ANSYS流固耦合分析实例命令流

合集下载

ANSYS Workbench 19.0基础入门与工程实践 第24章 流固耦合分析

ANSYS Workbench 19.0基础入门与工程实践 第24章 流固耦合分析
?2431问题描述?2432几何建模?2433流体网格划分?2434流体求解设置?2435流体结果后处理?2436结构场求解设置?2437结构场结果后处理244本章小结?本章主要介绍了流固耦合分析的基本理论和方法同时针对如何在wb190中实现流固耦合进行了详细的介绍并通过两个具体实例对该方法进行逐一讲解为读者提供较为全面的操作指南
24.2 流固耦合分析实例—收缩喷管流固耦合分析
• 本例以收缩喷管为研究对象,利用CFX模块对流固耦合情 况下的结构受力进行仿真模拟,通过详细的操作和仿真说 明,为读者学习和掌握流固耦合方法提供指导和实践案例。
• 24.2.1 问题描述 • 24.2.2 几何建模 • 24.2.3 流体网格划分 • 24.2.4 流体求解设置 • 24.2.5 流体结果后处理 • 24.2.6 结构场求解设置 • 24.2.7 结构场结果后处理
24.1.1 流体控制方程
• 流固耦合问题应该遵循流体力学的三大定律,对于不可压 缩的牛顿流体,守恒定律通过式至式所示的控制方程进行 描述。
• 质量守恒方程:
• 动守恒方程:
• 能量守恒方程:
24.1.2 固体控制方程
• 固体控制方程根据牛顿第二定律导出,如式所示。
24.1.3 流固耦合方程
• 流固耦合方程遵循最基本的守恒原则,在流固耦 合交界面位置,应该满足流体与固体应力、位移 的相等或者守恒,如式所示。
24.1.4 流固耦合仿真流程
• 本章主要介绍单向流固耦合的分析过程,通常在WB 19.0 中实现流固耦合的流程如图左所示,其中流体的计算可以 采用CFD或者CFX两种求解器。在WB 19.0中创建分析项目, 如图右所示。
24.4 本章小结
• 本章主要介绍了流固耦合分析的基本理论和方法,同时针 对如何在WB 19.0中实现流固耦合进行了详细的介绍,并 通过两个具体实例对该方法进行逐一讲解,为读者提供较 为全面的操作指南。

ansys workbench 流固耦合计算实例

ansys workbench 流固耦合计算实例

Oscillating Plate with Two-Way Fluid-Structure InteractionIntroductionThis tutorial includes:•Features•Overview of the Problem to Solve•Setting up the Solid Physics in Simulation (ANSYS Workbench)•Setting up the Fluid Physics and ANSYS Multi-field Settings in ANSYS CFX-Pre•Obtaining a Solution using ANSYS CFX-Solver Manager•Viewing Results in ANSYS CFX-PostIf this is the first tutorial you are working with, it is important to review the following topics before beginning:•Setting the Working Directory•Changing the Display ColorsUnless you plan on running a session file, you should copy the sample files used in this tutorial from the installation folder for your software (<CFXROOT>/examples/) to your working directory. This prevents you from overwriting source files provided with your installation. If you plan to use a session file, please refer to Playing a Session File.Sample files referenced by this tutorial include:•OscillatingPlate.pre•OscillatingPlate.agdb•OscillatingPlate.gtm•OscillatingPlate.inp1.FeaturesThis tutorial addresses the following features of ANSYS CFX.In this tutorial you will learn about:•Moving mesh•Fluid-solid interaction (including modeling solid deformation using ANSYS)•Running an ANSYS Multi-field (MFX) simulation•Post-processing two results files simultaneously.2.Overview of the Problem to SolveThis tutorial uses a simple oscillating plate example to demonstrate how to set up and run a simulation involving two-way Fluid-Structure Interaction, where the fluid physics is solved in ANSYS CFX and the solid physics is solved in the FEA package ANSYS. Coupling between the two solvers is required throughout the solution to model the interaction between fluid and solid as time progresses, and the framework for the coupling is provided by the ANSYS Multi-field solver, using the MFX setup.The geometry consists of a 2D closed cavity. A thin plate is anchored to the bottom of the cavity as shown below:An initial pressure of 100 Pa is applied to one side of the thin plate for 0.5 seconds in order to distort it. Once this pressure is released, the plate oscillates backwards and forwards as it attempts to regain its equilibrium (vertical) position. The surrounding fluid damps the oscillations, which therefore have an amplitude that decreases in time. The CFX Solver calculates how the fluid responds to the motion of the plate, and the ANSYS Solver calculates how the plate deforms as a result of both the initial applied pressure and the pressure resulting from the presence of the fluid. Coupling between the two solvers is required since the solid deformation affects the fluid solution, and the fluid solution affects the solid deformation.The tutorial describes the setup and execution of the calculation including the setup of the solid physics in Simulation (within ANSYS Workbench) and the setup of the fluid physics and ANSYS Multi-field settings in ANSYS CFX-Pre. If you do not have ANSYS Workbench, then you can use the provided ANSYS input file to avoid the need for Simulation.3.Setting up the Solid Physics in Simulation (ANSYS Workbench)This section describes the step-by-step definition of the solid physics in Simulation within ANSYS Workbench that will result in the creation of an ANSYS input file OscillatingPlate.inp. If you prefer, you can instead use the provided OscillatingPlate.inp file and continue from Setting up the Fluid Physics and ANSYS Multi-field Settings in ANSYS CFX-Pre.Creating a New Simulation1.If required, launch ANSYS Workbench.2.Click Empty Project. The Project page appears displaying an unsaved project.3.Select File > Save or click Save button.4.If required, set the path location to a different folder. The default location is your workingdirectory. However, if you have a specific folder that you want to use to store files created during this tutorial, change the path.5.Under File name, type OscillatingPlate.6.Click Save.7.Under Link to Geometry File on the left hand task bar click Browse. Select the providedfile OscillatingPlate.agdb and click Open.8.Make sure that OscillatingPlate.agdb is highlighted and click New simulation from theleft-hand taskbar.Creating the Solid Material1.When Simulation opens, expand Geometry in the project tree at the left hand side of theSimulation window.2.Select Solid, and in the Details view below, select Material.e the arrow that appears next to the material name Structural Steel to select NewMaterial.4.When the Engineering Data window opens, right-click New Material from the tree viewand rename it to Plate.5.Enter 2.5e06 for Young's Modulus, 0.35 for Poisson's Ratio and 2550 for Density.Note that the other properties are not used for this simulation, and that the units for these values are implied by the global units in Simulation.6.Click the Simulation tab near the top of the Workbench window to return to thesimulation.Basic Analysis SettingsThe ANSYS Multi-field simulation is a transient mechanical analysis, with a timestep of 0.1 s and a time duration of 5 s.1.Select New Analysis > Flexible Dynamic from the toolbar.2.Select Analysis Settings from the tree view and in the Details view below, set Auto TimeStepping to Off.3.Set Time Step to 0.1.4.Under Tabular Data at the bottom right of the window, set End Time to5.0 for theSteps = 1 setting.Inserting LoadsLoads are applied to an FEA analysis as the equivalent of boundary conditions in ANSYS CFX. In this section, you will set a fixed support, a fluid-solid interface, and a pressure load. Fixed SupportThe fixed support is required to hold the bottom of the thin plate in place.1.Right-click Flexible Dynamic in the tree and select Insert> Fixed Support from theshortcut menu.2.Rotate the geometry using the Rotate button so that the bottom (low-y) face of thesolid is visible, then select Face and click the low-y face.That face should be highlighted to indicate selection.3.Ensure Fixed Support is selected in the Outline view, then, in the Details view, selectGeometry and click 1 Face to make the Apply button appear (if necessary). Click Apply to set the fixed support.Fluid-Solid InterfaceIt is necessary to define the region in the solid that defines the interface between the fluid in CFX and the solid in ANSYS. Data is exchanged across this interface during the execution of the simulation.1.Right-click Flexible Dynamic in the tree and select Insert > Fluid Solid Interface fromthe shortcut menu.ing the same face-selection procedure described earlier, select the three faces of thegeometry that form the interface between the solid and the fluid (low-x, high-y and high-x faces) by holding down <Ctrl> to select multiple faces. Note that this load is automatically given an interface number of 1.Pressure LoadThe pressure load provides the initial additional pressure of 100 [Pa] for the first 0.5 seconds of the simulation. It is defined using a step function.1.Right-click Flexible Dynamic in the tree and select Insert > Pressure from the shortcutmenu.2.Select the low-x face for Geometry.3.In the Details view, select Magnitude, and using the arrow that appears, select Tabular(Time).4.Under Tabular Data, set a pressure of 100 in the table row corresponding to a time of 0.Note: The units for time and pressure in this table are the global units of [s]and [Pa], respectively.5.You now need to add two new rows to the table. This can be done by typing the new timeand pressure data into the empty row at the bottom of the table, and Simulation will automatically re-order the table in order of time value. Enter a pressure of 100 for a time value of 0.499, and a pressure of 0 for a time value of 0.5.This gives a step function for pressure that can be seen in the chart to the left of the table. Writing the ANSYS Input FileThe Simulation settings are now complete. An ANSYS Multi-field run cannot be launched from within Simulation, so the Solve buttons cannot be used to obtain a solution.1.Instead, highlight Solution in the tree, select Tools> Write ANSYS Input File andchoose to write the solution setup to the file OscillatingPlate.inp.2.The mesh is automatically generated as part of this process. If you want to examine it,select Mesh from the tree.3.Save the Simulation database, use the tab near the top of the Workbench window to returnto the Oscillating Plate [Project] tab, and save the project itself.4.Setting up the Fluid Physics and ANSYS Multi-field Settings in ANSYS CFX-PreThis section describes the step-by-step definition of the flow physics and ANSYS Multi-field settings in ANSYS CFX-Pre.Playing a Session FileIf you want to skip past these instructions and to have ANSYS CFX-Pre set up the simulation automatically, you can select Session > Play Tutorial from the menu in ANSYS CFX-Pre, then run the session file: OscillatingPlate.pre. After you have played the session file as described in earlier tutorials under Playing the Session File and Starting ANSYS CFX-Solver Manager, proceed to Obtaining a Solution using ANSYS CFX-Solver Manager.Creating a New Simulation1.Start ANSYS CFX-Pre.2.Select File > New Simulation.3.Select General and click OK.4.Select File > Save Simulation As.5.Under File name, type OscillatingPlate.6.Click Save.Importing the Mesh1.Right-click Mesh and select Import Mesh.2.Select the provided mesh file, OscillatingPlate.gtm and click Open.Note:The file that was just created in Simulation, OscillatingPlate.inp, will be used as an input file for the ANSYS Solver.Setting the Simulation TypeA transient ANSYS Multi-field run executes as a series of timesteps. The Simulation Type tab is used both to enable an ANSYS Multi-field run and to specify the time-related settings for it (in the External Solver Coupling settings). The ANSYS input file is read by ANSYS CFX-Pre so that it knows which Fluid Solid Interfaces are available.Once the timesteps and time duration are specified for the ANSYS Multi-field run (coupling run), ANSYS CFX automatically picks up these settings and it is not possible to set the timestep and time duration independently. Hence the only option available for Time Duration is Coupling Time Duration, and similarly for the related settings Time Step and Initial Time.1.Click Simulation Type .2.Apply the following settingsTab Setting ValueBasic Settings External Solver Coupling > Option ANSYS MultiField External Solver Coupling > ANSYS Input FileOscillatingPlate.inp[a]Coupling Time Control > Coupling Time Duration > TotalTime5 [s]Coupling Time Control > Coupling Time Steps > Option TimestepsCoupling Time Control > Coupling Time Steps > Timesteps 0.1 [s]Simulation Type > Option TransientSimulation Type > Time Duration > Option Coupling Time Duration Simulation Type > Time Steps > Option Coupling Time Steps Simulation Type > Initial Time > Option Coupling Initial Time[a] This file is located in your working directory.3.Click OK.Note:You may see a physics validation message related to the difference in the units used in ANSYS CFX-Pre and the units contained within the ANSYS input file. While it is important to review the units used in any simulation, you should be aware that, in this specific case, the message is not crucial as it is related to temperature units and there is no heat transfer in this case. Therefore, this specific tutorial will not be affected by the physics message.Creating the FluidA custom fluid is created with user-specified properties.1.Click Material .2.Set the name of the new material to Fluid.3.Apply the following settingsTab Setting ValueBasic Settings Option Pure Substance Thermodynamic State (Selected) Thermodynamic State > Thermodynamic State LiquidMaterial Properties Equation of State > Molar Mass 1 [kg kmol^-1]4.Click OK.Creating the DomainIn order to allow the ANSYS Solver to communicate mesh displacements to the CFX Solver, mesh motion must be activated in CFX.1.Right click Simulation in the Outline tree view and ensure that Automatic DefaultDomain is selected. A domain named Default Domain should now appear under the Simulation branch.2.Double click Default Domain and apply the following settings3.Click OK.Creating the Boundary ConditionsIn addition to the symmetry conditions, another type of boundary condition corresponding with the interaction between the solid and the fluid is required in this tutorial.Fluid Solid External BoundaryThe interface between ANSYS and CFX is defined as an external boundary in CFX that has its mesh displacement being defined by the ANSYS Multi-field coupling process.When an ANSYS Multi-field specification is being made in ANSYS CFX-Pre, it is necessary to provide the name and number of the matching Fluid Solid Interface that was created in Simulation. Since the interface number in Simulation was 1, the name in question is FSIN_1. (If the interface number had been 2, then the name would have been FSIN_2, and so on.)On this boundary, CFX will send ANSYS the forces on the interface, and ANSYS will send back the total mesh displacement it calculates given the forces passed from CFX and the other defined loads.1.Create a new boundary condition named Interface.2.Apply the following settings3.Click OK.Symmetry BoundariesSince a 2D representation of the flow field is being modeled (using a 3D mesh with one element thickness in the Z direction) symmetry boundaries will be created on the low and high Z 2D regions of the mesh.1.Create a new boundary condition named Sym1.2.Apply the following settings3.Click OK.4.Create a new boundary condition named Sym2.5.Apply the following settings6.Click OK.Setting Initial ValuesSince a transient simulation is being modeled, initial values are required for all variables.1.Click Global Initialization .2.Apply the following settings:Tab Setting ValueGlobal Settings Initial Conditions > Cartesian Velocity Components > U0 [m s^-1] Initial Conditions > Cartesian Velocity Components > V0 [m s^-1] Initial Conditions > Cartesian Velocity Components > W0 [m s^-1] Initial Conditions > Static Pressure > RelativePressure0 [Pa]3.Click OK.Setting Solver ControlVarious ANSYS Multi-field settings are contained under Solver Control under the External Coupling tab. Most of these settings do not need to be changed for this simulation.Within each timestep, a series of “coupling” or “stagger” iterations are performed to ensure that CFX, ANSYS and the data exchanged between the two solvers are all consistent. Within each stagger iteration, ANSYS and CFX both run once each, but which one runs first is a user-specifiable setting. In general, it is slightly more efficient to choose the solver that drives the simulation to run first. In this case, the simulation is being driven by the initial pressure applied in ANSYS, so ANSYS is set to solve before CFX within each stagger iteration.1.Click Solver Control .2.Apply the following settings:Tab Setting ValueBasic Settings Transient Scheme > OptionSecond OrderBackward Euler Convergence Control > Minimum Number ofCoefficient Loops(Selected) Convergence Control > Minimum Number ofCoefficient Loops > Min. Coeff. Loops2[a]Convergence Control > Max. Coeff. Loops 3External Coupling Coupling Step Control > Solution SequenceControl > Solve ANSYS FieldsBefore CFX FieldsTab Setting Value[a] This setting is optional. The default value of 1 is also acceptable.3.Click OK.Setting Output ControlThis step sets up transient results files to be written at set intervals.1.Click Output Control .2.On the Trn Results tab, create a new transient result with the default name.3.Apply the following settings to Transient Results 1:Setting ValueOption Selected VariablesOutput Variable List Pressure, Total Mesh Displacement, VelocityOutput Frequency > Option Every Coupling Step[a][a] This setting writes a transient results file every multi-field timestep.4.Click the Monitor tab.5.Select Monitor Options.6.Under Monitor Points and Expressions:7.Click Add new item and accept the default name.8.Set Option to Cartesian Coordinates.9.Set Output Variables List to Total Mesh Displacement X.10.Set Cartesian Coordinates to [0, 1, 0].11.Click OK.Writing the Solver (.def) File1.Click Write Solver File .2.If the Physics Validation Summary dialog box appears, click Yes to proceed.3.Apply the following settingsSetting ValueFile name OscillatingPlate.defQuit CFX–Pre[a](Selected)[a] If using ANSYS CFX-Pre in Standalone Mode.4.Ensure Start Solver Manager is selected and click Save.5.If you are notified the file already exists, click Overwrite.6.This file is provided in the tutorial directory and will exist in your working folder if youhave copied it there.7.Quit ANSYS CFX-Pre, saving the simulation (.cfx) file at your discretion.5.Obtaining a Solution using ANSYS CFX-Solver ManagerThe execution of an ANSYS Multi-field simulation requires both the CFX and ANSYS solvers to be running and communicating with each other. ANSYS CFX-Solver Manager can be used to launch both solvers and to monitor the output from both.1.Ensure the Define Run dialog box is displayed.There is a new MultiField tab which contains settings specific for an ANSYS Multi-field simulation.2.On the MultiField tab, check that the ANSYS input file location is correct (the location isrecorded in the definition file but may need to be changed if you have moved files around).3.On UNIX systems, you may need to manually specify where the ANSYS installation is ifit is not in the default location. In this case, you must provide the path to the v110/ansys directory.4.Click Start Run.The run begins by some initial processing of the ANSYS Multi-field input which results in the creation of a file containing the necessary multi-field commands for ANSYS, and then the ANSYS Solver is started. The CFX Solver is then started in such a way that it knows how to communicate with the ANSYS Solver.After the run is under way, two new plots appear in ANSYS CFX-Solver Manager:ANSYS Field Solver (Structural) This plot is produced only when the solid physics is set to use large displacements or when other non-linear analyses are performed. It shows convergence of the ANSYS Solver. Full details of the quantities are described in the ANSYS user documentation. In general, the CRIT quantities are the convergence criteria for each relevant variable, and the L2 quantities represent the L2 Norm of the relevant variable. For convergence, the L2 Norm should be below the criteria. The x-axis of the plot is the cumulative iteration number for ANSYS, which does not correspond to either timesteps or stagger iterations. Several ANSYS iterations will beperformed for each timestep, depending on how quickly ANSYS converges. You will usually see a somewhat “spiky” plot, as each quantity will be unconverged at the start of each timestep, and then convergence will improve.ANSYS Interface Loads (Structural)This plot shows the convergence for each quantity that is part of the data exchanged between the CFX and ANSYS Solvers. In this case, four lines appear, corresponding to two force components (FX and FY) and two displacement components (UX and UY). Since the analysis is 2D, FZ and UZ are not exchanged. Each quantity is converged when the plot shows a negative value. The x-axis of the plot corresponds to the cumulative number of stagger iterations (coupling iterations) and there are several of these for every timestep. Again, a spiky plot is expected as the quantities will not be converged at the start of a timestep.The ANSYS out file is displayed in ANSYS CFX-Solver Manager as an extra tab. Similar to the CFX out file, this is a text file recording output from ANSYS as the solution progresses.1.Click the User Points tab and watch how the top of the plate displaces as the solutiondevelops.2.When the solvers have finished and ANSYS CFX-Solver Manager puts up a dialog boxto tell you this, click Yes to post-process the results.3.If using Standalone Mode, quit ANSYS CFX-Solver Manager.6.Viewing Results in ANSYS CFX-PostFor an ANSYS Multi-field run, both the CFX and ANSYS results files will be opened up in ANSYS CFX-Post by default if ANSYS CFX-Post is started from a finished run in ANSYS CFX-Solver Manager.Plotting Results on the SolidWhen ANSYS CFX-Post reads an ANSYS results file, all the ANSYS variables are available to plot on the solid, including stresses and strains. The mesh regions available for plots by default are limited to the full boundary of the solid, plus certain named regions which are automatically created when particular types of load are added in Simulation. For example, any Fluid Solid Interface will have a corresponding mesh region with a name such as FSIN 1. In this case, there is also a named region corresponding to the location of the fixed support, but in general pressure loads do not result in a named region.You can add extra mesh regions for plotting by creating named selections in Simulation - see the Simulation product documentation for more details. Note that the named selection must have a name which contains only English letters, numbers and underscores for the named mesh region to be successfully created.Note that when ANSYS CFX-Post loads an ANSYS results file, the true global range for each variable is not automatically calculated, as this would add a substantial amount of time onto how long it takes to load such a file (you can turn on this calculation using Edit > Options and using the Pre-calculate variable global ranges setting under CFX-Post> Files). When the global range is first used for plotting a variable, it is calculated as the range within the current timestep. As subsequent timesteps are loaded into ANSYS CFX-Post, the Global Range is extended each time variable values are found outside the previous Global Range.1.Turn on the visibility of Boundary ANSYS (under ANSYS > Domain ANSYS).2.Right-click a blank area in the viewer and select Predefined Camera > View Towards-Z. Zoom into the plate to see it clearly.3.Apply the following settings to Boundary ANSYS:4.Click Apply.5.Select Tools> Timestep Selector from the task bar to open the Timestep Selectordialog box. Notice that a separate list of timesteps is available for each results file loaded, although for this case the lists are the same. By default, Sync Cases is set to By Time Value which means that each time you change the timestep for one results file, ANSYS CFX-Post will automatically load the results corresponding to the same time value for all other results files.6.Set Match to Nearest Available.7.Change to a time value of 1 [s] and click Apply.The corresponding transient results are loaded and you can see the mesh move in both the CFX and ANSYS regions.1.Clear the visibility check box of Boundary ANSYS.2.Create a contour plot, set Locations to Boundary ANSYS and Sym2, and set Variable toTotal Mesh Displacement. Click Apply.ing the timestep selector, load time value 1.1 [s] (which is where the maximum totalmesh displacement occurs).This verifies that the contours of Total Mesh Displacement are continuous through both the ANSYS and CFX regions.Many FSI cases will have only relatively small mesh displacements, which can make visualization of the mesh displacement difficult. ANSYS CFX-Post allows you to visually magnify the mesh deformation for ease of viewing such displacements. Although it is not strictly necessary for this case, which has mesh displacements which are easily visible unmagnified, this is illustrated by the next few instructions.ing the timestep selector, load time value 0.1 [s] (which has a much smaller meshdisplacement than the currently loaded timestep).2.Place the mouse over somewhere in the viewer where the background color is showing.Right-click and select Deformation > Auto. Notice that the mesh displacements are now exaggerated. The Auto setting is calculated to make the largest mesh displacement a fixed percentage of the domain size.3.To return the deformations to their true scale, right-click and select Deformation > TrueScale.Creating an Animationing the Timestep Selector dialog box, ensure the time value of 0.1 [s] is loaded.2.Clear the visibility check box of Contour 1.3.Turn on the visibility of Sym2.4.Apply the following settings to Sym2.5.Click Apply.6.Create a vector plot, set Locations to Sym1 and leave Variable set to Velocity. SetColor to be Constant and choose black. Click Apply.7.Select the visibility check box of Boundary ANSYS, and set Color to a constant blue.8.Click Animation .The Animation dialog box appears.9.Select Keyframe Animation.10.In the Animation dialog box:a.Click New to create KeyframeNo1.b.Highlight KeyframeNo1, then change # of Frames to 48.c.Load the last timestep (50) using the timestep selector.d.Click New to create KeyframeNo2.The # of Frames parameter has no effect for the last keyframe, so leave it at thedefault value.e.Select Save MPEG.f.Click Browse next to the MPEG file data box to set a path and file name forthe MPEG file.If the file path is not given, the file will be saved in the directory from whichANSYS CFX-Post was launched.g.Click Save.The MPEG file name (including path) will be set, but the MPEG will not becreated yet.h.Frame 1 is not loaded (The loaded frame is shown in the middle of theAnimation dialog box, beside F:). Click To Beginning to load it then waita few seconds for the frame to load.i.Click Play the animation .The MPEG will be created as the animation proceeds. This will be slow, since atimestep must be loaded and objects must be created for each frame. To view theMPEG file, you need to use a viewer that supports the MPEG format.11.When you have finished, exit ANSYS CFX-Post.。

ANSYSWorkbench流-固耦合计算方法解析

ANSYSWorkbench流-固耦合计算方法解析

ANSYSWorkbench流-固耦合计算方法解析流-固耦合主要研究流体流动导致结构变形,而结构变形可能会影响流体流动。

基于ANSYS Workbench可以实现单向和双向流固耦合,而且可以处理结构发生大变形的双向流固耦合计算,流固耦合计算的典型应用包括,机翼颤振,管道振动,导线覆冰振动,含流体容器晃动,结构跌落入水冲击,柔性结构扰流振动等。

目前,ANSYS版本已经更新到了2023R1,各类流固耦合计算功能,更加完善,操作使用更加方便,对于流固耦合根据耦合方式可以分为:(1)单向耦合。

A场对B场有影响,而B场对A场没有影响,常见的问题就是热应力计算,一般的热应力计算中,只考虑温度对结构的影响,而忽律结构变形对温度场的影响;(2)双向耦合。

A场对B场有影响,而B场对A场也有影响,例如气动颤振问题,流场对结构的变形有影响,反过来结构变形也会影响流场。

ANSYS目前主要提供了四种流固耦合仿真策略:(1)Fluent+结构模块(稳态或瞬态)该方法可以完成各类稳态或瞬态的单向流固耦合计算,计算效率高,数据传递稳定,例如,各类流体载荷导致的结构变形和应力,结构在流体作用下的小变形振动等。

(2)Fluent+结构模块(稳态或瞬态)该方法在Fluent中完成流场求解,获得流场的压力;在结构模块(稳态或瞬态)完成固体场求解,获得变形,然后通过系统耦合器完成数据的交互传递,该方法,即可以完成单向流固耦合计算,也可以完成双向流固耦合计算,但是在同一时刻,只有一个场在求解,双向流固耦合的求解时间较长。

(3)基于LS-DYNA软件完成流固耦合计算LS-DYNA支持ICFD求解器与其自身的固体力学求解器之间的耦合。

ICFD求解器适用于五大行业多物理场应用:•汽车行业,LS-DYNA传统应用领域,ICFD可针对热-结构耦合的外部空气动力学分析提供解决方案;•制造行业,ICFD可应用于冷却相关分析,例如金属冲压,电池组的冷却等;•能源行业,尤其是风能行业。

【2019年整理】ansys14workbench血管流固耦合分析实例

【2019年整理】ansys14workbench血管流固耦合分析实例

Ansys14 workbench血管流固耦合实例根据收集的一些资料,进行学习后,试着做了这个ansys14workbench的血管流固耦合模拟,感觉能够耦合上,仅是熟悉流固耦合分析过程,不一定正确,仅供参考,希望大家多讨论。

谢谢!1、先在proe5中建立血管与血液流体区的模型(两者装配起来),或者直接在workbench中建模。

图1 模型图2、新建工程。

在workbench中toolbox中选custom system,双击FSI: FluidFlow(fluent)->static structure.图2 计算工程3、修改engineering data,因为系统缺省材料是钢,需要构建血管材料,如图3所示。

先复制steel,而后修改密度1150kg/m3,杨氏模量4.5e8Pa,泊松比0.3,重新命名,最后在主菜单中点击“update project”保存.图3 修改工程材料4、模型导入,进入gemetry模块,import外部模型文件。

图4 模型导入图5、进入FLUENT网格划分。

在workbench工程视图中的Mesh上点击右键,选择Edit…,如图5所示,进入网格划分meshing界面,如图6所示。

我们这里需要去掉血管部分,只保留血液几何。

图5 进入网格划分图6 禁用血管模型6、设置网格方法。

默认是采用ICEM CFD进行网格划分,设置方式如图7所示,截面圆弧边分为12份,纵截面的边均分为10份,网格结果如图8所示。

另外在这个界面中要设置边界的几何面,如inlet、outlet、symmetry图7 设置网格划分方式图8 最终出网格图9 边界几何7、进入fluent图10 进入fluent关闭mesh,回到fluent工程窗口,右键点击setup,选择edit…,进入fluent。

这里设置瞬态计算,流体为血液(密度1060,动力粘度0.004pas),入口压力波动(用profile输入),出口压力0Pa,采用k-e湍流模型。

ANSYS流体(CFX)结构(Structure)耦合计算流程

ANSYS流体(CFX)结构(Structure)耦合计算流程

ANSYS流体(CFX)/结构(Structure)耦合计算流程本人最近在学习这方面的知识,对流固耦合问题有了初步的认识,现发在这里,和大家分享,并请求指正!在ANSYS的早期版本,ANSYS与CFX之间的流固耦合计算是单向耦合的,而从ANSYS10.0开始,ANSYS可以和CFX进行双向的流固耦合计算,即对一个包含固体和流体计算域的模型可以分别在ANSYS和CFX中同时进行计算,数据进行时时交换耦合;对于从ANSYS 传来的网格位移,CFX中可以自动进行网格变形。

一般单向耦合适合于结构形状对流体影响不大的情况,而当结构形状对流体影响很显著时就得用双向耦合。

在ANSYS和CFX之间进行流固耦合计算的过程如下:分别在ANSYS中建立结构域模型和在CFX中建立流体域模型,并对结构域模型和流体域模型分别划分有限元网格以及物理定义,之后会在CFX中针对流体域会生成*.def文件,在ANSYS中针对结构域生成*.in文件。

有了这两个文件后,启动ANSYS/CFX,分别指定*.def 文件和*.in文件开始ANSYS和CFX之间的双向耦合计算,在流固耦合计算中,定义流固界面,程序自动进行在流固界面进行平衡迭代,完成稳态和瞬态流固耦合分析。

图片附件: 流程.JPG (2006-4-4 17:53, 62.23 K)上图为流固耦合以及与sysnoise声学软件的耦合解决方案,其中红色框为ansys10.0提供的流固耦合的流程。

下图就是10。

0中进行流固耦合时的启动界面。

分别指定*.in文件和*.def文件,就可以进行双向的流固耦合计算。

程序同时启动ansys和CFX进行计算。

这与以前版本的流固耦合具有非常大的区别。

图片附件: 启动界面.JPG (2006-4-4 18:00, 92.11 K)。

ANSYS流固耦合

ANSYS流固耦合
ANSYS流固耦合分析示例 流固耦合分析示例
教程大纲
在这个教程中您将学到:
– – – – 移动网格 流体-固体相互作用模拟 运用ANSYS-MultiField模拟 同时处理两个结果文件
问题概述
在这个教程中,运用一个简单的摆动板例题来解释 怎样建立以及模拟流体-结构相互作用的问题。其 中流体模拟在ANSYS CFX求解器中运行,而用 ANSYS软件包中的FEA来模拟固体问题。模拟流固 相互作用的整个过程中需要两个求解器的耦合运 行,ANSYS-MultiField求解器提供了耦合求解的平 台。
4. 点击OK
设置流体问题、 中设置ANSYS MultiField 设置流体问题、在ANSYS CFX-Pre中设置 中设置
创建域:为了使ANSYS Solver能够把网格变形信息传递给 CFX Solver,在CFX中必须激活网格移动。 1. 重命名Default Domain为OscillatingPlate,并打开进行编 辑 2. 应用以下设置
8.
点击OK
设置流体问题、 中设置ANSYS MultiField 设置流体问题、在ANSYS CFX-Pre中设置 中设置
输出求解器文件(.def) 1. 点击Write Solver File 2. 如果 Physics Validation Summary 对话框出现,点击 Yes 以继续 3. 应用以下设置
3.
点击OK
设置流体问题、 中设置ANSYS MultiField 设置流体问题、在ANSYS CFX-Pre中设置 中设置
创建边界条件 • 流体外部边界
1. 2. 创建一个新边界条件,命名为Interface. 应用以下设置
3.
点击OK
设置流体问题、 中设置ANSYS MultiField 设置流体问题、在ANSYS CFX-Pre中设置 中设置

ansys流固耦合案例

ansys流固耦合案例

ansys流固耦合案例1. Ansys流固耦合案例:热沉设计热沉是一种用于散热的设备,通常用于电子设备中,以降低温度并保护设备不受过热损坏。

在设计热沉时,流体流动和热传导是两个重要的物理过程。

Ansys流固耦合可以帮助工程师模拟和优化热沉的设计。

在这个案例中,我们考虑了一个由铝合金制成的热沉。

热沉的底部与电子设备紧密接触,通过流体流动和热传导来吸收和传递热量。

通过使用Ansys的流固耦合模块,我们可以解决以下问题:1) 流体流动模拟:我们可以使用Ansys Fluent模块模拟流体在热沉内部的流动情况。

通过设定合适的边界条件和材料属性,我们可以计算出流体的速度场和压力场。

2) 热传导模拟:我们可以使用Ansys Mechanical模块模拟热沉内部的热传导过程。

通过设定热源和材料属性,我们可以计算出热沉内部的温度分布。

3) 流固耦合模拟:在流体流动和热传导模拟的基础上,我们可以使用Ansys的流固耦合模块将二者结合起来。

通过设定合适的耦合条件,我们可以模拟出流体对热沉的冷却效果,并计算出热沉的最终温度分布。

通过这个案例,我们可以优化热沉的设计,以达到更好的散热效果。

我们可以调整热沉的几何形状、材料属性和流体流动条件,以最大程度地提高散热效率,并确保电子设备的正常运行。

2. Ansys流固耦合案例:风力发电机叶片设计风力发电机叶片是将风能转化为机械能的关键部件。

在设计风力发电机叶片时,流体力学和结构力学是两个重要的物理过程。

Ansys 流固耦合可以帮助工程师模拟和优化叶片的设计。

在这个案例中,我们考虑了一个三叶式风力发电机叶片。

叶片由复合材料制成,通过受风力作用,将机械能传递给发电机。

通过使用Ansys的流固耦合模块,我们可以解决以下问题:1) 风场模拟:我们可以使用Ansys Fluent模块模拟风力对叶片的作用。

通过设定合适的边界条件和材料属性,我们可以计算出风场的速度场和压力场。

2) 结构分析:我们可以使用Ansys Mechanical模块模拟叶片的结构响应。

ANSYS流固耦合分析实例

ANSYS流固耦合分析实例
(Time) 4. 在整个视窗的右底边Tabular Data面板,在表中相对应于时间
为0 [s]设置压力为100 [pa] 5. 表中需要继续输入两排参数,100 [pa]对应于0.499 [s], 0 [pa]
对应于0.5 [s]
模拟中固体问题的描述—记录ANSYS输入文件
现在,模拟设置已经完成。在Simulation中ANSYS MultiField 并不运行,因此用求解器按钮并不能得到结果 1. 然 而 , 在 目 录 树 中 的 高 亮 Solution 中 , 选 择 Tools > Write ANSYS Input File,把结果写进文件OscillatingPlate.inp 2. 网格是自动生成的,如果想检查,可以在目录树中选择Mesh 3. 保存Simulation数据,返回Oscillating Plate [Project]面板, 存储Project
固定支撑:为确保薄板的底部固定于平板,需要设置固定支撑 条件。
1. 右击目录树中Transient Stress,在快捷菜单中选择Insert > Fixed Support
2. 用旋转键 旋转几何模型,以便可以看见模型底面(low-y), 然后选择 并点击底面(low-y)
3. 在Details窗口,选择Geometry,然后点击No Selection使Apply 按钮出现(如果需要)。点击Apply以设置固支。
设置仿真类型: 1. 选择 Insert > Simulation Type. 2. 应用以下设置: 3. 点击OK
设置流体问题、在ANSYS CFX-Pre中设置ANSYS MultiField
建立流体物质 1. 选择 Insert > Material. 2. 把新物质名定义为 Fluid. 3. 应用以下设置

【达尔整理】ANSYS流固耦合分析实例命令流

【达尔整理】ANSYS流固耦合分析实例命令流

达尔文档DareDoc分享知识传播快乐ANSYS流固耦合分析实例命令流本资料来源于网络,仅供学习交流2015年10月达尔文档|DareDoc整理目录ANSYS流固耦合例子命令流............................................................................. 错误!未定义书签。

ANSYS流固耦合的方式 (3)一个流固耦合模态分析的例子1 (3)一个流固耦合模态分析的例子2 (4)一个流固耦合建模的例子 (7)一加筋板在水中的模态分析 (8)一圆环在水中的模态分析 (10)接触分析实例---包含初始间隙 (14)耦合小程序 (19)流固耦合练习 (21)一个流固耦合的例子 (22)使用物理环境法进行流固耦合的实例及讲解 (23)针对液面晃动问题,ANSYS/LS-DYNA提供三种方法 (30)1、流固耦合 (30)2、SPH算法 (34)3、ALE(接触算法) (38)脱硫塔于浆液耦合的分析 (42)ANSYS坝-库水流固耦合自振特性的例子 (47)空库时的INP文件 (47)满库时的INP文件 (49)计算结果 (52)ANSYS流固耦合的方式一般说来,ANSYS的流固耦合主要有4种方式:1,sequential这需要用户进行APDL编程进行流固耦合sequentia指的是顺序耦合以采用MpCCI为例,你可以利用ANSYS和一个第三方CFD产品执行流固耦合分析。

在这个方法中,基于网格的平行代码耦合界面(MpCCI) 将ANSYS和CFD程序耦合起来。

即使网格上存在差别,MpCCI也能够实现流固界面的数据转换。

ANSYS CD中包含有MpCCI库和一个相关实例。

关于该方法的详细信息,参见ANSYS Coupled-Field Analysis Guide中的Sequential Couplin2,FSI solver流固耦合的设置过程非常简单,推荐你使用这种方式3,multi-field solver这是FSI solver的扩展,你可以使用它实现流体,结构,热,电磁等的耦合4,直接采用特殊的单元进行直接耦合,耦合计算直接发生在单元刚度矩阵一个流固耦合模态分析的例子1这是一个流固耦合模态分析的典型事例,采用ANSYS/MECHANICAL可以完成。

ansys流固耦合案例

ansys流固耦合案例

ansys流固耦合案例
ANSYS流固耦合是一种模拟分析技术,用于研究流体和固体之间的相互作用。

它可以在一个模拟中同时考虑流体和固体的运动和变形,从而更准确地预测系统的行为。

以下是一些ANSYS流固耦合的应用案例:
1. 水下爆炸冲击分析:在这种情况下,流固耦合分析可以用于研究水中的爆炸冲击对周围结构的影响。

通过考虑水的流动和固体结构的变形,可以更准确地预测爆炸冲击的传播路径和结构的破坏程度。

2. 风力发电机叶片设计:在风力发电机中,叶片的设计对其性能至关重要。

流固耦合分析可以用于优化叶片的形状和材料,以最大限度地提高能量转换效率。

通过考虑风的流动和叶片的变形,可以预测叶片的受力情况和振动特性。

3. 水力润滑轴承分析:在水力润滑轴承中,流体的流动对轴承的性能和寿命有重要影响。

流固耦合分析可以用于优化轴承的设计,以减少摩擦和磨损,并提高轴承的承载能力。

通过考虑流体的流动和轴承的变形,可以预测轴承的润滑性能和寿命。

4. 波浪对海洋结构物的影响分析:在海洋工程中,波浪对海洋结构物的影响是一个重要的研究领域。

流固耦合分析可以用于研究波浪对海洋平台、堤岸和海底管道等结构物的冲击和振动情况。

通过考虑波浪的流动和结构物的变形,可以预测结构物的破坏程度和安全
性能。

这些案例只是流固耦合分析的一小部分应用领域,实际上在工程和科学研究中有很多其他的应用。

ANSYS作为一种强大的模拟软件,可以帮助工程师和科学家更好地理解和优化流体和固体系统的相互作用。

ansys流固耦合分析与工程实例

ansys流固耦合分析与工程实例

第 1 章 流固耦合分析基础近年来,流固耦合分析研究和应用取得了飞速的发展,尤其是 ANSYS Workbench 推广以 来,流固耦合分析变得容易起来,也因此很快在相关工程领域得到广泛应用。

本章是学习 ANSYS 流固耦合分析的入门篇,旨在介绍 ANSYS 流固耦合分析的基本知识,引导初学者由 浅入深地了解流固耦合分析的基本操作和应用。

本章内容包括:ü 流固耦合基础ü ANSYS 流固耦合分析ü ANSYS 流固耦合分析的基本步骤1.1 流固耦合基础下面简单介绍什么是流固耦合作用、流固耦合分析,流固耦合的重要性,以及流固耦合分 析用到的控制方程。

1.1.1 认识流固耦合分析的重要性随着计算科学以及数值分析方法的不断发展, 流固耦合或交互作用 (fluid structure coupling 或 fluid structure interaction )研究从 20 世纪 80年代以来,受到了世界学术界和工业界的广泛 关注。

流固耦合问题是流体力学(Computational Fluid Dynamics ,CFD )与固体力学 (Computational Solid Mechanics ,CSM )交叉而生成的一门力学分支,同时也是多学科或多 物理场研究的一个重要分支, 它是研究可变形固体在流场作用下的各种行为以及固体变形对流 场影响这二者相互作用的一门科学。

流固耦合问题可以理解为既涉及固体求解又涉及流体求解, 而两者又都不能被忽略的模拟 问题。

因为同时考虑流体和结构特性,流固耦合可以有效节约分析时间和成本,同时保证结果 更接近于物理现象本身的规律。

所以, 近年来流固耦合分析在工程设计特别是虚拟设计和仿真 中的应用越来越广泛和深入。

1流固耦合分析基础ANSYS 流固耦合分析与工程实例2 图 1­1 显示了流固耦合分析在产品虚拟设计中的层次以及与各学科之间的相互联系。

ansys workbench的管道热流固耦合案例例子

ansys workbench的管道热流固耦合案例例子
图 25 结构静力学计算中导入温度 图 26 温度对管道造成的应力
图 27 温度导致管道的变形
图 1 管道结构示意图 二、设计思路
几何模型建立 流体域网格划分 Fluent 计算 温度加载 稳态热分析 温度加载 热应力分析 三、模型建立 在 workbench 的工具箱中拖拽 Fluid Flow(Fluent)、Steady-State Thermal 和 Static Structural 模块进入工作界面中,数据传送关系如图 2 所示。
图 2 数据传送关系
在 SolidWorks 中 建 立 相 应 模 型 , 并 转 化 成 ansys 适 用 的 x_t 格 式 。 双 击 A2 打 开 DesignModeler,导入相应模型。
图 3 模型分别在 SolidWorks 中和在 DesignModeler 中显示
选择 Tools 工具栏下的 Fill 命令,选定管道内壁的三个面,单击 Details View 面板中的 Apply 按钮,之后单击 Generate 按钮,生成相应的流体域,并将流体域命名为 Fluid。在流体域 Fluid 中分别定义冷流入口端面,热流入口端面 1,热流入口端面为 2 为 coldinlet,hotinletone 和 hotinlettwo,定义出口端面为 outlet。
图 8 单位设置
图 9 general 面板设置
图 10 模型面板设置
图 11 材料面板设置
图 12 冷流入口流速和强度设置
图 13 冷流入口温度设置
图 12 和图 13 仅显示了冷流入口的设置,其余的入口和出口以及避免的设置与图 12 和 图 13 的设置方法相同,不在作图展示。
图 14 自动生成的接触面

【达尔整理】ANSYS流固耦合分析实例命令流

【达尔整理】ANSYS流固耦合分析实例命令流

达尔文档DareDoc分享知识传播快乐ANSYS流固耦合分析实例命令流本资料来源于网络,仅供学习交流2015年10月达尔文档|DareDoc整理目录ANSYS流固耦合例子命令流............................................................................. 错误!未定义书签。

ANSYS流固耦合的方式 (3)一个流固耦合模态分析的例子1 (3)一个流固耦合模态分析的例子2 (4)一个流固耦合建模的例子 (7)一加筋板在水中的模态分析 (8)一圆环在水中的模态分析 (10)接触分析实例---包含初始间隙 (14)耦合小程序 (19)流固耦合练习 (21)一个流固耦合的例子 (22)使用物理环境法进行流固耦合的实例及讲解 (23)针对液面晃动问题,ANSYS/LS-DYNA提供三种方法 (30)1、流固耦合 (30)2、SPH算法 (34)3、ALE(接触算法) (38)脱硫塔于浆液耦合的分析 (42)ANSYS坝-库水流固耦合自振特性的例子 (47)空库时的INP文件 (47)满库时的INP文件 (49)计算结果 (52)ANSYS流固耦合的方式一般说来,ANSYS的流固耦合主要有4种方式:1,sequential这需要用户进行APDL编程进行流固耦合sequentia指的是顺序耦合以采用MpCCI为例,你可以利用ANSYS和一个第三方CFD产品执行流固耦合分析。

在这个方法中,基于网格的平行代码耦合界面(MpCCI) 将ANSYS和CFD程序耦合起来。

即使网格上存在差别,MpCCI也能够实现流固界面的数据转换。

ANSYS CD中包含有MpCCI库和一个相关实例。

关于该方法的详细信息,参见ANSYS Coupled-Field Analysis Guide中的Sequential Couplin2,FSI solver流固耦合的设置过程非常简单,推荐你使用这种方式3,multi-field solver这是FSI solver的扩展,你可以使用它实现流体,结构,热,电磁等的耦合4,直接采用特殊的单元进行直接耦合,耦合计算直接发生在单元刚度矩阵一个流固耦合模态分析的例子1这是一个流固耦合模态分析的典型事例,采用ANSYS/MECHANICAL可以完成。

ansysworkbench流固耦合计算实例

ansysworkbench流固耦合计算实例

ansysworkbench流固耦合计算实例Oscillating Plate with Two-Way Fluid-Structure InteractionIntroductionThis tutorial includes:FeaturesOverview of the Problem to SolveSetting up the Solid Physics in Simulation (ANSYS Workbench)Setting up the Fluid Physics and ANSYS Multi-field Settings in ANSYS CFX-PreObtaining a Solution using ANSYS CFX-Solver ManagerViewing Results in ANSYS CFX-PostIf this is the first tutorial you are working with, it is important to review the following topics before beginning:Setting the Working DirectoryChanging the Display ColorsUnless you plan on running a session file, you should copy the sample files used in this tutorial from the installation folder for your software (/examples/) to your working directory. This prevents you from overwriting source files provided with your installation. If you plan to use a session file, please refer to Playing a Session File.Sample files referenced by this tutorial include:1.FeaturesThis tutorial addresses the following features of ANSYS CFX.In this tutorial you will learn about:Moving meshFluid-solid interaction (including modeling solid deformation using ANSYS)Running an ANSYS Multi-field (MFX) simulationPost-processing two results files simultaneously.2.Overview of the Problem to SolveThis tutorial uses a simple oscillating plate example to demonstrate how to set up and run a simulation involving two-way Fluid-Structure Interaction, where the fluid physics is solved in ANSYS CFX and the solid physics is solved in the FEA package ANSYS. Coupling between the two solvers is required throughout the solution to model the interaction between fluid and solid as time progresses, and the framework for the coupling is provided by the ANSYS Multi-field solver, using the MFX setup.The geometry consists of a 2D closed cavity. A thin plate is anchored to the bottom of the cavity as shown below:An initial pressure of 100 Pa is applied to one side of the thin plate for seconds in order to distort it. Once this pressure is released, the plate oscillates backwards and forwards as it attempts to regain its equilibrium (vertical) position. The surrounding fluid damps the oscillations, which therefore have an amplitude that decreases in time. The CFX Solver calculates how the fluid responds to the motion of the plate, and the ANSYS Solver calculates how the plate deforms as a result of both the initial applied pressure and the pressure resulting from the presence of the fluid. Coupling between the two solvers is required since the solid deformation affects the fluid solution, and the fluid solution affects the solid deformation. The tutorial describes the setup and execution of the calculation including the setup of the solid physics in Simulation (within ANSYS Workbench) and the setup of the fluid physics and ANSYS Multi-field settings in ANSYS CFX-Pre. If you do not have ANSYS Workbench, then you can use the provided ANSYS input file to avoid the need for Simulation.3.Setting up the Solid Physics in Simulation (ANSYS Workbench)This section describes the step-by-step definition of the solid physics in Simulation within ANSYS Workbench that will result in the creation of an ANSYS input file . If you prefer, you can instead use the provided file and continue from Setting up theFluid Physics and ANSYS Multi-field Settings in ANSYS CFX-Pre.Creating a New Simulation1.If required, launch ANSYS Workbench.2.Click Empty Project. The Project page appears displaying an unsaved project.3.Select File > Save or click Save button.4.If required, set the path location to a different folder. The default location is your workingdirectory. However, if you have a specific folder that you want to use to store files created during this tutorial, change the path.5.Under File name, type OscillatingPlate.6.Click Save.7.Under Link to Geometry File on the left hand task bar click Browse. Select the providedfile and click Open.8.Make sure that is highlighted and click New simulation from the left-hand taskbar. Creating the Solid Material1.When Simulation opens, expand Geometry in the project tree at the left hand side of theSimulation window.2.Select Solid, and in the Details view below, select Material./doc/1a35ad57a1116c175f0e7cd184254b35effd1a98.html e the arrow that appears next to the material name Structural Steel to select NewMaterial.4.When the Engineering Data window opens, right-click New Material from the tree viewand rename it to Plate.5.Enter for Young's Modulus, for Poisson's Ratio and 2550 for Density.Note that the other properties are not used for this simulation, and that the units for these values are implied by the global units in Simulation.6.Click the Simulation tab near the top of the Workbench window to return to thesimulation.Basic Analysis SettingsThe ANSYS Multi-field simulation is a transient mechanical analysis, with a timestep of s and a time duration of 5 s.1.Select New Analysis > Flexible Dynamic from the toolbar.2.Select Analysis Settings from the tree view and in the Details view below, set Auto TimeStepping to Off.3.Set Time Step to .4.Under Tabular Data at the bottom right of the window, set End Time to for the Steps= 1 setting.Inserting LoadsLoads are applied to an FEA analysis as the equivalent of boundary conditions in ANSYS CFX. In this section, you will set a fixed support, a fluid-solid interface, and a pressure load. Fixed SupportThe fixed support is required to hold the bottom of the thin plate in place.1.Right-click Flexible Dynamic in the tree and select Insert> Fixed Support from theshortcut menu.2.Rotate the geometry using the Rotate button so that the bottom (low-y) face of thesolid is visible, then select Face and click the low-y face.That face should be highlighted to indicate selection.3.Ensure Fixed Support is selected in the Outline view, then, in the Details view, selectGeometry and click 1 Face to make the Apply button appear (if necessary). Click Apply to set the fixed support.Fluid-Solid InterfaceIt is necessary to define the region in the solid that defines the interface between the fluid in CFX and the solid in ANSYS. Data is exchanged across this interface during the execution of the simulation.1.Right-click Flexible Dynamic in the tree and select Insert > Fluid Solid Interface fromthe shortcut menu./doc/1a35ad57a1116c175f0e7cd184254b35effd1a98.html ing the same face-selection procedure described earlier, select the three faces of thegeometry that form the interface between the solid and the fluid (low-x, high-y and high-x faces) by holding down to select multiple faces. Note that this load is automatically given an interface number of 1.Pressure LoadThe pressure load provides the initial additional pressure of 100 [Pa] for the first seconds of the simulation. It is defined usinga step function.1.Right-click Flexible Dynamic in the tree and select Insert > Pressure from the shortcutmenu.2.Select the low-x face for Geometry.3.In the Details view, select Magnitude, and using the arrow that appears, select Tabular(Time).4.Under Tabular Data, set a pressure of 100 in the table row corresponding to a time of 0.Note: The units for time and pressure in this table are the global units of [s]and [Pa], respectively.5.You now need to add two new rows to the table. This can be done by typing the new timeand pressure data into the empty row at the bottom of the table, and Simulation will automatically re-order the table in order of time value. Enter a pressure of 100 for a time value of , and a pressure of 0 for a time value of .This gives a step function for pressure that can be seen in the chart to the left of the table. Writing the ANSYS Input File The Simulation settings are now complete. An ANSYS Multi-field run cannot be launched from within Simulation, so the Solve buttons cannot be used to obtain a solution.1.Instead, highlight Solution in the tree, select Tools> Write ANSYS Input File andchoose to write the solution setup to the file .2.The mesh is automatically generated as part of this process. If you want to examine it,select Mesh from the tree.3.Save the Simulation database, use the tab near the top of the Workbench window to returnto the Oscillating Plate [Project] tab, and save the project itself.4.Setting up the Fluid Physics and ANSYS Multi-field Settings in ANSYS CFX-PreThis section describes the step-by-step definition of the flow physics and ANSYS Multi-field settings in ANSYS CFX-Pre. Playing a Session FileIf you want to skip past these instructions and to have ANSYS CFX-Pre set up the simulation automatically, you can select Session > Play Tutorial from the menu in ANSYS CFX-Pre, then run the session file: . After you have played the session file as described in earlier tutorials under Playing the Session File and Starting ANSYS CFX-Solver Manager, proceed to Obtaining a Solution using ANSYS CFX-Solver Manager.Creating a New Simulation1.Start ANSYS CFX-Pre.2.Select File > New Simulation.3.Select General and click OK.4.Select File > Save Simulation As.5.Under File name, type OscillatingPlate.6.Click Save.Importing the Mesh1.Right-click Mesh and select Import Mesh.2.Select the provided mesh file, and click Open.Note:The file that was just created in Simulation, , will be used as an input file for the ANSYS Solver.Setting the Simulation TypeA transient ANSYS Multi-field run executes as a series of timesteps. The Simulation Type tab is used both to enable an ANSYS Multi-field run and to specify the time-related settings for it (in the External Solver Coupling settings). The ANSYS input file is read by ANSYS CFX-Pre so that it knows which Fluid Solid Interfaces are available.Once the timesteps and time duration are specified for the ANSYS Multi-field run (coupling run), ANSYS CFX automatically picks up these settings and it is not possible to set the timestep and time duration independently. Hence the only option available for Time Duration is Coupling Time Duration, and similarly for the related settings Time Step and Initial Time.1.Click Simulation Type .2.Apply the following settingsTab Setting ValueBasic Settings External Solver Coupling > Option ANSYS MultiFieldExternal Solver Coupling > ANSYS Input File[]Coupling Time Control > Coupling Time Duration > TotalTime5 [s]Coupling Time Control > Coupling Time Steps > Option TimestepsCoupling Time Control > Coupling Time Steps > Timesteps [s]Simulation Type > Option TransientSimulation Type > Time Duration > Option Coupling Time Duration Simulation Type > Time Steps > Option Coupling Time Steps Simulation Type > Initial Time > Option Coupling Initial Time[] This file is located in your working directory.3.Click OK.Note:You may see a physics validation message related to the difference in the units used in ANSYS CFX-Pre and the units contained within the ANSYS input file. While it is important to review the units used in any simulation, you should be aware that, in this specific case, the message is not crucial as it is related to temperature units and there is no heat transfer in this case. Therefore, this specific tutorial will not be affected by the physics message.Creating the FluidA custom fluid is created with user-specified properties.1.Click Material .2.Set the name of the new material to Fluid.3.Apply the following settingsTab Setting ValueBasic Settings Option Pure Substance Thermodynamic State (Selected) Thermodynamic State > Thermodynamic State LiquidMaterial Properties Equation of State > Molar Mass 1 [kg kmol^-1]4.Click OK.Creating the DomainIn order to allow the ANSYS Solver to communicate mesh displacements to the CFX Solver, mesh motion must be activated in CFX.1.Right click Simulation in the Outline tree view and ensure that Automatic DefaultDomain is selected. A domain named Default Domain should now appear under the Simulation branch.2.Double click Default Domain and apply the following settings3.Click OK.Creating the Boundary ConditionsIn addition to the symmetry conditions, another type of boundary condition corresponding with the interaction between the solid and the fluid is required in this tutorial.Fluid Solid External BoundaryThe interface between ANSYS and CFX is defined as an external boundary in CFX that has its mesh displacement being defined by the ANSYS Multi-field coupling process.When an ANSYS Multi-field specification is being made in ANSYS CFX-Pre, it is necessary to provide the name and number of the matching Fluid Solid Interface that was created in Simulation. Since the interface number in Simulation was 1, the name in question is FSIN_1. (If the interface number had been 2, then the name would have been FSIN_2, and so on.)On this boundary, CFX will send ANSYS the forces on the interface, and ANSYS will send back the total mesh displacement it calculates given the forces passed from CFX and the other defined loads.1.Create a new boundary condition named Interface.2.Apply the following settings3.Click OK.Symmetry BoundariesSince a 2D representation of the flow field is being modeled (using a 3D mesh with one element thickness in the Z direction) symmetry boundaries will be created on the low and high Z 2D regions of the mesh.1.Create a new boundary condition named Sym1.2.Apply the following settings3.Click OK.4.Create a new boundary condition named Sym2.5.Apply the following settings6.Click OK.Setting Initial ValuesSince a transient simulation is being modeled, initial values are required for all variables.1.Click Global Initialization .2.Apply the following settings:Tab Setting ValueGlobal Settings Initial Conditions > Cartesian Velocity Components > U0 [m s^-1] Initial Conditions > Cartesian Velocity Components > V0 [m s^-1] Initial Conditions > Cartesian Velocity Components > W0 [m s^-1] Initial Conditions > Static Pressure > RelativePressure0 [Pa]3.Click OK.Setting Solver ControlVarious ANSYS Multi-field settings are contained under Solver Control under the External Coupling tab. Most of these settings do not need to be changed for this simulation.Within each timestep, a series of “coupling” or “stagger” iterations are performed to ensure that CFX, ANSYS and the data exchanged between the two solvers are all consistent. Within each stagger iteration, ANSYS and CFX both run once each, but which one runs first is a user-specifiable setting. In general, it is slightly more efficient to choose the solver that drives the simulation to run first. In this case, the simulation is being driven by the initial pressure applied in ANSYS, so ANSYS is set to solve before CFX within each stagger iteration.1.Click Solver Control .2.Apply the following settings:Tab Setting ValueBasic Settings Transient Scheme > OptionSecond OrderBackward Euler Convergence Control > Minimum Number ofCoefficient Loops(Selected) Convergence Control > Minimum Number ofCoefficient Loops > Min. Coeff. Loops2[]Convergence Control > Max. Coeff. Loops 3External Coupling Coupling Step Control > Solution SequenceControl > Solve ANSYS FieldsBefore CFX FieldsTab Setting Value [] This setting is optional. The default value of 1 is also acceptable.3.Click OK.Setting Output ControlThis step sets up transient results files to be written at set intervals.1.Click Output Control .2.On the Trn Results tab, create a new transient result with the default name.3.Apply the following settings to Transient Results 1:Setting ValueOption Selected VariablesOutput Variable List Pressure, Total Mesh Displacement, VelocityOutput Frequency > Option Every Coupling Step[][] This setting writes a transient results file every multi-field timestep.4.Click the Monitor tab.5.Select Monitor Options.6.Under Monitor Points and Expressions:7.Click Add new item and accept the default name.8.Set Option to Cartesian Coordinates.9.Set Output Variables List to Total Mesh Displacement X.10.Set Cartesian Coordinates to [0, 1, 0].11.Click OK.Writing the Solver (.def) File1.Click Write Solver File .2.If the Physics Validation Summary dialog box appears, click Yes to proceed.3.Apply the following settingsSetting ValueFile nameQuit CFX–Pre[](Selected)[] If using ANSYS CFX-Pre in Standalone Mode.4.Ensure Start Solver Manager is selected and click Save.5.If you are notified the file already exists, click Overwrite.6.This file is provided in the tutorial directory and will exist in your working folder if youhave copied it there.7.Quit ANSYS CFX-Pre, saving the simulation (.cfx) file at your discretion.5.Obtaining a Solution using ANSYS CFX-Solver ManagerThe execution of an ANSYS Multi-field simulation requires both the CFX and ANSYS solvers to be running and communicating with each other. ANSYS CFX-Solver Manager can be used to launch both solvers and to monitor the output from both.1.Ensure the Define Run dialog box is displayed.There is a new MultiField tab which contains settings specific for an ANSYS Multi-field simulation.2.On the MultiField tab, check that the ANSYS input file location is correct (the location isrecorded in the definition file but may need to be changed if you have moved files around).3.On UNIX systems, you may need to manually specify where the ANSYS installation is ifit is not in the default location. In this case, you must provide the path to the v110/ansys directory.4.Click Start Run.The run begins by some initial processing of the ANSYS Multi-field input which results in the creation of a file containing the necessary multi-field commands for ANSYS, and then the ANSYS Solver is started. The CFX Solver is then started in such away that it knows how to communicate with the ANSYS Solver.After the run is under way, two new plots appear in ANSYS CFX-Solver Manager:ANSYS Field Solver (Structural) This plot is produced only when the solid physics is set to use large displacements or when other non-linear analyses are performed. It shows convergence of the ANSYS Solver. Full details of the quantities are described in the ANSYS user documentation. In general, the CRIT quantities are the convergence criteria for each relevant variable, and the L2 quantities represent the L2 Norm of the relevant variable. For convergence, the L2 Norm should be below the criteria. The x-axis of the plot is the cumulative iteration number for ANSYS, which does not correspond to either timesteps or stagger iterations. Several ANSYS iterations will beperformed for each timestep, depending on how quickly ANSYS converges. You will usually see a somewhat “spiky” plot, as each quantity will be unconverged at the start of each timestep, and then convergence will improve.ANSYS Interface Loads (Structural)This plot shows the convergence for each quantity that is part of the data exchanged between the CFX and ANSYS Solvers. In this case, four lines appear, corresponding to two force components (FX and FY) and two displacement components (UX and UY). Since the analysis is 2D, FZ and UZ are not exchanged. Each quantity is converged when the plot shows a negative value. The x-axis of the plot corresponds to the cumulative number of stagger iterations (coupling iterations) and there are several of these for every timestep. Again, a spiky plot is expected as the quantities will not be converged at the start of a timestep.The ANSYS out file is displayed in ANSYS CFX-Solver Manager as an extra tab. Similar to the CFX out file, this is a text file recording output from ANSYS as the solution progresses.1.Click the User Points tab and watch how the top of the plate displaces as the solutiondevelops.2.When the solvers have finished and ANSYS CFX-Solver Manager puts up a dialog boxto tell you this, click Yes to post-process the results.3.If using Standalone Mode, quit ANSYS CFX-Solver Manager.6.Viewing Results in ANSYS CFX-PostFor an ANSYS Multi-field run, both the CFX and ANSYS results files will be opened up in ANSYS CFX-Post by default if ANSYS CFX-Post is started from a finished run in ANSYS CFX-Solver Manager.Plotting Results on the SolidWhen ANSYS CFX-Post reads an ANSYS results file, all the ANSYS variables are available to plot on the solid, including stresses and strains. The mesh regions available for plots by default are limited to the full boundary of the solid, plus certain named regions which are automatically created when particular types of load are added in Simulation. For example, any Fluid Solid Interface will have a corresponding mesh region with a name such as FSIN 1. In this case, there is also a named region corresponding to the location of the fixed support, but in general pressure loads do not result in a named region.You can add extra mesh regions for plotting by creating named selections in Simulation - see the Simulation product documentation for more details. Note that the named selection must have a name which contains only English letters, numbers and underscores for the named mesh region to be successfully created.Note that when ANSYS CFX-Post loads an ANSYS results file, the true global range for each variable is not automatically calculated, as this would add a substantial amount of time onto how long it takes to load such a file (you can turn on this calculation using Edit > Options and using the Pre-calculate variable global ranges setting under CFX-Post> Files). When the global range is first used for plotting a variable, it is calculated as the range within the current timestep. As subsequent timesteps are loaded into ANSYS CFX-Post, the Global Range is extended each time variable values are found outside the previous Global Range.1.Turn on the visibility of Boundary ANSYS (under ANSYS > Domain ANSYS).2.Right-click a blank area in the viewer and select Predefined Camera > View Towards-Z. Zoom into the plate to see it clearly.3.Apply the following settings to Boundary ANSYS:4.Click Apply.5.Select Tools> Timestep Selector from the task bar to open the Timestep Selectordialog box. Notice that a separate list of timesteps is available for each results file loaded, although for this case the lists are the same. By default, Sync Cases is set to By Time Value which means that each time you change the timestep for one results file, ANSYS CFX-Post will automatically load the results corresponding to the same time value for all other results files.6.Set Match to Nearest Available.7.Change to a time value of 1 [s] and click Apply.The corresponding transient results are loaded and you can see the mesh move in both the CFX and ANSYS regions.1.Clear the visibility check box of Boundary ANSYS.2.Create a contour plot, set Locations to Boundary ANSYS and Sym2, and set Variable toTotal Mesh Displacement. Click Apply./doc/1a35ad57a1116c175f0e7cd184254b35effd1a98.html ing the timestep selector, load time value [s] (which is where the maximum totalmesh displacement occurs).This verifies that the contours of Total Mesh Displacement are continuous through both the ANSYS and CFX regions.Many FSI cases will have only relatively small mesh displacements, which can make visualization of the mesh displacement difficult. ANSYS CFX-Post allows you to visually magnify the mesh deformation for ease of viewing such displacements. Although it is not strictly necessary for this case, which has mesh displacements which are easily visible unmagnified, this is illustrated by the next few instructions./doc/1a35ad57a1116c175f0e7cd184254b35effd1a98.html ing the timestep selector, load time value [s] (which has a much smaller meshdisplacement than the currently loaded timestep).2.Place the mouse over somewhere in the viewer where the background color is showing.Right-click and select Deformation > Auto. Notice that the mesh displacements are now exaggerated. The Auto setting is calculated to make the largest mesh displacement a fixed percentage of the domain size.3.To return the deformations to their true scale, right-click and select Deformation > TrueScale.Creating an Animation/doc/1a35ad57a1116c175f0e7cd184254b35effd1a98.html ing the Timestep Selector dialog box, ensure the time value of [s] is loaded.2.Clear the visibility check box of Contour 1.3.Turn on the visibility of Sym2.4.Apply the following settings to Sym2.5.Click Apply.6.Create a vector plot, set Locations to Sym1 and leave Variable set to Velocity. SetColor to be Constant and choose black. Click Apply.7.Select the visibility check box of Boundary ANSYS, and set Color to a constant blue.8.Click Animation .The Animation dialog box appears.9.Select Keyframe Animation.10.In the Animation dialog box:a.Click New to create KeyframeNo1.b.Highlight KeyframeNo1, then change # of Frames to 48.c.Load the last timestep (50) using the timestep selector.d.Click New to create KeyframeNo2.The # of Frames parameter has no effect for the last keyframe, so leave it at the default value.e.Select Save MPEG.f.Click Browse next to the MPEG file data box to set a path and file name forthe MPEG file.If the file path is not given, the file will be saved in the directory from which ANSYS CFX-Post was launched.g.Click Save.The MPEG file name (including path) will be set, but the MPEG will not be created yet.h.Frame 1 is not loaded (The loaded frame is shown in the middle of the Animation dialog box, beside F:). Click To Beginning to load it then waita few seconds for the frame to load.i.Click Play the animation .The MPEG will be created as the animation proceeds. This will be slow, since a timestep must be loaded and objects must be created for each frame. To view the MPEG file, you need to use a viewer that supports the MPEG format.11.When you have finished, exit ANSYS CFX-Post.。

ansys应用-流固耦合

ansys应用-流固耦合
具体步骤:
1. 打开 AWB,由于要做 FSI 双向流固耦合,所以先在框架中建立瞬态结构场, 如图 3 所示:(如果是单向流固耦合,可以直接使用 FSI 模块,丌过里面的结 构场是稳态结构场)
图3 2. 在 setup 处单击鼠标右键,弹出如图 4 的对话框,本例中按照图 2 选择,添
加流体计算的 CFX 部分:
1、Design Simulation 中定义好结构分析中的材料、网格、约束及流体边界。 2、写出 INP 格式的 ANSYS 结构文件。 3、CFX 中在 Simulation Type 中设置好 External Solver Coupling 为 ANSYS MultiField,并将第 2 步中写出的 INP 格式的 ANSYS 结构文件选中设为 ANSYS 文件。
图1 b.利用 ANSYS 中的 Read input from 命令读入结果载荷。
二 、 实 现 双 向 流 固 耦 合 的 方 法 主 要 有 三 种 : CFX+Design Simulation(AWB) 、 CFX+ANSYS Classic 和 MFX+ANSYS Classic+CFX。 (1)、CFX+Design Simulation(AWB)方法流程:
(2)、CFX+ANSYS Classic 方法流程:
1、ANSYS Classic 中定义好结构分析中的材料、网格、约束及流体边界。 2、设置好 MFX 中的不 CFX 相联的系列条件,如载荷时间步及求解类型和步数 等等。 3、在 MFX 下的利用 write input 写出 ANSYS 的流固耦合文件(dat 格式)。 4、同方式一中的第 3 步,丌同就是将 CFX 中联结的 ANSYS 文件转为第 3 步写 出的 DAT 文件。 5、同方式一中的 4 至 6 步。注意的是 CFX 中的单位要不 ANSYS Classic 默认 的单位保持一致,ANSYS 不 CFX 中默认的耦合条件基本一样,只是在 CFX 中 默认为先求解 CFX,而 ANSYS 中默认为先求解 ANSYS,所以此处要注意保持 一致。

ansys流固耦合案例

ansys流固耦合案例

ansys流固耦合案例
1. Ansys流固耦合是一种将流体和固体结构相互耦合的分析方法,可以用于模拟和研究各种流体和固体结构的相互作用。

2. 在汽车工程中,Ansys流固耦合可以用于模拟汽车车身在行驶过程中的空气动力学特性,以及车身和悬挂系统之间的相互作用。

3. 在航空航天工程中,Ansys流固耦合可以用于模拟飞机机翼在高速飞行过程中的气动力特性,以及机翼和飞机结构之间的相互作用。

4. 在建筑工程中,Ansys流固耦合可以用于模拟建筑物在强风或地震等自然灾害下的响应,以及结构和周围环境之间的相互作用。

5. 在能源工程中,Ansys流固耦合可以用于模拟并优化风力发电机的风叶设计,以及风叶和发电机结构之间的相互作用。

6. 在生物医学工程中,Ansys流固耦合可以用于模拟人体血液在血管中的流动,以及血液和血管壁之间的相互作用。

7. 在石油工程中,Ansys流固耦合可以用于模拟油井中的油气流动,以及油井壁和地层之间的相互作用。

8. 在电子器件设计中,Ansys流固耦合可以用于模拟电路板上的散热问题,以及电路板和散热器之间的相互作用。

9. 在船舶工程中,Ansys流固耦合可以用于模拟船舶在水中的运动,以及船体和水流之间的相互作用。

10. 在化工工程中,Ansys流固耦合可以用于模拟化工设备中的流体流动,以及设备结构和流体之间的相互作用。

Ansys流固耦合在各个工程领域都有广泛的应用,可以用于模拟和
研究不同系统中流体和固体结构的相互作用。

这种分析方法可以帮助工程师更好地理解和优化系统的性能,提高工程设计的效率和可靠性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档