1-第1章 伺服控制系统的执行机构与驱动单元

合集下载

伺服控制系统(设计)

伺服控制系统(设计)

第一章伺服系统概述伺服系统是以机械参数为控制对象的自动控制系统。

在伺服系统中,输出量能够自动、快速、准确地尾随输入量的变化,因此又称之为随动系统或者自动跟踪系统。

机械参数主要包括位移、角度、力、转矩、速度和加速度。

近年来,随着微电子技术、电力电子技术、计算机技术、现代控制技术、材料技术的快速发展以及机电创造工艺水平的逐步提高,伺服技术已迎来了新的发展机遇,伺服系统由传统的步进伺服、直流伺服发展到以永磁同步机电、感应电机为伺服机电的新一代交流伺服系统。

目前,伺服控制系统不仅在工农业生产以及日常生活中得到了广泛的应用,而且在许多高科技领域,如激光加工、机器人、数控机床、大规模集成电路创造、办公自动化设备、卫星姿态控制、雷达和各种军用武器随动系统、柔性创造系统以及自动化生产线等领域中的应用也迅速发展。

1.1 伺服系统的基本概念1.1.1 伺服系统的定义“伺服系统”是指执行机构按照控制信号的要求而动作,即控制信号到来之前,被控对象时静止不动的;接收到控制信号后,被控对象则按要求动作;控制信号消失之后,被控对象应自行住手。

伺服系统的主要任务是按照控制命令要求,对信号进行变换、调控和功率放大等处理,使驱动装置输出的转矩、速度及位置都能灵便方便的控制。

1.1.2 伺服系统的组成伺服系统是具有反馈的闭环自动控制系统。

它由检测部份、误差放大部份、部份及被控对象组成。

1.1.3 伺服系统性能的基本要求1 )精度高。

伺服系统的精度是指输出量能复现出输入量的精确程度。

2 )稳定性好。

稳定是指系统在给定输入或者外界干扰的作用下,能在短暂的调节过程后,达到新的或者恢复到原来的平衡状态。

3 )快速响应。

响应速度是伺服系统动态品质的重要指标,它反映了系统的跟踪精度。

4)调速范围宽。

调速范围是指生产机械要求机电能提供的最高转速和最低转速之比。

5 )低速大转矩。

在伺服控制系统中,通常要求在低速时为恒转矩控制,电机能够提供较大的输出转矩;在高速时为恒功率控制,具有足够大的输出功率。

伺服机构工作原理

伺服机构工作原理

伺服机构工作原理
伺服机构是一种常见的控制系统,用于产生精确的运动。

它通常由电机、传感器、控制器和机械装置组成。

伺服机构的工作原理如下:
1. 传感器:伺服机构中的传感器被用来检测或测量系统输出的一些重要物理量,例如位置、速度或力量。

传感器可以是光电传感器、编码器、位移传感器等。

2. 控制器:伺服机构的控制器会接收传感器的反馈信息,并与用户输入的期望值进行比较。

通过比较反馈信号和期望值,控制器会生成一个误差信号。

3. 电机:误差信号将通过控制器发送到驱动电机。

电机可以根据误差信号来调整输出的力矩、角度或速度。

4. 机械装置:电机的输出将传递到机械装置,这是伺服机构的工作把手。

机械装置可以是一个转动轴、一个滑块或其他执行器,根据需求进行相应的运动。

5. 反馈回路:伺服机构中关键的一点是反馈回路。

电机的运动将会影响位置或速度传感器的读数,并将信息反馈给控制器。

控制器将根据传感器反馈的信息来调整输出,以实现对期望值的精确控制。

通过不断地测量、计算和调整,伺服机构能够实现准确的位置
或速度控制。

这使得伺服机构在各种应用中广泛使用,包括工业自动化、机器人、CNC机床、印刷设备等。

什么是伺服驱动系统?伺服驱动系统的基本概念及其组成分类

什么是伺服驱动系统?伺服驱动系统的基本概念及其组成分类

什么是伺服驱动系统?伺服驱动系统的基本概念及其组成分类伺服驱动系统是一种以机械位置或角度作为控制对象的自动控制系统,例如数控机床等。

伺服系统中的驱动电机要求具有响应速度快、定位准确、转动惯量(机电系统中的伺服电机的转动惯量较大,为了能够和丝杠等机械部件直接相连,也为了得到极高的响应速度,伺服电机有一种专门的小惯量电机。

但这类电机的过载能力低,当使用在进给伺服系统中时,必须加减速装置。

转动惯量反映了系统的加速度特性,在选择伺服电机时,系统的转动惯量不能大于电机转动惯量的3倍。

)较大等特点,这类专用的电机称为伺服电机。

当然,其基本工作原理和普通的交直流电机没有什么不同。

该类电机的专用驱动单元称为伺服驱动单元,有时简称为伺服,一般其内部包括电流、速度和/或位置闭环。

伺服驱动系统的基本概念伺服系统是数控机床的重要组成部分,是连接数控装置(计算机)和机床之间的关键桥梁,伺服系统的性能在很大程度上决定了数控机床的性能,如数控机床的定位精度、跟踪精度、最高移动速度等重要指标。

建议我们先来学习一些基础概念,再学习各种进给伺服系统的控制方式。

深刻理解掌握这部分知识,会对更好的学习后面的数控加工工艺有一定的帮助。

1、进给伺服系统
(1)组成
进给伺服系统是以机床移动部件(如工作台)的位置和速度作为控制量的自动控制系统,通常由伺服驱动装置、伺服电机、机械传动机构及执行部件组成。

见图1所示。

(2)作用
接受数控装置发出的进给速度和位移指令信号,由伺服驱动装置作一定的转换和放大后,经伺服电机(直流、交流伺服电机、功率步进电机等)和机械传动机构,驱动机床的工作台等执行部件实现工作进给或快速运动。

永磁同步伺服电机(PMSM)的基本结构 和控制单元驱动器原理

永磁同步伺服电机(PMSM)的基本结构 和控制单元驱动器原理

永磁同步伺服电机(PMSM)的基本结构和控制单元驱动器原理导语:永磁交流伺服系统的驱动器经历了模拟式、模式混合式的发展后,目前已经进入了全数字的时代。

全数字伺服驱动器不仅克服了模拟式伺服的分散性大、零漂、低可靠性等确定,还充分发挥了数字控制在控制精度上的优势和控制方法的灵活,使伺服驱动器不仅结构简单,而且性能更加的可靠。

随着现代电机技术、现代电力电子技术、微电子技术、永磁材料技术、交流可调速技术及控制技术等支撑技术的快速发展,使得永磁交流伺服技术有着长足的发展。

永磁交流伺服系统的性能日渐提高,价格趋于合理,使得永磁交流伺服系统取代直流伺服系统尤其是在高精度、高性能要求的伺服驱动领域成了现代电伺服驱动系统的一个发展趋势。

永磁交流伺服系统具有以下等优点:电动机无电刷和换向器,工作可靠,维护和保养简单;定子绕组散热快;惯量小,易提高系统的快速性;适应于高速大力矩工作状态;相同功率下,体积和重量较小,广泛的应用于机床、机械设备、搬运机构、印刷设备、装配机器人、加工机械、高速卷绕机、纺织机械等场合,满足了传动领域的发展需求。

永磁交流伺服系统的驱动器经历了模拟式、模式混合式的发展后,目前已经进入了全数字的时代。

全数字伺服驱动器不仅克服了模拟式伺服的分散性大、零漂、低可靠性等确定,还充分发挥了数字控制在控制精度上的优势和控制方法的灵活,使伺服驱动器不仅结构简单,而且性能更加的可靠。

现在,高性能的伺服系统,大多数采用永磁交流伺服系统其中包括永磁同步交流伺服电动机和全数字交流永磁同步伺服驱动器两部分。

伺服驱动器有两部分组成:驱动器硬件和控制算法。

控制算法是决定交流伺服系统性能好坏的关键技术之一,是国外交流伺服技术封锁的主要部分,也是在技术垄断的核心。

交流永磁伺服系统的基本结构交流永磁同步伺服驱动器主要有伺服控制单元、功率驱动单元、通讯接口单元、伺服电动机及相应的反馈检测器件组成,其结构组成如图1所示。

其中伺服控制单元包括位置控制器、速度控制器、转矩和电流控制器等等。

DA98D(V5.00版)使用手册

DA98D(V5.00版)使用手册

在本使用手册中,我们将尽力叙述各种与该驱动单元操作相关的事项。

限于篇幅限制及产品具体使用等原因,不可能对该驱动单元中所有不必做和或不能做的操作进行详细的叙述。

因此,本使用手册中没有特别指明的事项均视为“不可能”或“不允许”进行的操作。

本使用手册的版权,归广州数控设备有限公司所有,任何单位与个人进行出版或复印均属于非法行为,广州数控设备有限公司将保留追究其法律责任的权利。

公司简介广州数控(GSK)——广州数控设备有限公司,目前中国数控系统产销量最大的企业,中国南方的数控产业基地,国家863《中档数控系统产业化支撑技术》重点项目承担企业,广东省20家重点装备制造企业之一。

十几年来致力于专业研发、设计及制造机床数控系统(数控装置、驱动单元与伺服电机)等产品,推进数控机床普及化,开展数控机床贸易,现已发展成为一家集科、教、工、贸于一体的大型高新技术企业。

公司现有员工1400多名,其中博士4名、硕士研究生50多名,工程技术人员500多名,其中高级职称50多名。

GSK系列产品以高的性能价格比畅销全国,远销东南亚。

2000年至2006年,市场占有率连续七年全国第一,产品产销量连续七年居国内同行业首位,为全国最大的机床数控系统生产基地。

公司主要产品有:GSK系列车床、铣床、加工中心数控系统, DA98、DA98A、DA98B、DA98D系列全数字式交流伺服驱动装置,DY3系列混合式步进电机驱动装置,DF3系列反应式步进电机驱动装置,GSK SJT系列交流伺服电动机,CT-L数控滑台等数控设备与装置。

产品全面贯彻现行的国家标准(国际标准)、行业标准以及作为完善补充的企业标准(或企业内控标准),广州数控设备有限公司拥有雄厚的技术开发力量及完善的生产及质量保障体系,以稳定可靠的产品质量满足广大用户的需求。

公司健全完善的服务机制与在国内多个省市及国外设立的十几个服务办事处,可保证在24~48小时内提供快捷便利的技术支持和服务。

伺服的工作原理

伺服的工作原理

伺服的工作原理
伺服的工作原理是通过传感器检测并测量系统的状态,然后将这些测量值与预设的目标值进行比较。

如果测量值与目标值存在偏差,控制器会发出控制信号,使电机根据反馈信号做出相应的调整,使系统恢复到目标值附近。

伺服系统通常由三个基本组件组成:控制器、执行器和反馈装置。

控制器是系统的核心,负责接收来自传感器的反馈信息,并将其与目标值进行比较,然后计算出控制信号。

执行器是控制信号的接收者,通常是电机或液压装置,它们将接收到的控制信号转化为机械运动。

反馈装置用于监测执行器的运动状态,并将其转化为反馈信号,反馈给控制器进行实时调整。

在伺服系统中,控制器的设计是至关重要的。

控制器通常采用比例积分微分(PID)控制器,通过对误差的比例、积分和微
分进行加权,来计算控制信号。

其工作原理是根据当前的误差状态和误差变化率来调整控制信号,使系统能够稳定地接近目标值。

伺服系统的关键在于反馈机制,它实现了系统的闭环控制。

反馈装置通过监测执行器的运动状态,将实际测量值反馈给控制器。

控制器根据反馈信号进行实时调整,以便使系统尽可能地接近目标值。

通过持续的反馈和调整,伺服系统能够响应外部干扰,并保持系统在变化之间稳定运行。

总而言之,伺服的工作原理是通过传感器检测系统的状态,并与预设的目标值进行比较,然后通过控制器计算控制信号,使
执行器根据反馈信号进行调整,以使系统接近目标值。

通过持续的反馈和调整,伺服系统能够实现闭环控制,稳定地运行并应对外部干扰。

伺服控制系统名词解释

伺服控制系统名词解释

伺服控制系统名词解释 伺服控制系统用来精确地跟随或复现某个过程的系统。

是一种能对试验装置的机械运动按预定要求进行自动控制的操作系统。

在很多情况下,伺服系统专指被控制量(系统的输出量)是机械位移或位移速度、加速度的反馈控制系统,其作用是使输出的机械位移(或转角)准确地跟踪输入的位移(或转角)。

 如防空雷达控制就是一个典型的伺服控制过程。

它是以空中的目标为输入指令要求,雷达天线耍一直跟踪目标,为地面炮台提供目标方位;加工中心的机械制造过程也是伺服控制过程,位移传感器不断地将刀具进给的位移传送给计算机,通过与加工位置目标比较,计算机输出继续加工或停止:加工的控制信号。

绝大部分机电一体化系统都具有伺服功能,机电一体化系统中的伺服控制是为执行机构按设计要求实现运动而提供控制和动力的重要环节。

 液压伺服控制系统。

 液压伺服控制系统是以电机提供动力基础,使用液压泵将机械能转化为压力,推动液压油。

通过控制各种阀门改变液压油的流向,从而推动液压缸做出不同行程、不同方向的动作,完成各种设备不同的动作需要。

液压伺服控制系统按照偏差信号获得和传递方式的不同分为机-液、电-液、气-液等,其中应用较多的是机-液和电-液控制系统。

按照被控物理量的不同,液压伺服控制系统可以分为位置控制、速度控制、力控制、加速度控制、压力控制和其他物理量控制等。

液压控制系统还可以分为节流控制(阀控)式和容积控制(泵控)式。

在机械设备中,主要有机-液伺服系统和电-液伺服系统。

 交流伺服控制系统。

 交流伺服控制系统包括基于异步电动机的交流伺服系统和基于同步电动机的交流伺服系统。

除了具有稳定性好、快速性好、精度高的特点外,具有一系列优点。

它的性能指标可以从调速范围、定位精度、稳速精度、动态响应和运行稳定性等方面来衡量。

 直流伺服控制系统。

 直流伺服控制系统的工作原理是建立在电磁力定律基础上。

与电磁转矩相关的是互相独立的两个变量主磁通与电枢电流,它们分别控制励磁电流与电枢电流,可方便地进行转矩与转速控制。

伺服系统的分类

伺服系统的分类

伺服系统的分类主轴驱动系统→主轴的旋转运动进给驱动系统→进给轴直线运动直流驱动系统交流驱动系统伺服系统(组成)伺服电机(M)驱动信号控制转换电路电力电子驱动放大模块电流调解单元,速度调解单元检测装置数控机床的伺服系统是指以机床移动部件的位移和速度作为控制系统,它是执行CNC装置所发出命令的执行机构。

因为电动机拖着一个重量很重的工作台,而且摩擦力随着季节、新旧程度、润滑状态等因素而变化,控制了一个稳定速度,精确定位,可以想象其难度之大位置环也称为外环,其输入信号是计算机给出的指令和位置检测器反馈的位置信号。

这个反馈是负反馈,也就是说与指令信号相位相反。

指令信号是相位置环送去加数,而反馈信号是送去减数。

位置环的输出就是速度环的输入位置检测器可以是光电编码器、旋转变压器,也可能是光栅尺、感应同步器或磁栅尺等。

但是,它的作用就是检测位置的,有时可能是直接检测位置的,有时可能是直接检测位置,但也有时是间接检测位置机床进给伺服系统高精度快响应宽调速范围低速大转矩对主轴传动提出下述要求:1、主传动电动机应有(2.2~250)KW的功率范围;2、要有大的无级调速范围,如能在1:100~1000范围内进行恒转矩速度和1:10的恒功率调速3、要求主传动有四项限的驱动能力4、为了满足螺纹车削,要求主轴能与进给实行同步控制5、在加工中心上为了自动换刀,要求主轴能进行高精度定向停位控制,甚至要求主轴具有角度控制功能等。

主轴驱动变速目前主要有两种形式:一是主轴电动机带齿轮换挡,目的在于降低主轴转速,增大传动比,放大主轴功率以适应切削的需要;二是主轴电动机通过同步齿形带或皮带驱动主轴,该类主轴电动机又称宽域电动机或强切削电动机,具有恒功率宽的特点FANUC公司主轴驱动系统主要采用交流主轴驱动系统S H P 三个系列(1.5~37、1.5~22、3.7~37KW)SIEMENS 公司主轴驱动系统直流主轴电机1GG5、1GF5交流主轴电机1PH5、1PH6主轴伺服系统的故障形式及诊断方法故障形式诊断方法速度调节器的输入作为电流调节器的给定信号来控制电动机的电流和转矩。

PLC控制伺服电机总结

PLC控制伺服电机总结

第1章 PLC基础知识1.1 PLC简介1.1.1 PLC的定义PLC(Programmable Logic Controller)是一种以计算机(微处理器)为核心的通用工业控制装置,专为工业环境下应用而设计的一种数字运算操作的电子学系统。

目前已经广泛地`应用于工业生产的各个领域。

早期的可编程序控制器只能用于开关量的逻辑控制,被称为可编程序逻辑控制器(Programmable Logic Controller),简称PC。

现代可编程序控制器采用微处理(Microprocessor)作为中央处理单元,其功能大大增强,它不仅具有逻辑控制功能,还具有算术运算、模拟量处理和通信联网等功能。

PLC的高可靠性到目前为止没有任何一种工业控制设备可以达到,PLC对环境的要求较低,与其它装置的外部连线和电平转换极少,可直接接各种不同类型的接触器或电磁阀等。

这样看来,PC这一名称已经不能准确反映它的特性,于是,人们将其称为可编程序控制器(Programmable Controller),简称PLC。

但是近年来个人计算机(Personal Computer)也简称PLC,为了避免混淆,可编程序控制器常被称为PLC。

1.1.2 PLC的产生和发展在PLC出现之前,机械控制及工业生产控制是用工业继电器实现的。

在一个复杂的控制系统中,可能要使用成千上百个各式各样的继电器,接线、安装的工作量很大。

如果控制工艺及要求发生变化,控制柜内的元件和接线也需要作相应的改动,但是这种改造往往费用高、工期长。

在一个复杂的继电器控制系统中,如果有一个继电器损坏、甚至某一个继电器的某一点接触点不良,都会导致整个系统工作不正常,由于元件多、线路复杂,查找和排除故障往往很困难。

继电器控制的这些固有缺点,各日新月异的工业生产带来了不可逾越的障碍。

由此,人们产生了一种寻求新型控制装置的想法。

1968年,美国最大的汽车制造商通用汽车公司(GM公司)为了适应汽车型号不断翻新的要求,提出如下设想:能否把计算机功能完备、灵活、通用等优点和继电器控制系统的简单易懂、操作方便、价格便宜等优点结合起来,做成一种通用控制装置,并把计算机的编程方法合成程序输入方式加以简化,用面向过程、面向问题的“自然语言”编程,使得不熟悉计算机的人也可以方便使用。

执行机构工作原理

执行机构工作原理

执行机构工作原理
执行机构是一种能够执行特定任务的装置或系统,它根据输入的条件和信号,进行相应的动作或操作。

在工作原理上,执行机构通常由下列几个部分组成:传动装置、执行器、控制部件。

传动装置是执行机构的关键组成部分之一。

它将输入的信号或能量转化为机械能,以驱动执行器的运动。

传动装置可以采用各种机械传动形式,如齿轮传动、皮带传动、链条传动等。

传动装置的设计与选择,取决于执行机构的需求和执行动作的要求。

执行器是执行机构的另一重要部分。

它接受传动装置的输出,通过各种机械结构或装置,将机械能转化为所需的工作或动作。

例如,在机器人上,执行器可能是电动机,通过输入的电能产生旋转或线性运动。

而在一些工业生产设备中,执行器可能是气缸或液压马达,通过输入的气体或液压能源产生相应的力或位移。

控制部件是执行机构工作的核心。

它负责接收、处理和转换输入的信号,根据设计好的控制策略,发出相应的指令给传动装置和执行器,以实现所需的工作或动作。

控制部件可以采用各种控制方式,如电气控制、电子控制、计算机控制等。

通过精确的控制,执行机构可以按照设计要求完成工作任务,提高生产效率和产品质量。

总之,执行机构通过传动装置、执行器和控制部件的协调工作,将输入的条件和信号转化为相应的动作或操作。

它在各个领域
的应用极为广泛,例如机械加工、自动化生产、机器人技术等。

通过不断的创新和改进,执行机构将为人类创造更多的便利和效益。

伺服控制系统设计

伺服控制系统设计

Wop (s)
s(Ts s
K 1)(T2 s
1)
3.2 单闭环位置伺服系统
伺服系统旳闭环传递函数
W cl
(s)
TsT2 s 3
(Ts
K T2 )s2
s
K
闭环传递函数旳特性方程式
TsT2s3 (Ts T2 )s2 s K 0
3.2 单闭环位置伺服系统
用Routh稳定判据,为保证系统稳定,
须使
K
Ts T2 TsT2
单位置环伺服系统开环传递函数对数幅频特性
3.3 双闭环伺服系统
在电流闭环控制旳基础上,设计位置 调整器,构成位置伺服系统,位置调整 器旳输出限幅是电流旳最大值。 以直流伺服系统为例,对于交流伺服 系统也合用,只须对伺服电动机和驱动 装置应作对应旳改动。
3.3 双闭环伺服系统
Tm
R J CT Ce
Tl
La R
3.2 单闭环位置伺服系统
驱动器
电机
直流伺服系统控制对象构造图
采用PD调整器,其传递函数为
减速器
WAPR (s) WPD (s) K p (1 d s)
3.2 单闭环位置伺服系统
伺服系统开环传递函数
Wop (s)
s(Ts s
K ( d s 1)
1)(TmTl s2 Tms
3.5 复合控制旳伺服系统
前馈控制器旳传递函数选为
G(s) 1 W2 (s)
得到
m (s) 1
* m
(
s)
3.5 复合控制旳伺服系统
理想旳复合控制随动系统旳输出量可以完 全复现给定输入量,其稳态和动态旳给定误 差都为零。 系统对给定输入实现了“完全不变性” 。 需要引入输入信号旳各阶导数作为前馈控 制信号,但同步会引入高频干扰信号,严重 时将破坏系统旳稳定性,这时不得不再加上 滤波环节。

伺服驱动系统原理

伺服驱动系统原理

伺服驱动系统原理
伺服驱动系统的工作原理主要包含以下几个步骤:
1. 输入信号处理:伺服驱动系统接收来自控制器的输入信号,这些信号通常是模拟或数字信号。

输入信号经过处理后将传递给驱动器。

2. 反馈信号采集:伺服驱动系统通过反馈装置采集伺服电机的位置或速度信息。

这些反馈信号将用于控制伺服电机的运动。

3. 误差计算:伺服驱动系统将输入信号和反馈信号进行比较,计算出误差。

误差是控制器用来调整驱动器输出信号的基础。

4. 功率驱动单元:功率驱动单元通过三相全桥整流电路对输入的三相电或者市电进行整流,得到相应的直流电。

再通过三相正弦PWM电压型逆变器变频来驱动交流伺服电机。

这个过程可以简单的理解为AC-DC-AC的过程。

5. 控制方式:伺服驱动器一般都有三种控制方式:位置控制方式、转矩控制方式、速度控制方式。

总的来说,伺服驱动系统是一个非常复杂的系统,其工作原理涉及多个环节和步骤。

如需了解更多信息,建议查阅相关文献或咨询专业人士。

部分习题解答

部分习题解答

部分习题解答省级精品课程《数控加工技术》习题解答第一章数控加工技术概论1.1 数控加工技术的概念是什么?其主要发展历程经过哪几个阶段?答:1)数控加工技术是集传统的机械制造、计算机、现代控制、传感控制、信息处理、光机电技术于一体,在数控机床上进行工件切削加工的一种工艺方法,是根据工件图样和工艺要求等原始条件编制的工件数控加工程序输入数控系统,控制机床刀具与工件的相对运动,从而实现工件的加工。

2)数控加工技术主要发展历程经过了二个阶段6个时代。

第一阶段:数控(NC)阶段,又称为硬件数控阶段,从1952年~1970年。

第一代数控(1952-1959年):采用电子管构成的硬件数控系统;第二代数控(1959-1965年):采用晶体管电路为主的硬件数控系统;第三代数控(1965年开始):采用小、中规模集成电路的硬件数控系统;第二阶段:计算机数控(CNC)阶段:又称为软件数控阶段,从1970年~现在。

第四代数控(1970年开始):采用大规模集成电路的小型通用电子计算机数控系统;第五代数控(1974年开始):采用微型计算机控制的数控系统;第六代数控(1990年开始):采用工控PC机的通用CNC系统。

1.2 数控机床的工作原理是什么?数控加工的特点有哪能些?答:1)将被加工零件图纸上的几何信息和工艺信息用规定的代码和格式编写成加工程序,并输入数控装置,经过信息处理、分配,控制机床各坐标轴以最小位移量(通常只有0.001mm)为单位进行移动,其合成运动实现了刀具与工件的相对运动,完成零件的加工。

数控机床的加工,实质是应用了“微分”原理。

2)数控加工的特点有:1)自动化程度高,能减轻工人的劳动强度和改善劳动条件;2)零件加工精度高、加工质量稳定;3)加工生产率高;4)良好的经济效益;5)复杂产品加工能力强;6)适应性强,适合加工单件或小批量复杂工件;7)有利于生产管理的现代化。

1.3 数控机床由哪能几个部分组成?各个部分的基本功能是什么?答:1)数控机床由控制介质、数控装置、伺服系统、检测系统和机床本体五部分组成。

数控机床的组成及基本工作原理

数控机床的组成及基本工作原理

1.2 数控机床的组成及基本工作原理一、数控机床组成数控机床由:程序、输人/输出装置、CNC单元、伺服系统、位置反馈系统、机床本体组成。

1、程序的存储介质,又称程序载体1)穿孔纸带(过时、淘汰);2)盒式磁带(过时、淘汰);3)软盘、磁盘、U盘;4)通信。

2、输人/输出装置1)对于穿孔纸带,配用光电阅读机;(过时、淘汰);2)对于盒式磁带,配用录放机;(过时、淘汰);3)对于软磁盘,配用软盘驱动器和驱动卡;4)现代数控机床,还可以通过手动方式(MDI方式);5)DNC网络通讯、RS232串口通讯。

3、CNC单元CNC单元是数控机床的核心,CNC单元由信息的输入、处理和输出三个部分组成。

CNC单元接受数字化信息,经过数控装置的控制软件和逻辑电路进行译码、插补、逻辑处理后,将各种指令信息输出给伺服系统,伺服系统驱动执行部件作进给运动。

其它的还有主运动部件的变速、换向和启停信号;选择和交换刀具的刀具指令信号,冷却、润滑的启停、工件和机床部件松开、夹紧、分度台转位等辅助指令信号等。

准备功能:G00,G01,G02,G03,辅助功能:M03,M04刀具、进给速度、主轴:T,F,S4、伺服系统由驱动器、驱动电机组成,并与机床上的执行部件和机械传动部件组成数控机床的进给系统。

它的作用是把来自数控装置的脉冲信号转换成机床移动部件的运动。

对于步进电机来说,每一个脉冲信号使电机转过一个角度,进而带动机床移动部件移动一个微小距离。

每个进给运动的执行部件都有相应的伺服驱动系统,整个机床的性能主要取决于伺服系统。

如三轴联动的机床就有三套驱动系统。

脉冲当量:每一个脉冲信号使机床移动部件移动的位移量。

常用的脉冲当量为0.001mm/脉冲。

5、位置反馈系统(检测反馈系统)伺服电动机的转角位移的反馈、数控机床执行机构(工作台)的位移反馈。

包括光栅、旋转编码器、激光测距仪、磁栅等。

(作业:让同学们网上查找反馈元件,下节课用5分钟自述所查内容)反馈装置把检测结果转化为电信号反馈给数控装置,通过比较,计算实际位置与指令位置之间的偏差,并发出偏差指令控制执行部件的进给运动。

伺服电机和伺服驱动器的使用介绍

伺服电机和伺服驱动器的使用介绍

伺服电机和伺服驱动器的使用介绍一、伺服电机• 伺服驱动器的控制原理伺服电机和伺服驱动器是一个有机的整体,伺服电动机的运行性能是电动机及其驱动器二者配合所反映的综合效果。

1、永磁式同步伺服电动机的基本结构图1为一台8极的永磁式同步伺服电动机结构截面图,其定子为硅钢片叠成的铁芯和三相绕组,转子是由高矫顽力稀土磁性材料(例如钕铁錋)制成的磁极。

为了检测转子磁极的位置,在电动机非负载端的端盖外面还安装上光电编码器。

驱动器根据反馈值与目标值进行比较,调整转子转动的角度。

伺服电机的精度决定于编码器的精度(线数)。

图1 永磁式同步伺服电动机的结构图2 所示为一个两极的永磁式同步电机工作示意图,当定子绕组通上交流电源后,就产生一旋转磁场,在图中以一对旋转磁极N、S表示。

当定子磁场以同步速n1逆时针方向旋转时,根据异性相吸的原理,定子旋转磁极就吸引转子磁极,带动转子一起旋转,转子的旋转速度与定子磁场的旋转速度(同步转速n1)相等。

当电机转子上的负载转矩增大时,定、转子磁极轴线间的夹角θ就相应增大,导致穿过各定子绕组平面法线方向的磁通量减少,定子绕组感应电动势随之减小,而使定子电流增大,直到恢复电源电压与定子绕组感应电动势的平衡。

这时电磁转矩也相应增大,最后达到新的稳定状态,定、转子磁极轴线间的夹角θ称为功率角。

虽然夹角θ会随负载的变化而改变,但只要负载不超过某一极限,转子就始终跟着定子旋转磁场以同步转速n1转动,即转子的转速为:(1-1)图 2 永磁同步电动机的工作原理电磁转矩与定子电流大小的关系并不是一个线性关系。

事实上,只有定子旋转磁极对转子磁极的切向吸力才能产生带动转子旋转的电磁力矩。

因此,可把定子电流所产生的磁势分解为两个方向的分量,沿着转子磁极方向的为直轴(或称d轴)分量,与转子磁极方向正交的为交轴(或称q轴)分量。

显然,只有q轴分量才能产生电磁转矩。

由此可见,不能简单地通过调节定子电流来控制电磁转矩,而是要根据定、转子磁极轴线间的夹角θ确定定子电流磁势的q轴和d轴分量的方向和幅值,进而分别对q轴分量和d轴分量加以控制,才能实现电磁转矩的控制。

伺服电机的工作原理

伺服电机的工作原理

伺服电机的工作原理引言概述:伺服电机是一种能够精准控制位置、速度和加速度的电机,广泛应用于工业自动化、机器人技术、航空航天等领域。

了解伺服电机的工作原理对于掌握其应用和维护至关重要。

一、伺服电机的基本结构1.1 电机部分:伺服电机通常由电机、编码器、控制器和传感器等部分组成。

1.2 编码器:编码器用于反馈电机的位置信息,实现闭环控制。

1.3 控制器:控制器接收编码器反馈的位置信息,并根据设定的目标位置控制电机的转动。

二、伺服电机的工作原理2.1 闭环控制:伺服电机采用闭环控制系统,通过不断比较实际位置和目标位置的差异,调整电机的转速和转向,实现精准控制。

2.2 PID控制:伺服电机控制器通常采用PID控制算法,即比例、积分、微分控制,通过调节这三个参数,实现对电机的精确控制。

2.3 反馈系统:编码器等反馈系统可以实时监测电机的位置信息,将实际位置反馈给控制器,从而实现闭环控制。

三、伺服电机的应用领域3.1 工业自动化:伺服电机广泛应用于自动化生产线上,用于控制机械臂、输送带等设备的运动。

3.2 机器人技术:伺服电机是机器人关节驱动的重要组成部分,可以实现机器人的精准运动和操作。

3.3 航空航天:伺服电机在航空航天领域用于控制飞行器的姿态和航向,保证飞行器的稳定性和精准性。

四、伺服电机的优势4.1 精准控制:伺服电机可以实现高精度的位置控制,适用于对运动精度要求较高的场合。

4.2 高效能:伺服电机具有高效能的特点,能够在短时间内实现快速响应和高速转动。

4.3 稳定性:由于采用闭环控制系统,伺服电机具有良好的稳定性和抗干扰能力,适用于复杂环境下的应用。

五、伺服电机的发展趋势5.1 高性能化:伺服电机将不断追求更高的性能指标,如更高的转速、更高的精度等。

5.2 智能化:伺服电机将逐渐智能化,具备自学习、自适应等功能,更好地适应各种复杂环境。

5.3 网络化:伺服电机将与网络技术结合,实现远程监控、故障诊断等功能,提高设备的可靠性和维护性。

伺服系统工作原理

伺服系统工作原理

第一部分:伺服系统的工作原理伺服系统(servo system)亦称随动系统,属于自动控制系统中的一种,它用来控制被控对象的转角(或位移),使其能自动地、连续地、精确地复规输入指令的变化规律。

它通常是具有负反馈的闭环控制系统,有的场合也可以用开环控制来实现其功能。

在实际应用中一般以机械位置或角度作为控制对象的自动控制系统,例如数控机床等。

使用在伺服系统中的驱动电机要求具有响应速度快、定位准确、转动惯量较大等特点,这类专用的电机称为伺服电机。

其基本工作原理和普通的交直流电机没有什么不同。

该类电机的专用驱动单元称为伺服驱动单元,有时简称为伺服,一般其内部包括转矩(电流)、速度和/或位置闭环。

其工作原理简单的说就是在开环控制的交直流电机的基础上将速度和位置信号通过旋转编码器、旋转变压器等反馈给驱动器做闭环负反馈的PID调节控制。

再加上驱动器内部的电流闭环,通过这3个闭环调节,使电机的输出对设定值追随的准确性和时间响应特性都提高很多。

伺服系统是个动态的随动系统,达到的稳态平衡也是动态的平衡。

全数字伺服系统一般采用位置控制、速度控制和力矩控制的三环结构。

系统硬件大致由以下几部分组成:电源单元;功率逆变和保护单元;检测器单元;数字控制器单元;接口单元。

相对应伺服系统由外到内的"位置"、"速度"、"转矩" 三个闭环,伺服系统一般分为三种控制方式。

在使用位置控制方式时,伺服完成所有的三个闭环的控制。

在使用速度控制方式时,伺服完成速度和扭矩(电流)两个闭环的控制。

一般来讲,我们的需要位置控制的系统,既可以使用伺服的位置控制方式,也可以使用速度控制方式,只是上位机的处理不同。

另外,有人认为位置控制方式容易受到干扰。

而扭矩控制方式是伺服系统只进行扭矩的闭环控制,即电流控制,只需要发送给伺服单元一个目标扭矩值,多用在单一的扭矩控制场合,比如在小角度裁断机中,一个电机用速度或位置控制方式,用来向前传送材料,另一个电机用作扭矩控制方式,用来形成恒定的张力。

伺服控制器原理及应用PPT课件

伺服控制器原理及应用PPT课件

如显示窗口的对比度不合适,用户可将显示器面板摘 下,调节数字板上的电位器“RW”直到满意为止。
理解
.
23
ZETA系列伺服控制器
ZETA系列伺服控制器是专为陕鼓3H-TRT系统配备的 高精度智能型伺服控制器。该控制器不仅具备高精度 位置控制、零点与量程调整、正反作用切换和信号丢 失记忆功能,保证静叶和旁通阀在信号丢失的情况下 不发生误动作。ZETA伺服控制器控制精度高、分辨率 高、漂移小、抗干扰能力强,现场调试十分方便。其 设计充分考虑了行业用户的特点,具有很强的专业针 对性。
理解
.
19
位置的调节
1.正作用控制方式调节:
A.将指令信号设为4mA,调节控制板(CONTROL)面板 上标着“变送器”字样的框中的电位器“零点”,油缸会随之运 动,不断调节电位器使实际位置到达零位。
B.将指令信号设为20mA,调节控制板(CONTROL)面板 上标着“变送器”字样的框中的电位器“行程”,油缸会随之运 动,不断调节电位器使实际位置到达满行程位。
.
24
.
25
工作原理
如下图所示,控制器一方面接收来自主控室位置指令 信号,另一方面接收来自位移传感器测量的实际位置 反馈信号。伺服控制器在内部对这两个信号进行转换、 比较,并经过一定的高级运算,产生一个可以驱动电 液伺服阀SV的电流信号。在伺服阀的控制下,动力油 作用于伺服油缸SM,带动静叶角度或阀门达到预期位 置,从而实现静叶或阀门位置调节的目的。同时,伺 服控制器还送出一路电流信号到控制室指示静叶角度 或阀门的位置。
B.将指令信号设为4mA,调节控制板(CONTROL)面板 上标着“变送器”字样的框中的电位器“行程”,油缸会随之运 动,不断调节电位器使实际位置到达满行程位。

伺服压力单元

伺服压力单元

伺服压力单元
伺服压力单元是一种先进的工业自动化设备,广泛应用于各种生产过程中,特别是在需要精确控制压力的场合。

它利用伺服电机和精密的控制系统,实现了对压力的快速、准确和可重复的控制。

伺服压力单元通常由以下几个主要部分组成:
1. 伺服电机:伺服电机是伺服压力单元的核心部分,它能够快速响应控制系统的指令,精确地控制压力单元的动作。

伺服电机相比传统的电机,具有更高的动态响应特性和更低的噪音。

2. 压力传感器:压力传感器用于实时监测压力单元内的压力值,并将压力值转化为电信号,反馈给控制系统。

控制系统根据反馈的压力值与预设的压力值进行比较,调整伺服电机的动作,从而实现对压力的精确控制。

3. 控制系统:控制系统是伺服压力单元的大脑,它负责接收操作人员的指令,并根据指令控制伺服电机的动作,同时接收压力传感器的反馈信号,对压力进行精确控制。

控制系统通常采用先进的控制算法,如PID控制等,以实现最优的控制效果。

4. 液压系统:液压系统是伺服压力单元的动力源,它负责将液压能转化为机械能,驱动执行机构进行动作。

液压系统通常由液压泵、油箱、管道、阀等组成,其设计和配置需根据实际应用需求进行选择和优化。

伺服压力单元相比传统的压力控制系统,具有以下优点:
1. 快速响应:伺服电机具有快速的动态响应特性,能够迅速地跟随控制系统的指令,实现对压力的快速控制。

2. 高精度:伺服压力单元采用高精度的压力传感器和先进的控制算法,能够实现高精度的压力控制,提高产品的质量和生产效率。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

k:通电系数
k=
2 双拍制

360 每输入一个脉冲,电机转过 S Zr N
60 f 60 f 360 s n f Zr N 360Z r N 6
(3) 转速
即转过整个圆周的1/(ZrN), 也就是1/(ZrN)转。 因此,每分钟转过的圆周数,即转速为:
(r / min)

当k=1时,m最小为3;m越大,起动转矩越大;k越大, 起动转矩越大。 此外,矩角特性的波形对电动机带负载的能力也有 较大影响。当矩角特性为平顶波时,Tst值接近于Tmax 值,电机带负载能力较大。因此,步进电动机理想的 矩角特性应是矩形波。





转子振荡过程: 以上分析时认为,切换 控制绕组时,转子单调地 趋向新的平衡位臵,但实 际上要经过一个衰减的振 荡过程。 为减小振荡幅度和时间, 可增加阻尼: •机械阻尼:增加电机转 子的干摩擦阻力或增加粘 性阻力。 缺点:增大了惯性,快速 性能变坏,体积增大。 •电气阻尼:多相激磁阻 尼、延迟断开阻尼。优点: 方法简单,效果好。
A
B' 4
1
C'
2
C
3 A'
B

A、B相同时通电,BB‘ 磁场对 2、4 齿有磁拉力, 该拉力使转子顺时针方向转动,AA’ 磁场继续对1、
3齿有拉力,所以转子转到两磁拉力平衡的位臵上。 相对AA' 通电,转子转了15°。
A
B'
C'
B
A'
C

B相通电,转子2、4齿和B相对齐,又转了15。依次
类推,每个循环周期,有六种通电状态,且为单相 和双相交替通电,所以称为三相单双六拍,步距角 为15。
1
2
C'
C
3 A'
B

B相通电,转子2、4齿和B相轴线对齐,相对A相通
电位臵转30; C相通电,转子1、3齿和C相轴线对齐,相对B相通 电位臵再转30;
A
B'

A C' B
B'
C' B
A'
C
A'
C

这种工作方式,因三相绕组中每次只有一相通 电,而且,一个循环周期共包括三个脉冲,所以称 三相单三拍。 三相单三拍的特点: (1)每来一个电脉冲,转 A 子转过 30。此角称为步距 B' C' 角,用S 表示。 1
Te=0
多相通电时: 多相通电 时的矩角特 性可近似地 由每相单独 通电时的矩 角特性叠加 求出。 三相电机两相通电的矩角特性 对于三相步进电动机来说,两相通电时的最大转矩与单相 通电时的最大转矩相同,也就是说,三相步进电动机不能靠 增加通电相数来提高最大转矩。


(4)静态稳定区:在空载时,稳定平衡位臵对应于 θ=0处,而θ=π处则为不稳定平衡位臵。在静态情况 下,如受外力矩的作用使转子偏离稳定平衡位臵, 但没有超出相邻的不稳定平衡点,则当外力矩除去 以后,电动机转子在静态转矩作用下仍能回到原来 的稳定平衡点,所以二个不稳定平衡点之间的区域 构成静态稳定区。 (5)最大静转矩:Tmax=f (I) 当一相绕组通电时,在θ=±π/2时有最大静转矩。


工作原理 假设是单三拍通电工作方式。 (1)A 相通电时,定子A 相的五个小齿和转子对齐。 此时,B 相和 A 相空间差120,含

1 120/9 = 13 齿 3 2 A 相和 C 相差240,含240/ 9 = 26 个齿。 3
所以,A 相的转子、定子的五个小齿对齐时,B 相、 C 相不能对齐,B相的转子、定子相差 1/3 个齿 (3),C相的转子、定子相差2/3个齿(6)。



2.动态特性 当加上一个控制脉冲信号,矩角特性将转移到矩角 特性簇中的下一条矩角特性曲线,转子将转到新的稳 定平衡位臵OB。在改变通电状态时,只有当转子起 始位臵位于ab之间才能使它向OB点运动。因此称区 间ab为电动机空载时的动态稳定区。 (1) 单脉冲运行时
θse是以电度角表示的
θse
步距角。每个齿距的 电度角为2π,转过1 个齿距需mk拍,所以 θse = 2π/mk。

幅值,甚至还没有到达新的 稳定平衡位臵,下一个脉冲 就到来。此时电机的运行已 由步进变成了连续平滑的转 动,转速也比较稳定。

起动频率和起动特性fst 在一定负载转矩下,电机不失步地正常启动所能 加的最高控制脉冲的频率,称为启动频率(也称突跳 频率)。它的大小与电机本身的参数、负载转矩、转 动惯量及电源条件等因素有关,它是衡量步进电动机 快速性的重要技术指标。

(3)矩角特性:在不改变通电状态(即控制绕组电流 不变)时,步进电动机的静转矩与转子失调角的关 系,即Τ=f (θ)。 单相通电时:
单相通电时矩角特性
e=0
无切向力 Te=0
e>0 切向力
e=
e>
位于下个 定子齿附 近,产生 正转矩
负转矩
e=/2 Te=max
两齿之间 切向力抵
第1章 伺服系统的执行机构与驱动单元
1.1 步进电机及驱动单元


1.1.1 步进电机的结构与基本工作原理
基本工作原理: 步进电机是利用电磁铁原理,将脉冲信号转换成 线位移或角位移的电机。每来一个电脉冲,电机转 动一个角度,带动机械部件移动一小段距离。 工作特点: (1)来一个脉冲(称作一拍),转一个角度(称作 步距角); (2)控制脉冲的频率,可控制电机转速; (3)改变脉冲的相序,可改变电机转动方向。
4 2
3 A'
C
B
(2)转子的旋转方向取决 于三相线圈通电的顺序,改 变通电顺序即可改变转ห้องสมุดไป่ตู้。


2. 三相单双六拍 三相绕组的通电顺序为: AABBBCCCAA (正转)或 AACCCBBBAA(反转)共六拍。 工作过程(正转): A相通电,转子1、3齿和A相对齐。

f f 相 N
通电脉冲频率
拍数
(2) 步距角 步进机通过一个电脉冲转子转过的角度,称为步距角。
360 S Zr N
如:Zr=40 , N=3 时 拍数:N=km m:相数
N :一个周期的运行拍数 Zr:转子齿数
360 S 3 40 3
1 单拍制
起动矩频特性fst=f(TL)
起动惯频特性fst=f(J)


1.1.6 永磁式步进电机
定子为两相(或多相)绕组; 转子为星形永久磁钢; 转子极对数应与定子每相绕组的极对数相同。

转子极对数 p =2
二相单四拍:定子绕组按A—B—(-A)—(-B)—A的次序 通电,转子将顺时针方向转过45。步距角为:
A
B'
C' B
A'
C

这种工作方式,因三相绕组中每次有一相或两相 通电,而且,一个循环周期共包括六个脉冲,所以 称三相单双六拍。每拍转子转15,改变通电次序时 方向将改变。 A
B' 4 1 2 3 A'
C' B
C


3. 三相双三拍 三相绕组的通电顺序为: ABBCCAAB 共三拍。 工作过程:其每一通电状态的转子位臵和磁通路径 与三相单双六拍相应的两相绕组同时通电时相同。 所以,转子每步转30,与三相单三拍相同。
A

IA
定子
定子的六个 磁极上有控 制绕组,两 个相对的磁 极组成一相。
转子
IC C
IB B


1.1.2 工作方式
大步距角的步进电机的工作方式可分为:三相 单三拍、三相单双六拍、三相双三拍等等。
1. 三相单三拍 (1)三相绕组联接方式: Y型 (2)三相绕组中的通电顺 序为: A 相 B 相 C 相 A 相 (正转) 或 A 相 C 相 B 相 IC C A 相(反转)
有阻尼时转子的 衰减振荡

(2) 连续脉冲运行时 极低频-连续步进运行 当控制脉冲频率极低 时,脉冲持续的时间很 长,并且大于转子衰减 振荡的时间。也就是说 在下一个控制脉冲尚未 到来时,转子已处于某 平衡位臵。故其每一步 都和单步运行一样,电 机具有明显的步进特征。
具有步进特征的运行
频率很高时的连续运行 当控制脉冲的频率很高时, 脉冲间隔的时间很短,电机 转子尚未到达第一次振荡的

动态稳定区:(-π+θse)<θ<(π+θse)

a点与OA点之间的夹角θr称为稳定裕度(或裕量 角)。裕量角越大,电动机运行越稳定。
2 r se mk

r

mk
(mk 2)
由上式可见,通电状态系数(拍系数)k=1时, 反应式步进电动机的相数m最少为3。 电动机的相数越多,步距角越小,相应的稳定裕 度越大,运行的稳定性也越好。


由此可知,步进电动机能带的最大负载转矩要比最 大静转矩Tmax小。只有当负载转矩小于起动转矩(最大 负载转矩)Tst,才能保证电动机进行正常的步进运动。 若矩角特性为幅值相等的正弦波时,可得:
Tst Tmax sin

se
2
Tmax cos
se
2
Tmax cos

mk



(2)A相断电、B相通电后,转子只需转过1/3个齿(3), 使 B 相转子、定子对齐。 同理,C 相通电再转3 …… 若工作方式改为三相单双六拍,则每通一个电脉冲, 转子 只转 1.5 。 步进电机的转动方向仍由通电顺序决定。


1.1.4 步进电机的工作特点
相关文档
最新文档