子钟、555芯片、计数器、数码管第1章概述所谓电子技术,是指“含有电子的、数据的、磁性的、光学的、电磁的、或者类似性能的相关技术”。

电子技术可以分为模拟电子技术、数字电子技术两大部分。

模拟电子技术说是整个电子技术的基础,在信号放大、功率放大、整流稳压、模拟量反馈、混频、调制解调电路领域具有无法替代的作用。

例如高保真(Hi-Fi)的音箱系统、移动通讯领域的高频发射机等。

与模拟电路相比,数字电路具有精度高、稳定性好、抗干扰能力强、程序软件控制等一系列优点。

随着计算机科学与技术突飞猛进地发展,用数字电路进行信号处理的优势也更加突出。

为了充分发挥数字电路在信号处理上的强大功能,我们可以先将模拟信号按比例转换成数字信号,然后送到数字电路进行处理,最后再将处理结果根据需要转换为相应的模拟信号输出。

自20世纪70年代开始,这种用数字电路处理模拟信号的所谓“数字化”浪潮已经席卷了电子技术几乎所有的应用领域,如数字滤波器等。

很有幸我们这学期学习了电子技术这门学科,并且是我们这个学期的重点课程,在上课和实验的过程中,渐渐的我喜欢上了它。

每一节课我都认真学习,每次实验我都认真的去完成。

但是做课程设计是第一次做,以前都是照着做,现在所有的都是自己做,真的很有难度。

要想做出来一个好的东西,就要去图书馆,到网上去找资料。

根据我自己的自身情况和查阅的资料,我决定做一个数字电子时钟,这个相对比较是比较简单的,由于我们以前的数电实验做过任意进制计数器,所以电子钟计数器制作没有问题,两个60进制计数器,一个24进制计数器。

数字钟数字电子课程设计

数字钟数字电子课程设计

数字钟数字电子课程设计一、课程目标知识目标:1. 理解数字钟的基本原理,掌握数字电子技术的基本概念。

2. 学会使用集成电路芯片,了解其功能及在数字钟中的应用。

3. 掌握数字钟各模块(如秒表、时钟、闹钟等)的工作原理及其相互关系。

技能目标:1. 能够运用所学知识设计简单的数字钟电路,具备实际操作能力。

2. 学会使用相关软件(如Multisim、Proteus等)进行电路仿真,提高实践技能。

3. 培养团队协作能力,学会与他人共同分析问题、解决问题。

情感态度价值观目标:1. 培养学生对数字电子技术的兴趣,激发学习热情,提高自主学习能力。

2. 培养学生严谨的科学态度,注重实践与理论相结合,养成良好的学习习惯。

3. 增强学生的环保意识,注重电子废弃物的合理处理,培养社会责任感。

本课程针对高年级学生,在已有电子技术知识的基础上,进一步深化对数字电子技术的理解。

课程性质为实践性、综合性,要求学生具备一定的理论基础和动手能力。

通过本课程的学习,旨在使学生在理论知识和实践技能上得到全面提升,培养具备创新精神和合作意识的高素质技术人才。

二、教学内容1. 数字电子技术基本原理回顾:逻辑门电路、触发器、计数器等。

2. 集成电路芯片介绍:集成电路的分类、功能及其在数字钟中的应用。

- 侧重于时钟芯片、计数器芯片、显示驱动芯片等。

3. 数字钟工作原理及模块设计:- 秒表模块:基于计时器/计数器的秒表设计。

- 时钟模块:时钟信号的产生、时序控制及时间调整。

- 闹钟模块:闹钟功能的设计与实现。

4. 数字钟电路设计与仿真:- 使用Multisim、Proteus等软件进行电路设计、仿真及调试。

- 熟悉电路图绘制、仿真分析及报告撰写。

5. 实际操作与制作:- 采购元器件、焊接组装数字钟电路板。

- 调试电路、测试功能、解决实际问题。

6. 教学内容的安排与进度:- 原理回顾与芯片介绍(2课时)。

- 数字钟模块设计(4课时)。

- 电路设计与仿真(4课时)。

数电课程设计--数字钟

数电课程设计--数字钟

目录摘要 (I)1 数字钟的构成 (1)2 数字钟单元电路的设计 (3)2.1 振荡器电路设计 (3)2.2 时间计数单元设计 (3)2.2.1 集成异步计数器74LS90. (3)2.2.2 用74LS90构成秒和分计数器电路 (5)2.2.3 用74LS90构成时计数器电路 (6)2.2.4 时间计数单元总电路 (6)2.3 译码显示单元电路设计 (7)2.3.1 译码器74LS48 (7)2.3.2 显示器LG5011AH (9)2.3.3 译码显示电路 (10)2.4 校时单元电路设计 (11)3 数字钟的实现电路及其工作原理 (12)4 电路的安装与调试 (13)5 课程设计心得体会 (14)参考文献 (15)附录1 (16)摘要数字钟是一种用数字电路技术实现时、分、秒计时的装置,与机械式时钟相比具有更高的准确性和直观性,且无机械装置,具有更长的使用寿命,因此得到了广泛的使用。

数字电子钟,从原理上讲是一种典型的数字电路,其中包括了组合逻辑电路和时序电路。

数字电子钟有以下几部分组成:振荡器,分频器,60进制的秒、分计时器和24进制计时计数器,秒、分、时的译码显示部分及校正电路等。

采用74LS系列(双列直插式)中小规模集成芯片进行硬件的焊接。

关键词:数字钟振荡器计数器译码驱动1 数字钟的构成数字钟实际上是一个对标准频率(1HZ)进行计数的计数电路。

主要由振荡器、分频器、计数器、译码器显示器和校时电路组成。

振荡器产生稳定的高频脉冲信号,作为数字钟的时间基准,通常使用石英晶体震荡器,然后经过分频器输出标准秒脉冲,或者由555构成的多谐振荡器来直接产生1HZ的脉冲信号。

秒计数器满60后向分计数器进位,分计数器满60后向小时计数器进位,小时计数器按照“24翻1”规律计数。

计数器的输出分别经译码器送显示器显示。

由于计数的起始时间不可能与标准时间一致,故需要在电路上加一个校时电路,当计时出现误差时,可以用校时电路校时、校分。

数字钟电子课程设计

数字钟电子课程设计

数字钟电子课程设计一、课程目标知识目标:1. 让学生理解数字钟的基本原理,掌握数字钟的电路组成及工作原理。

2. 使学生掌握数字电路设计的基本方法,学会使用集成电路设计数字钟。

3. 帮助学生了解数字钟的显示原理,掌握数码管的使用方法。

技能目标:1. 培养学生运用所学知识,独立设计并搭建数字钟电路的能力。

2. 提高学生分析和解决问题的能力,学会调试和优化数字电路。

3. 培养学生团队协作能力,学会在小组合作中共同完成任务。

情感态度价值观目标:1. 培养学生对电子技术的兴趣,激发创新精神和实践能力。

2. 培养学生严谨的科学态度,注重实验操作的规范性和安全性。

3. 增强学生的环保意识,培养学生爱护电子元器件和仪器设备的好习惯。

本课程针对初中年级学生,结合电子技术基础知识,注重理论与实践相结合,旨在提高学生的动手能力、创新能力和团队协作能力。

课程目标明确,可衡量,便于教师进行教学设计和评估。

通过本课程的学习,学生能够掌握数字钟的设计原理,为后续相关课程的学习打下坚实基础。

二、教学内容1. 数字钟原理及电路组成- 了解数字钟的基本原理- 学习数字钟电路的组成及功能- 掌握数字钟集成电路的使用方法2. 数字电路设计基础- 学习数字电路的基本逻辑门- 掌握数字电路的设计方法和步骤- 了解数字电路的测试与调试3. 数码管显示原理及使用- 学习数码管的结构和工作原理- 掌握数码管的驱动电路设计- 了解数码管的显示控制方法4. 数字钟电路设计与搭建- 学习数字钟电路的整体设计- 掌握集成电路在数字钟中的应用- 实践搭建和调试数字钟电路5. 团队协作与成果展示- 分组进行数字钟电路设计- 学会分工合作,共同完成任务- 展示设计成果,分享制作经验教学内容依据课程目标,结合课本章节进行组织,注重科学性和系统性。

教学大纲明确,包括数字钟原理、数字电路设计、数码管显示、电路搭建与调试等模块,旨在帮助学生全面掌握数字钟电子课程相关知识。

电子课程设计之数字钟设计

电子课程设计之数字钟设计

电子课程设计之数字钟设计一、课程目标知识目标:1. 学生能理解数字时钟的基本原理,掌握数字时钟的组成和功能。

2. 学生能够运用所学电子知识,设计并实现一个具有基本功能的数字时钟。

3. 学生能够了解并描述数字时钟设计中涉及的电子元件及其作用。

技能目标:1. 学生能够运用电子设计软件进行电路设计和仿真,具备基本的电子绘图能力。

2. 学生能够运用编程语言编写简单的数字时钟程序,实现时钟的基本功能。

3. 学生能够通过动手实践,培养焊接、调试和故障排除等电子制作技能。

情感态度价值观目标:1. 学生在课程学习过程中,培养对电子科学的兴趣和热爱,增强科技创新意识。

2. 学生通过团队合作,培养沟通协调、共同解决问题的能力,树立团队协作精神。

3. 学生能够认识到电子技术在日常生活中的应用,增强学以致用的意识,提高社会责任感。

课程性质:本课程为电子技术实践课程,结合理论教学和动手实践,使学生掌握数字时钟设计的基本知识和技能。

学生特点:学生具备一定的电子基础知识,对电子设计感兴趣,具有一定的动手能力和创新意识。

教学要求:教师应注重理论与实践相结合,关注学生的个体差异,提供个性化的指导与帮助,确保学生能够完成课程目标。

同时,注重培养学生的团队协作能力和创新能力,提高学生的综合素养。

二、教学内容本课程教学内容主要包括以下几部分:1. 数字时钟原理及组成- 时钟信号源:晶振、时钟芯片等。

- 计数器:了解同步计数器、异步计数器原理。

- 显示部分:数码管、LED点阵等显示技术。

- 控制器:微控制器及其编程。

2. 电子元件及其作用- 电阻、电容、二极管、三极管等基础元件。

- 集成电路:74系列、CD40系列等。

- 传感器:温度传感器、光敏传感器等。

3. 电路设计与仿真- 使用电子设计软件(如:Multisim、Proteus等)进行电路设计。

- 完成数字时钟电路的搭建、仿真和优化。

4. 编程与控制- 学习编程语言(如:C语言、Arduino等)。

数字电子技术课程设计——数字钟

数字电子技术课程设计——数字钟

数字电子技术课程设计——数字钟一、设计目的数字钟是一种用数字电路技术实现时、分、秒计时的装置,和机械式时钟相比具有更高的准确性和直观性,且无机械装置,具有更更长的使用寿命,因此得到了广泛的使用。

数字钟从原理上讲是一种典型的数字电路,其中包括了组合逻辑电路和时序电路。

因此,我们此次设计和制做数字钟就是为了了解数字钟的原理,从而学会制作数字钟.而且通过数字钟的制作进一步的了解各种在制作中用到的中小规模集成电路的作用及实用方法.且由于数字钟包括组合逻辑电路和时叙电路.通过它可以进一步学习和掌握各种组合逻辑电路和时序电路的原理和使用方法.二、设计要求(1)设计指标①时间以12小时为一个周期;②显示时、分、秒;③具有校时功能,可以分别对时及分进行单独校时,使其校正到标准时间;④计时过程具有报时功能,当时间到达整点前10秒进行蜂鸣报时;⑤为了保证计时的稳定及准确须由晶体振荡器提供表针时间基准信号。

(2)设计要求①画出电路原理图(或仿真电路图);②元器件及参数选择;③电路仿真和调试;④PCB文件生成和打印输出。

(3)制作要求自行装配和调试,并能发现问题和解决问题。

(4)编写设计报告写出设计和制作的全过程,附上有关资料和图纸,有心得体会。

三、原理框图1.数字钟的构成数字钟实际上是一个对标准频率(1HZ)进行计数的计数电路。

由于计数的起始时间不可能和标准时间(如北京时间)一致,故需要在电路上加一个校时电路,同时标准的1HZ时间信号必须做到准确稳定。

通常使用石英晶体振荡器电路构成数字钟。

(a)数字钟组成框图2.晶体振荡器电路晶体振荡器电路给数字钟提供一个频率稳定准确的32768Hz的方波信号,可保证数字钟的走时准确及稳定。

不管是指针式的电子钟还是数字显示的电子钟都使用了晶体振荡器电路。

一般输出为方波的数字式晶体振荡器电路通常有两类,一类是用TTL门电路构成;另一类是通过CMOS非门构成的电路,本次设计采用了后一种。

数电课程设计多功能数字钟

数电课程设计多功能数字钟

数电课程设计多功能数字钟一、课程目标知识目标:1. 让学生理解数字电路基础知识,掌握组合逻辑电路和时序逻辑电路的设计原理;2. 使学生掌握数字钟的组成、工作原理及功能,能运用所学知识设计多功能数字钟;3. 帮助学生掌握数字电路的测试方法,学会分析并解决数字电路故障。

技能目标:1. 培养学生运用所学知识,结合实际需求,设计具有一定功能的数字电路的能力;2. 培养学生动手操作、调试和优化数字电路的技能;3. 培养学生运用EDA工具(如Multisim、Protel等)进行电路设计、仿真和测试的能力。

情感态度价值观目标:1. 培养学生对数字电路和电子技术的兴趣,激发学生探索科学技术的热情;2. 培养学生严谨、务实的学习态度,养成团队合作、互相学习的良好习惯;3. 培养学生关注社会发展,认识到电子技术在日常生活和国家建设中的重要作用。

课程性质分析:本课程为电子技术专业课程,旨在让学生掌握数字电路的基本原理和设计方法,通过设计多功能数字钟,提高学生的实践能力和创新能力。

学生特点分析:学生已具备一定的电子技术基础,具有较强的学习兴趣和动手能力,但部分学生对数字电路的原理和应用尚不熟悉。

教学要求:1. 结合课本内容,注重理论与实践相结合,提高学生的实际操作能力;2. 突出重点,分步骤讲解,确保学生掌握数字电路设计的基本方法;3. 注重培养学生的创新思维和团队合作精神,提高学生的综合素质。

二、教学内容1. 数字电路基础知识回顾:组合逻辑电路、时序逻辑电路的原理与设计方法,数字电路常用器件的特性和应用。

2. 数字钟原理及功能:讲解数字钟的组成、工作原理,介绍秒、分、时显示功能及闹钟、定时器等拓展功能。

3. 多功能数字钟设计:引导学生运用所学知识,结合实际需求,设计具有基本时间显示和至少一项拓展功能的数字钟。

a. 电路图设计:使用EDA工具绘制电路图;b. 电路仿真:运用EDA工具对设计电路进行功能仿真;c. 硬件制作:根据电路图焊接元器件,制作数字钟;d. 调试优化:对制作完成的数字钟进行调试,确保其正常运行。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

名称 计数器
译码器 电阻 电阻 电容 电容 蜂鸣器
接地端 非门 4端与门 数码管
电源
6 元器件清单 实际元件表6.1
数量 10
7
1 1 1 1 1
描述
74LS, 74LS160D
74STD, 7448N
RESISTOR, 400Ω RESISTOR, 500Ω CAPACITOR, 1uF CAPACITOR, 10nF BUZZER, BUZZER
码器、显示器构成,‘时’显示由二十四进制计数器、译码器、显示器构 成,‘分’,‘秒’显示分别由六十进制计数器、译码器、显示器构成。其 原理框图如下图3.1
进位 进位
进位
周显示器 分显示器 秒显示器 时显示器
译码器 译码器 译码器 译码器
六十进制
七进制 二十四进制 六十进制
整点报时
振荡器
分频器
图3.1
其次是要谢谢我的同学,大家一起研究,互相解决问题,从研究中 叶学习到了许多,因为大家用的都不是一样的芯片,所以就要去思考那 个芯片的功能,各个引脚的功能,知道功能才知道怎样去级联,在大家 的互相帮助下,终于完成了我们的数字电子课程设计。
参考文献
[1] 郝波.电子技术基础:数字电子技术.西安:西安电子科技大学大学 出版社,1997 [2] 彭介华.电子技术课程设计指导.高等教育出版社,2002 [3] 高吉祥:电子技术基础实验与课程设计.电子工业出版社,2002 [4] 阎石:数字电子技术基础(第四版). 北京:高等教育出版社,2005 [5] 杨栓科:模拟电子技术基础.高等教育出版社,2003
GND
定时器
1
MIXED_VIRTUAL, 555_VIRTUAL
A1
直流电源
1
DC_POWER, 12 V
V1
7 课程设计总结
通过这次对数字电子钟的设计与制作,让我了解了电路设计的基本 步骤,也让我了解了关于数字时钟的原理与设计理念,对Mulsitim 10.0仿真软件也有了一定的了解与运用。
本次设计,让我更进一步的了解到数字钟的工作原理以及它的内部结 构。这个过程中遇到了许多问题并且通过不断的努力去解决这些问题。 在解决设计问题的同时自己也在其中有所收获。在这次课程设计中,我 学到了很多我们教科书以外的更多东西。通过网上,图书馆的资料,也 自学了一些新的芯片的有关知识,使我们了解了这些芯片的引脚功能及 使用方法。
8致谢
首先要感谢曲老师的指导,帮助了我们解决了一些问题,比如我的 这个数字钟,没有加分频电路输出的脉冲时,星期、时、分、秒的进制 都好使,都有示数,然后加上以后,半小时才走两个数,老师说这不是 电路的错误,而是和电脑CPU运行速度有关,让我从迷雾中走了出来, 曲老师帮助同学解决了一个又一个的问题,真的谢谢曲老师。
目录
中文摘要……………..…………………………………………..……….…. ………………...Ⅰ 1 设计任务描述 2
1.1 设计题目 2 1.2 设计要求 2
1.2.1 设计目的 2 1.2.2 基本要求 2 2 设计思路 2 3 设计方框图 2 4 原理图设计 3 4.1 脉冲信号产生电路 3 4.1.1 原理图 4 4.1.2波形图 4 4.1.3参数计算 5 4.2 译码和显示电路设计 6 4.2.1译码器 6 4.2.2数码管 6 4.2.3 译码器与数码管连接原理图 6 4.3秒电路和分电路设计 6 4.4 时电路设计 7 4.5星期电路设计 8 4.6 整点报时电路 9 5 工作过程分析 10 6 元器件清单 11 7 课程设计总结 12 8 致 谢 13 参考文献 14 附 录 15 A1 逻辑电路图 15 A2 印刷电路板图 15
SEVEN_SEG_COM_K
POWER_SOURCES,
参考标识
0
U14, U29, U19, U9, U31 U13, U10
U5, U6, U25, U24, U23, U16,
U15
VCC
VCC
3端与门
1
TIL, AND3
U28
2端与门
1
TIL, AND2
U20
接地端
1
POWER_SOURCES, DGND
图4.5
4.3秒电路和分电路设计
“秒”计数器电路与“分”计数器电路都是六十进制,它由一级十进制计 数器和一级六进制计数器连接构成,如图所示,是采用两片中规模集成 电路74LS160D串接起来构成的“秒”,“分”计数器。原理如图4.6
图4.6
4.4 时电路设计
图4.7是24进制计数器,时计数器是由两74LS160计数器串连组成 的。当时的个位计数输入端进来第十个触发信号时,自动清零,进位端 RCO向十位计数器输入端输入进位信号,当时计数器已计数到23时,若 再来一个时计数脉冲,则要求个位和十位全部置“0”。
1 设计任务描述
1.1 设计题目
数字钟
1.2 设计要求
能显示时间,秒、分、时,和星期的显示。并带有整点报时电路。
1.2.1 设计目的 (1)掌握数字钟的构成、原理与设计方法; (2)熟悉集成电路的使用方法。
1.2.2 基本要求 (1)能进行秒、分、小时计时,有独立的时间显示电路; (2)整点报时电路。 (3)显示星期。
图4.9
5 工作过程分析
本次我设计的数字钟,准确地实现了对秒、分、时、星期数字显示 的计时功能,并具整点报时功能.
本系统的设计电路由信号发生模块、计数模块、钟点译码显示电路 模块、整点报时模块、等几部分组成。首先由振荡器产生稳定的高频脉 冲信号作为数字钟的时间基准,然后经过分频器输出标准的秒脉冲(振 荡器产生的振荡频率为1000Hz,用3片74LS160D进行分频后可得到1Hz 的秒脉冲信号)。秒计数器在计满60个CP(即60秒)后,其60进位输 出作为分计数器的时钟,向分计数器进位,使分计数器计数;同样,分 计数器满60个CP(即60分)后,其60进位输出再作为时计数器的时钟, 向时计数器进位,使时计数器计数;当时计数器满24时分别把进位信号 输入到星期计数器。译码显示电路将计数器的输出状态送到七段显示译 码显示器进行译码,并通过七位LED七段显示器显示出来。整点报时是 在离整点差9秒时,通过蜂鸣器产生蜂鸣,达到预期效果。
3 设计方框图
数字计时器一般是由振荡器,分频器,计数器,译码器,显示器, 等几个部分组成。其中振荡器和分频器组成标准秒信号发生器,由不同 进制的计数器、译码器和显示器组成计时系统。 秒信号送入计数器进行计数,把累计的结果以‘星 期’,‘时’,‘分’,‘秒’的数字显示出来。‘星期’显示由七进制计数器、译
第一分频器后波形图4.2:
接第二分频器后波形图4.3:
图4.2
图4.3 接第三分频器后波形图4.4:
图4.4 4.1.3参数计算 振荡周期:T=0.7(R1+2R2)C
T=0.7(400+2*500)*0.000001=1020HZ
经过三个分频器变成1.02HZ
4.2 译码和显示电路设计
4.2.1译码器 要将“秒”、“分”、“时”、“周”的状态显示成清晰的数字符
由于自己水平有限,在本设计中所用的方案不是最好的,但我想其 中的原理是相同的,对自己的能力也得到了锻炼,认识更加深入了。使 我对已学过的电路、模电、数电等电子技术的知识有了更深一步的了 解,让我更加深刻地了解和认识到了自己的优点和不足,锻炼和培养了 自己利用已学知识来分析和解决实际问题的能力。
同时,我意识到了团队的力量是多么的大。自己困惑了许久的问题 可能被同学一语点破,大家相互讨论,设计,再讨论,表达自己不同的 观念。在整个过程中自己也得到了快乐,看见自己把上课所学的知识和 实际生活联系起来,一种小小的成就感也油然而生。
1018, U17, U8, U7, U35, U34,
U33
U3, U4, U26, U22, U21, U12,
U11
R1
R2
C1
C2
U32
虚拟元件表6.2
数量 1 5 2 7
1
描述 POWER_SOURCES,
GROUND TIL, NOT TIL, AND4
2 设计思路
数字钟实际上是一个对标准频率(1Hz)进行计数的计数电路,一般 由振荡器、分频器、计数器、译码器、数码显示器等几部分组成。采用 振荡器产生稳定的脉冲信号,作为数字时钟的时间基准,要求振荡频率为1HZ,为标准秒脉 冲。再由分频器分成秒时间脉冲,秒信号送入计数器进行计数,并把累 计的结果以“周”、“时”、“分”、“秒”的数字显示出 来。“秒”的显示由两级计数器74LS160和译码器7448组成的六十进制 计数电路实现;“分”的显示电路与“秒”相同,“时”的显示由两级 计数器74LS160和译码器7448组成的二十四进制电路来实现,“周”的 显示电路由计数器74LS160和译码器7448组成的七进制电路实现,所有 计时结果由7位数码管显示。并带有整点报时电路,使用蜂鸣器发生达到 报时效果。
流电源。 因为选择了频率为1000HZ的振荡器以提高计时器的精度而74LS160
计数器所需要的是1HZ的标准秒脉冲信号,这时就需要用分频器对振荡 器的固有频率进行分频。选用中规模计数器74LS160就可以完成上述功 能。
4.1.1 原理图 图4.1为数字钟震荡与分频相连接
4.1.2波形图
图 4.1
4 原理图设计
4.1 脉冲信号产生电路
多谐振荡器是一种能产生矩形波的自激振荡器,也称矩形波发生 器。“多谐”指矩形波中除了基波成分外,还含有丰富的高次谐波成 分。多谐振荡器没有稳态,只有两个暂稳态。在工作时,电路的状态在 这两个暂稳态之间自动地交替变换,由此产生矩形波脉冲信号,常用作 脉冲信号源及时序电路中的时钟信号。要求精确的时钟源是通过555定 时器(LM555CN)实现多谐振荡,需要R1,R2和电容,并接+5V的直
相关文档
最新文档