人口预测中线性回归分析简单步骤
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人口预测中线性回归分析简单步骤:
一、进行回归分析
SPSS-regression-linear
Dependent ——因变量这里应该为人口
Independent ——自变量这里可以为年份,也可以为GDP或其他认为可以引起人口变动的自变量
用箭头添加到相应的框中,然后点击ok,生成结果。
二、结果检验
Model Summary
a Predictors: (Constant), V1
R2=0.11,模型拟合效果不好(此数应该越接近1越好,如果在0.7以上均可认为模型拟合效果较好)
ANOVA(b)
a Predictors: (Constant), V1
b Dependent Variable: V2
sig=0.771,模型线性特征不显著(如果该值小于0.05,可认为线性关系较为显著)
Coefficients(a)
a Dependent Variable: V2
每个参数的sig分别为0.772和0.771,表示参数也不显著(如果该值小于0.05,可认为线性关系较为显著)
列出的一元一次方程为y=88.709x-176626.982。将x=??带入方程,得到y=??,则??年人口为??。但由于未通过显著性检验,模型拟合效果也不好,所以该方法预测的结果应当去掉。(这里如果前面的拟合度和显著性检验效果均较好的话,就应当保留该方法预测的结果。