2011线性代数期末试题(B)

合集下载

(完整版)线性代数期末测试题及其答案.doc

(完整版)线性代数期末测试题及其答案.doc

线性代数期末考试题一、填空题(将正确答案填在题中横线上。

每小题 5 分,共 25 分)1 3 1 1.若0 5 x 0,则__________。

1 2 2x1 x2 x3 02.若齐次线性方程组x1 x2 x3 0 只有零解,则应满足。

x1x2x303.已知矩阵A,B,C (c ij )s n,满足 AC CB ,则 A 与 B 分别是阶矩阵。

4.已知矩阵A为 3 3的矩阵,且| A| 3,则| 2A|。

5.n阶方阵A满足A23A E 0 ,则A1。

二、选择题(每小题 5 分,共 25 分)6.已知二次型 f x12 x22 5x32 2tx1x2 2x1 x3 4x2 x3,当t取何值时,该二次型为正定?()A. 40 B.4 4C. 0 t4 4 1t5t D. t2 5 5 5 51 42 1 2 37.已知矩阵A 0 3 4 , B 0 x 6 ,且 A ~ B ,求x的值()0 4 3 0 0 5A.3B.-2C.5D.-58 .设 A 为 n 阶可逆矩阵,则下述说法不正确的是()A. A0B. A 1 0C.r (A) nD.A 的行向量组线性相关9 .过点( 0, 2, 4)且与两平面x 2z 1和 y 3z 2 的交线平行的直线方程为()1xy 2 z 4A.312xy 2 z 4C.31 2x y2 z 4B.32 2x y2 z 4D.322103 1 .已知矩阵 A, 其特征值为()51A. 12, 2 4 B. C.12,24D.三、解答题(每小题 10 分,共 50 分)1 12,2, 22441 1 00 2 1 3 40 2 1 30 1 1 011.设B, C 0 2 1 且 矩 阵满足关系式0 0 1 1 00 10 0 0 2T X(C B)E,求。

a1 12212. 问 a 取何值时,下列向量组线性相关?111, 2a ,3。

2 1 21 a22x 1 x 2x 3 313.为何值时,线性方程组x 1 x 2x 3 2有唯一解,无解和有无穷多解?当方x 1 x 2x 32程组有无穷多解时求其通解。

线性代数期末考试题及答案

线性代数期末考试题及答案

线性代数期末考试题及答案一、选择题1. 下列哪个不是线性代数的基本概念?A. 矩阵B. 向量C. 函数D. 行列式答案:C. 函数2. 矩阵A的转置记作A^T,则(A^T)^T等于A. AB. -AC. A^TD. 2A答案:A. A3. 对于矩阵A和B,满足AB = BA,则称A和B是A. 相似矩阵B. 对角矩阵C. 线性无关D. 对易矩阵答案:D. 对易矩阵4. 行列式的性质中,不能成立的是A. 行列式交换行B. 行列式某一行加上另一行不变C. 行列式等于数乘其中某一行对应的代数余子式的和D. 行列式的某一行的系数乘以另一行不变答案:D. 行列式的某一行的系数乘以另一行不变5. 给定矩阵A = [3, -1; 4, 2],则A的秩为A. 0B. 1C. 2D. 3答案:C. 2二、填空题1. 给定矩阵A = [2, 1; -3, 5],则A的行列式为______答案:132. 设矩阵A的逆矩阵为A^-1,若AA^-1 = I,其中I是单位矩阵,则A的逆矩阵为______答案:I3. 若矩阵的秩为r,且矩阵的阶数为n,若r < n,则该矩阵为______矩阵答案:奇异三、简答题1. 解释什么是线性相关性和线性无关性?答案:若存在不全为零的数k1, k2,...,kn,使得方程组中的向量k1v1 + k2v2 + ... + knvn = 0成立,则称向量组{v1, v2, ..., vn}线性相关;若该方程仅在k1 = k2 = ... = kn = 0时成立,则称向量组{v1, v2, ..., vn}线性无关。

2. 如何判断一个矩阵是对称矩阵?答案:若矩阵A的转置等于自身,即A^T = A,则称矩阵A是对称矩阵。

四、计算题1. 给定矩阵A = [1, 2; 3, 4],求A的逆矩阵。

答案:A的逆矩阵为1/(-2)[4, -2; -3, 1]2. 求向量v = [1, 2, 3]的模长。

线性代数期末测试题及其答案

线性代数期末测试题及其答案

线性代数期末考试题一、填空题将正确答案填在题中横线上;每小题5分,共25分1. 若022150131=---x ,则=χ__________; 2.若齐次线性方程组⎪⎩⎪⎨⎧=++=++=++000321321321x x x x x x x x x λλ只有零解,则λ应满足 ;3.已知矩阵n s ij c C B A ⨯=)(,,,满足CB AC =,则A 与B 分别是 阶矩阵;4.已知矩阵A 为3⨯3的矩阵,且3||=A ,则=|2|A ;5.n 阶方阵A 满足032=--E A A ,则=-1A ;二、选择题 每小题5分,共25分6.已知二次型3231212322214225x x x x x tx x x x f +-+++=,当t 取何值时,该二次型为正定A.054<<-tB.5454<<-tC.540<<tD.2154-<<-t7.已知矩阵B A x B A ~,50060321,340430241且⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛-=,求x 的值A.3B.-2C.5D.-58.设A 为n 阶可逆矩阵,则下述说法不正确的是 A. 0≠A B. 01≠-A C.n A r =)( D.A 的行向量组线性相关9.过点0,2,4且与两平面2312=-=+z y z x 和的交线平行的直线方程为 A.14322-=-=-z y x B.24322-=-=z y x C.14322+=+=-z y x D.24322+=+=z y x10.已知矩阵⎪⎪⎭⎫⎝⎛-=1513A ,其特征值为 A.4,221==λλ B.4,221-=-=λλ C.4,221=-=λλ D.4,221-==λλ三、解答题 每小题10分,共50分11.设,1000110001100011⎪⎪⎪⎪⎭⎫⎝⎛---=B ⎪⎪⎪⎪⎪⎭⎫⎝⎛=2000120031204312C 且矩阵X 满足关系式EX B C T=-)(, 求X ;12.问a 取何值时,下列向量组线性相关 123112211,,221122a a a ααα⎛⎫⎛⎫-⎛⎫ ⎪ ⎪- ⎪ ⎪ ⎪⎪ ⎪ ⎪=-==- ⎪ ⎪ ⎪⎪ ⎪ ⎪- ⎪ ⎪ ⎪-⎝⎭ ⎪⎝⎭⎝⎭;13. λ为何值时,线性方程组⎪⎩⎪⎨⎧-=++-=++-=++223321321321x x x x x x x x x λλλλ有唯一解,无解和有无穷多解 当方程组有无穷多解时求其通解;14. 设.77103 ,1301 ,3192 ,01414321⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=αααα 求此向量组的秩和一个极大无关组,并将其余向量用该极大无关组线性表示;15.证明:若A 是n 阶方阵,且,I AA =T,1-=A 证明 0=+I A ;其中I 为单位矩阵 线性代数期末考试题答案一、填空题 1. 5.解析:采用对角线法则,由002)5(03)2(51=----++-⨯⨯x x 有5=x . 考查知识点:行列式的计算. 难度系数:2.1≠λ.解析:由现行方程组有)1(22211111111-=-+==λλλλλD ,要使该现行方程组只有零解,则0≠D ,即1≠λ.考查知识点:线性方程组的求解 难度系数: 3.n n s s ⨯⨯, 解析;由题可知ns ij c C ⨯=)(,则设D CB AC ==,可知D 的行数与A 一致,列数与B 一致,且A 与B 均为方阵,所以A 为s s ⨯阶矩阵,B 为n n ⨯阶矩阵.考查知识点:n 阶矩阵的性质 难度系数:4. 24解析:由题可知,A 为3阶矩阵且3=A ,则24223==A A .考查知识点:矩阵的运算 难度系数:5. E A 3-解析:由032=--E A A 有E E A A =-)3(,此时E A A 31-=-.考查知识点:求解矩阵的逆矩阵 难度系数:二、选择题 6. A解析:由题可知,该二次型矩阵为⎪⎪⎪⎭⎫ ⎝⎛--5212111t t ,而0455212111,0111,1122>--=-->-=>t t t t t t t,可解得054<<-t ;此时,该二次型正定;考查知识点:二次型正定的判断 难度系数7. C解析:由矩阵特征值性质有1-3+3=1+x+5,可解得x=-5; 考查知识点:n 阶矩阵特征值的性质 难度系数: 8. D解析:由题可知,A 为n 阶可逆矩阵,则A 的行向量组线性无关; 考查知识点:n 阶可逆矩阵的性质 难度系数:9. A.解析:由题可知,两平面法向量分别为)3,1,0(),2,0,1(21-==n n ,则所求直线的方向向量为k j i n n s ++-=⨯=3221;所以所求直线为14322-=-=-z y x ; 考查知识点:求空间平面交线平行的直线方程难度系数:10. C.解析:由08215132=--=⎪⎪⎭⎫ ⎝⎛---=-λλλλλE A ,可解得特征值为4,221=-=λλ 考查知识点:求解矩阵的特征值难度系数:三、解答题11. 解:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---==⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=------121012100120001][1210012100120001][1234012300120001100021003210432111)()()(B C B C B C TT T E X B C ,, 考查知识点:矩阵方程的运算求解难度系数:12.解:)22()12(81212121212121||2321-+=------==a a a a aa a a A ,, 当||A =0时即21-=a 或1=a 时,向量组321a a a ,,线性相关;考查知识点:向量组的线性相关性 难度系数:13.解:①当1≠λ且2-≠λ时,方程组有唯一解;②当2-=λ时方程组无解③当1=λ时,有无穷多组解,通解为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=X 10101100221c c 考查知识点:线性方程组的求解难度系数:14.解:由题可知⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡------→⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--------→⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡------==0000110020102001131300161600241031217130104302410312171307311100943121)(4321a a a a A ,,,则()34321=a a a a r ,,,,其中321a a a ,,构成极大无关组,且线性关系为 321422a a a a ++-=考查知识点:向量组的秩与 最大无关组 难度系数:15.证明:由题可知,()()A I TA I A I A AA A I A TT+-=+-=+=+=+∴()02=+A I ,即()0=+A I 考查知识点:n 阶方阵的性质 难度系数:。

线性代数期末考试试题

线性代数期末考试试题

线性代数B 期末试题一、判断题(正确填T ,错误填F 。

每小题2分,共10分)1. A 是n 阶方阵,R ∈λ,则有A A λλ=。

( )2. A ,B 是同阶方阵,且0≠AB ,则111)(---=A B AB 。

( )3.如果A 与B 等价,则A 的行向量组与B 的行向量组等价。

( ) 4.若B A ,均为n 阶方阵,则当B A >时,B A ,一定不相似。

( )5.n 维向量组{}4321,,,αααα线性相关,则{}321,,ααα也线性相关。

( )二、单项选择题(每小题3分,共15分)1.下列矩阵中,( )不是初等矩阵。

(A )001010100⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦ (B)100000010⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦ (C) 100020001⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦(D) 100012001⎡⎤⎢⎥-⎢⎥⎢⎥⎣⎦ 2.设向量组123,,ααα线性无关,则下列向量组中线性无关的是( )。

(A )122331,,αααααα--- (B )1231,,αααα+ (C )1212,,23αααα- (D )2323,,2αααα+3.设A 为n 阶方阵,且250A A E +-=。

则1(2)A E -+=( ) (A) A E - (B) E A + (C) 1()3A E - (D) 1()3A E +4.设A 为n m ⨯矩阵,则有( )。

(A )若n m <,则b Ax =有无穷多解;(B )若n m <,则0=Ax 有非零解,且基础解系含有m n -个线性无关解向量;(C )若A 有n 阶子式不为零,则b Ax =有唯一解; (D )若A 有n 阶子式不为零,则0=Ax 仅有零解。

5.若n 阶矩阵A ,B 有共同的特征值,且各有n 个线性无关的特征向量,则( )(A )A 与B 相似 (B )A B ≠,但|A-B |=0(C )A=B (D )A 与B 不一定相似,但|A|=|B|三、填空题(每小题4分,共20分)1.01210n n -。

2011-2012(2)线性代数试卷B卷

2011-2012(2)线性代数试卷B卷

任课教师 专业名称 学生姓名 学号安徽工业大学2011-2012第二学期线性代数期末考试题(B 卷)考试时间:2012年05月10日15 :00 — 17:00题号 一 二 三总分 1 2 3 4 5 6 7得分 阅卷人一、填空题(5×4=20分) 1、设三阶矩阵()21γγα=A ,()21γγβ=B ,且2=A ,4=B ,则=+B A2、设TTTs s s )1,1,1(,)1,1,1(,)1,1,1(321+=+=+=ααα,若3R 中任何一个向量都可由},,{321ααα线性表示,则s 满足条件 3、设3是矩阵A 的一个特征值,且A 可逆,则1-+A E 有一个特征值是4、设四维向量组},,,{4321αααα中431,,ααα线性无关,4312325αααα+-=,设4阶矩阵],,,[4321αααα=A ,则齐次线性方程组0=AX 的通解为 ___5、已知四阶行列式D 中第二列元素分别是-1,2,3,1,它们的余子式分别是3,1,-2,-1,则D = ,二、单项选择题(6×4=24分)请将每题正确答案的序号填入下列对应表格中: 题号 1 2 3 4 5 6成绩 答案 1、下列3R 的子集中能构成3R 的子空间的是( )。

(A)形如T a b a )2,,(+ 向量全体 (B) 形如T b a )0,,( 向量全体 (C)形如T b b a ),,(2 向量全体 (D) 形如T c b a ),,( 向量全体 )0(≥c 2、设1*,-A A 分别为n 阶方阵A 的伴随矩阵和逆矩阵,则=-1*A A ( ) (A) 2-n A(B) n A (C) 1-n A(D) 1+n A3、要使T )021(1-=ξ,T )103(2=ξ都是0=AX 的解,则系数矩 阵A 是( )(A) ⎪⎪⎪⎭⎫ ⎝⎛-400301012 (B)⎪⎪⎪⎭⎫⎝⎛111002001 (C) ⎪⎪⎭⎫ ⎝⎛---1224612(D) ⎪⎪⎭⎫ ⎝⎛--6120104、设B A ,均为n 阶非零矩阵,且0=AB ,则)(A R 、)(B R 满足( ) (A) 必有一个等于0 (B) 都等于n(C) 一个小于n ,一个等于 n (D) 都小于n 。

东华大学11级线性代数试题B答案

东华大学11级线性代数试题B答案
n
D. cdf .
3、设 A 为 n 阶矩阵(n≥2) ,则( A. A* = A
n −1
;
B. A* = A ;
D. A* = A−1 .
⎛1 4 ⎞ ⎜ ⎟ ⎛1 2⎞ ⎛1 2 3 ⎞ ⎟ ⎜ ⎟ C = 2 5 4、设 A = ⎜ , B = , ⎜ ⎟ ,则下列矩阵运算有意义的是( B ) ⎜3 4⎟ ⎜ 4 5 6⎟ ⎝ ⎠ ⎝ ⎠ ⎜3 6⎟ ⎝ ⎠

⎡0 ⎤ ⎡1⎤ ⎢ ⎥ ⎥ ξ 2 = ⎢1⎥, ξ 3 = ⎢ ⎢0 ⎥ . ⎢ ⎢ ⎣1⎥ ⎦ ⎣1⎥ ⎦ ⎡1 0 1⎤ P = ⎢0 1 0⎥ , 则有 P −1 AP = B . ⎢ ⎥ 0 1 1 ⎢ ⎥ ⎣ ⎦
(2 分)

(1 分)
6
9、 设 λ0 是 n 阶矩阵 A 的特征值, 且齐次线性方程组 (λ0 E − A) x = 0 的基础解系为
η1和η2 , 则 A 的属于 λ0 的全部特征向量是( D
A. C.
).
η1和η2 ; η1或η2 ;
B. D.
C1η1 + C2η 2 ( C1 , C2 为任意常数 ); C1η1 + C2η 2 ( C1 , C2 为不全为零的任意常数 ).
⎛ 5 −2 1 ⎞ ⎛ −3 2 0 ⎞ ⎛ −19 −9 ⎞ T 2、已知矩阵 A = ⎜ ⎟,B = ⎜ ⎟ ,则 AB = ⎜ ⎟. ⎝ 3 4 −1 ⎠ ⎝ −2 0 1 ⎠ ⎝ −1 −7 ⎠ ⎛ 2 1⎞ 3、设 A = ⎜ ⎟ , E 为二阶单位阵,矩阵 B 满足 BA = B + 2 E , 则 B = 2 ⎝ −1 2 ⎠
A. ACB ; B. ABC ; C. BAC ; D. CBA .

2010—2011学年第二学期《线性代数B1》期末考试试卷及答案

2010—2011学年第二学期《线性代数B1》期末考试试卷及答案

五、(本题8分)
(1) 因为b1, b2, · · · , bn两两正交, 所以 bi, bj = δij · |bi|2 =
|bi|2 = 0, i = j,
0,
i = j.
设λ1b1 + λ2b2 + · · · + λnbn = 0, 用bi作内积得:λi bi, bi = 0 ⇒ λi = 0, i = 1, 2, · · · , n.
因为βj = n akjbk ⇒ βj = (b1, b2, · · · , bn) a1... j (j > r).
k=1
anj
所以βj (j > r)是β1, β2, · · · , βr的线性组合. 下面只要说明β1, β2, · · · , βr线性无关即可.
设λ1β1 + λ2β2 + · · · + λrβr = (β1, β2, · · · , βr) λ...1 = 0,
第 4 页 共 10 页
—————————————————————————– 答 题 时 不 要 超 过 此 线 —————————————————————————–
得分 评卷人
五、(本题15分)
已知二次型Q(x1, x2, x3) = 3x21 + 2x22 + 3x23 − 2x1x3。 (1) 写出二次型Q(x1, x2, x3)对应的矩阵A,和Q(x1, x2, x3)的矩阵式。 (2) 求正交变换P ,使x = P y把Q(x1, x2, x3)化为标准形。 (3) 二次型是正定的、负定的还是不定的,为什么? (4) 指出Q(x1, x2, x3) = 1的几何意义。
=

(8) 设P3[x]为 次 数 小 于 等 于3的 实 系 数 多 项 式 全 体 构 成 的 线 性 空 间 。 定

线性代数期末考试题及答案

线性代数期末考试题及答案

《线性代数》期末考试题及答案一、单项选择题(每小题3分,共24分).1.设行列式1112132122233132331a a a a a a a a a =,则111112132121222331313233234234234a a a a a a a a a a a a --=-( ). A. 6; B. -6; C. 8; D. -8.2.设B A ,都是n 阶矩阵,且0=AB , 则下列一定成立的是( ).A. 0A =或0B =;B. 0A =且0B =;C. 0=A 或0=B ;D. 0=A 且0=B .3.设A ,B 均为n 阶可逆矩阵,则下列各式中不正确...的是( ). A. ()T T T A B A B +=+; B . 111()A B A B ---+=+; C. 111()AB B A ---= ; D. ()T T T AB B A =.4.设12,αα是非齐次线性方程组Ax b =的解,是β对应的齐次方程组0Ax =的解,则Ax b =必有一个解是( ).A .21α+α;B .21α-α;C . 21α+α+β ;D .121122βαα++.5.齐次线性方程组123234 020x x x x x x ++=⎧⎨--=⎩的基础解系所含解向量的个数为( ).A. 1;B. 2;C. 3;D. 4. 6.向量组12,,αα…,s α(2)s ≥线性无关的充分必要条件是( ).A. 12,,αα…,s α都不是零向量;B. 12,,αα…,s α任意两个向量的分量不成比例;C. 12,,αα…,s α每一个向量均不可由其余向量线性表示;D. 12,,αα…,s α至少有一个向量不可由其余向量线性表示. 7.若( ),则A 相似于B .A. A B = ; B . 秩(A )=秩(B );C. A 与B 有相同的特征多项式;D. n 阶矩阵A 与B 有相同的特征值,且n 个特征值各不相同. 8.正定二次型1234(,,,)f x x x x 的矩阵为A ,则( )必成立.A. A 的所有顺序主子式为非负数;B. A 的所有顺序主子式大于零;C. A 的所有特征值为非负数;D. A 的所有特征值互不相同.二、填空题(每小题3分,共18分)1.设3阶矩阵100220333A ⎛⎫ ⎪= ⎪ ⎪⎝⎭,*A 为A 的伴随矩阵,则*A A =_____________.2.1111n⎛⎫⎪⎝⎭=__________________(n 为正整数). 3.设a b A c d ⎛⎫= ⎪⎝⎭,且det()0A ad bc =-≠,则1A -=________________.4.已知4阶方阵A 的秩为2,则秩(*A )=_________________.5.已知向量组123(1,3,1),(0,1,1),(1,4,)a a a k ===线性相关,则k =____________.6.3阶方阵A 的特征值分别为1,-2,3,则1A -的特征值为_________.三、计算题(10分,共44分)1.(7分)计算行列式01231000100001x x a a a a ---2.(7分)设矩阵121348412363A a -⎛⎫ ⎪=- ⎪ ⎪-⎝⎭,问a 为何值时,(1) 秩(A )=1; (2) 秩(A )=2.3.(15分)给定向量组12103a -⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭=,21324a ⎛⎫⎪- ⎪ ⎪ ⎪ ⎪⎝⎭=,33021a ⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭=,40149a ⎛⎫ ⎪- ⎪ ⎪ ⎪ ⎪⎝⎭=,试判断4a 是否为123,,a a a 的线性组合;若是,则求出组合系数4.(15分)λ取何实值时,线性方程组12233414x x x x x x x x λλλλλλλλ-=⎧⎪-=⎪⎨-=⎪⎪-+=⎩有唯一解、无穷多解、无解?在有无穷多解的情况求通解。

线性代数B期末试卷及答案

线性代数B期末试卷及答案

2008 -2009学年第二学期《线性代数 B 》试卷量组1,2, ,m , 的秩为5. 设A 为实对称阵,且AI M 0,则二次型f =x T A x 化为f =y T A -1 y 的线性变换是x= __________ .T6. 设 R 3 的两组基为 a 11,1,1 ,a 2 1,0, 1 ,a 3 1,0,1 ;2,3,4 , 3 3,4,3 ,则由基 a !,a 2,a 3到基 1, 2, 3的过渡矩阵为、单项选择题(共6小题,每小题3分,满分18 分)一一一-二二 -三四五六总分(共 0 0 12. A 为n 阶方阵,AA T = E 且A 0,则A E |.3•设方阵A1 2 24 t 3 , B 为三阶非零矩阵,且AB=O,则t 3114.设向量组m线性无关,向量 不能由它们线性表示,贝U 向1(1,2,1,)T ,22009年6月22日6小题,每小题3分,满分18分)、填空题 1 0 0 10 01.设D n 为n 阶行列式,则D n = 0的必要条件是[]. (A) D n 中有两行元素对应成比例; (B) D n 中各行元素之和为零; (C) D n 中有一行元素全为零;(D)以D n 为系数行列式的齐次线性方程组有非零解.2.若向量组 ,,线性无关,,, 线性相关,则[](A)必可由,, 线性表示; (B)必可由,, 线性表示; (C)必可由,, 线性表示; (D)必可由,,线性表示.3.设3阶方阵A 有特征值0,— 1,1,其对应的特征向量为P i , P 2,P 3, 令1 亠( P 1, P 2, P 3),则 P —1AP =[ ].1 0 00 0 0(A) 01 0 ;(B) 01 0 ;0 0 0 0 0 10 01 0(C) 0 10 ;(D) 0 00 .0 0 —10 0—14. 设 a 1, a, a 线性无关,则下列向量组线性相关的是[](A) a, a, a - a ;(B) a 1,a + a, a 1+ a ;(C) a +( 也, a + a, a + a ; (D) a 1- a, a - a, a - a .5. 若矩阵A a x 4有一个3阶子式不为0,则A 的秩R ( A )=[]. (A) 1; (B) 2; (C) 3;(D) 4.6. 实二次型f 二X T A X 为正定的充分必要条件是[].(A) A 的特征值全大于零; (B) A 的负惯性指数为零;(C)AI > 0 ;(D) R(A) = n .、解答题(共5小题,每道题8分,满分40分)。

线性代数B期末试卷及答案

线性代数B期末试卷及答案

线性代数B期末试卷及答案2008 – 2009学年第⼆学期《线性代数B 》试卷⼀⼆三四五六总分⼀、填空题(共6⼩题,每⼩题 3 分,满分18分)1。

设??-=*8030010000100001A ,则A =。

2。

A 为n 阶⽅阵,T AA =E 且=+3.设⽅阵12243,311t -??=-A B 为三阶⾮零矩阵,且AB=O ,则=t . 4。

设向量组m ααα,,,21 线性⽆关,向量不能由它们线性表⽰,则向量组,,,,21m ααα的秩为。

5.设A 为实对称阵,且|A |≠0,则⼆次型f =x T A x 化为f =y T A —1 y 的线性变换是x = .6.设3R 的两组基为()T11,1,1a =,()21,0,1a T=-,()31,0,1a T=;),1,2,1(1=βT ,()()232,3,4,3,4,3ββ==T T,则由基123,,a a a 到基123,,βββ的过渡矩阵为 .得分6⼩题,每⼩题3分,满分18分)1.设D n为n阶⾏列式,则D n=0的必要条件是[ ].(A)D n中有两⾏元素对应成⽐例;(B) D n中各⾏元素之和为零;(C) D n中有⼀⾏元素全为零;(D)以D n为系数⾏列式的齐次线性⽅程组有⾮零解.2.若向量组,,线性⽆关,,,线性相关,则[ ].(A)必可由,,线性表⽰;(B) 必可由,,线性表⽰;(C)必可由,,线性表⽰;(D)必可由,,线性表⽰.3.设3阶⽅阵A有特征值0,-1,1,其对应的特征向量为P1,P2,P3,令P=(P1,P2,P3),则P-1AP=[ ]。

(A)100010000-;(B)000010001-;(C)000010001-; (D)100000001-.4.设α1,α2,α3线性⽆关,则下列向量组线性相关的是[ ].(A)α1,α2,α3 - α1;(B)α1,α1+α2,α1+α3;(C)α1+α2,α2+α3,α3+α1; (D)α1-α2,α2—α3,α3—α1.5.若矩阵A3×4有⼀个3阶⼦式不为0,则A的秩R(A) =[ ].(A) 1; (B)2;(C)3; (D)4.6.实⼆次型f=x T Ax为正定的充分必要条件是[].(A) A的特征值全⼤于零;(B) A的负惯性指数为零;(C)|A| > 0 ; (D) R(A) = n .得分三、解答题(共5⼩题,每道题8分,满分40分)1。

攀枝花学院2011-2012线性代数期末试题

攀枝花学院2011-2012线性代数期末试题

攀枝花学院2010-2011线性代数重修期末试题一、选择题(每小题 3 分,共 15 分。

请将答案填在下面的表格内)1、行列式000120000300004=( ). A :24 B : -24 C 10 D -102、A 是一个3阶方阵,且 |A | =3,则矩阵 2A -的行列式值为( ) A 、4 B 、-4 C 、24 D 、-243、向量组123(1,2,3),(,1,1),(1,1,0)T T k ααα===-线性无关,则( ) A 、 k ≠0 B 、k ≠2 C 、k ≠4 D 、k ≠34、齐次线性方程組 1230x x x ++= 的基础解系有( )个 A 、1 B 、1或2 C 、2 D 、35、设A 的特征值为3,1,2,则行列式228A A E +-=( )A 、 6B 、 0C 、 360D 、 36二、填空题(每题 3 分,共 15 分)1、在四阶行列式|a ij |展开项中, 14233142a a a a 项的符号是 。

2、矩阵A=020001300⎛⎫ ⎪ ⎪ ⎪⎝⎭则A -1=3、已知向量组123,,a a a 线性无关,则向量组122331,,a a a a a a +--线性相关性是____________。

4、 n 元线性方程组AX=B, 已知()R A r =,则当___ 时方程组有唯一解。

5、二次型的矩阵为A=213130301-⎛⎫⎪- ⎪ ⎪-⎝⎭,则二次型123(,,)f x x x =____ _ __________三、计算行列式或矩阵(每题 8 分,共 24分)1、计算31111311113111132、已知 A=10000111k ⎛⎫⎪ ⎪ ⎪-⎝⎭ k 取什么值时可逆,并求A -1. 3、判别矩阵221241111-⎛⎫⎪-- ⎪ ⎪-⎝⎭的正定性四、一般综合(每题 10 分,共 20 分)1、已知A=121121242⎛⎫ ⎪--- ⎪ ⎪⎝⎭, 求8A 。

线性代数期末测试题(卷)与答案解析

线性代数期末测试题(卷)与答案解析

线性代数期末考试题一、填空题(将正确答案填在题中横线上。

每小题5分,共25分)1. 若022150131=---x ,则=c __________。

2.若齐次线性方程组ïîïíì=++=++=++000321321321x x x x x x x x x l l 只有零解,则l 应满足 。

3.已知矩阵n s ij c C B A ´=)(,,,满足CB AC =,则A 与B 分别是 阶矩阵。

4.已知矩阵A 为3´3的矩阵,且3||=A ,则=|2|A 。

5.n 阶方阵A 满足032=--E A A ,则=-1A 。

二、选择题 (每小题5分,共25分)6.已知二次型3231212322214225x x x x x tx x x x f +-+++=,当t 取何值时,该二次型为正定?( )A.054<<-tB.5454<<-tC.540<<tD.2154-<<-t7.已知矩阵B A x B A ~,50060321,340430241且÷÷÷øöçççèæ=÷÷÷øöçççèæ-=,求x 的值( )A.3B.-2C.5D.-58.设A 为n 阶可逆矩阵,则下述说法不正确的是( ) A. 0¹A B. 01¹-A C.n A r =)( D.A 的行向量组线性相关9.过点(0,2,4)且与两平面2312=-=+z y z x 和的交线平行的直线方程为( )A.14322-=-=-z y xB.24322-=-=z y xC.14322+=+=-z y x D.24322+=+=z y x10.已知矩阵÷÷øöççèæ-=1513A ,其特征值为() A.4,221==l lB.4,221-=-=l lC.4,221=-=l l D.4,221-==l l三、解答题 (每小题10分,共50分)11.设,1000110001100011÷÷÷÷øöççççèæ---=B ÷÷÷÷÷øöçççççèæ=2000120031204312C 且矩阵C 满足关系式EX B C T=-)(, 求C 。

2011年自考线性代数真题

2011年自考线性代数真题

全国2010年1月高等教育自学考试线性代数(经管类)试题课程代码:04184说明:本卷中,A T表示矩阵A 的转置,αT表示向量α的转置,E 表示单位矩阵,|A |表示方阵A 的行列式,A -1表示方阵A 的逆矩阵,r (A )表示矩阵A 的秩. 一、单项选择题(本大题共10小题,每小题2分,共30分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将代码填写在题后的括号内。

错选、多选或未选均无分。

1.设行列式==1111034222,1111304z y x zy x则行列式( )A.32 B.1 C.2D.382.设A ,B ,C 为同阶可逆方阵,则(ABC )-1=( ) A. A -1B -1C -1 B. C -1B -1A -1 C. C -1A -1B -1D. A -1C -1B -13.设α1,α2,α3,α4是4维列向量,矩阵A =(α1,α2,α3,α4).如果|A |=2,则|-2A |=( ) A.-32 B.-4 C.4D.324.设α1,α2,α3,α4 是三维实向量,则( ) A. α1,α2,α3,α4一定线性无关 B. α1一定可由α2,α3,α4线性表出 C. α1,α2,α3,α4一定线性相关D. α1,α2,α3一定线性无关5.向量组α1=(1,0,0),α2=(1,1,0),α3=(1,1,1)的秩为( ) A.1 B.2 C.3D.46.设A 是4×6矩阵,r (A )=2,则齐次线性方程组Ax =0的基础解系中所含向量的个数是( )A.1B.2C.3D.47.设A 是m ×n 矩阵,已知Ax =0只有零解,则以下结论正确的是( )A.m ≥nB.Ax =b (其中b 是m 维实向量)必有唯一解C.r (A )=mD.Ax =0存在基础解系8.设矩阵A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---496375254,则以下向量中是A 的特征向量的是( ) A.(1,1,1)T B.(1,1,3)TC.(1,1,0)TD.(1,0,-3)T9.设矩阵A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--111131111的三个特征值分别为λ1,λ2,λ3,则λ1+λ2+λ 3 =( )A.4B.5C.6D.710.三元二次型f (x 1,x 2,x 3)=233222312121912464x x x x x x x x x +++++的矩阵为( )A.⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡963642321 B.⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡963640341C.⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡96642621 D.⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡9123042321二、填空题(本大题共10小题,每小题2分,共20分)请在每小题的空格中填上正确答案。

2011级线性代数期末复习题解答

2011级线性代数期末复习题解答

2011级线性代数期末复习题一.选择题 1. 已知向量组4321,,,αααα线性无关,则向量组[(C )](A )14433221,,,αααααααα++++线性无关。

(B )14433221,,,αααααααα----线性无关。

(C )14433221,,,αααααααα-+++线性无关。

(D )14433221,,,αααααααα--++线性无关。

()A 对应向量组线性相关。

12233441,,,αααααααα∴++++线性相关。

类似(B ),(D)对应向量组线性相关。

2. 设A ,B 为满足AB=0的任意两个非零矩阵,则必有[(A ) ] (A )A 的列向量组线性相关,B 的行向量组线性相关 (B )A 的列向量组线性相关,B 的列向量组线性相关 (C )A 的行向量组线性相关,B 的行向量组线性相关 (D )A 的行向量组线性相关,B 的列向量组线性相关。

12(,,,)=000AX=00AX=0R(A)m r r n n A B A b b b B B r⨯⨯=⇒≠⇒⇒< (,,,)的每一列是的解;有非零解A 的列向量组线性相关;00T T AB B A =⇒=⇒B 的行向量组线性相关.3. 对非齐次线性方程组b Ax =及其导出组0=Ax ,应有[(C )]成立。

(A )若0=Ax 仅有零解,则b Ax =无解;(B )若0=Ax 有非零解,则b Ax =有无穷多解; (C )若b Ax =有无穷多解,则0=Ax 有非零解; (D )若b Ax =有惟一解,则0=Ax 有非零解。

注意:齐次方程有解,通常推不出非齐次方程也有解。

4.设A 为n m ⨯矩阵,齐次线性方程有0=Ax 仅有零解的充要条件是[(A ) ] (A )A 的列向量线性无关; (B )A 的列向量线性相关; (C )A 的行向量线性无关;(D )A 的行向量线性相关。

5.若在非齐次线性方程组m n A x b ⨯=中,系数矩阵A 的秩为r ,则[(A ) ] (A )m r =时, b Ax =有解 (B )n m =时, b Ax =有惟一解 (C )n r =时, b Ax =有惟一解(D )n r <时, b Ax =有无穷解 注意增广矩阵B 的行数为m.R(A)=m,则R(B)=m 。

线性代数期末考试试题及答案

线性代数期末考试试题及答案

第一学期一.填空题(每小题3分,共15分)1.()013121221110⎛⎫ ⎪-=- ⎪⎝⎭()15202. 若n 阶方阵A 的秩 r n <, 则A = 0 .3.设0=x A ,A 是5阶方阵,且=)(A R 3, 则基础解系中含 2 个解向量.4.若3阶矩阵A 的特征值为2,2,3,则=A 12 .5.设21,λλ是对称阵A 的两个不同的特征值,21,p p 是对应的特征向量,则=],[21p p0 . 二.选择题(每小题3分,共15分)1.若A 为3阶方阵,且2=A ,则2A -=( C ). A.-4 B.4 C.-16 D.162.设B A ,为n 阶方阵,满足等式O AB =,则必有( B ).A.O A =或O B = B.0=A 或0=B C. O B A =+ D.0=+B A3.设n 元线性方程组b x A=,且n b A R A R ==),()( ,则该方程组( B )A.有无穷多解 B.有唯一解 C.无解 D.不确定 4.设P 为正交矩阵,则P 的列向量( A ) A .组成单位正交向量组 B. 都是单位向量 C. 两两正交 D. 必含零向量 5.若二次型()f '=x x Ax 为正定, 则对应系数矩阵A 的特征值( A )A.都大于0; B.都大于等于0; C.可能正也可能负 D.都小于0三.(8分)计算行列式2111121111211112D =的值. 解.21234314211111111111121112110100555112111210010111211120001r r D r r r r r r r r -=+++-=- 四.(8分)设⎪⎪⎭⎫⎝⎛=100210321A ,求1-A .解:⎪⎪⎪⎭⎫ ⎝⎛=100 010 001 100210321) (E A ⎪⎪⎪⎭⎫ ⎝⎛---100 010 021100210101221r r1323100 121010 0122001 001r r r r -⎛⎫+ ⎪- ⎪-⎝⎭ ⎪⎪⎪⎭⎫ ⎝⎛--=-1002101211A (或用伴随矩阵)五.(8分)求齐次线性方程组⎪⎩⎪⎨⎧=+--=-+-=+--03203 0432143214321x x x x x x x x x x x x 的基础解系及通解.解:⎪⎪⎪⎭⎫ ⎝⎛------=321131111111A ⎪⎪⎪⎭⎫⎝⎛----→210042001111⎪⎪⎪⎭⎫⎝⎛---→000021001111 通解方程组⎩⎨⎧=-=--02043421x x x x x ,基础解系⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=00111ξ ,⎪⎪⎪⎪⎪⎭⎫⎝⎛=12012ξ ,通解为2211ξξ k k +,(21,k k 为任意常数)六.(8分)已知向量⎪⎪⎪⎭⎫ ⎝⎛=32111α ,⎪⎪⎪⎭⎫ ⎝⎛-=11112α ,⎪⎪⎪⎭⎫⎝⎛=53313α ,求向量组的秩及一个极大线性无关组,并把其余向量用极大线性无关组表示.解:()⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-==513312311111,,321ααα A ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---→220110220111⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-→000000110111⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-→000000110201 极大无关组21,αα,且2132ααα -=.七.(10分)讨论λ取何值时,非齐次线性方程组⎪⎩⎪⎨⎧=+++=+++=++2321321321)1( )1(0)1( λλλλλx x x x x x x x x(1) 有唯一解; (2) 无解; (3) 有无穷多解.解:法1 )3(1111111112+-=+++=λλλλλA(1) 当0≠λ且3-≠λ时,有0≠A ,方程组有惟一解;(2)当3-=λ时,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=93 0 112121211A ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→600033300211,3)(2)(=<=A R A R ,所以无解;(3)当0=λ时,⎥⎥⎦⎤⎢⎢⎣⎡→000000000111A , 1)()(==A R A R ,方程组有无穷多解.法2⎪⎪⎪⎭⎫ ⎝⎛--+→⎪⎪⎪⎭⎫ ⎝⎛+++=220001111111110111λλλλλλλλλλλλA ⎪⎪⎪⎭⎫⎝⎛+---+→2)2(000111λλλλλλλλ⎪⎪⎪⎭⎫ ⎝⎛++--+→)1()3(0000111λλλλλλλλ 八.(8分)用配方法将二次型31232221321422),,(x x x x x x x x f +--=化为标准形,并求可逆的线性变换.(或上届题?)解:232223312132162)44(),,(x x x x x x x x x f --++=232223162)2(x x x x --+=,令⎪⎩⎪⎨⎧==+=33223112x y x y x x y ,即⎪⎩⎪⎨⎧==-=3322311 2y x y x y y x ,所以⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛321321100010201y y y x x x , 变换矩阵,100010201⎪⎪⎪⎭⎫ ⎝⎛-=C .01≠=C 标准形23222162y y y f --= .九.(10分)求矩阵⎪⎪⎪⎭⎫⎝⎛=400032020A 的特征值与最大特征值所对应的特征向量.解:)1()4(2+--=-λλλE A ,特征值.1,4321-===λλλ当421==λλ时,解0)4(=-x E A 得⎪⎪⎪⎭⎫ ⎝⎛=0211ξ ,⎪⎪⎪⎭⎫ ⎝⎛=1002ξ ,A 的对应于421==λλ的全体特征向量为2221ξξη k k +=, 0(2221≠+k k ).十.(每小题5分,共10分)1. 设向量组321,,ααα线性无关,讨论向量组 112123,,αααααα+++的线性相关性. 解:令112123123()()0,k k k αααααα+++++= 即 123123233()()0k k k k k k ααα+++++=因为321,,ααα 线性无关,所以有123223 000k k k k k k ++=⎧⎪+=⎨⎪=⎩,由于方程组只有零解,故112123,,αααααα+++线性无关。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中山大学软件学院2011级软件工程专业(2011学年秋季学期)
《S E -103+线性代数》期末试题(B 卷)
(考试形式:闭 卷 考试时间: 2小时
)
《中山大学授予学士学位工作细则》第六条
考试作弊不授予学士学位
方向: 姓名: ______ 学号:
出卷: 伍丽华 复核: 高成英
1. Fill in the blank (5×4=20 Pts )
(1) If T is the linear transformation from to whose matrix relative to is
2P 2P },t t ,1{2B = , then =_________________________________. ⎥⎥⎥⎦
⎤⎢⎢⎢⎣⎡−−=421130012][B T )(2210t a t a a T ++
(2) If the row space of a 4×7 matrix is 4-dimentional, then the dimension of the null space of is _______________. Is ?__________________ (Yes or No). A A 4
Col R A = (3) Let ,,and be eigenvectors of a 3×3 matrix , with corresponding eigenvalues 3, 2, and 1. Compute . =_______________________. ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=0221v ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=2222v ⎥⎥⎥⎦
⎤⎢⎢⎢⎣⎡=2203v A A A
(4) Determine the value(s) of a such that the system is inconsistent. =_____________________________________.
⎥⎥⎥⎦
⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡−+03121232121321x x x a a a
(5) For x in 3R , Let , this quadratic form as is _________________________________________________________.
32212221853)(x x x x x x x Q +−+=Ax x T
2.Make each statement True or False, and descript your reasons.(5×4=20 Pts )
(1) Whenever a system has free variables, the solution set contains many solutions.
(2) If are vectors in a vector space and
k v v v ,,,21L V },,,{Span },,,{Span 12121−=k k v v v v v v L L , then are linearly dependent. k v v v ,,,21L
(3) Let be a linear transformation. If is the standard matrix representation of n n R R T →:A T , then an n ×n matrix B will also be a matrix representation of T if and only if B is similar to .
A
(4) If is an n ×n matrix, then and have the same eigenvectors.
A A T A
(5) If is symmetric and det()>0, then is positive definite.
A A A
3. Calculation (5×8=40 Pts )
(1) let and ][321b b b A =]9342[321321321b b b b b b b b b B ++++++=, where and are vectors in 21,b b 3b 3R . Suppose 1det =A , find .
B det
(2) Computer , where . 6
A ⎥⎦⎤⎢⎣⎡−−=1234A
(3) Let , ⎪⎪⎭
⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+−−−−+−−+=numbers real any ,,,,4854328573e d c b a e d c b e d d c b c b a H a. Show that H is a subspace of 4
R
b. Find a basis for H .
(4) Let , . ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡−=421351A ⎥⎥⎥⎦
⎤⎢⎢⎢⎣⎡−−=324b a. Find the orthogonal projection of onto Col .
b A b. Find a least-squares solution of b Ax =.
c. Determine the associated least-squares error.
(5) Let W =Span , where , and , Construct an orthonormal basis for .
},{21x x ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡−=1521x ⎥⎥⎥⎦
⎤⎢⎢⎢⎣⎡−=2142x W
4. Prove issues (2×6=12 Pts )
(1) Let be a subspace of W n
R such that p W =dim , and let },,,{21p w w w S L = be an orthonomal basis for . Define by W W R T n →:p p w w v w w v w w v v T )()()()(2211⋅++⋅+⋅=L
Prove that T is a linear transformation.
(2) Let and A B be similar matrices. Show that if satisfies the equation , then A 033=+−I A A B also satisfies a similar equation . 033=+−I B B
5. Synthesis (8 points)
Let x be a vector in n R with , Show that if , then .
1=x x T T xx I A −=n A rank <)(。

相关文档
最新文档