(典型题)高考数学二轮复习 知识点总结 空间中的平行与垂直
空间几何的平行与垂直关系知识点总结
空间几何的平行与垂直关系知识点总结空间几何是研究点、线、面等几何形体在空间中的相互关系和特性的学科。
在空间几何中,平行和垂直是两种重要的关系。
本文将总结空间几何中的平行与垂直关系的知识点。
一、平行关系平行是指两条直线或两个平面在空间中永远不会相交的关系。
平行关系在日常生活和工程建设中经常被应用到。
1. 平行关系的性质- 平行线与同一平面内的直线交线的两个内角是同位角,即两个内角之和等于180度。
- 平行线与同一平面外的直线交线的两个内角也是同位角,同位角性质适用于平行于同一平面内的两条直线。
2. 判定平行关系的方法- 平行线的判定:如果两条直线上有一点与第三条直线上的两个点重合,并且这两条直线分别与第三条直线平行,则这两条直线是平行线。
- 平行面的判定:如果两个平面上有一条直线与第三个平面上的两条直线重合,并且这两个平面分别与第三个平面平行,则这两个平面是平行面。
3. 平行线的性质- 平行线投影性质:平行于同一平面内的两条直线的等角投影相等。
- 平行线的方向性:平行线有确定的方向,可以延长或缩短,但方向不会改变。
二、垂直关系垂直是指两条直线或两个平面相交成直角的关系。
垂直关系在几何学、建筑学和物理学中都有广泛应用。
1. 垂直关系的性质- 垂直关系性质一:两个直角相等。
- 垂直关系性质二:两个互相垂直的直线或两个互相垂直的平面,其中一个与第三个垂直,则它们与第三个也是垂直关系。
- 垂直关系性质三:垂直于同一面的直线与该面的交线垂直。
2. 判定垂直关系的方法- 判定直线垂直关系的方法:如果两条直线上有一点与第三条直线上的两个点重合,并且这两条直线分别与第三条直线垂直,则这两条直线是垂直的。
- 判定面垂直关系的方法:如果两个平面上有一条直线与第三个平面上的两条直线相交成直角,并且这两个平面分别与第三个平面垂直,则这两个平面是垂直的。
三、平行和垂直关系的应用平行和垂直关系在日常生活和工程建设中具有广泛的应用。
高考数学大二轮专题复习:第二编空间中平行与垂直
高考数学大二轮专题复习:第二编空间中平行与垂直第2讲空间中的平行与垂直「考情研析」 1.从具体内容上:①以选择题、填空题的形式考查,主要利用平面的基本性质及线线、线面和面面平行和垂直的判定定理与性质定理对命题的真假进行判断,属于基础题;②以解答题的形式考查,主要是对线线、线面与面面平行和垂直关系交汇综合命题,且多以棱柱、棱锥、棱台或其简单组合体为载体进行考查. 2.从高考特点上,难度中等,常以一道选填题或在解答题的第一问考查.核心知识回顾 1.直线与平面平行的判定和性质(1)判定①判定定理:a∥b,b⊂α,a⊄α⇒a∥α.②面面平行的性质:α∥β,a⊂α⇒a∥β.(2)性质:l∥α,l⊂β,α∩β=m⇒l∥m.2.直线和平面垂直的判定和性质(1)判定①判定定理:a⊥b,a⊥c,b,c⊂α,b∩c=O⇒a⊥α.②线面垂直的其他判定方法:a.a∥b,a⊥α⇒b⊥α.b.l⊥α,α∥β⇒l⊥β.c.α⊥β,α∩β=l,a⊂α,a⊥l⇒a⊥β.(2)性质①l⊥α,a⊂α⇒l⊥a.②l⊥α,m⊥α⇒l∥m.3.两个平面平行的判定和性质(1)判定①判定定理:a⊂β,b⊂β,a∩b=P,a∥α,b∥α⇒β∥α.②面面平行的其他判定方法:a.l⊥α,l⊥β⇒α∥β.b.α∥γ,α∥β⇒β∥γ.(2)性质:α∥β,γ∩α=a,γ∩β=b⇒a∥b.4.两个平面垂直的判定和性质(1)判定:a⊂α,a⊥β⇒α⊥β.(2)性质:α⊥β,α∩β=l,a⊂α,a⊥l⇒a⊥β.热点考向探究考向1空间线面位置关系的判定例1(1)(多选)(2020·山东省烟台市模拟)已知m,n为两条不重合的直线,α,β为两个不重合的平面,则() A.若m∥α,n∥β,α∥β,则m∥n B.若m⊥α,n⊥β,α⊥β,则m⊥n C.若m∥n,m⊥α,n⊥β,则α∥β D.若m∥n,n⊥α,α⊥β,则m∥β 答案BC 解析由m,n为两条不重合的直线,α,β为两个不重合的平面,知:对于A,若m∥α,n∥β,α∥β,则m与n相交、平行或异面,故错误;对于B,若m⊥α,n⊥β,α⊥β,则由线面垂直、面面垂直的性质定理得m⊥n,故正确;对于C,若m∥n,m⊥α,n⊥β,则由线面垂直的性质定理和面面平行的判定定理得α∥β,故正确;对于D,若m∥n,n⊥α,α⊥β,则m∥β或m⊂β,故错误.故选BC. (2) (多选)(2020·山东省实验中学高考预测卷)在棱长为1的正方体ABCD-A1B1C1D1中,点M在棱CC1上,则下列结论正确的是() A.直线BM与平面ADD1A1平行B.平面BMD1截正方体所得的截面为三角形C.异面直线AD1与A1C1所成的角为D.MB+MD1的最小值为答案ACD 解析对于A,因为平面ADD1A1∥平面BCC1B1,BM⊂平面BCC1B1,即可判定直线BM与平面ADD1A1平行,故正确;对于B,如图1,平面BMD1截正方体所得的截面为四边形,故错误;对于C,如图2,异面直线AD1与A1C1所成的角为∠D1AC,即可判定异面直线AD1与A1C1所成的角为,故正确;对于D,如图3,将正方体的侧面展开,可得当B,M,D1共线时,MB+MD1有最小值,最小值为BD1==,故正确.故选ACD. 判断空间线面位置关系常用的方法(1)根据空间线面平行、垂直关系的判定定理和性质定理逐项判断来解决问题.(2)必要时可以借助空间几何模型,如从长方体、四面体等模型中观察线面位置关系,并结合有关定理来进行判断. (多选)(2020·山东省聊城市一模)正方体ABCD-A1B1C1D1的棱长为1,E,F,G 分别为BC,CC1,BB1的中点,则() A.直线D1D与直线AF 垂直B.直线A1G与平面AEF平行C.平面AEF截正方体所得的截面面积为D.点C与点G到平面AEF的距离相等答案BC 解析∵CC1与AF不垂直,而DD1∥CC1,∴AF与DD1不垂直,故A错误;取B1C1的中点N,连接A1N,GN,可得平面A1GN∥平面AEF,则直线A1G∥平面AEF,故B正确;把截面AEF补形为四边形AEFD1,由四边形AEFD1为等腰梯形可得平面AEF截正方体所得的截面面积S=,故C正确;假设点C与点G到平面AEF的距离相等,即平面AEF将CG 平分,则平面AEF必过CG的中点,连接CG交EF于点H,而H 不是CG中点,则假设不成立,故D错误.故选BC. 考向2空间平行、垂直关系的证明例2(2020·山东省青岛市高三期中)如图,在四棱锥P-ABCD中,底面ABCD为梯形,AB∥CD,AB⊥BC,AB=2,PA=PD=CD=BC=1,面PAD⊥面ABCD,E 为AD的中点.(1)求证:PA⊥BD;(2)在线段AB上是否存在一点G,使得BC∥面PEG?若存在,请证明你的结论;若不存在,请说明理由.解(1)证明:取AB的中点F,连接DF. ∵DC∥AB且DC=AB,∴DC∥BF且DC=BF,∴四边形BCDF为平行四边形,又AB⊥BC,BC=CD=1,∴四边形BCDF为正方形.在Rt△AFD中,∵DF=AF=1,∴AD=,在Rt△BCD中,∵BC=CD=1,∴BD=,∵AB=2,∴AD2+BD2=AB2,∴BD⊥AD,∵BD⊂面ABCD,面PAD∩面ABCD=AD,面PAD⊥面ABCD,∴BD⊥面PAD,∵PA⊂面PAD,∴PA⊥BD.(2)在线段AB上存在一点G,满足AG=AB,即G为AF的中点时,BC∥面PEG,证明如下:连接EG,∵E为AD的中点,G 为AF中点,∴GE∥DF,又DF∥BC,∴GE∥BC,∵GE⊂面PEG,BC⊄面PEG,∴BC∥面PEG. 空间平行、垂直关系证明的主要思想是转化,即通过判定定理、性质定理将线线、线面、面面之间的平行、垂直关系相互转化.(2020·江苏省泰州中学、宜兴中学、江都中学联考)如图,在四棱锥S-ABCD中,已知SA=SB,四边形ABCD是平行四边形,且平面SAB⊥平面ABCD,点M,N分别是SC,AB的中点.求证:(1)MN∥平面SAD;(2)SN⊥AC. 证明(1)取SD的中点E,连接EM,EA. ∵M是SC的中点,∴EM∥CD,且EM=CD. ∵底面ABCD是平行四边形,N为AB的中点,∴AN∥CD,且AN=CD,∴EM∥AN,EM=AN,∴四边形EMNA是平行四边形,∴MN∥AE. ∵MN⊄平面SAD,AE⊂平面SAD,∴MN∥平面SAD. (2)∵SA=SB,N 是AB的中点,∴SN⊥AB,∵平面SAB⊥平面ABCD,平面SAB∩平面ABCD=AB,SN⊂平面SAB,∴SN⊥平面ABCD,∵AC⊂平面ABCD,∴SN⊥AC. 考向3立体几何中的翻折问题例3(1)(2020·山东省潍坊市三模)如图1,四边形ABCD是边长为10的菱形,其对角线AC=12,现将△ABC沿对角线AC折起,连接BD,形成如图2的四面体ABCD,则异面直线AC与BD 所成角的大小为________;在图2中,设棱AC的中点为M,BD的中点为N,若四面体ABCD的外接球的球心在四面体的内部,则线段MN长度的取值范围为________.答案(,8) 解析连接BM,DM,∵四边形ABCD是菱形,M为棱AC的中点,∴AC⊥BM,AC⊥DM,又BM∩DM=M,则AC⊥平面BMD,∵BD⊂平面BMD,∴AC⊥BD,则异面直线AC与BD所成角的大小为. ∵四边形ABCD是边长为10的菱形,其对角线AC=12,∴MA=6,MB =8. 设O1是△ABC的外心,则O1在中线BM上,设过点O1的直线l1⊥平面ABC,易知l1⊂平面BMD,设O2是△ACD的外心,则O2在中线DM上,设过点O2的直线l2⊥平面ACD,易知l2⊂平面BMD,由对称性易知l1,l2的交点O在直线MN 上,根据外接球的性质,知点O为四面体ABCD的外接球的球心,O1A2=O1M2+MA2,O1A+O1M=BM=8,∴(8-O1M)2=O1M2+36,解得O1M=,令∠BMN=θ,根据题意可知BD⊥CN,BD⊥AN,且CN∩AN=N,∴BD⊥平面ACN,又MN⊂平面ACN,∴BD⊥MN,∴0θ,∴MN=BM cos θ=8cos θ8. ∵cos θ==,∴OM·MN=O1M·BM=×8=14,又OMMN,∴MN214,∴MN,∴MN8,即线段MN长度的取值范围为(,8). (2)如图1,在直角梯形ABCP中,CP∥AB,CP⊥BC,AB=BC =CP,D是CP的中点,将△PAD沿AD折起,使点P到达点P′的位置得到图2,点M为棱P′C上的动点.①当M在何处时,平面ADM⊥平面P′BC,并证明;②若AB=2,∠P′DC=135°,证明:点C到平面P′AD的距离等于点P′到平面ABCD的距离,并求出该距离. 解①当点M为P′C的中点时,平面ADM⊥平面P′BC,证明如下:∵DP′=DC,M为P′C的中点,∴P′C⊥DM,∵AD⊥DP′,AD⊥DC,DP′∩DC=D,∴AD⊥平面DP′C,∴AD⊥P′C,又DM∩AD=D,∴P′C⊥平面ADM,∴平面ADM⊥平面P′BC. ②在平面P′CD 上作P′H⊥CD的延长线于点H,由①中AD⊥平面DP′C,可知平面P′CD⊥平面ABCD,又平面P′CD∩平面ABCD=CD,P′H⊂平面P′CD,P′H⊥CD,∴P′H⊥平面ABCD,由题意,得DP′=2,∠P′DH=45°,∴P′H=,又VP′-ADC=VC-P′AD,设点C到平面P′AD的距离为h,即S△ADC×P′H=S△P′AD×h,由题意,知△ADC≌△ADP′,则S△ADC=S△P′AD. ∴P′H=h,故点C到平面P′AD的距离等于点P′到平面ABCD的距离,且该距离为. 翻折前后位于同一个半平面内的直线间的位置关系、数量关系不变,翻折前后分别位于两个半平面内(非交线)的直线位置关系、数量关系一般发生变化,解翻折问题的关键是辨析清楚“不变的位置关系和数量关系”“变的位置关系和数量关系”.如图1所示,直角梯形ABCD,∠ADC=90°,AB∥CD,AD=CD=AB =2,点E为AC的中点,将△ACD沿AC折起,使折起后的平面ACD与平面ABC垂直(如图2),在图2所示的几何体D-ABC 中,(1)求证:BC⊥平面ACD;(2)若点F在棱CD上,且满足AD∥平面BEF,求几何体F-BCE的体积.解(1)证明:在图1中,由题意,知AC=BC=2,AB=4,所以AC2+BC2=AB2,所以AC⊥BC. 如图2,因为E为AC的中点,连接DE,则DE⊥AC,又平面ADC⊥平面ABC,且平面ADC∩平面ABC=AC,DE⊂平面ACD,从而ED⊥平面ABC,所以ED⊥BC. 又AC⊥BC,AC∩ED=E,所以BC⊥平面ACD. (2)如图2,取DC的中点F,连接EF,BF,因为E是AC的中点,所以EF∥AD,又EF⊂平面BEF,AD⊄平面BEF,所以AD∥平面BEF,由(1)知,DE为三棱锥D-ABC的高,因为三棱锥F-BCE的高h=DE=×=,S△BCE=S△ABC=__2×2=2,所以三棱锥F-BCE的体积为VF-BCE=S△BCE·h=×2×=. 真题押题『真题检验』1.(2020·浙江高考)已知空间中不过同一点的三条直线m,n,l,则“m,n,l在同一平面”是“m,n,l两两相交”的() A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件答案 B 解析依题意m,n,l是空间中不过同一点的三条直线,当m,n,l在同一平面时,可能有m∥n∥l,故不能得出m,n,l两两相交.当m,n,l两两相交时,设m∩n=A,m∩l=B,n∩l=C,则m,n确定一个平面α,而B∈m⊂α,C∈n⊂α,所以直线BC即l⊂α,所以m,n,l在同一平面.综上所述,“m,n,l在同一平面”是“m,n,l 两两相交”的必要不充分条件.故选B. 2.(2019·全国卷Ⅱ)设α,β为两个平面,则α∥β的充要条件是() A.α内有无数条直线与β平行B.α内有两条相交直线与β平行C.α,β平行于同一条直线D.α,β垂直于同一平面答案 B 解析若α∥β,则α内有无数条直线与β平行,反之则不成立;若α,β平行于同一条直线,则α与β可以平行也可以相交;若α,β垂直于同一个平面,则α与β可以平行也可以相交,故A,C,D中条件均不是α∥β的充要条件.根据平面与平面平行的判定定理知,若一个平面内有两条相交直线与另一个平面平行,则两平面平行,反之也成立.因此,B中条件是α∥β的充要条件.故选 B. 3.(2020·新高考卷Ⅰ)已知直四棱柱ABCD-A1B1C1D1的棱长均为2,∠BAD=60°.以D1为球心,为半径的球面与侧面BCC1B1的交线长为________.答案解析如图所示,取B1C1的中点为E,BB1的中点为F,CC1的中点为G,因为∠BAD=60°,直四棱柱ABCD-A1B1C1D1的棱长均为2,所以△D1B1C1为等边三角形,所以D1E=,D1E⊥B1C1.又四棱柱ABCD-A1B1C1D1为直四棱柱,所以BB1⊥平面A1B1C1D1,所以BB1⊥D1E.因为BB1∩B1C1=B1,所以D1E⊥侧面B1C1CB.设P为侧面B1C1CB与球面的交线上的点,则D1E⊥EP.因为球的半径为,D1E=,所以EP===,所以侧面B1C1CB与球面的交线上的点到E的距离为.因为EF=EG=,所以侧面B1C1CB与球面的交线是扇形EFG的弧.因为∠B1EF=∠C1EG=,所以∠FEG =,所以根据弧长公式可得交线长l=×=. 4. (2020·全国卷Ⅲ)如图,在长方体ABCD-A1B1C1D1中,点E,F分别在棱DD1,BB1上,且2DE=ED1,BF=2FB1.证明:(1)当AB=BC时,EF⊥AC;(2)点C1在平面AEF内.证明(1)连接BD,B1D1. ∵在长方体ABCD-A1B1C1D1中,BB1⊥平面ABCD,AC⊂平面ABCD,∴AC⊥BB1. ∵AB=BC,∴四边形ABCD为正方形,∴AC⊥BD. ∵BB1∩BD=B,BB1,BD⊂平面BB1D1D,∴AC⊥平面BB1D1D. ∵EF⊂平面BB1D1D,∴EF⊥AC. (2)在CC1上取点M使得CM =2MC1,连接DM,MF,EC1. ∵D1E=2ED,DD1∥CC1,DD1=CC1,∴ED=MC1,ED∥MC1. ∴四边形DMC1E为平行四边形,∴DM∥EC1. ∵在长方体ABCD-A1B1C1D1中,BF=2FB1,CM=2MC1,∴DA∥CB,DA=CB,MF∥CB,MF=CB,∴MF∥DA,MF=DA,∴四边形MFAD为平行四边形,∴DM∥AF,∴EC1∥AF. ∴点C1在平面AEF内.5.(2020·江苏高考)在三棱柱ABC-A1B1C1中,AB⊥AC,B1C⊥平面ABC,E,F分别是AC,B1C的中点.(1)求证:EF∥平面AB1C1;(2)求证:平面AB1C⊥平面ABB1. 证明(1)由于E,F分别是AC,B1C的中点,所以EF∥AB1. 由于EF⊄平面AB1C1,AB1⊂平面AB1C1,所以EF∥平面AB1C1. (2)由于B1C⊥平面ABC,AB⊂平面ABC,所以B1C⊥AB. 由于AB⊥AC,AC∩B1C =C,所以AB⊥平面AB1C,由于AB⊂平面ABB1,所以平面AB1C⊥平面ABB1. 『金版押题』 6. (多选)在正方体ABCD-A1B1C1D1中,N为底面ABCD的中心,P为线段A1D1上的动点(不包括两个端点),M为线段AP的中点,则() A.CM与PN是异面直线B.CMPN C.平面PAN⊥平面BDD1B1 D.过P,A,C三点的正方体的截面一定是等腰梯形答案BCD 解析由C,N,A三点共线,得CN,PM交于点A,因此CM,PN共面,A错误;记∠PAC=θ,则PN2=AP2+AN2-2AP·AN cos θ=AP2+AC2-AP·AC cos θ,CM2=AC2+AM2-2AC·AM cos θ=AC2+AP2-AP·AC cos θ,又APAC,CM2-PN2=(AC2-AP2)0,所以CM2PN2,即CMPN,B正确;在正方体ABCD-A1B1C1D1中,AN⊥BD,BB1⊥平面ABCD,则BB1⊥AN,BB1∩BD=B,可得AN⊥平面BDD1B1,AN⊂平面PAN,从而可得平面PAN⊥平面BDD1B1,C正确;在C1D1上取一点K,使得D1K=D1P,连接KP,KC,A1C1,易知PK∥A1C1,又在正方体ABCD-A1B1C1D1中,A1C1∥AC,所以PK∥AC,所以PK,AC共面,PKCA就是过P,A,C三点的正方体的截面,它是等腰梯形,D正确.故选BCD. 专题作业一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2020·武汉部分学校质量检测)若点A,B,C,M,N为正方体的顶点或所在棱的中点,则下列各图中,不满足直线MN∥平面ABC的是() 答案 D 解析对于A,因为A,C,M,N分别为所在棱的中点,由正方体的性质知MN∥AC,又MN⊄平面ABC,AC⊂平面ABC,所以MN∥平面ABC.对于B,取AC的中点E,连接BE,由条件及正方体的性质知MN∥BE.因为MN⊄平面ABC,BE⊂平面ABC,所以MN∥平面ABC.对于C,取AC的中点E,连接BE,由条件及正方体的性质知MN∥BE,因为MN⊄平面ABC,BE⊂平面ABC,所以MN∥平面ABC.对于D,连接AM,BN,由条件及正方体的性质知四边形AMNB是等腰梯形,所以AB与MN所在的直线相交,故不能推出MN∥平面ABC.故选D. 2.(2020·长春高三质量监测)已知直线a和平面α,β有如下关系:①α⊥β,②α∥β,③a⊥β,④a∥α,则下列命题为真的是() A.①③⇒④ B.①④⇒③ C.③④⇒① D.②③⇒④ 答案 C 解析如图正方体中,当直线a为AB,平面α为平面A1ABB1,平面β为平面B1BCC1时,α⊥β,a⊥β,a⊂α,故A不正确;当直线a为DD1,平面α为平面A1ABB1,平面β为平面B1BCC1时,α⊥β,a∥α,a∥β,故B不正确;若a⊥β,a∥α,则由面面垂直的判定定理可推出α⊥β,故C正确;当直线a为A1D1,平面α为平面A1ABB1,平面β为平面D1DCC1时,α∥β,a⊥β,a⊥α,故D不正确.综上所述,C为真命题,故选C. 3. (2020·四川省泸州市模拟)如图,在正方体ABCD-A1B1C1D1中,下列命题正确的是() A.AC与B1C是相交直线且垂直 B.AC与A1D是异面直线且垂直C.BD1与BC是相交直线且垂直D.AC与BD1是异面直线且垂直答案 D 解析如图,连接AB1,可得△AB1C为正三角形,可得AC与B1C是相交直线且成60°角,故A错误;∵A1D∥B1C,∴AC与A1D是异面直线且成60°角,故B错误;BD1与BC是相交直线,所成角为∠D1BC,其正切值为,故C错误;连接BD,可知BD⊥AC,则BD1⊥AC,可知AC与BD1是异面直线且垂直,故D正确.故选D. 4.(2020·河北省石家庄模拟)已知α,β是空间两个不同的平面,m,n是空间两条不同的直线,则给出的下列说法正确的是() ①m∥α,n∥β,且m∥n,则α∥β;②m∥α,n∥β,且m⊥n,则α⊥β;③m⊥α,n⊥β,且m∥n,则α∥β;④m⊥α,n⊥β,且m⊥n,则α⊥β. A.①②③ B.①③④ C.②④ D.③④ 答案 D 解析对于①,当m∥α,n∥β,且m∥n时,有α∥β或α,β相交,所以①错误;对于②,当m∥α,n∥β,且m⊥n时,有α⊥β或α∥β或α,β相交且不垂直,所以②错误;对于③,当m⊥α,n⊥β,且m∥n时,得出m⊥β,所以α∥β,③正确;对于④,当m⊥α,n⊥β,且m⊥n时,α⊥β成立,所以④正确.综上知,正确的命题序号是③④.故选D. 5.(2020·甘肃省靖远县高三第四次联考)在正方体ABCD-A1B1C1D1中,E为棱CD上的一点,且CE=2DE,F为棱AA1的中点,且平面BEF与DD1交于点G,则B1G与平面ABCD所成角的正切值为() A.B.C.D.答案 C 解析因为平面ABCD∥平面A1B1C1D1,所以B1G与平面ABCD所成角即为B1G与平面A1B1C1D1所成角,易知B1G与平面A1B1C1D1所成角为∠D1B1G.设AB=6,则AF=3,DE=2,平面BE F∩平面CDD1C1=GE且BF∥平面CDD1C1,可知BF∥GE,易得△FAB∽△GDE,则=,即=⇒DG=1,D1G=5,在Rt△B1D1G中,tan ∠D1B1G ===,故B1G与平面ABCD所成角的正切值为,故选C. 6.在正方体ABCD-A1B1C1D1中,E是棱CC1的中点,F是侧面BCC1B1内的动点,且A1F与平面D1AE的垂线垂直,如图所示,下列说法不正确的是() A.点F的轨迹是一条线段B.A1F与BE是异面直线C.A1F与D1E不可能平行D.三棱锥F-ABC1的体积为定值答案 C 解析由题知A1F∥平面D1AE,分别取B1C1,BB1的中点H,G,连接HG,A1H,A1G,BC1,可得HG∥BC1∥AD1,A1G∥D1E,故平面A1HG∥平面AD1E,故点F的轨迹为线段HG,A正确;由异面直线的判定定理可知A1F与BE是异面直线,故B正确;当F是BB1的中点时,A1F与D1E平行,故C不正确;∵HG∥平面ABC1,∴F点到平面ABC1的距离不变,故三棱锥F-ABC1的体积为定值,故D正确.7.(2020·长沙模拟)在长方体ABCD-A1B1C1D1中,AB=AD=6,AA1=2,M为棱BC的中点,动点P满足∠APD=∠CPM,则点P的轨迹与长方体的面DCC1D1的交线长等于() A.B.π C.D.π 答案A 解析如图,由题意知,只需考虑点P在平面DCC1D1上的情况,此时AD⊥DP,MC⊥CP,所以tan ∠APD=,tan∠CPM =.因为∠APD=∠CPM,所以=.因为M是BC的中点,所以AD =2MC,所以DP=2PC.在平面D1DCC1内,以D为原点,的方向为x轴的正方向,DD1的方向为y轴的正方向,建立平面直角坐标系,则D(0,0),C(6,0).设P(x,y),则=2,化简,得y2+(x-8)2=42.该圆与平面D1DCC1的交线长对应的圆心角为,则对应弧长为×4=. 8.(2020·佛山模拟)如图,矩形ABCD中,AB =1,BC=2,点E为AD的中点,将△ABE沿BE折起,在翻折过程中,记点A对应的点为A′,二面角A′-DC-B的平面角的大小为α,则当α最大时,tan α=() A. B.C.D.答案D 解析如图,取BC的中点F,连接AF,交BE于点O,则AF⊥BE,连接OA′,A′F,则OA′=OA=,O A′⊥BE,OF⊥BE,又OA′∩OF=O,所以BE⊥平面OA′F,又BE⊂平面ABCD,所以平面OA′F⊥平面ABCD.设A′在AF上的投影为M,连接A′M,设∠A′OM=β,则A′M=sin β,OM=cos β,过点M作MN⊥CD 交CD于点N,连接A′N,则∠A′NM=α.易得α∈,MN=-cos β,所以当α最大时,tan α最大,tan α==,令=t,所以sin β=3t-t cos β,所以3t=sin β+t cos β=sin (β+θ),所以3t≤ ,所以t≤,即tan α≤,故选D. 二、选择题:在每小题给出的选项中,有多项符合题目要求. 9.(2020·山东省青岛市高三期中)在正方体ABCD-A1B1C1D1中,下列直线或平面与平面ACD1平行的是() A.直线A1B B.直线BB1 C.平面A1DC1 D.平面A1BC1 答案AD 解析如图,由A1B∥D1C,且A1B⊄平面ACD1,D1C⊂平面ACD1,故直线A1B与平面ACD1平行,故A 正确;直线BB1∥DD1,DD1与平面ACD1相交,故直线BB1与平面ACD1相交,故B错误;显然平面A1DC1与平面ACD1相交,故C错误;由A1B∥D1C,AC∥A1C1,且A1B∩A1C1=A1,AC∩D1C =C,故平面A1BC1与平面ACD1平行,故D正确.故选AD. 10.如图,在以下四个正方体中,直线AB与平面CDE垂直的是() 答案BD 解析在A中,AB与CE的夹角为45°,所以直线AB与平面CDE不垂直,故不符合题意;在B中,AB⊥CE,AB⊥DE,CE∩DE=E,所以AB⊥平面CDE,故符合题意;在C中,AB与EC的夹角为60°,所以直线AB与平面CDE 不垂直,故不符合题意;在D中,AB⊥DE,AB⊥CE,DE∩CE=E,所以AB⊥平面CDE,故符合题意.故选BD. 11.(2020·海南省高三三模)如图,四棱锥P-ABCD中,平面PAD⊥底面ABCD,△PAD是等边三角形,底面ABCD是菱形,且∠BAD=60°,M为棱PD的中点,N为菱形ABCD的中心,下列结论正确的有() A.直线PB与平面AMC平行B.直线PB与直线AD垂直C.线段AM与线段CM长度相等D.PB与AM所成角的余弦值为答案ABD 解析如图,连接MN,易知MN∥PB,又MN⊂平面AMC,∴PB∥平面AMC,A正确;在菱形ABCD中,∠BAD=60°,∴△BAD为等边三角形.设AD的中点为O,连接OB,OP,则OP⊥AD,OB⊥AD,∴AD⊥平面POB,又PB⊂平面POB,∴AD⊥PB,B正确;由平面PAD⊥平面ABCD,得△POB为直角三角形,设AD =4,则OP=OB=2,∴PB=2,MN=PB=.在△MAN中,AM =AN=2,MN=,可得cos ∠AMN=,故异面直线PB与AM所成角的余弦值为,D正确;∵cos ∠MNC=-cos ∠MNA=-c os ∠AMN=-,又NC =2,MN=,∴-=,得CM=2AM,C错误.故选ABD. 12.(2020·山东省威海市一模)如图,在直角梯形ABCD中,AB∥CD,AB⊥BC,BC=CD=AB=2,E为AB的中点,以DE为折痕把△ADE折起,使点A到达点P的位置,且PC=2.则() A.平面PED⊥平面EBCD B.PC⊥ED C.二面角P-DC-B的大小为45° D.PC与平面PED所成角的正切值为答案AC 解析A项,PD=AD===2,在三角形PDC中,PD2+CD2=PC2,所以PD⊥CD,又CD⊥DE,可得CD⊥平面PED,CD⊂平面EBCD,所以平面PED⊥平面EBCD,正确;B项,若PC⊥ED,又ED⊥CD,可得ED⊥平面PDC,则ED⊥PD,而∠EDP=∠EDA=45°,显然矛盾,故错误;C项,二面角P-DC-B的平面角为∠PDE,又∠PDE=∠ADE=45°,故正确;D项,由上面分析可知,∠CPD为直线PC与平面PED所成的角,在Rt△PCD中,tan ∠CPD==,故错误.故选AC. 三、填空题13.在正三棱柱ABC-A1B1C1中,AB=AA1=2,M,N分别为AA1,BB1的中点,则异面直线BM与C1N所成角的余弦值为________.答案解析如图,连接A1N,则A1N∥BM,所以异面直线BM与C1N所成的角就是直线A1N和C1N所成的角.由题意,得A1N=C1N==,在△A1C1N中,由余弦定理得cos ∠A1NC1==.所以异面直线BM与C1N所成角的余弦值为. 14.(2019·北京高考)已知l,m是平面α外的两条不同直线.给出下列三个论断:①l⊥m;②m∥α;③l⊥α. 以其中的两个论断作为条件,余下的一个论断作为结论,写出一个正确的命题:________.答案若m∥α且l⊥α,则l⊥m(或若l⊥m,l⊥α,则m∥α) 解析已知l,m是平面α外的两条不同直线,由①l⊥m与②m∥α,不能推出③l⊥α,因为l可以与α平行,也可以相交不垂直;由①l⊥m与③l⊥α能推出②m∥α;由②m∥α与③l⊥α可以推出①l⊥m.故正确的命题是②③⇒①或①③⇒②. 15.已知四边形ABCD是矩形,AB=4,AD=3.沿AC将△ADC折起到△AD′C,使平面AD′C⊥平面ABC,F是AD′的中点,E是AC上一点,给出下列结论:①存在点E,使得EF∥平面BCD′;②存在点E,使得EF⊥平面ABC;③存在点E,使得D′E⊥平面ABC;④存在点E,使得AC⊥平面BD′E. 其中正确的结论是________(写出所有正确结论的序号). 答案①②③ 解析对于①,存在AC的中点E,使得EF∥CD′,利用线面平行的判定定理可得EF∥平面BCD′;对于②,过点F作EF⊥AC,垂足为E,利用面面垂直的性质定理可得EF⊥平面ABC;对于③,过点D′作D′E⊥AC,垂足为E,利用面面垂直的性质定理可得D′E⊥平面ABC;对于④,因为ABCD是矩形,AB=4,AD=3,所以B,D′在AC上的射影不是同一点,所以不存在点E,使得AC⊥平面BD′E. 16.如图,AB是圆锥SO的底面圆O的直径,D是圆O上异于A,B的任意一点,以AO为直径的圆与AD的另一个交点为C,P为SD的中点.现给出以下结论:①△SAC为直角三角形;②平面SAD⊥平面SBD;③平面PAB必与圆锥SO的某条母线平行.其中正确结论的序号是________(写出所有正确结论的序号). 答案①③ 解析如图,连接OC,∵SO⊥底面圆O,∴SO⊥AC,C在以AO为直径的圆上,∴AC⊥OC,∵OC∩SO=O,∴AC⊥平面SOC,AC⊥SC,即△SAC为直角三角形,故①正确;假设平面SAD⊥平面SBD,在平面SAD中过点A作AH⊥SD 交SD于点H,则AH⊥平面SBD,∴AH⊥BD,又BD⊥AD,∴BD⊥平面SAD,又CO∥BD,∴CO⊥平面SAD,∴CO⊥SC,又在△SOC中,SO⊥OC,在一个三角形内不可能有两个直角,故平面SAD⊥平面SBD不成立,故②错误;连接DO并延长交圆O于点E,连接PO,SE,∵P为SD的中点,O为ED的中点,∴OP是△SDE的中位线,∴PO∥SE,即SE∥平面PAB,即平面PAB必与圆锥SO的母线SE平行.故③正确.故正确是①③. 四、解答题17.在四棱锥P-ABCD中,底面ABCD是边长为6的菱形,且∠ABC=60°,PA⊥平面ABCD,PA=6,F是棱PA上的一动点,E为PD的中点.(1)求证:平面BDF⊥平面ACF;(2)若AF=2,侧面PAD内是否存在过点E的一条直线,使得直线上任一点M都有CM∥平面BDF,若存在,给出证明;若不存在,请说明理由.解(1)证明:由题意可知,PA⊥平面ABCD,则BD⊥PA,又底面ABCD是菱形,所以BD⊥AC,PA,AC为平面PAC内两相交直线,所以BD⊥平面PAC,BD为平面BDF内一直线,从而平面BDF⊥平面ACF. (2)侧面PAD内存在过点E的一条直线,使得直线上任一点M都有CM∥平面BDF. 设G是PF的中点,连接EG,CG,OF,则⇒平面CEG∥平面BDF,所以直线EG上任一点M都满足CM∥平面BDF. 18. (2020·河北省保定市二模)如图,在四棱锥P-ABCD中,底面是边长为2的正方形,PA=PD=,E为PA的中点,点F在PD上且EF⊥平面PCD,M在DC延长线上,FH∥DM,交PM于点H,且FH=1. (1)证明:EF∥平面PBM;(2)求点M到平面ABP的距离. 解(1)证明:取PB的中点G,连接EG,HG,则EG∥AB,且EG=1,∵FH∥DM,且FH =1 又AB∥DM,∴EG∥FH,EG=FH,即四边形EFHG为平行四边形,∴EF∥GH. 又EF⊄平面PBM,GH⊂平面PBM,∴EF∥平面PBM. (2)∵EF⊥平面PCD,CD⊂平面PCD,∴EF⊥CD. ∵AD⊥CD,EF和AD显然相交,EF,AD⊂平面PAD,∴CD⊥平面PAD,CD⊂平面ABCD,∴平面ABCD⊥平面PAD. 取AD 的中点O,连接PO,∵PA=PD,∴PO⊥AD. 又平面ABCD∩平面PAD=AD,PO⊂平面PAD,∴PO⊥平面ABCD,∵AB∥CD,∴AB⊥平面PAD,∵PA⊂平面PAD,∴PA⊥AB,在等腰三角形PAD中,PO===4. 设点M到平面ABP的距离为h,连接AM,利用等体积可得VM-ABP=VP-ABM,即__2__h=__2×2×4,∴h==,∴点M到平面PAB的距离为.。
空间中的平行与垂直例题和知识点总结
空间中的平行与垂直例题和知识点总结在立体几何的学习中,空间中的平行与垂直关系是非常重要的内容。
理解和掌握这些关系,对于解决相关的几何问题具有关键作用。
下面我们通过一些例题来深入探讨,并对相关知识点进行总结。
一、平行关系(一)线线平行1、定义:如果两条直线在同一平面内没有公共点,则这两条直线平行。
2、判定定理:如果平面外一条直线与此平面内的一条直线平行,那么该直线与此平面平行。
例 1:在正方体 ABCD A₁B₁C₁D₁中,E,F 分别是 AB,BC 的中点,求证:EF∥A₁C₁。
证明:连接 AC,因为 E,F 分别是 AB,BC 的中点,所以 EF∥AC。
又因为正方体中,AC∥A₁C₁,所以 EF∥A₁C₁。
(二)线面平行1、定义:如果一条直线与一个平面没有公共点,则称这条直线与这个平面平行。
2、判定定理:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行。
例 2:已知四棱锥 P ABCD 的底面是平行四边形,M 是 PC 的中点,求证:PA∥平面 MBD。
证明:连接 AC 交 BD 于 O,连接 MO。
因为四边形 ABCD 是平行四边形,所以 O 是 AC 的中点。
又因为 M 是 PC 的中点,所以MO∥PA。
因为 MO⊂平面 MBD,PA⊄平面 MBD,所以 PA∥平面MBD。
(三)面面平行1、定义:如果两个平面没有公共点,则称这两个平面平行。
2、判定定理:一个平面内的两条相交直线与另一个平面平行,则这两个平面平行。
例 3:在正方体 ABCD A₁B₁C₁D₁中,求证:平面 A₁BD∥平面 B₁D₁C。
证明:因为 A₁B∥D₁C,A₁D∥B₁C,且 A₁B 和 A₁D 是平面A₁BD 内的两条相交直线,D₁C 和 B₁C 是平面 B₁D₁C 内的两条相交直线,所以平面 A₁BD∥平面 B₁D₁C。
二、垂直关系(一)线线垂直1、定义:如果两条直线所成的角为 90°,则这两条直线垂直。
平行与垂直的知识点总结
立体几何知识点一.平行关系:1.线线平行:方法一:用线面平行实现。
如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行mlmll////⇒⎪⎭⎪⎬⎫=⋂⊂βαβα方法二:用面面平行实现。
两平行平面与同一个平面相交,那么两条交线平行mlml////⇒⎪⎭⎪⎬⎫=⋂=⋂βγαγβα方法三:用线面垂直实现。
若αα⊥⊥ml,,则ml//。
④中位线定理、平行四边形、比例线段……,⑤平行于同一直线的两直线平行,即若a∥b,b∥c,则a∥c.(公理4)2.线面平行:方法一:用线线平行实现。
如果平面外一条直线和这个平面内的一条直线平行,则这条直线与这个平面平行.ααα////llmml⇒⎪⎭⎪⎬⎫⊄⊂方法二:用面面平行实现。
两个平面平行,其中一个平面内的直线平行于另一个平面αββα////ll⇒⎭⎬⎫⊂3.面面平行:方法一:用线面平行实现。
如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行βαβαα//,////⇒⎪⎭⎪⎬⎫⊂且相交mlml三.垂直关系:1.两直线垂直的判定①定义:若两直线成90°角,则这两直线互相垂直.方法一:用线面垂直实现。
一条直线垂直于一个平面,则垂直于这个平面内的任意一条直线.m l m l ⊥⇒⎭⎬⎫⊂⊥αα②一条直线与两条平行直线中的一条垂直,也必与另一条垂直.即若b ∥c,a ⊥b,则a ⊥c③如果一条直线与一个平面平行,那么这条直线与这个平面的垂线垂直.即若a ∥α,b ⊥α,则a ⊥b. 2. 线面垂直:方法一:用线线垂直实现。
如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直于这个平面.αα⊥⇒⎪⎪⎭⎪⎪⎬⎫⊂=⋂⊥⊥l AB AC A AB AC AB l ACl ,方法二:用面面垂直实现。
如果两个平面互相垂直,那么在一个平面内垂直于它们交线的直线垂直于另一个平面αββαβα⊥⇒⎪⎭⎪⎬⎫⊂⊥=⋂⊥l l m l m ,2. 面面垂直:方法一:用线面垂直实现。
高考数学总复习---空间中的平行与垂直关系知识点总结及真题训练.doc
空间中的平行与垂直关系知识点总结及真题训练【知识图解】【知识梳理】一、平行1、平行公理2、构造三角形:3、构造平行四边形:4、线面平行性质:5、面面平行性质:6、线面平行判定:7、面面平行的性质:8、面面平行的判定1:9、面面平行的判定2:【典型例题】例1、正方体ABCD_A、B\GD\屮,E,F分别是的屮点,求ffi: EF〃面ABCD.变式:如图,两个全等的正方形ABCD和M3EF所在的平面相交于AB, M eAC, Nw FB 且AM = FN,求证:MN〃平面BCE.例2、如图,以垂直于矩形ABCD所在的平面,PA=AD f E、F分别是AB、PD 的中点。
(1)求证:AF〃平面PCE;*(2)求证:平面PCE丄平面PCD。
/ \\(1) 求证:BC 】//平面CAD(2) 求证:平面CAJ)丄平面AAiBiBo例3、浙江理20.(本题满分15分)如图,平面PAC 丄平面ABC, \ABCPB, AC 的中点,AC = 16, PA = PC = 10.(I) 设G 是0C 的中点,证明:FG//平面BOE ;(II) 证明:在AABO 内存在一点M ,使FM 丄平面BOE, 并求点M 到Q4, 03的距离.练习:1、(浙江卷文)(本题满分14分)如图,DC 丄平面ABC , EB//DCAC = BC = EB = 2DC = 2 , ZACB = 120 ,只Q 分别为AE.AB 的中点.(I )证明:PQII 平面ACD ; (II )求AD 与平面ABE Wr 成角的.正弦值.2、如图,在直三棱柱ABC-A1B1C1屮,AC=BC,点D 是AB 的屮点。
是以4C 为斜边的等腰直角三角形,匕£0分别为必,(第20(2) 求二面角B-FC!-C 的余眩值。
. Ei D L-.-.♦ E / ■<C 3、如图,在四面体ABCD 中,截而EFGH 是平行四边形•求证:AB 〃平面EFGH.安徽理(19)如图,圆锥定点为P,底面圆心为O,其母线与底而所成的角为22.5°, AB 和 CD 是底面圆0上的两条平行的弦,轴OP 与平面PCD 所成的角为60°-(1) 证明:平面PAB 与平面PCD 的交线平行于底面;(2) 求 cosZCOD4、点P 是平行四边形ABCD 所在的平面外一点,E,F 分别是PA,BD 上的点,且 PE:EA=BF ・・FD,求证:EF//面PBC.5、(山东卷理)(本小题满分12分)如图,在直四棱柱ABCD ・A]B]C]D]中,底面ABCD 为等腰梯形,AB//CD, AB=4, BC=CD=2, AA )=2, E 、E“ F 分别是棱 AD 、AA 【、AB 的中点。
高考数学平行垂直知识点
高考数学平行垂直知识点高考数学中的平行垂直知识点高考是每个学生都无法绕过的一道坎。
而在这道坎上,数学一直被视为是考试重点科目之一。
其中,平行和垂直是数学中非常重要的概念和知识点。
在高考中,我们经常会遇到与平行垂直相关的问题。
本文将深入探讨高考数学中的平行垂直知识点。
一、平行线及其判定平行线是指在同一个平面上,永远不相交的两条直线。
在高中数学中,我们通常通过两个条件来判断两条直线是否平行:同一平面内,有且只有一对内角相等;同一平面内,有且只有一对对应角相等。
这两个条件可以帮助我们判定平面内任意两条直线的平行关系。
除了判定平行关系外,我们还经常会遇到一些与平行线相关的问题。
例如,两条平行线所夹的角等于180°减去这两条平行线与另一直线的两个内角,这个公式被广泛应用于解决许多与平行线夹角有关的题目。
二、垂直线及其判定垂直线是指在同一个平面上,相交沿特定角度交相垂直的两条直线。
在高中数学中,我们通常通过两个条件来判断两条直线是否垂直:两条直线的斜率乘积为-1;同一平面上,一条直线与另一直线的两个内角相加等于二直角的度数(90°)。
在实际应用中,我们还经常会用到垂直线的性质。
例如,在求解垂直线段的问题中,我们可以利用勾股定理来计算两条垂直线段之间的关系。
此外,我们还会遇到一些根据垂直线的性质来推论的问题,需要我们根据给定条件进行推断。
三、平行线与垂直线的性质平行线和垂直线在几何中有许多重要的性质。
其中,平行线的性质主要包括:平行线之间的夹角相等;两个平行线被一条横穿线切割,所形成的对应角、内错角以及同旁内角是相等的。
这些性质在解题过程中经常会被用到,它们帮助我们更好地理解平行线的特性。
垂直线的性质则包括:垂直直线之间的夹角为直角(90°);两条直线互相垂直,其中一条直线上的一条直线与另一条直线上的互相垂直。
这些性质在解决垂直问题时也起着重要的作用,它们可以帮助我们确定直角关系并简化问题。
高考数学二轮复习之考点透析16:空间垂直与与平行证明
,
所
以
1 A ' B ,故选: A a 2
2a
:
1
例 1. (P75 例 3) 如图,在五面体 ABCDEF 中,点 O 是矩形 ABCD 的对角线的交点,面 CDE 是等边三角形,棱 EF∥ BC .
1 2
(I)证明 FO∥平面 CDE;
(
II
)
设
BC 3CD, 证明 EO 平面 CDF .
江苏启东中学高考数学二轮复习之考点透析 16: 空间垂直与 与平行证明
【考点聚焦】 考点 1:空间元素点、线、面之间的垂直与平行关系的判断; 考点 2:空间线面垂直与平行关系的证明;简单几何体中的线面关系证明; 【考点小测】 1. 已知 m、n 是两条不重合的直线,α、β、γ 是三个两两不重合的平面.给出下列的四个 命题: ①若 m ,m ,则 // ;②若 , ,则 // ;③若 m ,n ,
4.(上海卷)若空间中有四个点,则“这四个点中有三点在同一直线上”是“这四个点在同 一平面上”的 ( ) (A)充分非必要条件; (B)必要非充分条件; (C)充要条件; (D)非充分非必要条件 5.(上海卷)如果一条直线与一个平面垂直, 那么, 称此直线与平面构成一个 “正交线面对” . 在 一个正方体中,由两个顶点确定的直线与含有四个顶点的平面构成的“正交线面对”的个数 是 .
PA 平面 ABCD ,且 PA AB ,点 E 是 PD 的中点.(Ⅰ)求证:
A1
AC PB ; (Ⅱ)求证: PB // 平面 AEC ; (Ⅲ)求四面体 B-AED 的
体积。 例 4. (2006 湖北文文修改)如图,已知正三棱柱 ABC-A1B1C1 的侧棱
高考数学复习:空间的平行与垂直
高考数学复习:空间的平行与垂直1.以选择、填空题形式考查空间位置关系的判断,及文字语言、图形语言、符号语言的转换,难度适中;2.以客观题形式考查有关线面平行、垂直等位置关系的命题真假判断或充要条件判断等.3.以多面体或旋转体为载体(棱锥、棱柱为主)命制空间线面平行、垂直各种位置关系的证明题或探索性问题,以大题形式呈现.1.点、线、面的位置关系(1)平面的基本性质名称图形文字语言符号语言公理1如果一条直线上的两点在一个平面内,那么这条直线在此平面内⎭⎪⎬⎪⎫A∈lB∈lA∈αB∈α⇒l⊂α公理2过不在一条直线上的三点有且只有一个平面若A、B、C三点不共线,则A、B、C在同一平面α内且α是唯一的.公理3如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.平面α与β不重合,若P∈α,且P∈β,则α∩β=a,且P∈a(2)平行公理、等角定理公理4:若a∥c,b∥c,则a∥b.等角定理:若OA∥O1A1,OB∥O1B1,则∠AOB=∠A1O1B1或∠AOB+∠A1O1B1=180°. 2.直线、平面的平行与垂直定理名称文字语言图形语言符号语言线面平行的判定定理平面外一条直线与平面内的一条直线平行,则这条直线与此平面平行⎭⎪⎬⎪⎫a⊄αb⊂αa∥b⇒a∥α线面平行的性质定理一条直线与一个平面平行,则过这条直线的任何一个平面与此平面的交线与该直线平行a∥α,a⊂β,α∩β=b,⇒a∥b面面平行的判定定理如果一个平面内有两条相交的直线都平行于另一个平面,那么这两个平面平行a⊂α,b⊂α,a∩b=P,a∥β,b∥β⇒α∥β面面平行的性质定理如果两个平行平面同时和第三个平面相交,那么它们的交线平行α∥β且γ∩α=a且γ∩β=b⇒a∥b线面垂直的判定定理一条直线和一个平面内的两条相交直线都垂直,则该直线与此平面垂直a⊂α,b⊂α,a∩b=A,l⊥a,l⊥b⇒l⊥α线面垂直的性质定理垂直于同一平面的两条直线平行a⊥α,b⊥α⇒a∥b面面垂直的判定定理一个平面过另一个平面的垂线,则这两个平面垂直a⊥α,a⊂β,⇒α⊥β面面垂直的性质定理两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直α⊥β,b∈β,α∩β=a,b⊥a⇒b⊥α3.熟练掌握常见几何体(柱、锥、台、球)的几何特征,明确各种几何体的直观图与三视图特征及相关面积体积的计算公式,熟练掌握线线、线面、面面平行与垂直等位置关系的判定与性质定理及公理,熟练进行线线、线面、面面平行与垂直关系的相互转化是解答相关几何题的基础.【误区警示】1.应用线面、面面平行与垂直的判定定理、性质定理时,必须按照定理的要求找足条件.2.作辅助线(面)是立体几何证题中常用技巧,作图时要依据题设条件和待求(证)结论之间的关系结合有关定理作图.注意线线、线面、面面平行与垂直关系的相互转化.3.若a 、b 、c 代表直线或平面,△代表平行或垂直,在形如⎭⎪⎬⎪⎫a △b a △c ⇒b △c 的命题中,要切实弄清有哪些是成立的,有哪些是不成立的.例如a 、b 、c 中有两个为平面,一条为直线,命题⎭⎪⎬⎪⎫a ⊥αa ⊥β⇒α∥β是成立的.⎭⎪⎬⎪⎫a ∥αa ∥β⇒α∥β是不成立的. 由得,所以,故.因此,直线与平面所成的角的正弦值是.方法二:(Ⅰ)如图,以AC 的中点O 为原点,分别以射线OB ,OC 为x ,y 轴的正半轴,建立空间直角坐标系O -xyz .由题意知各点坐标如下:因此由得.由得.所以平面. (Ⅱ)设直线与平面所成的角为.由(Ⅰ)可知设平面的法向量. 由即可取.所以.因此,直线与平面所成的角的正弦值是.【变式探究】【2017江苏,15】 如图,在三棱锥A-BCD 中,AB ⊥AD , BC ⊥BD , 平面ABD ⊥平面BCD , 点E ,F (E 与A ,D 不重合)分别在棱AD ,BD 上,且EF ⊥AD .求证:(1)EF ∥平面ABC ; (2)AD ⊥AC .【答案】(1)见解析(2)见解析【解析】证明:(1)在平面ABD 内,因为AB ⊥AD , EF AD ⊥,所以EF AB P .又因为EF ⊄平面ABC , AB ⊂平面ABC ,所以EF ∥平面ABC.(第15题)ADBC EF(2)因为平面ABD ⊥平面BCD , 平面ABD ⋂平面BCD =BD ,BC ⊂平面BCD , BC BD ⊥,所以BC ⊥平面ABD .因为AD ⊂平面ABD ,所以BC ⊥ AD . 又AB ⊥AD ,, AB ⊂平面ABC , BC ⊂平面ABC ,所以AD ⊥平面ABC ,又因为AC ⊂平面ABC , 所以AD ⊥AC.【变式探究】如图,在直三棱柱ABC -A 1B 1C 1中,D ,E 分别为AB ,BC 的中点,点F 在侧棱B 1B 上,且11B D A F ⊥ ,1111AC A B ⊥.求证:(1)直线DE ∥平面A 1C 1F ; (2)平面B 1DE ⊥平面A 1C 1F .【答案】(1)详见解析(2)详见解析 【解析】证明:(1)在直三棱柱中,11//AC AC在三角形ABC 中,因为D,E 分别为AB,BC 的中点. 所以//DE AC ,于是11//DE AC 又因为DE ⊄平面平面11AC F所以直线DE//平面11AC F (2)在直三棱柱中,因为11AC ⊂平面111A B C ,所以111AA ⊥A C又因为所以11AC ⊥平面11ABB A因为1B D ⊂平面11ABB A ,所以111AC B D ⊥ 又因为所以因为直线,所以1B DE平面【变式探究】如图,在直三棱柱ABC -A 1B 1C 1中,已知AC ⊥BC ,BC =CC 1.设AB 1的中点为D ,B 1C ∩BC 1=E .求证:(1)DE ∥平面AA 1C 1C ; (2)BC 1⊥AB 1.证明 (1)由题意知,E 为B 1C 的中点,又D 为AB 1的中点,因此DE ∥AC .又因为DE ⊄平面AA 1C 1C ,AC ⊂平面AA 1C 1C , 所以DE ∥平面AA 1C 1C .(2)因为棱柱ABC -A 1B 1C 1是直三棱柱, 所以CC 1⊥平面ABC .因为AC ⊂平面ABC ,所以AC ⊥CC 1.又因为AC ⊥BC ,CC 1⊂平面BCC 1B 1,BC ⊂平面BCC 1B 1,BC ∩CC 1=C , 所以AC ⊥平面BCC 1B 1. 又因为BC 1⊂平面BCC 1B 1, 所以BC 1⊥AC . 因为BC =CC 1,所以矩形BCC 1B 1是正方形, 因此BC 1⊥B 1C .因为AC ,B 1C ⊂平面B 1AC ,AC ∩B 1C =C , 所以BC 1⊥平面B 1AC . 又因为AB 1⊂平面B 1AC , 所以BC 1⊥AB 1.【举一反三】如图,菱形ABCD 的对角线AC 与BD 交于点O ,,点,E F 分别在,AD CD 上,,EF 交BD 于点H .将DEF ∆沿EF 折到D EF '∆位置,10OD '=.(Ⅰ)证明:D H '⊥平面ABCD ; (Ⅱ)求二面角B D A C '--的正弦值.【答案】(Ⅰ)详见解析;(Ⅱ)29525. 【解析】(Ⅰ)由已知得AC BD ⊥,AD CD =,又由AE CF =得AE CFAD CD=,故AC EF ∥. 因此EF HD ⊥,从而EF D H '⊥.由5AB =,6AC =得.由EF AC ∥得.所以1OH =,.于是,故D H OH '⊥. 又D H EF '⊥,而,所以.(Ⅱ)如图,以H 为坐标原点,HF u u u r的方向为x 轴正方向,建立空间直角坐标系H xyz -,则()0,0,0H ,,()0,5,0B -,()3,1,0C -,()0,0,3D ',,,.设是平面ABD '的法向量,则,即,所以可取.设是平面ACD '的法向量,则0AC AD ⎧⋅=⎪⎨'⋅=⎪⎩u u u ru u u u rn n ,即,所以可取.于是,.因此二面角B D A C '--的正弦值是29525. 【变式探究】如图,已知△ABC ,D 是AB的中点,沿直线CD 将△ACD 翻折成△A ′CD ,所成二面角A ′-CD-B 的平面角为α,则( )A .∠A ′DB ≤α B .∠A ′DB ≥αC .∠A ′CB ≤αD .∠A ′CB ≥α解析 极限思想:若α=π,则∠A ′CB <π,排除D ;若α=0,如图,则∠A ′DB ,∠A ′CB 都可以大于0,排除A ,C.故选B.答案 B高频考点三平面图形的折叠问题例3、(2018年全国I卷理数)如图,四边形为正方形,分别为的中点,以为折痕把折起,使点到达点的位置,且.(1)证明:平面平面;(2)求与平面所成角的正弦值.【答案】(1)证明见解析.(2) .【解析】(1)由已知可得,BF⊥PF,BF⊥EF,又,所以BF⊥平面PEF.又平面ABFD,所以平面PEF⊥平面ABFD.(2)作PH⊥EF,垂足为H.由(1)得,PH⊥平面ABFD.以H为坐标原点,的方向为y轴正方向,为单位长,建立如图所示的空间直角坐标系H−xyz.由(1)可得,DE⊥PE.又DP=2,DE=1,所以PE=.又PF=1,EF=2,故PE⊥PF.可得.则为平面ABFD 的法向量.设DP 与平面ABFD 所成角为,则.所以DP 与平面ABFD 所成角的正弦值为.【变式探究】如图,菱形ABCD 的对角线AC 与BD 交于点O ,点E ,F 分别在AD ,CD 上,AE =CF ,EF 交BD 于点H .将△DEF 沿EF 折到△D ′EF 的位置.(1)证明:AC ⊥HD ′;(2)若AB =5,AC =6,AE =54,OD ′=22,求五棱锥D ′-ABCFE 的体积.【解析】 (1)证明:由已知得AC ⊥BD ,AD =CD . 又由AE =CF 得AE AD =CFCD ,故AC ∥EF .由此得EF ⊥HD ,故EF ⊥HD ′,所以AC ⊥HD ′. (2)由EF ∥AC 得OH DO =AE AD =14.由AB =5,AC =6得DO =BO =AB 2-AO 2=4. 所以OH =1,D ′H =DH =3.于是OD ′2+OH 2=(22)2+12=9=D ′H 2, 故OD ′⊥OH .由(1)知,AC ⊥HD ′,又AC ⊥BD ,BD ∩HD ′=H , 所以AC ⊥平面BHD ′,于是AC ⊥OD ′.又由OD ′⊥OH ,AC ∩OH =O ,所以OD ′⊥平面ABC . 又由EF AC =DH DO 得EF =92.五边形ABCFE 的面积S =12×6×8-12×92×3=694.所以五棱锥D ′-ABCFE 的体积V =13×694×22=2322.【方法技巧】平面图形翻折问题的求解方法(1)解决与折叠有关的问题的关键是搞清折叠前后的变化量和不变量,一般情况下,线段的长度是不变量,而位置关系往往会发生变化,抓住不变量是解决问题的突破口.(2)在解决问题时,要综合考虑折叠前后的图形,既要分析折叠后的图形,也要分析折叠前的图形. 【变式探究】如图1,在正方形ABCD 中,点E ,F 分别是AB ,BC 的中点,BD 与EF 交于点H ,点G ,R 分别在线段DH ,HB 上,且DG GH =BRRH .将△AED ,△CFD ,△BEF 分别沿DE ,DF ,EF 折起,使点A ,B ,C 重合于点P ,如图2所示.(1)求证:GR ⊥平面PEF ;(2)若正方形ABCD 的边长为4,求三棱锥P -DEF 的内切球的半径. 解析:(1)证明:在正方形ABCD 中,∠A ,∠B ,∠C 为直角. ∴在三棱锥P -DEF 中,PE ,PF ,PD 两两垂直. ∴PD ⊥平面PEF . ∵DG GH =BR RH ,即DG GH =PRRH,∴在△PDH 中,RG ∥PD . ∴GR ⊥平面PEF . (2)正方形ABCD 边长为4.由题意知,PE =PF =2,PD =4,EF =22,DF =2 5. ∴S △PEF =2,S △DPF =S △DPE =4. S △DEF =12×22×252-22=6.设三棱锥P -DEF 内切球的半径为r ,则三棱锥的体积V P -DEF =13×12×2×2×4=13(S △PEF +2S △DPF +S △DEF )·r ,解得r =12.∴三棱锥P -DEF 的内切球的半径为12.1. (2018年浙江卷)如图,已知多面体ABCA 1B 1C 1,A 1A ,B 1B ,C 1C 均垂直于平面ABC ,∠ABC =120°,A 1A =4,C 1C =1,AB =BC =B 1B =2.(Ⅰ)证明:AB 1⊥平面A 1B 1C 1;(Ⅱ)求直线AC 1与平面ABB 1所成的角的正弦值. 【答案】(Ⅰ)见解析 (Ⅱ)【解析】 方法一: (Ⅰ)由得,所以.故.由,得,由得,由,得,所以,故.因此平面.(Ⅱ)如图,过点作,交直线于点,连结.由平面得平面平面,由得平面,所以是与平面所成的角.由得,所以,故.因此,直线与平面所成的角的正弦值是.2. (2018年北京卷)如图,在三棱柱ABC-中,平面ABC,D,E,F,G分别为,AC,,的中点,AB=BC=,AC==2.(Ⅰ)求证:AC⊥平面BEF;(Ⅱ)求二面角B-CD-C1的余弦值;(Ⅲ)证明:直线FG与平面BCD相交.【答案】(1)证明见解析(2) B-CD-C1的余弦值为(3)证明过程见解析(Ⅱ)由(I)知AC⊥EF,AC⊥BE,EF∥CC1.又CC1⊥平面ABC,∴EF⊥平面ABC.∵BE平面ABC,∴EF⊥BE.如图建立空间直角坐称系E-xyz.由题意得B(0,2,0),C(-1,0,0),D(1,0,1),F(0,0,2),G(0,2,1).∴,设平面BCD的法向量为,∴,∴,令a=2,则b=-1,c=-4,∴平面BCD的法向量,又∵平面CDC1的法向量为,∴.由图可得二面角B-CD-C1为钝角,所以二面角B-CD-C1的余弦值为.(Ⅲ)平面BCD的法向量为,∵G(0,2,1),F(0,0,2),∴,∴,∴与不垂直,∴GF与平面BCD不平行且不在平面BCD内,∴GF与平面BCD相交.3. (2018年江苏卷)如图,在正三棱柱ABC-A1B1C1中,AB=AA1=2,点P,Q分别为A1B1,BC的中点.(1)求异面直线BP与AC1所成角的余弦值;(2)求直线CC1与平面AQC1所成角的正弦值.【答案】(1)(2)【解析】如图,在正三棱柱ABC−A1B1C1中,设AC,A1C1的中点分别为O,O1,则OB⊥OC,OO1⊥OC,OO1⊥OB,以为基底,建立空间直角坐标系O−xyz.因为AB=AA1=2,所以.(1)因为P为A1B1的中点,所以,从而,故.因此,异面直线BP与AC1所成角的余弦值为.(2)因为Q为BC的中点,所以,因此,.设n=(x,y,z)为平面AQC1的一个法向量,则即不妨取,设直线CC1与平面AQC1所成角为,则,所以直线CC1与平面AQC1所成角的正弦值为.4. (2018年江苏卷)在平行六面体中,.求证:(1);(2).【答案】答案见解析【解析】证明:(1)在平行六面体ABCD-A1B1C1D1中,AB∥A1B1.因为AB平面A1B1C,A1B1平面A1B1C,所以AB∥平面A1B1C.(2)在平行六面体ABCD-A1B1C1D1中,四边形ABB1A1为平行四边形.又因为AA1=AB,所以四边形ABB1A1为菱形,因此AB1⊥A1B.又因为AB1⊥B1C1,BC∥B1C1,所以AB1⊥BC.又因为A1B∩BC=B,A1B平面A1BC,BC平面A1BC,所以AB1⊥平面A1BC.因为AB1平面ABB1A1,所以平面ABB1A1⊥平面A1BC.1.(2017·全国卷Ⅰ)如图,在下列四个正方体中,A,B为正方体的两个顶点,M,N,Q为所在棱的中点,则在这四个正方体中,直线AB与平面MNQ不平行的是()A B C D解析:B选项中,AB∥MQ,且AB⊄平面MNQ,MQ⊂平面MNQ,则AB∥平面MNQ;C选项中,AB∥MQ,且AB⊄平面MNQ,MQ⊂平面MNQ,则AB∥平面MNQ;D选项中,AB∥NQ,且AB⊄平面MNQ,NQ⊂平面MNQ,则AB∥平面MNQ.故选A.答案:A2.(2017·山东卷)由四棱柱ABCD-A1B1C1D1截去三棱锥C1-B1CD1后得到的几何体如图所示.四边形ABCD为正方形,O为AC与BD的交点,E为AD的中点,A1E⊥平面ABCD.(1)证明:A1O∥平面B1CD1;(2)设M是OD的中点,证明:平面A1EM⊥平面B1CD1.证明:(1)取B1D1的中点O1,连接CO1,A1O1,由于ABCD-A1B1C1D1是四棱柱,所以A1O1∥OC,A1O1=OC,因此四边形A1OCO1为平行四边形,所以A1O∥O1C.又O1C⊂平面B1CD1,A1O⊄平面B1CD1,所以A1O∥平面B1CD1.(2)因为AC⊥BD,E,M分别为AD和OD的中点,所以EM⊥BD,又A1E⊥平面ABCD,BD⊂平面ABCD,所以A1E⊥BD,因为B1D1∥BD,所以EM⊥B1D1,A1E⊥B1D1.又A1E,EM⊂平面A1EM,A1E∩EM=E,所以B1D1⊥平面A1EM.又B1D1⊂平面B1CD1,所以平面A1EM⊥平面B1CD1.3.【2017江苏,15】如图,在三棱锥A-BCD中,AB⊥AD,BC⊥BD,平面ABD⊥平面BCD,点E,F(E 与A,D不重合)分别在棱AD,BD上,且EF⊥AD.求证:(1)EF∥平面ABC;(2)AD⊥AC.【答案】(1)见解析(2)见解析【解析】证明:(1)在平面ABD 内,因为AB ⊥AD , EF AD ⊥,所以EF AB P .又因为EF ⊄平面ABC , AB ⊂平面ABC ,所以EF ∥平面ABC . (2)因为平面ABD ⊥平面BCD , 平面ABD ⋂平面BCD =BD ,BC ⊂平面BCD , BC BD ⊥,所以BC ⊥平面ABD .因为AD ⊂平面ABD ,所以BC ⊥ AD . 又AB ⊥AD ,, AB ⊂平面ABC , BC ⊂平面ABC ,所以AD ⊥平面ABC , 又因为AC ⊂平面ABC , 所以AD ⊥AC.1.【2016高考浙江理数】已知互相垂直的平面αβ,交于直线l .若直线m ,n 满足则( )A .m ∥lB .m ∥nC .n ⊥lD .m ⊥n 【答案】C 【解析】由题意知,.故选C .(第15题)ADBC EF2.【2016高考新课标2理数】 ,αβ是两个平面,,m n 是两条直线,有下列四个命题: (1)如果,那么αβ⊥. (2)如果,那么m n ⊥. (3)如果,那么//m β.(4)如果,那么m 与α所成的角和n 与β所成的角相等.其中正确的命题有 . (填写所有正确命题的编号) 【答案】②③④ 【解析】对于①,,则,αβ的位置关系无法确定,故错误;对于②,因为//n α,所以过直线n 作平面γ与平面β相交于直线c ,则//n c ,因为,故②正确;对于③,由两个平面平行的性质可知正确;对于④,由线面所成角的定义和等角定理可知其正确,故正确的有②③④.3.【2016高考浙江理数】如图,在△ABC 中,AB =BC =2,∠ABC =120°.若平面ABC 外的点P 和线段AC 上的点D ,满足PD =DA ,PB =BA ,则四面体PBCD 的体积的最大值是 .【答案】12【解析】ABC △中,因为,所以. 由余弦定理可得,所以23AC =.设AD x =,则023x <<,.在ABD ∆中,由余弦定理可得.故.在PBD ∆中,,.由余弦定理可得,所以.由此可得,将△ABD 沿BD 翻折后可与△PBD 重合,无论点D 在任何位置,只要点D 的位置确定,当平面PBD ⊥平面BDC 时,四面体PBCD 的体积最大(欲求最大值可不考虑不垂直的情况).过P 作直线BD 的垂线,垂足为O .设PO d =,则,即,解得.而△BCD 的面积.当平面PBD ⊥平面BDC 时:四面体PBCD 的体积.观察上式,易得,当且仅当=23x x -,即=3x 时取等号,同时我们可以发现当=3x 时,取得最小值,故当=3x 时,四面体PBCD 的体积最大,为1.24.【2016高考新课标1卷】平面α过正方体ABCD -A 1B 1C 1D 1的顶点A ,α//平面CB 1D 1,αI 平面ABCD =m ,αI 平面AB B 1A 1=n ,则m 、n 所成角的正弦值为(A)32 (B )22 (C)33 (D)13【答案】A【解析】如图,设平面11CB D I 平面ABCD ='m ,平面11CB D I 平面11ABB A ='n ,因为α∥平面11CB D ,所以,则,m n 所成的角等于','m n 所成的角.过1D 作11D E B C ∥,交AD 的延长线于点E,连接CE ,则CE 为'm .连接1A B ,过B 1作111B F A B ∥,交1AA 的延长线于点1F ,则11B F 为'n .连接BD ,则,则','m n 所成的角即为1,A B BD 所成的角,为60︒,故,m n 所成角的正弦值为3,选A.5.【2016高考新课标3理数】在封闭的直三棱柱内有一个体积为V 的球,若AB BC ⊥,6AB =,8BC =,13AA =,则V 的最大值是( )(A )4π (B )92π (C )6π (D )323π【答案】B【解析】要使球的体积V 最大,必须球的半径R 最大.由题意知球的与直三棱柱的上下底面都相切时,球的半径取得最大值32,此时球的体积为,故选B .6.【2016高考天津理数】已知一个四棱锥的底面是平行四边形,该四棱锥的三视图如图所示(单位:m ),则该四棱锥的体积为_______m 3.【答案】2【解析】由三视图知四棱锥高为3,底面平行四边形的一边长为2,其对应的高为1,因此所求四棱锥的体积.故答案为2.1.【2015高考浙江,理8】如图,已知ABC ∆,D 是AB 的中点,沿直线CD 将ACD ∆折成A CD '∆,所成二面角A CD B '--的平面角为α,则( )A. A DB α'∠≤B. A DB α'∠≥C. A CB α'∠≤D. A CB α'∠≤【答案】B.【解析】设ADC θ∠=,设2AB =,则由题意,在空间图形中,设A B t '=,在A CB '∆中,,在空间图形中,过A '作AN DC ⊥,过B 作BM DC ⊥,垂足分别为N ,M , 过N 作//NP MB ,连结A P ',∴NP DC ⊥,则A NP '∠就是二面角A CD B '--的平面角,∴A NP α'∠=, 在Rt A ND '∆中,,,同理,,,故,显然BP ⊥面A NP ',故BP A P '⊥, 在Rt A BP '∆中,,在A NP '∆中,,∵210sin θ>,22cossin θθ≥,∴(当2πθ=时取等号),∵α,,而cos y x =在[0,]π上为递减函数,∴A DB α'≤∠,故选B.【考点定位】立体几何中的动态问题2.【2015高考湖南,理10】某工件的三视图如图3所示,现将该工件通过切割,加工成一个体积尽可能大的长方体新工件,并使新工件的一个面落在原工件的一个面内,则原工件材料的利用率为(材料利用率=)( )A.89πB.169πC.34(21)π-D.312(21)π-【答案】A.【解析】分析题意可知,问题等价于圆锥的内接长方体的体积的最大值,设长方体体的长,宽,高分别为x ,y ,h ,长方体上底面截圆锥的截面半径为a ,则,如下图所示,圆锥的轴截面如图所示,则可知,而长方体的体积,当且仅当y x =,时,等号成立,此时利用率为,故选A.【考点定位】1.圆锥的内接长方体;2.基本不等式求最值.3.【2015高考福建,理7】若,l m 是两条不同的直线,m 垂直于平面α ,则“l m ⊥ ”是“//l α 的 ( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件 【答案】B【解析】若l m ⊥,因为m 垂直于平面α,则//l α或l α⊂;若//l α,又m 垂直于平面α,则l m ⊥,所以“l m ⊥ ”是“//l α 的必要不充分条件,故选B .4.【2015高考四川,理14】如图,四边形ABCD 和ADPQ 均为正方形,它们所在的平面互相垂直,动点M 在线段PQ 上,E 、F 分别为AB 、BC 的中点。
高中平行和垂直知识点总结
高中平行和垂直知识点总结
高中数学中,平行和垂直是重要概念之一,以下是有关平行和垂直的一些知识点总结:
1. 平行线:同一平面内,不相交且彼此相等的两条线段称为平行线。
2. 垂直线:相交于一点且互相平分的两条线段称为垂直线。
3. 平行线和垂直线的性质:
a. 平行线间的垂线是不存在的。
b. 任何一条平行线与另一条直线的交点,都是这两个直线的中点。
c. 垂直线是两条平行线分别与另一条直线的交点。
d. 两条平行线间的垂线相等且互相平分。
e. 平行线和垂直线都是相交于一点的两条线段。
4. 垂直线和平行线的关系:
a. 垂直线是平行线的一种特殊形态,两条垂直线相交于一点。
b. 任何一条平行线上的任意一点到另一条平行线的距离相等。
c. 两条平行线永远不会相交,但可能会与垂直线相交。
5. 平行线和垂直线的图形表示:
a. 平行线用粗实线表示,垂直线用细实线表示。
b. 在平面直角坐标系中,平行线和垂直线的方程分别为:x 轴和y 轴的方程。
c. 垂直线的表示在矢量图中比较常见,垂直线用黑实线表示,箭头表示方向。
以上是高中数学中有关平行和垂直的一些知识点总结,希望有所帮助。
平行与垂直知识点总结
平行与垂直知识点总结平行与垂直是几何学中的重要概念,涉及到直线在空间中的位置关系。
在几何学中,我们经常需要理解和利用平行与垂直的概念,这些概念对于解决几何问题、建筑设计、地图绘制等方面都具有重要的作用。
因此,了解平行与垂直的知识点对于我们的数学学习和日常生活都具有重要的意义。
本文将从平行和垂直的定义、性质、判定以及相关定理等方面对平行与垂直进行总结,希望能够对读者有所帮助。
一、平行线的定义在平面几何中,两条直线称为平行线,如果它们在同一平面上,且不相交。
这意味着,平行线在同一平面上不会相交,其间的距离始终保持相等。
1.1 平行线的符号表示:在数学中,我们通常用符号“ ||”来表示两条线段是平行的。
1.2 平行线的特征:1)平行线永远不会相交。
2)平行线的斜率相同。
3)平行线之间的夹角相等。
二、垂直线的定义与平行线相对应的概念是垂直线。
两条直线称为垂直线,如果它们在同一平面上,并且它们的交角为 90 度。
2.1 垂直线的符号表示:在数学中,我们通常用符号“⊥”来表示两条线段是垂直的。
2.2 垂直线的特征:1)垂直线可以相交,但相交的角度为 90 度。
2)垂直线的斜率相乘等于 -1。
3)垂直线之间的夹角为 90 度。
三、平行和垂直线的判定在几何学中,我们常常需要判定两条直线是否平行或垂直,下面来总结一些判定准则。
3.1 判定两条直线是否平行的几种方法:a)斜率判定法:当两条直线的斜率相等时,它们是平行线。
b)观察判定法:在图形上观察两条线段的倾斜情况,如果它们很明显地呈现出平行的形态,则可以判断它们是平行线。
c)角度判定法:两条平行线之间的夹角相等,可以通过观察夹角的大小来判断两条直线是否平行。
3.2 判定两条直线是否垂直的方法:a)斜率判定法:当两条直线的斜率相乘等于 -1 时,它们是垂直线。
b)观察判定法:在图形上观察两条直线的交角,如果它们的交角为 90 度,则可以判断它们是垂直线。
c)角度判定法:两条垂直线之间的夹角为 90 度,可以通过观察夹角的大小来判断两条直线是否垂直。
平行与垂直知识点总结
直线和平面垂直的定义:如果一条直线a 和一个平面 内的任意一条直线都垂直,我们就说直线a 和平面 互相垂直.直线a 叫做平面 的垂线,平面 叫做直线a 的垂面。
直线与平面垂直的判定定理(线线垂直→线面垂直):如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直于这个平面。
基础例题:1、求证在正方体ABCD-A 1B 1C 1D 1中,体对角线AC 1垂直于面对角线BD2、AB 是圆O 的直径,C 是异于A 、B 的圆周上的任意一点,PA 垂直于圆O 所在的平面,证明:PAC BC 平面直线与平面垂直的性质定理(线面垂直→线线垂直):如果一条直线垂直于一个平面,那么他就和平面内的任意一条直线垂直。
基础例题1.已知:在空间四边形ABCD 中,AC =AD ,BC =BD ,中点为CD E ,求证:AB ⊥CD推论1(线线平行→线面垂直)如果在两条平行线中,有一条垂直于平面,那么另一条也垂直于这个平面。
CC1推论2(线面垂直→线线平行)如果两条直线同垂直于一个平面,那么这两条直线平行。
正方体AC 1中,EF 与异面直线AC,A 1D 都 垂直相交,交点分别为E,F , 求证:EF//BD 12、直线和平面平行的定义:如果一条直线和一个平面没有公共点,那么我们就说这条直线和这个平面平行。
直线和平面平行的判定定理(线线平行→线面平行):如果平面外一条直线和这个平面内的一条直线平行,那么这条直线和这个平面平行。
基本例题:1已知:空间四边形ABCD 中,F E ,分别是AD AB ,的中点求证:BCD EF 平面//2、已知,空间四边形ABCD 中,H G F E ,,,分别是边DA CD BC AB ,,,的中点求证:EFG AC 平面//直线和平面平行的性质定理(线面平行→线线平行):如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。
基础例题:如图,E 、H 分别是空间四边形ABCD 的边AB 、AD 的中点,平面α过EH 分别交BC 、CD 于F 、G.求证:EH ∥FG .四、两个平面的位置关系:(1)两个平面互相平行的定义:空间两平面没有公共点 (2)两个平面的位置关系:两个平面平行-----没有公共点; 两个平面相交-----有一条公共直线。
空间几何的平行与垂直关系知识点总结
空间几何的平行与垂直关系知识点总结在空间几何中,平行与垂直关系是非常重要的概念,它们贯穿于整个几何学习的始终。
理解和掌握这些关系对于解决空间几何问题至关重要。
下面,我们就来详细总结一下空间几何中平行与垂直关系的相关知识点。
一、线线平行1、平行线的定义在同一平面内,不相交的两条直线叫做平行线。
2、线线平行的判定定理(1)同位角相等,两直线平行。
(2)内错角相等,两直线平行。
(3)同旁内角互补,两直线平行。
3、线线平行的性质定理(1)两直线平行,同位角相等。
(2)两直线平行,内错角相等。
(3)两直线平行,同旁内角互补。
4、空间中直线平行的传递性如果两条直线都与第三条直线平行,那么这两条直线也互相平行。
二、线面平行1、线面平行的定义如果一条直线与一个平面没有公共点,那么这条直线与这个平面平行。
2、线面平行的判定定理如果平面外一条直线与此平面内的一条直线平行,那么该直线与此平面平行。
3、线面平行的性质定理如果一条直线与一个平面平行,经过这条直线的平面与这个平面相交,那么这条直线与交线平行。
三、面面平行1、面面平行的定义如果两个平面没有公共点,那么这两个平面平行。
2、面面平行的判定定理(1)如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行。
(2)如果两个平面都平行于同一条直线,那么这两个平面平行。
3、面面平行的性质定理(1)如果两个平面平行,那么其中一个平面内的直线平行于另一个平面。
(2)如果两个平行平面都和第三个平面相交,那么它们的交线平行。
四、线线垂直1、线线垂直的定义如果两条直线所成的角为直角,那么这两条直线互相垂直。
2、线线垂直的判定定理(1)如果一条直线垂直于一个平面,那么这条直线垂直于平面内的任意一条直线。
(2)如果两条平行线中的一条垂直于一条直线,那么另一条也垂直于这条直线。
五、线面垂直1、线面垂直的定义如果一条直线与一个平面内的任意一条直线都垂直,那么这条直线与这个平面垂直。
高考数学平行和垂直知识点
高考数学平行和垂直知识点在高中生的学习生涯中,高考将是一个重要的里程碑。
而高考数学作为其中的一科,对于很多学生来说,可以说是非常关键的一门学科。
在高考数学中,平行和垂直知识点占据着重要的地位。
下面将从不同角度对高考数学中的平行和垂直知识点进行剖析。
一、平行知识点平行知识点在高考数学中占据着相当大的比重。
平行线是初中数学中的基本概念,在高中阶段进一步加深和扩展了相关的知识点。
在平面几何中,平行线的性质是最基础的,涉及到平行线的定义、判定、性质的证明等方面内容。
对于平行线的定义,高中学生需要掌握“同一平面内不在一条直线上的两条直线,有且只有一个公共点,则称这两条直线互相平行。
”而在判定两条直线是否平行时,高中生应了解到“同位角相等、任意一对对应角相等、同旁内角相等、同旁外角相等”等几种常见的判定方法。
这些知识点是高考数学中必考的内容,考察学生对平行线性质的理解和应用能力。
另外,高考数学中的平行知识点还涉及到平行线的性质证明。
通过证明平行,可以得到一些重要的结论,如垂直平分线定理、平行线截比定理等。
这些定理在高考中时常会被要求用来解决一些几何问题,需要学生在掌握了相关证明方法的基础上能够熟练运用。
二、垂直知识点垂直知识点在高考数学中同样占据着重要的地位。
垂直是与平行相对的一个重要概念。
在平面几何中,垂直线是垂直于同一直线的两条直线,在初中数学中常常涉及到垂直线的性质和判定方法。
初中的基础知识是高中数学的基石,而在高中阶段,对于垂直线性质的学习则更为深入和具体。
在高考数学中,垂直线的判定是一个需要学生掌握的重要技能。
常见的垂直判定方法包括垂直线同位角相等、同旁内角互补、同旁外角互补等。
此外,在解决几何问题时,垂直线的性质也经常被要求运用。
垂直平分线定理、垂直和角平分线定理等定理都是高考数学中常见的应用题,考察学生对垂直线相关性质的理解和运用能力。
学生需要通过灵活运用垂直线的性质,解决一些复杂的几何问题,这对于培养学生的逻辑思维和几何直观能力是非常有帮助的。
高三平行与垂直知识点
高三平行与垂直知识点在数学中,平行与垂直是两个重要的概念。
它们在几何学和代数学中都扮演着重要的角色。
本文将介绍高三学生在学习平行与垂直时需要了解的知识点,包括定义、判定条件以及相关性质。
一、平行线的定义及判定条件:平行线是指在同一平面上始终保持相同的方向,永不相交的两条直线。
以下是平行线的定义及判定条件:1. 若两条直线在同一平面上没有交点且距离始终相等,则这两条直线是平行的。
2. 若两条直线的斜率相等但不相交,则这两条直线是平行的。
3. 若两条直线的法向量相等,则这两条直线是平行的。
二、垂直线的定义及判定条件:垂直线是指两条直线在交点处互相垂直的性质。
以下是垂直线的定义及判定条件:1. 若两条直线的斜率相乘为-1,则这两条直线垂直。
2. 若两条直线的方向角相差90度,则这两条直线垂直。
3. 若两条直线的乘积斜率为-1,则这两条直线垂直。
三、平行线和垂直线的性质:1. 平行线的性质:(1)平行线与一条横切线的交点所对应的内角相等。
(2)平行线与一条横切线的交点所对应的外角互补。
(3)平行线上的任意两条相交线所对应的对顶角相等。
(4)平行线上的两个异面直角锐角对应角相等。
2. 垂直线的性质:(1)垂直线与一条横切线的交点所对应的内角为直角。
(2)垂直线与一条横切线的交点所对应的外角为直角。
(3)垂直线上的任意两条相交线所对应的对顶角互补。
(4)垂直线上的两个异面直角钝角对应角相等。
四、平行线和垂直线的应用:1. 平行线的应用:(1)在构造平行四边形或矩形时,需要用到平行线的性质。
(2)在解决几何证明问题时,平行线的性质常常被用作推理的基础。
2. 垂直线的应用:(1)在建筑工程中,垂直线用于确定建筑物的垂直性。
(2)在解决各类几何问题时,垂直线与平行线的性质被广泛应用。
综上所述,高三学生需要掌握平行线和垂直线的定义、判定条件以及相关性质。
理解并应用这些知识点,可以帮助学生更好地解决几何问题,并在数学学习中取得较好的成绩。
高三数学(理科)二轮复习教案专题六第二讲空间中的平行与垂直
第二讲空间中的平行与垂直研热点(聚焦突破)类型一空间线线、线面位置关系1.线面平行的判定定理:a⊄α,b⊂α,a∥b⇒a∥α.2.线面平行的性质定理:a∥α,a⊂β,α∩β=b⇒a∥b.3.线面垂直的判定定理:m⊂α,n⊂α,m∩n=P,l⊥m,l⊥n⇒l⊥α.4.线面垂直的性质定理:a⊥α,b⊥αa∥b.[例1](___高考山东卷)在如图所示的几何体中,四边形ABCD是等腰梯形,AB∥CD,∠DAB =60°,FC⊥平面ABCD,AE⊥BD,CB=CD=CF.(1)求证:BD⊥平面AED;(2)求二面角FBDC的余弦值.[解析](1)证明:因为四边形ABCD是等腰梯形,AB∥CD,∠DAB=60°,所以∠ADC=∠BCD=120°.又CB=CD,所以∠CDB=30°,因此∠ADB=90°,即AD⊥BD.又AE⊥BD,且AE∩AD=A,AE,AD⊂平面AED,所以BD⊥平面AED.(2)解法一由(1)知AD⊥BD,所以AC⊥BC.又FC⊥平面ABCD,因此CA,CB,CF两两垂直.以C为坐标原点,分别以CA,CB,CF所在的直线为x轴,y轴,z轴,建立如图(1)所示的空间直角坐标系.不妨设CB=1,则C(0,0,0),B(0,1,0),D(32,-12,0),F(0,0,1).(1)因此BD →=(32,-32,0),BF →=(0,-1,1). 设平面BDF 的一个法向量为m =(x ,y ,z ), 则m ·BD →=0,m ·BF →=0, 所以x =3y =3z ,取z =1,则m =(3,1,1).由于CF →=(0,0,1)是平面BDC 的一个法向量, 则cos 〈m ,CF →〉=m ·CF →|m ||CF →|=15=55,所以二面角F -BD -C 的余弦值为55.解法二 如图(2),取BD 的中点G ,连接CG ,FG , 由于CB =CD ,因此CG ⊥BD .又FC ⊥平面ABCD ,BD ⊂平面ABCD , 所以FC ⊥BD .由于FC ∩CG =C ,FC ,CG ⊂平面FCG , 所以BD ⊥平面FCG , 故BD ⊥FG ,所以∠FGC 为二面角F -BD -C 的平面角.(2)在等腰三角形BCD中,由于∠BCD=120°,因此CG=12CB.又CB=CF,所以CF=CG2+CF2=5CG,,故cos∠FGC=55因此二面角F-BD-C的余弦值为55.跟踪训练(___济南摸底)如图,在正三棱柱ABC-A1B1C1中,底面ABC为正三角形,M、N、G分别是棱CC1、AB、BC的中点.且CC1=2AC.(1)求证:CN∥平面AMB1;(2)求证:B1M⊥平面AMG.证明:(1)设线段AB1的中点为P,连接NP、MP,∵CM∥12AA1,NP∥12AA1,∴CM∥NP,∴四边形CNPM是平行四边形,∴CN∥MP,∵CN⊄平面AMB1,MP⊂平面AMB1,∴CN∥平面AMB1.(2)∵CC1⊥平面ABC,∴平面CC1B1B⊥平面ABC,∵AG⊥BC,∴AG⊥平面CC1B1B,∴B1M⊥AG. ∵CC1⊥平面ABC,平面A1B1C1∥平面ABC,∴CC1⊥AC,CC1⊥B1C1,设AC=2a,则CC1=22a,在Rt△MCA中,AM=CM2+AC2=6a,在Rt △B 1C 1M 中,B 1M = B 1C 21+C 1M 2=6a .∵BB 1∥CC 1,∴BB 1⊥平面ABC ,∴BB 1⊥AB , ∴AB 1=B 1B 2+AB 2=C 1C 2+AB 2=23a ,注意到AM 2+B 1M 2=AB 21,∴B 1M ⊥AM , 类型二 空间面面位置关系1.面面垂直的判定定理:a ⊂β,a ⊥α⇒α⊥β.2.面面垂直的性质定理:α⊥β,α∩β=l ,a ⊂α,a ⊥l α⊥β. 3.面面平行的判定定理:a ⊂β,b ⊂β,a ∩b =A ,a ∥α,b ∥α⇒α∥β. 4.面面平行的性质定理:α∥β,α∩γ=a ,β∩γ=b ⇒α∥b . 5.面面平行的证明还有其它方法(1),,,a b a b A c d c d B a c b d αβαβ⊂=⎫⎪⊂=⇒⎬⎪⎭且且∥∥∥(2),a a ααββ⊥⊥⇒∥[例2] (___高考江苏卷)如图,在直三棱柱ABC -A 1B 1C 1中,A 1B 1=A 1C 1,D ,E 分别是棱BC ,CC 1上的点(点D 不同于点C ),且AD ⊥DE ,F 为B 1C 1的中点. 求证:(1)平面ADE ⊥平面BCC 1B 1; (2)直线A 1F ∥平面ADE .[证明] (1)因为ABC -A 1B 1C 1是直三棱柱,所以CC 1⊥平面ABC . 又AD ⊂平面ABC ,所以CC 1⊥AD .又因为AD ⊥DE ,CC 1,DE ⊂平面BCC 1B 1,CC 1∩DE =E ,所以AD⊥平面BCC1B1.又AD⊂平面ADE,所以平面ADE⊥平面BCC1B1.(2)因为A1B1=A1C1,F为B1C1的中点,所以A1F⊥B1C1.因为CC1⊥平面A1B1C1,且A1F⊂平面A1B1C1,所以CC1⊥A1F.又因为CC1,B1C1⊂平面BCC1B1,CC1∩B1C1=C1,所以A1F⊥平面BCC1B1.由(1)知AD⊥平面BCC1B1,所以A1F∥AD.又AD⊂平面ADE,A1F⊄平面ADE,所以A1F∥平面ADE.跟踪训练(___大同模拟)如图,菱形ABCD的边长为6,∠BAD=60°,AC∩BD=O.将菱形ABCD 沿对角线AC折起,得到三棱锥,点M是棱BC的中点,DM=3 2.(1)求证:平面ABC⊥平面MDO;(2)求三棱锥M-ABD的体积.解析:(1)证明:由题意得OM=OD=3,因为DM=32,所以∠DOM=90°,OD⊥OM.又因为四边形ABCD为菱形,所以OD⊥AC.因为OM∩AC=O,所以OD⊥平面ABC,因为OD 平面MDO,所以平面ABC⊥平面MDO.(2)三棱锥M-ABD的体积等于三棱锥D-ABM的体积.由(1)知,OD⊥平面ABC,所以OD为三棱锥D-ABM的高.又△ABM的面积为12BA×BM×sin 120°=12×6×3×32=932,所以M-ABD的体积等于13×S△ABM ×OD=932.类型三折叠中的位置关系将平面图形沿其中一条或几条线段折起,使其成为空间图形,这类问题称之为平面图形翻折问题.平面图形经过翻折成为空间图形后,原有的性质有的发生了变化、有的没有发生变化,弄清它们是解决问题的关键.一般地,翻折后还在同一个平面上的性质不发生变化,不在同一个平面上的性质发生变化.[例3](___高考浙江卷)已知矩形ABCD,AB=1,BC=2,将△ABD沿矩形的对角线BD所在的直线进行翻折,在翻折过程中()A.存在某个位置,使得直线AC与直线BD垂直B.存在某个位置,使得直线AB与直线CD垂直C.存在某个位置,使得直线AD与直线BC垂直D.对任意位置,三对直线“AC与BD”,“AB与CD”,“AD与BC”均不垂直[解析]找出图形在翻折过程中变化的量与不变的量.对于选项A,过点A作AE⊥BD,垂足为E,过点C作CF⊥BD,垂足为F,在图(1)中,由边AB,BC不相等可知点E,F不重合.在图(2)中,连接CE,若直线AC与直线BD垂直,又∵AC∩AE=A,∴BD⊥面ACE,∴BD⊥CE,与点E,F不重合相矛盾,故A错误.对于选项B,若AB⊥CD,又∵AB⊥AD,AD∩CD=D,∴AB⊥面ADC,∴AB⊥AC,由AB<BC可知存在这样的等腰直角三角形,使得直线AB与直线CD垂直,故B正确.对于选项C,若AD⊥BC,又∵DC⊥BC,AD∩DC=D,∴BC⊥面ADC,∴BC⊥AC.已知BC=2,AB=1,BC >AB,∴不存在这样的直角三角形.∴C错误.由上可知D错误,故选B.[答案] B跟踪训练如图1,直角梯形ABCD中,AD∥BC,∠ABC=90°,E,F分别为边AD和BC上的点,且EF∥AB,AD=2AE=2AB=4FC=4.将四边形EFCD沿EF折起成如图2的形状,使AD=AE.(1)求证:BC∥平面DAE;(2)求四棱锥DAEFB的体积.解析:(1)证明:∵BF∥AE,CF∥DE,BF∩CF=F,AE∩DE=E.∴平面CBF∥平面DAE,又BC⊂平面CBF,∴BC∥平面DAE.(2)取AE的中点H,连接DH.∵EF⊥DE,EF⊥EA,∴EF⊥平面DAE.又DH⊂平面DAE,∴EF⊥DH.∵AE=DE=AD=2,∴DH⊥AE,DH= 3.∴DH⊥平面AEFB.四棱锥D-AEFB的体积V=13×3×2×2=43 3.析典题(预测高考)高考真题【真题】(___高考陕西卷)(1)如图所示,证明命题“a是平面π内的一条直线,b是π外的一条直线(b不垂直于π),c是直线b在π上的投影,若a⊥b,则a⊥c”为真;(2)写出上述命题的逆命题,并判断其真假(不需证明).【解析】(1)证明:证法一如图(1),过直线b上任一点作平面π的垂线n,设直线a,b,c,n的方向向量分别是a,b,c,n,则b,c,n共面.根据平面向量基本定理,存在实数λ,μ使得c=λb+μn,则a·c=a·(λb+μn)=λ(a·b)+μ(a·n).因为a⊥b,所以a·b=0.又因为aπ,n⊥π,所以a·n=0.故a·c=0,从而a⊥c.证法二如图(2),记c∩b=A,P为直线b上异于点A的任意一点,过P作PO⊥π,垂足为O,则O∈c.因为PO⊥π,aπ,所以直线PO⊥a.又a⊥b,b平面P AO,PO∩b=P,所以a⊥平面P AO.又c平面P AO,所以a⊥c.(2)逆命题为:a是平面π内的一条直线,b是π外的一条直线(b不垂直于π),c是直线b在π上的投影,若a⊥c,则a⊥b.逆命题为真命题.【名师点睛】本题实际上考查了三垂线定理逆定理的证明,命题创意新颖,改变了多数高考命题以空间几何体为载体考查线面位置关系的证明.着重考查推理论证能力.考情展望名师押题【押题】一个空间几何体的三视图及部分数据如图所示,其正视图、俯视图均为矩形,侧视图为直角三角形.(1)请画出该几何体的直观图,并求出它的体积; (2)证明:A 1C ⊥平面AB 1C 1;(3)若D 是棱CC 1的中点,E 是棱AB 的中点,判断DE 是否平行于平面AB 1C 1,并证明你的结论.【解析】 (1)几何体的直观图如图所示,四边形BB 1C 1C 是矩形,BB 1=CC 1=3,BC =B 1C 1=1,四边形AA 1C 1C 是边长为3的正方形,且平面AA 1C 1C 垂直于底面BB 1C 1C ,故该几何体是直三棱柱,其体积 V =S △ABC ·BB 1=12×1×3×3=32.(2)证明:由(1)知平面AA 1C 1C ⊥平面BB 1C 1C 且B 1C 1⊥CC 1,所以B 1C 1⊥平面ACC 1A 1,所以B 1C 1⊥A 1C .因为四边形ACC 1A 1为正方形,所以A 1C ⊥AC 1, 而B 1C 1∩AC 1=C 1,所以A 1C ⊥平面AB 1C 1. (3)DE ∥平面AB 1C 1,证明如下:如图,取BB 1的中点F ,连接EF ,DF ,DE .因为D ,E ,F 分别为CC 1,AB ,BB 1的中点,所以EF ∥AB 1,DF ∥B 1C 1.又AB1 ⊂平面AB1C1,EF ⊂平面AB1C1,所以EF∥平面AB1C1.同理,DF∥平面AB1C1,又EF∩DF=F,则平面DEF∥平面AB1C1.而DE⊂平面DEF,所以DE∥平面AB1C1.第四讲思想方法与规范解答(五)思想方法1.转化与化归思想利用转化与化归思想求空间几何体的体积主要包括割补法和等体积法,主要适用于以下类型:(1)不规则几何体的体积的求解;(2)较复杂几何体的体积的求解.[例1](___高考辽宁卷)已知某几何体的三视图如图所示,则该几何体的体积为()A.8π3B.3π C.10π3D.6π[解析]将三视图还原为实物图求体积.由三视图可知,此几何体(如图所示)是底面半径为1,高为4的圆柱被从母线的中点处截去了圆柱的14,所以V=34×π×12×4=3π.[答案] B跟踪训练(___高考辽宁卷)如图,直三棱柱ABC-A′B′C′,∠BAC=90°,AB=AC=2,AA′=1,点M,N分别为A′B和B′C′的中点.(1)证明:MN∥平面A′ACC′;(2)求三棱锥A′MNC的体积.(锥体体积公式V=13Sh,其中S为底面面积,h为高)解析:(1)证明:证法一连接AB′,AC′,如图,由已知∠BAC=90°,AB=AC,三棱柱ABC-A′B′C′为直三棱柱,所以M为AB′的中点.又因为N为B′C′的中点,所以MN∥AC′.又MN⊄平面A′ACC′,AC′⊂平面A′ACC′,所以MN∥平面A′ACC′.证法二 取A ′B ′的中点P ,连接MP ,NP ,AB ′,如图, 因为M ,N 分别为AB ′与B ′C ′的中点, 所以MP ∥AA ′,PN ∥A ′C ′,所以MP ∥平面A ′ACC ′,PN ∥平面A ′ACC ′. 又MP ∩NP =P ,所以平面MPN ∥平面A ′ACC ′.而MN 平面MPN , 所以MN ∥平面A ′ACC ′.(2)解法一 连接BN ,如图所示,由题意知A ′N ⊥B ′C ′,平面A ′B ′C ′∩平面B ′BCC ′=B ′C ′, 所以A ′N ⊥平面NBC . 又A ′N =12B ′C ′=1,故V A ′-MNC =V N -A ′MC =12V N -A ′BC =12V A ′-NBC =16. 解法二 V A ′-MNC =V A ′-NBC -V M -NBC =12V A ′-NBC =16. 2.函数与方程思想(1)在空间几何体的表面积和体积计算中,常根据条件分析列出方程,利用方程确定未知量. (2)在用空间向量的运算解决空间线线、线面、面面的平行、垂直问题或求空间角时运用的主要思想就是通过列方程(组)求出未知量,得到直线的方向向量和平面的法向量,然后进行计算.(3)涉及空间几何体中的最值问题常用到函数思想.[例2] (___深圳模拟)如图,直角梯形ABCD 中,AB ∥CD ,AD ⊥AB ,CD =2AB =4,AD =2,E 为CD 的中点,将△BCE 沿BE 折起,使得CO ⊥DE ,其中垂足O 在线段DE 上.(1)求证:CO ⊥平面ABED ;(2)问∠CEO (记为θ)多大时,三棱锥C -AOE 的体积最大,最大值为多少.[解析] (1)在直角梯形ABCD 中, CD =2AB ,E 为CD 的中点,则AB =DE , 又AB ∥DE ,AD ⊥AB ,可知BE ⊥CD .在四棱锥C -ABEO 中,BE ⊥DE ,BE ⊥CE ,CE ∩DE =E , CE ,DE ⊂平面CDE ,则BE ⊥平面CDE . 因为CO ⊂平面CDE ,所以BE ⊥CO .又CO ⊥DE ,且BE ,DE 是平面ABED 内的两条相交直线. 故CO ⊥平面ABED .(2)由(1)知CO ⊥平面ABED ,所以三棱锥C -AOE 的体积V =13S △AOE ×OC =13×12×OE ×AD ×OC .在直角梯形ABCD 中,CD =2AB =4,AD =2, CE =2,得OE =CE cos θ=2cos θ,OC =CE sin θ=2sin θ, V =23 sin 2θ≤23,当且仅当sin 2θ=1,θ∈(0,π2),即θ=π4时取等号(此时OE =2<DE ,O 落在线段DE 上).故当θ=π4时,三棱锥C -AOE 的体积最大,最大值为23.跟踪训练已知正三棱柱ABC A′B′C′的正(主)视图和侧(左)视图如图所示,设△ABC,△A′B′C′的中心分别是O,O′,现将此三棱柱绕直线OO′旋转,射线OA旋转所成的角为x弧度(x可以取到任意一个实数),对应的俯视图的面积为S(x),则函数S(x)的最大值为________;最小正周期为________.(说明:“三棱柱绕直线OO′旋转”包括逆时针方向和顺时针方向,逆时针方向旋转时,OA旋转所成的角为正角,顺时针方向旋转时,OA旋转所成的角为负角.)解析:由题意可知,当三棱柱的一个侧面在水平面内时,该三棱柱的俯视图的面积最大,此时俯视图为一个矩形,其宽为3×tan 30°×2=2,长为4,故S(xOO′旋转时,当A点旋转到B点,B点旋转到C点,C点旋转到A点时,所得三角形与原三角形重合,故S(x)的最小正周期为2π3.答案:82π3考情展望高考对本专题的考查,各种题型都有,在选择、填空中多考查空间几何体的三视图与面积、体积问题,在解答题中考查空间平行与垂直的证明与空间角的求法,也常考查探索存在性问题、折叠问题等,难度中档.名师押题【押题】已知正方形ABCD的边长为2,AC∩BD=O.将正方形ABCD沿对角线BD折起,使AC=a,得到三棱锥ABCD,如图所示.(1)当a =2时,求证:AO ⊥平面BCD ;(2)当二面角ABDC 的大小为120°时,求二面角ABCD 的正切值.【解析】 (1)根据题意 ,在△AOC 中,AC =a =2,AO =CO =2, 所以AC 2=AO 2+CO 2,所以AO ⊥CO . 因为AC 、BD 是正方形ABCD 的对角线, 所以AO ⊥BD .因为BD ∩CO =O ,CO ⊂平面BCD ,BD ⊂平面BCD , 所以AO ⊥平面BCD .(2)由(1)知,CO ⊥OD ,以O 为原点,OC ,OD 所在直线分别为x 轴,y 轴建立如图所示的空间直角坐标系O -xyz ,则O (0,0,0),D (0,2,0),C (2,0,0),B (0,-2,0). 设A (x 0,0,z 0)(x 0<0),则OA =(x 0,0,z 0),OD →=(0,2,0). 又设平面ABD 的法向量为n =(x 1,y 1,z 1), 则00n OA n OD ⎧⋅=⎪⎨⋅=⎪⎩,即⎩⎪⎨⎪⎧x 0x 1+z 0z 1=02y 1=0.所以y 1=0,令x 1=z 0,则z 1=-x 0. 所以n =(z 0,0,-x 0).因为平面BCD 的一个法向量为m =(0,0,1),且二面角A -BD -C 的大小为120°, 所以|cos 〈m ,n 〉|=|cos 120°|=12,得z 20=3x 20.设平面ABC 的法向量为l =(x 2,y 2,z 2),因为BA =(-22,2,62),BC =(2,2,0),则00l BA l BC ⎧⋅=⎪⎨⋅=⎪⎩,即⎩⎨⎧-22x 2+2y 2+62z 2=0,2x 2+2y 2=0, 令x 2=1,则y 2=-1,z 2= 3. 所以l =(1,-1,3).设二面角A -BC -D 的平面角为θ, 所以cos θ=|cos 〈l ,m 〉|=|31+1+(3)2|=155.所以tan θ=63.。
数学高考二轮专题13 空间中的平行与垂直(解析版)
专题13 空间中的平行与垂直【考向解读】1.以选择题、填空题的形式考查,主要利用平面的基本性质及线线、线面和面面的判定与性质定理对命题的真假进行判断,属基础题.2.以解答题的形式考查,主要是对线线、线面与面面平行和垂直关系交汇综合命题,且多以棱柱、棱锥、棱台或其简单组合体为载体进行考查,难度中等.【命题热点突破一】 空间线面位置关系的判定(1)根据空间线面平行、垂直关系的判定定理和性质定理逐项判断来解决问题;(2)必要时可以借助空间几何模型,如从长方体、四面体等模型中观察线面位置关系,并结合有关定理来进行判断.例1、如图,在直三棱柱ABC -A 1B 1C 1中,D ,E 分别为AB ,BC 的中点,点F 在侧棱B 1B 上,且11B D A F ⊥ ,1111AC A B ⊥.求证:平面B 1DE ⊥平面A 1C 1F .【答案】在直三棱柱111ABC A B C -中,1111AA ⊥平面A B C 因为11AC ⊂平面111A B C ,所以111AA ⊥A C又因为111111*********,,AC A B AA ABB A A B ABB A A B AA A ⊥⊂⊂=I ,平面平面 所以11AC ⊥平面11ABB A因为1B D ⊂平面11ABB A ,所以111AC B D ⊥又因为1111111111111C F,C F,B D A AC A A F A AC A F A ⊥⊂⊂=I F ,平面平面 所以111C F B D A ⊥平面因为直线11B D B DE ⊂平面,所以1B DE 平面11.AC F ⊥平面【变式探究】(1)若直线l1和l2是异面直线,l1在平面α内,l2在平面β内,l是平面α与平面β的交线,则下列命题正确的是()A.l与l1,l2都不相交B.l与l1,l2都相交C.l至多与l1,l2中的一条相交D.l至少与l1,l2中的一条相交(2)平面α∥平面β的一个充分条件是()A.存在一条直线a,a∥α,a∥βB.存在一条直线a,a⊂α,a∥βC.存在两条平行直线a,b,a⊂α,b⊂β,a∥β,b∥αD.存在两条异面直线a,b,a⊂α,b⊂β,a∥β,b∥α【答案】(1)D(2)D【变式探究】已知m,n为两条不同的直线,α,β为两个不重合的平面,给出下列命题:①若m⊥α,n⊥α,则m∥n;②若m⊥α,m⊥n,则n∥α;③若α⊥β,m∥α,则m⊥β;④若m⊥α,m∥β,则α⊥β.A.0 B.1C.2 D.3【答案】C【命题热点突破二】空间平行、垂直关系的证明空间平行、垂直关系证明的主要思想是转化,即通过判定、性质定理将线线、线面、面面之间的平行、垂直关系相互转化.例2、如图,三角形PDC所在的平面与长方形ABCD所在的平面垂直,PD=PC=4,AB=6,BC=3.(1)证明:BC ∥平面PDA ; (2)证明:BC ⊥PD ;【解析】 (1)证明 因为四边形ABCD 是长方形, 所以BC ∥AD ,因为BC ⊄平面PDA , AD ⊂平面PDA , 所以BC ∥平面PDA .(2)证明 因为四边形ABCD 是长方形,所以BC ⊥CD ,因为平面PDC ⊥平面ABCD ,平面PDC ∩平面ABCD =CD ,BC ⊂平面ABCD ,所以BC ⊥平面PDC ,因为PD ⊂平面PDC ,所以BC ⊥PD .【高考题型解读】1.,αβ 是两个平面,,m n 是两条直线,有下列四个命题: (1)如果,,//m n m n αβ⊥⊥,那么αβ⊥. (2)如果,//m n αα⊥,那么m n ⊥. (3)如果//,m αβα⊂,那么//m β.(4)如果//,//m n αβ,那么m 与α所成的角和n 与β所成的角相等. 其中正确的命题有 . (填写所有正确命题的编号) 【答案】②③④2.如图,在△ABC 中,AB =BC =2,∠ABC =120°.若平面ABC 外的点P 和线段AC 上的点D ,满足PD =DA ,PB =BA ,则四面体PBCD 的体积的最大值是 .【答案】123.平面α过正方体ABCD -A 1B 1C 1D 1的顶点A ,α//平面CB 1D 1,αI 平面ABCD =m ,αI 平面AB B 1A 1=n ,则m 、n 所成角的正弦值为(A)32 (B )22 (C)33 (D)13【答案】A【解析】如图,设平面11CB D I 平面ABCD ='m ,平面11CB D I 平面11ABB A ='n ,因为α∥平面11CB D ,所以','m m n n ∥∥,则,m n 所成的角等于','m n 所成的角.过1D 作11D E B C ∥,交AD 的延长线于点E,连接CE ,则CE 为'm .连接1A B ,过B 1作111B F A B ∥,交1AA 的延长线于点1F ,则11B F 为'n .连接BD ,则111,BD CE B F A B ∥∥,则','m n 所成的角即为1,A B BD 所成的角,为60︒,故,m n 所成角的正弦值为3,选A.4.在封闭的直三棱柱111ABC A B C -内有一个体积为V 的球,若AB BC ⊥,6AB =,8BC =,13AA =,则V 的最大值是( )(A )4π (B )92π(C )6π (D )323π【答案】B【解析】要使球的体积V 最大,必须球的半径R 最大.由题意知球的与直三棱柱的上下底面都相切时,球的半径取得最大值32,此时球的体积为334439()3322R πππ==,故选B . 5.已知m ,n 是两条不同直线,α,β是两个不同平面,则下列命题正确的是( ) A .若α,β垂直于同一平面,则α与β平行 B .若m ,n 平行于同一平面,则m 与n 平行C.若α,β不平行,则在α内不存在与β平行的直线D.若m,n不平行,则m与n不可能垂直于同一平面【答案】 D6.如图,已知△ABC,D是AB的中点,沿直线CD将△ACD翻折成△A′CD,所成二面角A′-CD-B的平面角为α,则()A.∠A′DB≤αB.∠A′DB≥αC.∠A′CB≤α D.∠A′CB≥α【答案】 B【解析】极限思想:若α=π,则∠A′CB<π,排除D;若α=0,如图,则∠A′DB,∠A′CB都可以大于0,排除A,C.故选B.7.如图,三棱锥A-BCD中,AB=AC=BD=CD=3,AD=BC=2,点M,N分别是AD,BC的中点,则异面直线AN,CM所成的角的余弦值是________.【答案】782020年高考数学(理)总复习:空间中的平行与垂直题型一空间位置关系的判断【题型要点】(1)解决空间线面位置关系的判断问题常有以下方法:①根据空间线面垂直、平行关系的判定定理和性质定理逐项判断来解决问题;②必要时可以借助空间几何模型,如从长方体、四面体等模型中观察线面位置关系,并结合有关定理来进行判断.(2)熟练掌握立体几何的三种语言——符号语言、文字语言以及图形语言的相互转换,是解决此类问题的关键.【例1】如图,在下列四个正方体中,A,B为正方体的两个顶点,M,N,Q为所在棱的中点,则在这四个正方体中,直线AB与平面MNQ不平行的是()【解析】B选项中,AB∥MQ,且AB⊄平面MNQ,MQ⊂平面MNQ,则AB∥平面MNQ;C选项中,AB∥MQ,且AB⊄平面MNQ,MQ⊂平面MNQ,则AB∥平面MNQ;D选项中,AB∥NQ,且AB⊄平面MNQ,NQ⊂平面MNQ,则AB∥平面MNQ.故选A.【答案】 A【例2】.如图,平面α⊥平面β,α∩β=直线l, A,C是α内不同的两点,B,D是β内不同的两点,且A,B,C,D∉直线l, M,N分别是线段AB,CD 的中点.下列判断正确的是()A.当CD=2AB时,M,N两点不可能重合B.M,N两点可能重合,但此时直线AC与l不可能相交C.当AB与CD相交,直线AC平行于l时,直线BD可以与l相交D.当AB,CD是异面直线时,直线MN可能与l平行【解析】由于直线CD的两个端点都可以动,所以M,N两点可能重合,此时两条直线AB,CD共面,由于两条线段互相平分,所以四边形ACBD是平行四边形,因此AC∥BD,则BD⊂β,所以由线面平行的判定定理可得AC∥β,又因为AC⊂α,α∩β=l,所以由线面平行的性质定理可得AC∥l,故应排除答案A,C,D,故选B.【答案】 B题组训练一空间位置关系的判断1.设四棱锥P-ABCD的底面不是平行四边形,用平面α去截此四棱锥,使得截面四边形是平行四边形,则这样的平面α()A.有无数多个B.恰有4个C.只有1个D.不存在【解析】如图,由题知面P AD与面PBC相交,面P AB与面PCD相交,可设两组相交平面的交线分别为m,n,由m,n决定的平面为β,作α与β平行且与四条侧棱相交,交点分别为A1,B1,C1,D1,则由面面平行的性质定理得A1B1∥n∥C1D1,A1D1∥m∥B1C1,从而得截面必为平行四边形.由于平面α可以上下平移,可知满足条件的平面α有无数多个.故选A.【答案】 A2.已知m,l是直线,α,β是平面,给出下列命题:①若l垂直于α,则l垂直于α内的所有直线②若l平行于α,则l平行于α内的所有直线③若l⊂β,且l⊥α,则α⊥β④若m⊂α,l⊂β,且α∥β,则m∥l其中正确的命题的个数是()A.4B.3C.2D.1【解析】对于①,由线面垂直的定义可知①正确;对于②,若l平行于α内的所有直线,根据平行公理可得:α内的所有直线都互相平行,显然是错误的,故②错误;对于③,根据面面垂直的判定定理可知③正确;对于④,若m⊂α,l⊂β,且α∥β,则直线l与m无公共点,∴l与m平行或异面,故④错误;故选C.【答案】 C题型二平行与垂直的证明与体积【题型要点】(1)平行关系及垂直关系的转化空间平行、垂直关系证明的主要思想是转化,即通过判定、性质定理将线线、线面、面面之间的平行、垂直关系相互转化.(2)数学思想①本例在证明线线垂直、线面平行时,采用了转化与化归思想.②利用转化与化归思想还可以解决本专题中的线面其他位置关系.(3)求解多面体的体积问题,如最值问题、高的问题、点面距离的问题,一般利用公式法、等体积法、割补法、函数与方程的思想求解.【例2】如图,四棱锥P -ABCD 中,侧面P AD 为等边三角形且垂直于底面ABCD ,AB =BC =12AD ,∠BAD =∠ABC =90°.(1)证明:直线BC ∥平面P AD ;(2)若△P AD 面积为27,求四棱锥P -ABCD 的体积.【解析】 (1)证明:在平面ABCD 内,因为∠BAD =∠ABC =90°,所以BC ∥AD .又BC ⊄平面P AD ,AD ⊂平面P AD ,故BC ∥平面P AD .(2)取AD 的中点M ,连结PM ,CM ,由AB =BC =12AD 及BC ∥AD ,∠ABC=90°得四边形ABCM 为正方形,则CM ⊥AD .因为侧面P AD 为等边三角形且垂直于底面ABCD ,平面P AD ∩平面ABCD =AD ,所以PM ⊥AD ,PM ⊥底面ABCD ,因为CM ⊂底面ABCD ,所以PM ⊥CM .设BC =x ,则CM =x ,CD =2x ,PM =3x ,PC =PD =2x .取CD 的中点N ,连结PN ,则PN ⊥CD ,所以PN =142x 因为△PCD 的面积为27,所以12×2x ×142x =27,解得x =2(舍去),x =2,于是AB =BC =2,AD =4,PM =23,所以四棱锥P -ABCD 的体积V =13×2(2+4)2×23=4 3.题组训练二 平行与垂直的证明与体积如图,平面ABCD ⊥平面ADEF ,四边形ABCD 为菱形,四边形ADEF 为矩形, M ,N 分别是EF ,BC 的中点, AB =2AF , ∠CBA =60°.①求证: DM ⊥平面MNA ; ②若三棱锥A -DMN 的体积为33,求MN 的长. ①【证明】 连接AC ,在菱形ABCD 中, ∠CBA =60°,且AB =BC ,∴△ABC 为等边三角形,又∵N 为BC 的中点, ∴AN ⊥BC ,∵BC ∥AD ,∴AN ⊥AD ,又∵平面ABCD ⊥平面ADEF ,平面ABCD ∩平面ADEF =AD ,AN ⊂平面ABCD ,∴AN ⊥平面ADEF ,又DM ⊂面ADEF ,∴DM ⊥AN .∵在矩形ADEF 中, AD =2AF ,M 为EF 的中点,∴△AMF 为等腰直角三角形,∴∠AMF =45°,同理可证∠DME =45°,∴∠DMA =90°,∴DM ⊥AM ,又∵AM ∩AN =A ,且AM ,AN ⊂平面MNA ,∴DM ⊥平面MNA 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
空间中的平行与垂直高考对本节知识的考查主要是以下两种形式:1.以选择、填空题的形式考查,主要利用平面的基本性质及线线、线面和面面的判定与性质定理对命题真假实行判断,属基础题.2.以解答题的形式考查,主要是对线线、线面与面面平行和垂直关系交汇综合命题,且多以棱柱、棱锥、棱台或其简单组合体为载体实行考查,难度中等.1.线面平行与垂直的判定定理、性质定理线面平行的判定定理⎭⎪⎬⎪⎫a ∥b b ⊂αa ⊄α⇒a ∥α线面平行的性质定理⎭⎪⎬⎪⎫a ∥αa ⊂βα∩β=b ⇒a ∥b线面垂直的判定定理⎭⎪⎬⎪⎫a ⊂α,b ⊂αa ∩b =Ol ⊥a ,l ⊥b ⇒l ⊥α线面垂直的性质定理⎭⎪⎬⎪⎫a ⊥αb ⊥α⇒a ∥b2. 面面垂直的判定定理⎭⎪⎬⎪⎫a ⊥αa ⊂β⇒α⊥β面面垂直的性质定理⎭⎪⎬⎪⎫α⊥βα∩β=ca ⊂αa ⊥c ⇒a ⊥β面面平行的判定定理⎭⎪⎬⎪⎫a ⊂βb ⊂βa ∩b =Oa ∥α,b ∥α⇒α∥β面面平行的性质定理⎭⎪⎬⎪⎫α∥βα∩γ=a β∩γ=b ⇒a ∥b3. 平行关系及垂直关系的转化示意图考点一 空间线面位置关系的判断例1 (1)l 1,l 2,l 3是空间三条不同的直线,则下列命题准确的是( )A .l 1⊥l 2,l 2⊥l 3⇒l 1∥l 3B .l 1⊥l 2,l 2∥l 3⇒l 1⊥l 3C .l 1∥l 2∥l 3⇒l 1,l 2,l 3共面D .l 1,l 2,l 3共点⇒l 1,l 2,l 3共面(2)设l ,m 是两条不同的直线,α是一个平面,则下列命题准确的是( )A .若l ⊥m ,m ⊂α,则l ⊥αB .若l ⊥α,l ∥m ,则m ⊥αC .若l ∥α,m ⊂α,则l ∥mD .若l ∥α,m ∥α,则l ∥m 答案 (1)B (2)B解析 (1)对于A ,直线l 1与l 3可能异面、相交;对于C ,直线l 1、l 2、l 3可能构成三棱柱的三条棱而不共面;对于D ,直线l 1、l 2、l 3相交于同一个点时不一定共面,如正方体一个顶点的三条棱.所以选B.(2)A 中直线l 可能在平面α内;C 与D 中直线l ,m 可能异面;事实上由直线与平面垂直的判定定理可得B 准确.解决空间点、线、面位置关系的组合判断题,主要是根据平面的基本性质、空间位置关系的各种情况,以及空间线面垂直、平行关系的判定定理和性质定理实行判断,必要时能够利用正方体、长方体、棱锥等几何模型辅助判断,同时要注意平面几何中的结论不能完全移植到立体几何中.(1)(2013·广东)设m ,n 是两条不同的直线,α,β是两个不同的平面,下列命题中准确的是( )A.若α⊥β,m⊂α,n⊂β,则m⊥nB.若α∥β,m⊂α,n⊂β,则m∥nC.若m⊥n,m⊂α,n⊂β,则α⊥βD.若m⊥α,m∥n,n∥β,则α⊥β(2)平面α∥平面β的一个充分条件是( )A.存有一条直线a,a∥α,a∥βB.存有一条直线a,a⊂α,a∥βC.存有两条平行直线a,b,a⊂α,b⊂β,a∥β,b∥αD.存有两条异面直线a,b,a⊂α,b⊂β,a∥β,b∥α答案 (1)D (2)D解析 (1)A中,m与n可垂直、可异面、可平行;B中m与n可平行、可异面;C中若α∥β,仍然满足m⊥n,m⊂α,n⊂β,故C错误;故D准确.(2)若α∩β=l,a∥l,a⊄α,a⊄β,则a∥α,a∥β,故排除A.若α∩β=l,a⊂α,a∥l,则a∥β,故排除B.若α∩β=l,a⊂α,a∥l,b⊂β,b∥l,则a∥β,b∥α,故排除C.故选D.考点二线线、线面的位置关系例2 如图,在四棱锥P—ABCD中,∠ABC=∠ACD=90°,∠BAC=∠CAD=60°,PA⊥平面ABCD,E为PD的中点,PA=2AB.(1)若F为PC的中点,求证:PC⊥平面AEF;(2)求证:EC∥平面PAB.证明 (1)由题意得PA=CA,∵F为PC的中点,∴AF⊥PC.∵PA⊥平面ABCD,∴PA⊥CD.∵AC⊥CD,PA∩AC=A,∴CD⊥平面PAC,∴CD⊥PC.∵E为PD的中点,F为PC的中点,∴EF∥CD,∴EF⊥PC.∵AF∩EF=F,∴PC⊥平面AEF.(2)方法一如图,取AD的中点M,连接EM,CM.则EM∥PA.∵EM⊄平面PAB,PA⊂平面PAB,∴EM∥平面PAB.在Rt△ACD中,∠CAD=60°,MC=AM,∴∠ACM=60°.而∠BAC=60°,∴MC∥AB.∵MC⊄平面PAB,AB⊂平面PAB,∴MC∥平面PAB.∵EM∩MC=M,∴平面EMC∥平面PAB.∵EC⊂平面EMC,∴EC∥平面PAB.方法二如图,延长DC、AB,设它们交于点N,连接PN.∵∠NAC=∠DAC=60°,AC⊥CD,∴C为ND的中点.∵E为PD的中点,∴EC∥PN.∵EC⊄平面PAB,PN⊂平面PAB,∴EC∥平面PAB.(1)立体几何中,要证线垂直于线,常常先证线垂直于面,再用线垂直于面的性质易得线垂直于线.要证线平行于面,只需先证线平行于线,再用线平行于面的判定定理易得.(2)证明立体几何问题,要紧密结合图形,有时要利用平面几何的相关知识,所以需要多画出一些图形辅助使用.如图所示,在直三棱柱ABC-A1B1C1中,AB=BC=BB1,D为AC的中点.(1)求证:B1C∥平面A1BD;(2)若AC1⊥平面A1BD,求证:B1C1⊥平面ABB1A1;(3)在(2)的条件下,设AB=1,求三棱锥B-A1C1D的体积.(1)证明如图所示,连接AB1交A1B于E,连接ED.∵ABC-A1B1C1是直三棱柱,且AB=BB1,∴侧面ABB1A1是正方形,∴E是AB1的中点,又已知D为AC的中点,∴在△AB1C中,ED是中位线,∴B1C∥ED,∴B1C∥平面A1BD.(2)证明∵AC1⊥平面A1BD,∴AC1⊥A1B.∵侧面ABB1A1是正方形,∴A1B⊥AB1.又AC1∩AB1=A,∴A1B⊥平面AB1C1,∴A1B⊥B1C1.又∵ABC-A1B1C1是直三棱柱,∴BB 1⊥B 1C 1, ∴B 1C 1⊥平面ABB 1A 1.(3)解 ∵AB =BC ,D 为AC 的中点, ∴BD ⊥AC ,∴BD ⊥平面DC 1A 1. ∴BD 是三棱锥B -A 1C 1D 的高. 由(2)知B 1C 1⊥平面ABB 1A 1, ∴BC ⊥平面ABB 1A 1.∴BC ⊥AB ,∴△ABC 是等腰直角三角形. 又∵AB =BC =1,∴BD =22, ∴AC =A 1C 1= 2.∴三棱锥B -A 1C 1D 的体积V =13·BD ·S △A 1C 1D =13×22×12A 1C 1·AA 1=212×2×1=16.考点三 面面的位置关系例3 如图,在几何体ABCDE 中,AB =AD =2,AB ⊥AD ,AE ⊥平面ABD .M 为线段BD 的中点,MC ∥AE ,AE =MC = 2. (1)求证:平面BCD ⊥平面CDE ;(2)若N 为线段DE 的中点,求证:平面AMN ∥平面BEC . 证明 (1)∵AB =AD =2,AB ⊥AD ,M 为线段BD 的中点, ∴AM =12BD =2,AM ⊥BD .∵AE =MC =2,∴AE =MC =12BD =2,∴BC ⊥CD .∵AE ⊥平面ABD ,MC ∥AE , ∴MC ⊥平面ABD . ∴平面ABD ⊥平面CBD , ∴AM ⊥平面CBD . 又MC 綊AE ,∴四边形AMCE 为平行四边形, ∴EC ∥AM ,∴EC ⊥平面CBD ,∴BC ⊥EC , ∵EC ∩CD =C ,∴BC ⊥平面CDE , ∴平面BCD ⊥平面CDE .(2)∵M 为BD 中点,N 为ED 中点,∴MN ∥BE 且BE ∩EC =E , 由(1)知EC ∥AM 且AM ∩MN =M , ∴平面AMN ∥平面BEC .(1)证明面面平行依据判定定理,只要找到一个面内两条相交直线与另一个平面平行即可,从而将证明面面平行转化为证明线面平行,再转化为证明线线平行. (2)证明面面垂直常用面面垂直的判定定理,即证明一个面过另一个面的一条垂线,将证明面面垂直转化为证明线面垂直,一般先从现有直线中寻找,若图中不存有这样的直线,则借助中线、高线或添加辅助线解决.如图所示,已知AB ⊥平面ACD ,DE ⊥平面ACD ,△ACD 为等边三角形,AD =DE =2AB ,F 为CD 的中点. 求证:(1)AF ∥平面BCE ; (2)平面BCE ⊥平面CDE .证明 (1)如图,取CE 的中点G ,连接FG ,BG . ∵F 为CD 的中点,∴GF ∥DE 且GF =12DE .∵AB ⊥平面ACD ,DE ⊥平面ACD , ∴AB ∥DE ,∴GF ∥AB . 又AB =12DE ,∴GF =AB .∴四边形GFAB 为平行四边形,则AF ∥BG . ∵AF ⊄平面BCE ,BG ⊂平面BCE , ∴AF ∥平面BCE .(2)∵△ACD 为等边三角形,F 为CD 的中点, ∴AF ⊥CD .∵DE ⊥平面ACD ,AF ⊂平面ACD ,∴DE ⊥AF . 又CD ∩DE =D ,故AF ⊥平面CDE . ∵BG ∥AF ,∴BG ⊥平面CDE .∵BG ⊂平面BCE ,∴平面BCE ⊥平面CDE . 考点四 图形的折叠问题例4 (2012·北京)如图(1),在Rt△ABC 中,∠C =90°,D ,E 分别为AC ,AB 的中点,点F为线段CD 上的一点,将△ADE 沿DE 折起到△A 1DE 的位置,使A 1F ⊥CD ,如图(2).(1)求证:DE∥平面A1CB;(2)求证:A1F⊥BE;(3)线段A1B上是否存有点Q,使A1C⊥平面DEQ?说明理由.折叠问题要注意在折叠过程中,哪些量变化了,哪些量没有变化.第(1)问证明线面平行,能够证明DE∥BC;第(2)问证明线线垂直转化为证明线面垂直,即证明A1F⊥平面BCDE;第(3)问取A1B的中点Q,再证明A1C⊥平面DEQ.(1)证明因为D,E分别为AC,AB的中点,所以DE∥BC.又因为DE⊄平面A1CB,BC⊂平面A1CB,所以DE∥平面A1CB.(2)证明由已知得AC⊥BC且DE∥BC,所以DE⊥AC.所以DE⊥A1D,DE⊥CD.所以DE⊥平面A1DC.而A1F⊂平面A1DC,所以DE⊥A1F.又因为A1F⊥CD,所以A1F⊥平面BCDE,所以A1F⊥BE.(3)解线段A1B上存有点Q,使A1C⊥平面DEQ.理由如下:如图,分别取A1C,A1B的中点P,Q,则PQ∥BC.又因为DE∥BC,所以DE∥PQ.所以平面DEQ即为平面DEP.由(2)知,DE⊥平面A1DC,所以DE⊥A1C.又因为P是等腰三角形DA1C底边A1C的中点,所以A1C⊥DP.所以A1C⊥平面DEP.从而A1C⊥平面DEQ.故线段A 1B 上存有点Q ,使得A 1C ⊥平面DEQ .(1)解决与折叠相关的问题的关键是搞清折叠前后的变化量和不变量,一般情况下,线段的长度是不变量,而位置关系往往会发生变化,抓住不变量是解决问题的突破口.(2)在解决问题时,要综合考虑折叠前后的图形,既要分析折叠后的图形,也要分析折叠前的图形.(2013·广东)如图(1),在边长为1的等边三角形ABC 中,D ,E 分别是AB ,AC 上的点,AD =AE ,F 是BC 的中点,AF 与DE 交于点G .将△ABF 沿AF 折起,得到如图(2)所示的三棱锥A -BCF ,其中BC =22.(1)证明:DE ∥平面BCF ; (2)证明:CF ⊥平面ABF ;(3)当AD =23时,求三棱锥F -DEG 的体积V F -DEG .(1)证明 在等边△ABC 中,AD =AE ,∴AD DB =AEEC在折叠后的三棱锥A -BCF 中也成立.∴DE ∥BC ,又DE ⊄平面BCF ,BC ⊂平面BCF ,∴DE ∥平面BCF . (2)证明 在等边△ABC 中,F 是BC 的中点,∴AF ⊥CF . ∵在三棱锥A -BCF 中,BC =22, ∴BC 2=BF 2+CF 2=14+14=12,∴CF ⊥BF .又BF ∩AF =F ,∴CF ⊥平面ABF .(3)解 V F -DEG =V E -DFG =13×12×DG ×FG ×GE =13×12×13×⎝ ⎛⎭⎪⎫13×32×13=3324.1. 证明线线平行的常用方法(1)利用平行公理,即证明两直线同时和第三条直线平行; (2)利用平行四边形实行转换; (3)利用三角形中位线定理证明;(4)利用线面平行、面面平行的性质定理证明. 2. 证明线面平行的常用方法(1)利用线面平行的判定定理,把证明线面平行转化为证线线平行; (2)利用面面平行的性质定理,把证明线面平行转化为证面面平行. 3. 证明面面平行的方法证明面面平行,依据判定定理,只要找到一个面内两条相交直线与另一个平面平行即可,从而将证面面平行转化为证线面平行,再转化为证线线平行. 4. 证明线线垂直的常用方法(1)利用特殊平面图形的性质,如利用直角三角形、矩形、菱形、等腰三角形等得到线线垂直;(2)利用勾股定理逆定理;(3)利用线面垂直的性质,即要证线线垂直,只需证明一线垂直于另一线所在平面即可. 5. 证明线面垂直的常用方法(1)利用线面垂直的判定定理,把线面垂直的判定转化为证明线线垂直; (2)利用面面垂直的性质定理,把证明线面垂直转化为证面面垂直;(3)利用常见结论,如两条平行线中的一条垂直于一个平面,则另一条也垂直于这个平面等.6. 证明面面垂直的方法证明面面垂直常用面面垂直的判定定理,即证明一个面过另一个面的一条垂线,将证明面面垂直转化为证明线面垂直,一般先从现有直线中寻找,若图中不存有这样的直线,则借助中点、高线或添加辅助线解决.1. 如图,正方体ABCD -A 1B 1C 1D 1的棱长为1,线段B 1D 1上有两个动点E ,F ,且EF =12,则下列结论中错误的是( )A .AC ⊥BEB .EF ∥平面ABCDC .三棱锥A -BEF 的体积为定值D .△AEF 的距离与△BEF 的面积相等 答案 D解析 ∵AC ⊥平面BB 1D 1D ,又BE ⊂平面BB 1D 1D , ∴AC ⊥BE ,故A 准确.∵B 1D 1∥平面ABCD ,又E 、F 在线段B 1D 1上运动, 故EF ∥平面ABCD .故B 准确.C 中因为点B 到直线EF 的距离是定值,故△BEF 的面积为定值, 又点A 到平面BEF 的距离为定值,故V A -BEF 不变.故C 准确.因为点A 到B 1D 1的距离与点B 到B 1D 1的距离不相等,所以△AEF 与△BEF 的面积不相等,故D 错误.2. 如图所示,在正方体ABCD -A 1B 1C 1D 1中,E 是棱DD 1的中点.(1)证明:平面ADC 1B 1⊥平面A 1BE ;(2)在棱C 1D 1上是否存有一点F ,使B 1F ∥平面A 1BE ?证明你 的结论.(1)证明 如图,因为ABCD -A 1B 1C 1D 1为正方体, 所以B 1C 1⊥面ABB 1A 1. 因为A 1B ⊂面ABB 1A 1, 所以B 1C 1⊥A 1B .又因为A 1B ⊥AB 1,B 1C 1∩AB 1=B 1, 所以A 1B ⊥面ADC 1B 1.因为A 1B ⊂面A 1BE ,所以平面ADC 1B 1⊥平面A 1BE . (2)解 当点F 为C 1D 1中点时,可使B 1F ∥平面A 1BE . 证明如下:易知:EF ∥C 1D ,且EF =12C 1D .设AB 1∩A 1B =O ,则B 1O ∥C 1D 且B 1O =12C 1D ,所以EF ∥B 1O 且EF =B 1O , 所以四边形B 1OEF 为平行四边形. 所以B 1F ∥OE .又因为B 1F ⊄面A 1BE ,OE ⊂面A 1BE .所以B1F∥面A1BE.(推荐时间:60分钟)一、选择题1.已知α,β,γ是三个互不重合的平面,l是一条直线,下列命题中准确的是( )A.若α⊥β,l⊥β,则l∥αB.若l上有两个点到α的距离相等,则l∥αC.若l⊥α,l∥β,则α⊥βD.若α⊥β,α⊥γ,则γ⊥β答案 C解析当α⊥β,l⊥β时,l能够在α内,∴选项A不准确;如果α过l上两点A,B的中点,则A,B到α的距离相等,∴选项B不准确;当α⊥β,α⊥γ时,能够有β∥γ,∴选项D不准确,∴准确选项为C.2.已知直线m,n和平面α,则m∥n的必要不充分条件是( ) A.m∥α且n∥αB.m⊥α且n⊥αC.m∥α且n⊂αD.m,n与α成等角答案 D解析m∥n不能推出m∥α且n∥α,m∥α,n∥α时,m,n可能相交或异面,为即不充分也不必要条件,A不准确;m⊥α,n⊥α时,m∥n,为充分条件,但m∥n不能推出m⊥α,n⊥α,故B不准确;m∥n不能推出m∥α且n⊂α,m∥α,且n⊂α时,m和n可能异面,为即不充分也不必要条件,故C不准确;m∥n时,m,n与α成等角,必要性成立,但充分性不成立,故选D.3.如图,四边形ABCD中,AD∥BC,AD=AB,∠BCD=45°,∠BAD=90°,将△ADB沿BD 折起,使平面ABD⊥平面BCD,构成三棱锥A-BCD.则在三棱锥A-BCD中,下列命题准确的是( )A.平面ABD⊥平面ABC B.平面ADC⊥平面BDCC.平面ABC⊥平面BDC D.平面ADC⊥平面ABC答案 D解析 ∵在四边形ABCD 中,AD ∥BC ,AD =AB ,∠BCD =45°,∠BAD =90°,∴BD ⊥CD , 又平面ABD ⊥平面BCD ,且平面ABD ∩平面BCD =BD ,所以CD ⊥平面ABD ,则CD ⊥AB ,又AD ⊥AB ,AD ∩CD =D ,所以AB ⊥平面ADC ,又AB ⊂平面ABC ,所以平面ABC ⊥平面ADC ,故选D.4. 下列命题中,m 、n 表示两条不同的直线,α、β、γ表示三个不同的平面.①若m ⊥α,n ∥α,则m ⊥n ;②若α⊥γ,β⊥γ,则α∥β;③若m ∥α,n ∥α,则m ∥n ;④若α∥β,β∥γ,m ⊥α,则m ⊥γ.准确的命题是( ) A .①③B .②③C .①④D .②④ 答案 C解析 ②平面α与β可能相交,③中m 与n 能够是相交直线或异面直线.故②③错,选C.5. 一正四面体木块如图所示,点P 是棱VA 的中点,过点P 将木块锯开,使截面平行于棱VB 和AC ,若木块的棱长为a ,则截面面积为( ) A.a 22 B.a 23 C.a 24D.a 25 答案 C解析 如图,在面VAC 内过点P 作AC 的平行线PD 交VC 于点D ,在面VAB 内作VB 的平行线交AB 于点F ,过点D 作VB 的平行线交BC 于点E .连接EF ,易知PF ∥DE ,故P ,D ,E ,F 共面,且面PDEF 与VB和AC 都平行,易知四边形PDEF 是边长为a 2的正方形,故其面积为a 24,故选C. 6. 在正三棱锥S -ABC 中,M ,N 分别是SC ,BC 的中点,且MN ⊥AM ,若侧棱SA =23,则正三棱锥S -ABC 外接球的表面积是 ( )A .12πB .32πC .36πD .48π答案 C解析 由MN ⊥AM 且MN 是△BSC 的中位线得BS ⊥AM ,又由正三棱锥的性质得BS ⊥AC ,所以BS ⊥面ASC .即正三棱锥S -ABC 的三侧棱SA 、SB 、SC 两两垂直,外接球直径为3SA =6.∴球的表面积S =4πR 2=4π×32=36π.选C.二、填空题7.设x,y,z是空间中的不同直线或不同平面,下列条件中能保证“若x⊥z,且y⊥z,则x∥y”为真命题的是________(填出所有准确条件的代号).①x为直线,y,z为平面;②x,y,z为平面;③x,y为直线,z为平面;④x,y为平面,z为直线;⑤x,y,z为直线.答案③④解析因为垂直于同一个平面的两条直线平行,所以③准确;因为垂直于同一条直线的两个平面平行,所以④准确;若直线x⊥平面z,平面y⊥平面z,则可能有直线x在平面y内的情况,所以①不准确;若平面x⊥平面z,平面y⊥平面z,则平面x与平面y 可能相交,所以②不准确;若直线x⊥直线z,直线y⊥直线z,则直线x与直线y可能相交、异面、平行,所以⑤不准确.8.如图,在三棱柱ABC-A1B1C1中,侧棱AA1⊥底面ABC,底面是以∠ABC 为直角的等腰直角三角形,AC=2a,BB1=3a,D是A1C1的中点,点F在线段AA1上,当AF=________时,CF⊥平面B1DF.答案a或2a解析由题意易知,B1D⊥平面ACC1A1,所以B1D⊥CF.要使CF⊥平面B1DF,只需CF⊥DF即可.令CF⊥DF,设AF=x,则A1F=3a-x.易知Rt△CAF∽Rt△FA1D,得ACA1F=AFA1D,即2ax=3a-xa,整理得x2-3ax+2a2=0,解得x=a或x=2a.9.如图,AB为圆O的直径,点C在圆周上(异于点A,B),直线PA垂直于圆O所在的平面,点M为线段PB的中点.有以下四个命题:①PA∥平面MOB;②MO∥平面PAC;③OC⊥平面PAC;④平面PAC⊥平面PBC.其中准确的命题是________(填上所有准确命题的序号).答案②④解析①错误,PA⊂平面MOB;②准确;③错误,否则,有OC⊥AC,这与BC⊥AC矛盾;④准确,因为BC⊥平面PAC.三、解答题10.(2013·重庆)如图,四棱锥P -ABCD 中,PA ⊥底面ABCD ,PA =23, BC =CD =2,∠ACB =∠ACD =π3.(1)求证:BD ⊥平面PAC ;(2)若侧棱PC 上的点F 满足PF =7FC ,求三棱锥P -BDF 的体积. (1)证明 因为BC =CD ,所以△BCD 为等腰三角形,又∠ACB =∠ACD ,故BD ⊥AC .因为PA ⊥底面ABCD ,所以PA ⊥BD .从而BD 与平面PAC 内两条相交直线PA ,AC 都垂直,所以BD ⊥平面PAC .(2)解 三棱锥P -BCD 的底面BCD 的面积S △BCD =12BC ·CD ·sin∠BCD =12×2×2×sin 2π3= 3.由PA ⊥底面ABCD ,得V P -BCD =13·S △BCD ·PA =13×3×23=2.由PF =7FC ,得三棱锥F -BCD 的高为18PA ,故V F -BCD =13·S △BCD ·18PA =13×3×18×23=14,所以V P -BDF =V P -BCD -V F -BCD =2-14=74.11.(2012·广东)如图所示,在四棱锥P -ABCD 中,AB ⊥平面PAD ,AB ∥CD ,PD =AD ,E 是PB 的中点,F 是DC 上的点且DF =12AB ,PH 为△PAD 中AD 边上的高.(1)证明:PH ⊥平面ABCD ;(2)若PH =1,AD =2,FC =1,求三棱锥E -BCF 的体积;(3)证明:EF ⊥平面PAB .(1)证明 因为AB ⊥平面PAD ,PH ⊂平面PAD ,所以PH ⊥AB .因为PH 为△PAD 中AD 边上的高,所以PH ⊥AD .因为PH ⊄平面ABCD ,AB ∩AD =A ,AB ,AD ⊂平面ABCD ,所以PH ⊥平面ABCD .(2)解 如图,连接BH ,取BH 的中点G ,连接EG .因为E 是PB 的中点,所以EG ∥PH ,且EG =12PH =12.因为PH ⊥平面ABCD ,所以EG ⊥平面ABCD .因为AB ⊥平面PAD ,AD ⊂平面PAD ,所以AB ⊥AD ,所以底面ABCD 为直角梯形,所以V E -BCF =13S △BCF ·EG=13·12·FC ·AD ·EG =212.(3)证明 取PA 中点M ,连接MD ,ME .因为E 是PB 的中点,所以ME 綊12AB .又因为DF 綊12AB ,所以ME 綊DF ,所以四边形MEFD 是平行四边形,所以EF ∥MD .因为PD =AD ,所以MD ⊥PA .因为AB ⊥平面PAD ,所以MD ⊥AB .因为PA ∩AB =A ,所以MD ⊥平面PAB ,所以EF ⊥平面PAB .12.如图,在平行四边形ABCD 中,AB =2BC =4,∠ABC =120°,E ,M 分别为AB ,DE 的中点,将△ADE 沿直线DE 翻折成△A ′DE , F 为A ′C 的中点,A ′C =4.(1)求证:平面A ′DE ⊥平面BCD ;(2)求证:FB ∥平面A ′DE .证明 (1)由题意,得△A ′DE 是△ADE 沿DE 翻折而成的, ∴△A ′DE ≌△ADE .∵∠ABC =120°,四边形ABCD 是平行四边形,∴∠A =60°.又∵AD =AE =2,∴△A ′DE 和△ADE 都是等边三角形.如图,连接A ′M ,MC ,∵M 是DE 的中点,∴A′M⊥DE,A′M= 3.在△DMC中,MC2=DC2+DM2-2DC·DM cos 60°=42+12-2×4×1cos60°,∴MC=13.在△A′MC中,A′M2+MC2=(3)2+(13)2=42=A′C2. ∴△A′MC是直角三角形,∴A′M⊥MC.又∵A′M⊥DE,MC∩DE=M,∴A′M⊥平面BCD.又∵A′M⊂平面A′DE,∴平面A′DE⊥平面BCD.(2)取DC的中点N,连接FN,NB.∵A′C=DC=4,F,N分别是A′C,DC的中点,∴FN∥A′D.又∵N,E分别是平行四边形ABCD的边DC,AB的中点,∴BN∥DE.又∵A′D∩DE=D,FN∩NB=N,∴平面A′DE∥平面FNB.∵FB⊂平面FNB,∴FB∥平面A′DE.。