复数的概念 ppt课件1
合集下载
复数的课件ppt
详细描述
为它们可能包含实部和虚部。利用复数,可以更方便地 表示相位和阻抗,从而简化计算过程。
信号处理中的复数表示
总结词
在信号处理中,复数表示可以方便地 描述信号的频率和振幅信息。
详细描述
在信号处理中,复数是一种常用的数 学工具,用于描述信号的频率和振幅 信息。通过将信号表示为复数形式, 可以方便地进行信号的频谱分析和滤 波等操作。
复数的几何表示
总结词
复数可以通过平面坐标系中的点或向量来表示,其实部为x轴上的坐标,虚部为y轴上的坐标。
详细描述
复数可以通过几何图形来表示,其实部和虚部分别对应平面坐标系中的x轴和y轴上的坐标。在坐标系中,每一个 复数都可以表示为一个点或一个向量,其横坐标为实部,纵坐标为虚部。这种表示方法有助于直观理解复数的意 义和性质。
02
复数的三角形式
复数的三角形式表示
实部和虚部
复数可以表示为实部和虚部的和 ,即$z = a + bi$,其中$a$是实 部,$b$是虚部。
三角形式
复数还可以表示为模和辐角的形 式,即$z = r(costheta + isintheta)$,其中$r$是模, $theta$是辐角。
复数的模和辐角
除法运算
两个复数相除时,可以用乘以共轭复 数的方法化简,即$frac{a+bi}{c+di} = frac{(a+bi)(c-di)}{(c+di)(c-di)} = frac{ac+bd+(bc-ad)i}{c^2+d^2}$ 。
03
复数的应用
电路中的复数表示
总结词
利用复数表示电路中的电压和电流,可以简化计算,方便分 析。
为它们可能包含实部和虚部。利用复数,可以更方便地 表示相位和阻抗,从而简化计算过程。
信号处理中的复数表示
总结词
在信号处理中,复数表示可以方便地 描述信号的频率和振幅信息。
详细描述
在信号处理中,复数是一种常用的数 学工具,用于描述信号的频率和振幅 信息。通过将信号表示为复数形式, 可以方便地进行信号的频谱分析和滤 波等操作。
复数的几何表示
总结词
复数可以通过平面坐标系中的点或向量来表示,其实部为x轴上的坐标,虚部为y轴上的坐标。
详细描述
复数可以通过几何图形来表示,其实部和虚部分别对应平面坐标系中的x轴和y轴上的坐标。在坐标系中,每一个 复数都可以表示为一个点或一个向量,其横坐标为实部,纵坐标为虚部。这种表示方法有助于直观理解复数的意 义和性质。
02
复数的三角形式
复数的三角形式表示
实部和虚部
复数可以表示为实部和虚部的和 ,即$z = a + bi$,其中$a$是实 部,$b$是虚部。
三角形式
复数还可以表示为模和辐角的形 式,即$z = r(costheta + isintheta)$,其中$r$是模, $theta$是辐角。
复数的模和辐角
除法运算
两个复数相除时,可以用乘以共轭复 数的方法化简,即$frac{a+bi}{c+di} = frac{(a+bi)(c-di)}{(c+di)(c-di)} = frac{ac+bd+(bc-ad)i}{c^2+d^2}$ 。
03
复数的应用
电路中的复数表示
总结词
利用复数表示电路中的电压和电流,可以简化计算,方便分 析。
复数的基本概念及运算ppt课件
8.点M是△ABC所在平面内的一点,且满足 AM =
3 4
AB +
1 4
AC
,
则△ABM与△ABC的面积之比为_____.
类似题:《作业手册》P251 选做2
(10分)已知△ABC中, AB = a , AC = b ,对于平面ABC上 任意一点O,动点P满足 OP = OA +λa +λ b ,则动点P的轨. 迹是什么?其轨迹是否过定点,并说明理由.
(1)i4n=1; i4n+1=i; i4n+2=-1 i4n+3=-i
(2)in+in+1+in+2+in+3=0;
(3) (1±i)2=±2i ;
(4) 1 i i, 1 i i; 1i 1 i
(5) 设 ω - 1 3 i 则 22
ω3 1,ω2 ω,ω2 ω 1 0.
EX1:《创新》P213 例3
今晚自修①《作业手册》P315
4. 复数 z = a+bi 的模、共轭复数的概念:
| z | a2 b2
z a bi
5. 复数相等:
a=c
a+bi=c+di (a,b,c,d∈R)
b=d
注意 : 两个虚数不能比较大小!
二、复数的代数形式及运算法则
设 z1 a bi, z2 c di (a,b,c,d R) 加减法:(a bi) (c di) (a c) (b d)i
(2)(3 4i) (1 2i) 2 2i (3)a = 0是复数z = a + bi为纯虚数的必要不充分条件 (4)z = z是复数z R的充要条件 (5)若z z 0,则复数z为纯虚数 (6)任意两个复数不能比较大小 以上说法正确的有 __________
复数课件ppt免费
02
复数的应用
Chapter
电路分析中的应用
电路分析中,复数是一种常用的数学工具,用于描述交 流电路中的电压、电流和阻抗等参数。
通过使用复数表示,可以简化计算过程,方便分析和设 计电路。
复数在交流电路分析中的应用包括计算交流阻抗、交流 功率和交流电流等。
信号处理中的应用
在信号处理中,复数常用于表示和处 理信号,如频谱分析和滤波器设计等 。
复数在信号处理中的应用还包括数字 滤波器设计和数字信号处理算法的实 现等。
通过将信号表示为复数形式,可以方 便地进行信号的频域分析和处理,如 傅里叶变换和离散余弦变换等。
控制系统中的应用
在控制系统中,复数常用于描 述系统的传递函数和稳定性等 特性。
通过使用复数表示,可以方便 地分析系统的频率响应和稳定 性,以及设计控制系统的参数 。
实例
$2(cos frac{pi}{3} + i sin frac{pi}{3}) + 1(cos frac{pi}{4} + i sin frac{pi}{4}) = sqrt{3}(cos frac{7pi}{12} + i sin frac{7pi}{12})$。
指数形式的计算
定义
复数指数形式是 $re^{itheta}$,其中 $r$ 是模长,$theta$ 是辐角 。
复数课件ppt免费
目录
• 复数的基本概念 • 复数的应用 • 复数的计算方法 • 复数的历史发展 • 复数的扩展知识
01
复数的基本概念
Chapter
复数的定义
总结词
复数是由实部和虚部构成的数,通常表示为a+bi,其中a是实部,b是虚部,i 是虚数单位。
《复数——复数的概念》数学教学PPT课件(4篇)
栏目 导引
第七章 复 数
■名师点拨 (1)复平面内的点 Z 的坐标是(a,b),而不是(a,bi).也就是说,复 平面内的虚轴上的单位长度是 1,而不是 i. (2)当 a=0,b≠0 时,a+bi=0+bi=bi 是纯虚数,所以虚轴上的点 (0,b)(b≠0)都表示纯虚数. (3)复数 z=a+bi(a,b∈R)中的 z,书写时应小写;复平面内的点 Z(a,b)中的 Z,书写时应大写.
第七章 复 数
复数与复平面内的点 已知复数 z=(a2-1)+(2a-1)i,其中 a∈R.当复数 z 在 复平面内对应的点 Z 满足下列条件时,求 a 的值(或取值范围). (1)在实轴上; (2)在第三象限.
栏目 导引
【解】 (1)若 z 对应的点在实轴上,则有 2a-1=0,解得 a=12. (2)若 z 对应的点在第三象限,则有 a22a--11<<00,,解得-1<a<12. 故 a 的取值范围是-1,12.
栏目 导引
第七章 复 数
3.复数的模 复数 z=a+bi(a,b∈R)对应的向量为O→Z,则O→Z的模叫做复数 z 的 模或绝对值,记作|z|或|a+bi|,即|z|=|a+bi|=___a_2_+__b_2 ______. ■名师点拨 如果 b=0,那么 z=a+bi 是一个实数 a,它的模等于|a|(a 的绝对值).
栏目 导引
第七章 复 数
1.已知 z=(m+3)+(m-1)i(m∈R)在复平面内对应的点在第四象
限,则实数 m 的取值范围是( )
A.(-3,1)
B.(-1,3)
C.(1,+∞)
D.(-∞,-3)
解析:选 A.由题意得mm+ -31><00, ,解得-3<m<1.
第七章 复 数
■名师点拨 (1)复平面内的点 Z 的坐标是(a,b),而不是(a,bi).也就是说,复 平面内的虚轴上的单位长度是 1,而不是 i. (2)当 a=0,b≠0 时,a+bi=0+bi=bi 是纯虚数,所以虚轴上的点 (0,b)(b≠0)都表示纯虚数. (3)复数 z=a+bi(a,b∈R)中的 z,书写时应小写;复平面内的点 Z(a,b)中的 Z,书写时应大写.
第七章 复 数
复数与复平面内的点 已知复数 z=(a2-1)+(2a-1)i,其中 a∈R.当复数 z 在 复平面内对应的点 Z 满足下列条件时,求 a 的值(或取值范围). (1)在实轴上; (2)在第三象限.
栏目 导引
【解】 (1)若 z 对应的点在实轴上,则有 2a-1=0,解得 a=12. (2)若 z 对应的点在第三象限,则有 a22a--11<<00,,解得-1<a<12. 故 a 的取值范围是-1,12.
栏目 导引
第七章 复 数
3.复数的模 复数 z=a+bi(a,b∈R)对应的向量为O→Z,则O→Z的模叫做复数 z 的 模或绝对值,记作|z|或|a+bi|,即|z|=|a+bi|=___a_2_+__b_2 ______. ■名师点拨 如果 b=0,那么 z=a+bi 是一个实数 a,它的模等于|a|(a 的绝对值).
栏目 导引
第七章 复 数
1.已知 z=(m+3)+(m-1)i(m∈R)在复平面内对应的点在第四象
限,则实数 m 的取值范围是( )
A.(-3,1)
B.(-1,3)
C.(1,+∞)
D.(-∞,-3)
解析:选 A.由题意得mm+ -31><00, ,解得-3<m<1.
《复数的概念》课件
《复数的概念》PPT课件
复数是一个数学概念,用来表示实数和虚数的集合。
什么是复数
实数与虚数
复数由实部和虚部组成,形如a+bi。
虚数单位
虚数单位 i 是一个特殊的数,满足 i² = -1。
复数的表示方法
直角坐标形式
用复平面中的点表示复数,实部表示 x 坐标,虚部 表示 y 坐标。
极坐标形式
用模和幅角表示复数,模表示向原点距离,幅角表 示与正实轴的夹角。
分形图形
复数可以表示分形图形如Mandelbrot集合。
旋转变换
复数可以通过乘法实现二维旋转变换。
常见的复数方程
1 一次方程
形如a+bi=c,求出复数的解。
2 二次方程
形如a+bi=0,利用求根公式计算解。
结论和要点
复数的基本概念
复数由实部和虚部组成,可以用不同的表示方法。
复数的运算规则
加减乘除应用相应规则来计算。
复数的四则运算
1
加法和减法
复数的实部和虚部分别相加或相减。
乘法
2
将复数按照分配律相乘,并应用 i² = -1
进行合并。
3
行 简化。
共轭复数和复数模
共轭复数
共轭复数将虚部的符号取反,实部保持不变。
复数模
复数的模是复平面中与原点的距离,可用勾股 定理求得。
复数在几何中的应用
复数是一个数学概念,用来表示实数和虚数的集合。
什么是复数
实数与虚数
复数由实部和虚部组成,形如a+bi。
虚数单位
虚数单位 i 是一个特殊的数,满足 i² = -1。
复数的表示方法
直角坐标形式
用复平面中的点表示复数,实部表示 x 坐标,虚部 表示 y 坐标。
极坐标形式
用模和幅角表示复数,模表示向原点距离,幅角表 示与正实轴的夹角。
分形图形
复数可以表示分形图形如Mandelbrot集合。
旋转变换
复数可以通过乘法实现二维旋转变换。
常见的复数方程
1 一次方程
形如a+bi=c,求出复数的解。
2 二次方程
形如a+bi=0,利用求根公式计算解。
结论和要点
复数的基本概念
复数由实部和虚部组成,可以用不同的表示方法。
复数的运算规则
加减乘除应用相应规则来计算。
复数的四则运算
1
加法和减法
复数的实部和虚部分别相加或相减。
乘法
2
将复数按照分配律相乘,并应用 i² = -1
进行合并。
3
行 简化。
共轭复数和复数模
共轭复数
共轭复数将虚部的符号取反,实部保持不变。
复数模
复数的模是复平面中与原点的距离,可用勾股 定理求得。
复数在几何中的应用
《复数基础知识》课件
02
计算方法:利用三角函数的加Байду номын сангаас公式 和减法公式可以计算出复数的乘积和 商。
03
应用:复数的乘除运算是复数运算的 基本法则之一,它们在解决实际问题 中具有广泛的应用。
03
复数的应用
在电路分析中的应用
总结词
利用复数表示交流电的各种参数,如电压、电流、阻抗等,简化计算过程。
详细描述
在电路分析中,许多参数如电压、电流、阻抗等都是时间的函数,具有频率和相 位。利用复数表示这些参数,可以将实数和虚数部分合并,方便进行计算和比较 。通过复数运算,可以快速得到电路的响应,简化计算过程。
在信号处理中的应用
总结词
利用复数进行信号的频谱分析和滤波器设计。
详细描述
在信号处理中,频谱分析和滤波器设计是常见的任务。复数可以用于表示信号的频谱,使得频谱分析变得简单直 观。同时,利用复数进行滤波器设计,可以方便地实现低通、高通、带通等不同类型的滤波器。通过复数运算, 可以快速得到滤波器的响应,提高信号处理的效率。
利用复数的模和辐角,可以将任意复 数转换为三角形式。
复数的模与辐角
定义
复数的模定义为 $sqrt{a^2 + b^2}$, 辐角定义为 $arctan(frac{b}{a})$, 当$a > 0$时,辐角在 第一象限;当$a < 0$ 时,辐角在第三象限。
计算方法
利用勾股定理和反正切 函数可以计算出任意复 数的模和辐角。
控制工程
在控制工程中,系统的传递函数和 稳定性分析通常需要用到复数,以 描述系统的动态特性。
05
复数与实数的关系
复数与实数的转化关系
实数轴上每一个点都 可以对应一个复数, 反之亦然。
人教A版《复数的概念》PPT1
(1)若 a,b 为实数,则 z=a+bi 为虚数.
新
知
(2)复数 i 的实部不存在,虚部为 0.
课 堂 小 结
( )提
素
( )养
·
合 作
(3)bi 是纯虚数.
( )课
探
时
究
(4)如果两个复数的实部的差和虚部的差都等于 0,那么这两个复
分 层
释
作
疑 难
数相等.
( )业
[答案] (1)× (2)× (3)× (4)√
人教A版《复数的概念》PPT1
24
·
情
课
境
堂
导
小
学
结
·
探
2.若复数 z=a+bi>0,则实数 a,b 满足什么条件?
提
新
素
知
养
合 作
[提示] 若复数 z=a+bi>0,则实数 a,b 满足 a>0,且 b=0. 课
探
时
究
分
层
释
作
疑
业
难
人教A版《复数的概念》PPT1
返 首 页
·
人教A版《复数的概念》PPT1
·
人教A版《复数的概念》PPT1
7
·
情
课
境
堂
导
小
学
思考:复数集、实数集、虚数集、纯虚数集之间存在怎样的关系? 结
·
探
提
新
素
知
养
合
作
课
探
[提示]
究
时 分
层
释
作
疑
业
难
人教A版《复数的概念》PPT1
复数的几何意义ppt课件(公开课)
阻抗
在交流电路中,电阻、电 感和电容的阻抗可用复数 表示,实部表示电阻,虚 部表示电感和电容。
频域分析
通过傅里叶变换将时域信 号转换为频域信号,频域 信号可用复数表示。
振动与波动的复数描述
简谐振动
简谐振动的位移、速度和加速度可用复数表示,方便进行振幅、 频率和相位的计算。
波的叠加
多个波叠加时,可用复数表示各波的振幅和相位,便于计算合成 波的振幅和相位。
复数的运算与几何意
04
义
复数的加法与减法
01
02
03
加法运算规则
设$z_1 = a + bi$,$z_2 = c + di$,则$z_1 + z_2 = (a + c) + (b + d)i$。
减法运算规则
设$z_1 = a + bi$,$z_2 = c + di$,则$z_1 - z_2 = (a - c) + (b - d)i$。
复数的几何意义ppt课 件(公开课)
目录
• 引言 • 复数的表示方法 • 复数的几何解释 • 复数的运算与几何意义 • 复数在几何中的应用 • 复数在其他领域的应用
引言
01
复数的基本概念
01
02
03
04
定义
复数是形如 $a + bi$ 的数, 其中 $a$ 和 $b$ 是实数,$i$ 是虚数单位,满足 $i^2 = -1$。
实部和虚部
在复数 $a + bi$ 中,$a$ 称 为实部,$b$ 称为虚部。
共轭复数
若 $z = a + bi$,则其共轭复 数为 $a - bi$。
模
复数的概念ppt课件
(1)它的平方等于 -1,即 i 2 1
(2)实数可以与它进行四则运算,进行四则运算时, 原有的加、乘运算律仍然成立.
复数
形如a+bi(a,b∈R)的数叫做复数. 其中i是虚数单位.
全体复数所成的集合叫做复数集,C表示
C {a bi | a,b R}
复数的代数形式
通常用字母 z 表示,即
z a bi (a R,b R)
3.若 z=(x2-1)2+(x-1)i 为纯虚数,则实数 x 的值为( )
A.-1
B.0
C.1
D.-1 或 1
请您欣赏
励志名言
The best classroom in the world is at the feet of an elderly person.
世界上最好的课堂在老人的脚下.
Having a child fall asleep in your arms is one of the most peaceful feeling in the world. 让一个孩子在你的臂弯入睡,你会体会到世间最安宁的感觉.
x与 y.
解:根据复数相等的定义,得方程组
2x 1 y 1 (3 y)
所以 x 5 , y 4
2
练习:
(1)若5-12i=xi+y(x,y∈R),则x= ________,y=________.
(2)已知(2x-1)+i=y-(3-y)i,其中x,y∈R, i为虚数单位.求实数x,y的值. (3)当x是实数时,若(2x2-3x-2)+(x2-5x+6)i=0, 求x的值.
谢谢!
复数间的关系
复数
a bi
0(a 0,b 0)
实数(b 0)
(2)实数可以与它进行四则运算,进行四则运算时, 原有的加、乘运算律仍然成立.
复数
形如a+bi(a,b∈R)的数叫做复数. 其中i是虚数单位.
全体复数所成的集合叫做复数集,C表示
C {a bi | a,b R}
复数的代数形式
通常用字母 z 表示,即
z a bi (a R,b R)
3.若 z=(x2-1)2+(x-1)i 为纯虚数,则实数 x 的值为( )
A.-1
B.0
C.1
D.-1 或 1
请您欣赏
励志名言
The best classroom in the world is at the feet of an elderly person.
世界上最好的课堂在老人的脚下.
Having a child fall asleep in your arms is one of the most peaceful feeling in the world. 让一个孩子在你的臂弯入睡,你会体会到世间最安宁的感觉.
x与 y.
解:根据复数相等的定义,得方程组
2x 1 y 1 (3 y)
所以 x 5 , y 4
2
练习:
(1)若5-12i=xi+y(x,y∈R),则x= ________,y=________.
(2)已知(2x-1)+i=y-(3-y)i,其中x,y∈R, i为虚数单位.求实数x,y的值. (3)当x是实数时,若(2x2-3x-2)+(x2-5x+6)i=0, 求x的值.
谢谢!
复数间的关系
复数
a bi
0(a 0,b 0)
实数(b 0)
复数的有关概念PPT优秀课件
91.要及时把握梦想,因为梦想一死,生命就如一只羽翼受创的小鸟,无法飞翔。――[兰斯顿·休斯] 92.生活的艺术较像角力的艺术,而较不像跳舞的艺术;最重要的是:站稳脚步,为无法预见的攻击做准备。――[玛科斯·奥雷利阿斯] 93.在安详静谧的大自然里,确实还有些使人烦恼.怀疑.感到压迫的事。请你看看蔚蓝的天空和闪烁的星星吧!你的心将会平静下来。[约翰·纳森·爱德瓦兹]
……
复数的有关概念
问题一 问题二 问题三 问题四 课堂小结
问题一:
对于复数a+bi和c+di(a,b,c,d ∈ R), 你认为满足什么条件时,可以说这两个 复数相等?
a=c,并且b=d,即实部与虚部分别 相等时,叫这两个复数相等。
记作a+bi=c+di。 复数相等的内涵:
复数a+bi可用有序实数对(a,b)表示。
(简Байду номын сангаас复平面)
a
ox
x轴------实轴
y轴------虚轴
概念辨析
例题
实数绝对值的几何意义: 复数的绝对值
实数a在数轴上所 对应的点A到原点O 的距离。
a
(复数的模) 的几何意义:
复数 z=a+bi在复 平面上对应的点Z(a,b) 到原点的距离。
y
O
A
X
z=a+bi
a (a 0)
|
a
|
=
|
OA
87.当一切毫无希望时,我看着切石工人在他的石头上,敲击了上百次,而不见任何裂痕出现。但在第一百零一次时,石头被劈成两半。我体会到,并非那一击,而是前面的敲打使它裂开。――[贾柯·瑞斯] 88.每个意念都是一场祈祷。――[詹姆士·雷德非]
复数的概念ppt
第三章 复数
添加副标题
汇报人姓名
3·1·1数系的扩充和复数的概念
感谢观看
添加副标题
为什么要进行数的需要产生了自然数;为了表示具
有相反意义的量的需要产生了整数;由于测量的
需要产生了有理数;由于表示量与量的比值(如
正方形对角线的长度与边长的比值)的需要产生
了无理数(既无限不循环小数)。
x = - 1 + , x = -1 -
问题3 解方程 (x +1)²=-2
二、实数集的进一步扩展
对于复数 z = a+bi (a、bR) i 称为虚数单位 a 叫做复数 z的实部,记作Re z, 即 a =Re z b 叫做复数 z的虚部,记作Imz , 即 b= Im z
二、实数集的进一步扩展 ——— 数集的第四次扩展(R→?)
所以 x² = - 2 的解为 x = ,x = -
问题2 : 解方程 x² = - 2
引入虚数单位 i 后进一步规定: i 可以与实数进行四则运算,进行四则运算时,原有的加、减、乘运算律仍成立。
04
为了使方程 有解,就必须把实数概念进一步扩
05
大,这就必须引进新的数。
即i2=-1
——— 数集的第四次扩充(R→?)
二、实数集的进一步扩充
所以方程 x²= -1 的解为 x = i 或 x = - i 引入一个数i ,使得该数的平方等于-1
问题1: 解方程 x² = -1
对于复数 z = a+bi (a、bR) 当b=0时, z = a 是实数 当b0时, z = a+bi不是实数,称为虚数 当b0且a=0时, z = bi , 称为纯虚数
定义: 形如a+bi(a、bR)的数 z 称为复数
添加副标题
汇报人姓名
3·1·1数系的扩充和复数的概念
感谢观看
添加副标题
为什么要进行数的需要产生了自然数;为了表示具
有相反意义的量的需要产生了整数;由于测量的
需要产生了有理数;由于表示量与量的比值(如
正方形对角线的长度与边长的比值)的需要产生
了无理数(既无限不循环小数)。
x = - 1 + , x = -1 -
问题3 解方程 (x +1)²=-2
二、实数集的进一步扩展
对于复数 z = a+bi (a、bR) i 称为虚数单位 a 叫做复数 z的实部,记作Re z, 即 a =Re z b 叫做复数 z的虚部,记作Imz , 即 b= Im z
二、实数集的进一步扩展 ——— 数集的第四次扩展(R→?)
所以 x² = - 2 的解为 x = ,x = -
问题2 : 解方程 x² = - 2
引入虚数单位 i 后进一步规定: i 可以与实数进行四则运算,进行四则运算时,原有的加、减、乘运算律仍成立。
04
为了使方程 有解,就必须把实数概念进一步扩
05
大,这就必须引进新的数。
即i2=-1
——— 数集的第四次扩充(R→?)
二、实数集的进一步扩充
所以方程 x²= -1 的解为 x = i 或 x = - i 引入一个数i ,使得该数的平方等于-1
问题1: 解方程 x² = -1
对于复数 z = a+bi (a、bR) 当b=0时, z = a 是实数 当b0时, z = a+bi不是实数,称为虚数 当b0且a=0时, z = bi , 称为纯虚数
定义: 形如a+bi(a、bR)的数 z 称为复数
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2
m3
z1 0
• 2、当实数m取什么值时,复数
(m2-1)+(m2+3m+2)i 表示:
• (1) 实数
• (3)纯虚数
(2)虚数
(4)零
• 3、若(1+i )m2-(3+ 5 i) m-2(2+3i ) 是纯虚数, 则m的值是( B ) • A. -1或4 • B. 4 • C. 4或6 • D. 6
• 1、虚数单位i
• i是一个新数,叫做虚数单位,并规定:(1)
它的平方等于—1,即i2=-1(2)实数可以与
它进行四则运算,进行四则运算时,原有
的加、乘运算律仍然成立。
提醒:in(n∈Z)的周期性: i4n=1,i4n+1=i,i4n+2=-1,i4n+3=-i
• 2、复数的定义
• 形如a+bi(a、b∈R)的数叫做复数,常记作
列出关于实数m 的方程,求出m 的值。
解:(1)由可得:
2 m 2 m 3 5 2 m 4 m 3 3
解之得
m 4 ,即:当 m 4 时
z1 z2 .
(2)当 z1 0 可得: m2 2m 3 0 或 时
m 4m 3 ,即 0
实部与虚部分别相等 即当a,b,c,d∈R时 a+bi=c+di a+bi=0 a=c,b=d a=b=0
• 5、复平面——建立了直角坐标系来表 示复数的平面。 • 实轴——x轴,实轴上的点都表示实数。 • 虚轴——y轴,除原点外,虚轴上的点都 表示纯虚数。
• 6、在复平面内用点来表示复数——复 数z=a+bi(a,b∈R)可用点z(a,b)表示如 图,其中z的横坐标为实部a,纵坐标为 虚部b。
• 4. 若 a ∈R, (a+1)+(a-1)i≠0,则a的值是 ( ) D • A. 不等于1的实数 • B.不等于 –1 的实数 • C. 不等于±1的实数 • D.任意实数
z=a+bi(a、b∈R)。其中a与b分别叫做复数
z的实部(Rez)和虚部(Imz)。复数集用C表示。
①当b=0时,z是实数;
②当b≠0时,z是虚数;
③当a=0且b≠0时,z是纯虚数。
3、复数的分类
实数(b=0) 复数 z=a+bi(a,b∈R) 虚数(b≠0) 纯虚数(a=0且b ≠0)
4、复数相等的条件:
1、设
z1 (m பைடு நூலகம்2m 3) (m 4m 3)i
2 2
(m R ),
z2 5 3,当 i
z1 z2
m
取何值时,(1) (2 )
z1 0.
分析:复数相等的充要条件,提供了
将复数问题转化为实数问题的依据,
这是解复数问题常用的思想方法,这
个题就可利用复数相等的充要条件来
m3
z1 0
• 2、当实数m取什么值时,复数
(m2-1)+(m2+3m+2)i 表示:
• (1) 实数
• (3)纯虚数
(2)虚数
(4)零
• 3、若(1+i )m2-(3+ 5 i) m-2(2+3i ) 是纯虚数, 则m的值是( B ) • A. -1或4 • B. 4 • C. 4或6 • D. 6
• 1、虚数单位i
• i是一个新数,叫做虚数单位,并规定:(1)
它的平方等于—1,即i2=-1(2)实数可以与
它进行四则运算,进行四则运算时,原有
的加、乘运算律仍然成立。
提醒:in(n∈Z)的周期性: i4n=1,i4n+1=i,i4n+2=-1,i4n+3=-i
• 2、复数的定义
• 形如a+bi(a、b∈R)的数叫做复数,常记作
列出关于实数m 的方程,求出m 的值。
解:(1)由可得:
2 m 2 m 3 5 2 m 4 m 3 3
解之得
m 4 ,即:当 m 4 时
z1 z2 .
(2)当 z1 0 可得: m2 2m 3 0 或 时
m 4m 3 ,即 0
实部与虚部分别相等 即当a,b,c,d∈R时 a+bi=c+di a+bi=0 a=c,b=d a=b=0
• 5、复平面——建立了直角坐标系来表 示复数的平面。 • 实轴——x轴,实轴上的点都表示实数。 • 虚轴——y轴,除原点外,虚轴上的点都 表示纯虚数。
• 6、在复平面内用点来表示复数——复 数z=a+bi(a,b∈R)可用点z(a,b)表示如 图,其中z的横坐标为实部a,纵坐标为 虚部b。
• 4. 若 a ∈R, (a+1)+(a-1)i≠0,则a的值是 ( ) D • A. 不等于1的实数 • B.不等于 –1 的实数 • C. 不等于±1的实数 • D.任意实数
z=a+bi(a、b∈R)。其中a与b分别叫做复数
z的实部(Rez)和虚部(Imz)。复数集用C表示。
①当b=0时,z是实数;
②当b≠0时,z是虚数;
③当a=0且b≠0时,z是纯虚数。
3、复数的分类
实数(b=0) 复数 z=a+bi(a,b∈R) 虚数(b≠0) 纯虚数(a=0且b ≠0)
4、复数相等的条件:
1、设
z1 (m பைடு நூலகம்2m 3) (m 4m 3)i
2 2
(m R ),
z2 5 3,当 i
z1 z2
m
取何值时,(1) (2 )
z1 0.
分析:复数相等的充要条件,提供了
将复数问题转化为实数问题的依据,
这是解复数问题常用的思想方法,这
个题就可利用复数相等的充要条件来