七年级数学下册第一章整式的乘除试题(新版)北师大版
新北师大版七年级数学下册第一章《整式的乘除》单元练习题含答案解析 (26)
一、选择题(共10题) 1. 下列计算正确的是 ( ) A . x 2+x 2=x 4 B . (2x )3=6x 3C . (−2a −3)(2a −3)=9−4a 2D . (2a −b )2=4a 2−2ab +b 22. 若 3x =15,3y =5,则 3x−y 等于 ( ) A . 5 B . 3 C . 15 D . 103. 计算 (a −1)2 正确的是 ( ) A .a 2−a +1 B .a 2−2a +1 C .a 2−2a −1 D .a 2−14. 计算 (m −2)(m +2)(m 2+4)−(m 4−16) 的结果为 ( ) A . 0 B . 4m C . −4mD . 2m 45. 已知 (m −53)(m −47)=24.则 (m −53)2+(m −47)2 的值为 ( ) A . 84 B . 60 C . 42 D . 126. 任何一个正整数 n 都可以进行这样的分解:n =s ×t (s ,t 是正整数,且 s ≤t ),如果 p ×q 在 n 的所有这种分解中两因数之差的绝对值最小,我们就称 p ×q 是 n 的最佳分解,并规定:F (n )=pq .例如 18 可以分解成 1×18,2×9,3×6 这三种,这时就有 F (18)=36=12,给出下列关于 F (n ) 的说法:① F (2)=12,② F (48)=13;③ F (n 2+n )=nn+1;④若 n 是一个完全平方数,则 F (n )=1,其中正确说法的个数是 ( ) A . 4B . 3C . 2D . 17. 如图所示的图形可以直接验证的乘法公式是 ( )A . a (a +b )=a 2+abB . (a +b )(a −b )=a 2−b 2C . (a −b )2=a 2−2ab +b 2D . (a +b )2=a 2+2ab +b 28. 我国宋朝数学家杨辉 1261 年的著作《详解九章算法》给出了在 (a +b )n (n 为非负整数)的展开式中,把各项系数按一定的规律排成右表(展开后每一项按 a 的次数由大到小的顺序排列).人们把这个表叫做“杨辉三角”.据此规律,则 (x +1)2019 展开式中含 x 2018 项的系数是 ( )(a +b )0=1,(a +b )1=a +b (a +b )2=a 2+2ab +b2(a +b )3=a 3+3a 2b +3ab 2+b3(a +b )4=a 4+4a 3b +6a 2b 2+4ab 3+b 4 11 1 12 1 13 3 1 14 6 4 1⋯⋯⋯⋯ A . 2016 B . 2017 C . 2018 D . 20199. 已知 a =2019x +2020,b =2019x +2021,c =2019x +2022,则多项式 a 2+b 2+c 2−ab −bc −ca 的值为 ( ) A . 0 B . 1 C . 2 D . 310. 如图,大正方形的边长为 m ,小正方形的边长为 n ,若用 x ,y 表示四个长方形的两边长(x >y ),观察图案及以下关系式:① x −y =n ;② xy =m 2−n 22;③ x 2−y 2=mn ;④ x 2+y 2=m 2+n 22.其中正确的关系式有 ( )A .①②B .①③C .①③④D .①②③④二、填空题(共7题)11. 如图,用大小相同的小正方形拼大正方形,拼第 1 个正方形需要 4 个小正方形,拼第 2 个正方形需要 9 个小正方形 ⋯,按这样的方法拼成的第 (n +1) 个正方形比第 n 个正方形多 个小正方形.12. 若 a =20180,b =2017×2019−20182,c =(−45)2017×(54)2018,则 a ,b ,c 的大小关系用“<”连接为 .13.观察探索:(x−1)(x+1)=x2−1,(x−1)(x2+x+1)=x3−1,(x−1)(x3+x2+x+1)=x4−1,(x−1)(x4+x3+x2+x+1)=x5−1.根据规律填空:(x−1)(x n+x n−1+⋯+x+1)=.(n为正整数)14.已知a2b2+a2+b2=10ab−16,则a+b的值为.15.计算下列各式然后回答问题:(x+3)(x+4)=;(x+3)(x−4)=;(x−3)(x+4)=;(x−3)(x−4)=.(1)根据以上的计算总结出规律:(x+m)(x+n)=;(2)运用(1)中的规律,直接写出下列各式的结果:① (a+2)(a+3)=;② (m+5)(m−2)=;③ (m+3)(m−3)=;④ (m−3)(m−3)=.16.计算:(a−1)2(a+1)2=.17.计算:(a5−a3)÷a2=.三、解答题(共8题)18.已知长方形的面积为6a2b−4a2+2a,宽为2a,求长方形的周长.19.贾宪三角(如图1)最初于11世纪被发现,原图记载于我国北宋时期数学家贾宪的《黄帝九章算法细草》一书中,原名“开方作法本源图”,用来作开方运算,在数学史上占有领先地位.我国南宋时期数学家杨辉对此有着记载之功,他于1261年写下的《详解九章算法》一书中记载着这一图表.因此,后人把这个图表称作贾宪三角或杨辉三角.施蒂费尔的二项式乘方后展开式的系数规律如图2所示.在贾宪三角中,第三行的三个数恰好对应着两数和的平方公式(a+b)2=a2+2ab+b2展开式的系数.再如,第四行的四个数恰好对应着两数和的立方公式(a+b)3=a3+3a2b+3ab2+b3展开式的系数,第五行的五个数恰好对应着两数和的四次方公式(a+b)4=a4+4a3b+6a2b2+4ab3+b4展开式的系数,等等.由此可见,贾宪三角可以看成是对我们现在学习的两数和的平方公式的推广而得到的,根据以上材料解决下列问题:(1) (a+b)n展开式中项数共有项;(2) 写出(a+b)7的展开式:(a+b)7=;(3) 计算:25−5×24+10×23−10×22+5×2−1(4) 若(2x−1)2019=a1x2019+a2x2018+⋯+a2018x2+a2019x+a2020,求a1+a2+a3+⋯+a2018+a2019的值.20.对于一个平面图形,通过两种不同的方法计算它的面积,可以得到一个关于整式乘法的数学等式,例如图1可以得到完全平方公式(a+b)2=a2+2ab+b2,请利用这一方法解决下列问题:(1) 观察图2,写出所表示的数学等式:;(2) 观察图3,写出所表示的数学等式:;(3) 已知(2)的等式中的三个字母可以取任何数,若a=7x−5,b=−4x+2,c=−3x+4,且 a 2+b 2+c 2=37,请利用(2)中的结论求 ab +bc +ac 的值.21. 先化简,再求值:(−x 2+2x )(−x 2−2x ),其中 x =−1.22. 计算下列各题:(1) 3x 2y ×5xy −14x 4y 5÷2xy 3. (2) (2π−6)0+(−1)2019+2−3.23. 计算(结果用科学记数法表示):(1) (3×10−3)×(5×10−4); (2) (6×10−3)2÷(2×10−1)2.24. 计算:(x +y −1)(x +y +1).25. 计算:(1) a 3⋅a 5+(a 2)4−3a 8. (2) ∣−2∣−(23)−2+(π−3)0−(−1)2021.(3) (x −2y +4)(x +2y −4). (4) (3x +1)2(3x −1)2.答案一、选择题(共10题)1. 【答案】C【解析】(A)原式=2x2,故A错误.(B)原式=6x3,故B错误.(D)原式=4a2−4ab+b2,故D错误.【知识点】平方差公式2. 【答案】B【知识点】同底数幂的除法3. 【答案】B【知识点】完全平方公式4. 【答案】A【解析】(m−2)(m+2)(m2+4)−(m4−16) =(m2−4)(m2+4)−(m4−16)=(m4−16)−(m4−16)=0.【知识点】平方差公式5. 【答案】A【解析】设a=m−53,b=m−47,则ab=24,a−b=−6,∴a2+b2=(a−b)2+2ab=(−6)2+48=84,∴(m−53)2+(m−47)2=84.【知识点】完全平方公式6. 【答案】B【解析】∵2=1×2,∴1×2是2的最佳分解,∴F(2)=12,即①正确;∵48=1×48,48=2×24,48=3×16,48=4×12,48=6×8,∴6×8是48的最佳分解,∴F(48)=68=23,即②错误;∵n2+n=n(n+1),∴F(n2+n)=nn+1,即③正确;若n是一个完全平方数,则设n=a×a(a是正整数),∴F(n)=aa=1,即④正确;综上所述,①③④正确,共三个.【知识点】单项式乘多项式7. 【答案】C【解析】图中左下角的正方形面积可以表示为:(a−b)2,也可以表示为a2−2ab+b2,∴(a−b)2=a2−2ab+b2.【知识点】完全平方公式8. 【答案】D【解析】由题意,(x+1)2019=x2019+2019x2018+⋯+12019,可知,展开式中第二项为2019x2018,所以(x+1)2019展开式中含x2018项的系数是2019.【知识点】其他公式9. 【答案】D【解析】∵a=2019x+2020,b=2019x+2021,c=2019x+2022,∴a−b=−1,b−c=−1,a−c=−2,∴ a2+b2+c2−ab−bc−ca=2a2+2b2+2c2−2ab−2bc−2ca2=(a−b)2+(b−c)2+(a−c)22=(−1)2+(−1)2+(−2)22=1+1+42= 3.【知识点】完全平方公式10. 【答案】C【解析】有图形可知,m=x+y,n=x−y,因此①正确;于是有:mn=(x+y)(x−y)=x2−y2,因此③正确;m2−n22=(m+n)(m−n)2=2x⋅2y2=2xy,因此②不正确;m2+n22=(m+n)2−2mn2=(2x)2−2(x2−y2)2=x2+y2,因此④正确;综上所述,正确的结论有:①③④.【知识点】平方差公式、完全平方公式二、填空题(共7题)11. 【答案】 2n +3【解析】 ∵ 第 1 个正方形需要 4 个小正方形,4=22, 第 2 个正方形需要 9 个小正方形,9=32, 第 3 个正方形需要 16 个小正方形,16=42, ⋯,∴ 第 n +1 个正方形有 (n +1+1)2 个小正方形, 第 n 个正方形有 (n +1)2 个小正方形,故拼成的第 n +1 个正方形比第 n 个正方形多 (n +2)2−(n +1)2=2n +3 个小正方形. 【知识点】用代数式表示规律、完全平方公式12. 【答案】 c <b <a【解析】 a =20180=1,b =2017×2019−20182=(2018−1)×(2018+1)−20182=20182−1−20182=−1,c=(−45)2017×(54)2018=(−45×54)2017×54=(−1)2017×54=(−1)×54=−54,∵−54<−1<1,∴c <b <a . 故答案为:c <b <a . 【知识点】平方差公式13. 【答案】 x n+1−1【知识点】平方差公式14. 【答案】 ±4【知识点】完全平方公式15. 【答案】 x 2+7x +12 ; x 2−x −12 ; x 2+x −12 ; x 2−7x +12 ; x 2+(m +n)x +mn ; a 2+5a +6 ; m 2+3m −10 ; m 2−9 ; m 2−6m +9 【知识点】多项式乘多项式、用代数式表示规律16. 【答案】 a 4−2a 2+1【解析】方法一:原式=(a2−2a+1)(a2+2a+1)=a4+2a3+a2−2a3−4a2−2a+a2+2a+1=a4−2a2+1.方法二:原式=[(a−1)(a+1)]2=(a−1)2=a4−2a2+1.【知识点】完全平方公式17. 【答案】a3−a【解析】(a5−a3)÷a2=a3−a.故答案为:a3−a.【知识点】多项式除以单项式三、解答题(共8题)18. 【答案】长方形的长为(6a2b−4a2+2a)÷(2a)=3ab−2a+1,则长方形的周长为2(2a+3ab−2a+1)=2(3ab+1)=6ab+2.【知识点】多项式除以单项式19. 【答案】(1) n+1(2) a7+7a6b+21a5b2+35a4b3+35a3b4+21a2b5+7ab6+b7(3) 原式=25−5×24×(−1)+10×23×(−1)2+10×22×(−1)3+5×2×(−1)4+(−1)5 =(2−1)5=1(4) 当x=0时,a2020=−1,当x=1时,a1+a2+a3+⋯+a2018+a2019+a2020=1,∴a1+a2+a3+⋯+a2018+a2019=2.【知识点】多项式乘多项式20. 【答案】(1) (a+2b)(a+b)=a2+2b2+3ab(2) (a+b+c)2=a2+b2+c2+2ab+2ac+2bc(3) 由(2)得(a+b+c)2=a2+b2+c2+2ab+2ac+2bc,(a+b+c)2=(7x−5−4x+2−3x+4)2=1,1=a2+b2+c2+2ab+2ac+2bc,1=37+2(ab+bc+ac),2(ab+bc+ac)=−36,ab+bc+ac=−18.【知识点】其他公式、多项式乘多项式21. 【答案】x4−4x2,把x=−1代入得:−3.【知识点】平方差公式22. 【答案】(1)3x2y×5xy−14x4y5÷2xy3 =15x3y2−7x3y2=8x3y2.(2)(2π−6)0+(−1)2019+2−3 =1−1+18=18..【知识点】负指数幂运算、单项式乘单项式、单项式除以单项式23. 【答案】(1) 原式=3×5×10−3×10−4 =15×10−7= 1.5×10−6.(2) 原式=(36×10−6)÷(4×10−2) =(36÷4)×(10−6÷10−2)=9×10−4.【知识点】负指数科学记数法24. 【答案】原式=[(x+y)−1][(x+y)+1] =(x+y)2−1=x2+2xy+y2−1.【知识点】完全平方公式25. 【答案】(1) 原式=a 8+a8−3a8=−a8.(2) 原式=2−94+1+1=74.(3)(x−2y+4)(x+2y−4)=[x−(2y−4)][x+(2y−4)] =x2−(2y−4)2=x2−4y2+16y−16.(4) 原式=(9x 2−1)2=81x4−18x2+1.【知识点】完全平方公式、同底数幂的乘法、负指数幂运算、零指数幂运算、幂的乘方、平方差公式11。
整式的乘除测试题[3套]与答案解析
北师大版七年级数学下册第一章 整式的乘除 单元测试卷(一)班级 姓名 学号 得分一、精心选一选(每小题3分,共21分)1.多项式892334+-+xy y x xy 的次数是 ( ) A. 3 B. 4 C. 5 D. 62.下列计算正确的是 ( ) A. 8421262x x x =⋅ B. ()()m mm y y y =÷34C. ()222y x y x +=+ D. 3422=-a a3.计算()()b a b a +-+的结果是 ( ) A. 22a b - B. 22b a - C. 222b ab a +-- D. 222b ab a ++- 4. 1532+-a a 与4322---a a 的和为 ( ) A.3252--a a B. 382--a a C. 532---a a D. 582+-a a 5.下列结果正确的是 ( )A. 91312-=⎪⎭⎫ ⎝⎛- B. 0590=⨯ C. ()17530=-. D. 8123-=-6. 若()682b a b a nm =,那么n m 22-的值是 ( )A. 10B. 52C. 20D. 32 7.要使式子22259y x +成为一个完全平方式,则需加上 ( ) A. xy 15 B. xy 15± C. xy 30 D. xy 30±二、耐心填一填(第1~4题每空1分,第5、6题每空2分,共28分)1.在代数式23xy , m ,362+-a a , 12 ,22514xy yz x -, ab32中,单项式有 个,多项式有 个。
2.单项式z y x 425-的系数是 ,次数是 。
3.多项式5134+-ab ab 有 项,它们分别是 。
4. ⑴ =⋅52x x 。
⑵ ()=43y 。
⑶ ()=322ba 。
⑷ ()=-425y x 。
⑸ =÷39a a 。
⑹=⨯⨯-024510 。
北师大版数学七下第一章《整式的乘除》计算题专项训练
北师⼤版数学七下第⼀章《整式的乘除》计算题专项训练第⼀章整式的乘除计算题专项练习(北师⼤版数学七年级下册)1、4(a+b)+2(a+b)-5(a+b)2、(3mn +1)(3mn-1)-8m 2n 23、()02313721182??--+----4、[(xy-2)(xy+2)-2x 2y 2+4]÷(xy)5、化简求值:)4)(12()12(2+-+-a a a ,其中2-=a6、222)2()41(ab b a -? 7、)312(6)5(222x xy xy x --+ 8、()()()()2132-+--+x x x x9、??-÷+-xy xy xy 41412210、化简求值))(()2(2y x y x y x -+-+,其中21,2=-=y x 11.计算:2)())((y x y x y x ++---12.先化简再求值:)4)(12()2(2+-+-a a a ,其中2-=a 13、)2)(2(2-+-x x x 14、3223)2()3(x x --- 15、24)2()2(b a b a +÷+16、1232-124×122(利⽤乘法公式计算) 17、[])(2)2)(1(x x x -÷-++ 18、(2x 2y)3)19、化简求值:当2=x ,25=y 时,求()()()()x xy y x y x y x 2]4222[2-÷--+++的值 20、)43(22b a a --21、)2)(2(b a b a -+ 22、()()321+-x x23、+--229)3(b b a (—3.14)024、先化简,再求值()()2226543xy xy xy y x -?+-?,其中21,2==y x 25、3-2+(31)-1+(-2)3+(892-890)026、(9a 4b 3c )÷(2a 2b 3)·(-43a 3bc 2) 27、(15x 2y 2-12x 2y 3-3x 2)÷(-3x)228、()4(23)(32)a b a b a b +--+-29、23628374)21()412143(ab b a b a b a -÷-+30、()()()1122+--+x x x31、3-2+(31)-1+(-2)3+(892-890)032、先化简再求值:()()()3222a a=-=b a33、()4(23)(32)a b a b a b +--+-。
北师大新版七年级下册《第1章 整式的乘除》2含解析版答案
北师大新版七年级下册《第1章整式的乘除》一、选择题1.(3分)下列等式不成立的是()A.(ab)2=a2b2B.a5÷a2=a3C.(a﹣b)2=(b﹣a)2D.(a+b)2=(﹣a+b)22.(3分)如果9x2+kx+25是一个完全平方式,那么k的值是()A.30 B.±30 C.15 D.±153.(3分)若多项式x2+mx+36因式分解的结果是(x﹣2)(x﹣18),则m的值是()A.﹣20 B.﹣16 C.16 D.204.(3分)如图将4个长、宽分别均为a,b的长方形,摆成了一个大的正方形,利用面积的不同表示方法写出一个代数恒等式是()A.a2+2ab+b2=(a+b)2B.a2﹣2ab+b2=(a﹣b)2C.4ab=(a+b)2﹣(a﹣b)2D.(a+b)(a﹣b)=a2﹣b25.(3分)若(x+m)(x﹣8)中不含x的一次项,则m的值为()A.8 B.﹣8 C.0 D.8或﹣86.(3分)若x2﹣x﹣m=(x﹣m)(x+1)且x≠0,则m等于()A.﹣1 B.0 C.1 D.27.(3分)若3x=18,3y=6,则3x﹣y=()A.6 B.3 C.9 D.128.(3分)下列各式中为完全平方式的是()A.x2+2xy+4y2B.x2﹣2xy﹣y2C.﹣9x2+6xy﹣y2D.x2+4x+169.(3分)已知(m﹣n)2=32,(m+n)2=4000,则m2+n2的值为()A.2014 B.2015 C.2016 D.403210.(3分)利用平方差公式计算(2x﹣5)(﹣2x﹣5)的结果是()A.4x2﹣5 B.4x2﹣25 C.25﹣4x2D.4x2+2511.(3分)若(x﹣2)(x+3)=x2+ax+b,则a、b的值分别为()A.a=5,b=6 B.a=1,b=﹣6 C.a=1,b=6 D.a=5,b=﹣6 12.(3分)已知a+b=3,ab=2,则a2+b2的值为()A.3 B.4 C.5 D.6二、填空题(题型注释)13.(3分)已知x m=3,y n=2,求(x2m y n)﹣1的值.14.(3分)若a2﹣4a+b2﹣10b+29=0,则a=,b=.15.(3分)(﹣5a2+4b2)()=25a4﹣16b4,括号内应填()A.5a2+4b2B.5a2﹣4b2C.﹣5a2﹣4b2D.﹣5a2+4b216.(3分)99×101=()×()=.17.(3分)若a﹣b=1,则代数式a2﹣b2﹣2b的值为.18.(3分)若a+b=6,ab=4,则(a﹣b)2=.19.(3分)若a2+b2=5,ab=2,则(a+b)2=.20.(3分)将4个数排成2行、2列,两边各加一条竖直线记成,定义=ad﹣bc,若=6,则x=.三、计算题21.化简求值.(a+b)(a﹣b)+(a+b)2,其中a=3,b=﹣.22.(16分)计算(1)a3b2c÷a2b(2)(﹣x3)2•(﹣x2)3(3)(﹣4x﹣3y)2(4)(x+2y﹣3)(x﹣2y+3)四、解答题23.若a2b+ab2=30,ab=6,求下列代数式的值:(1)a2+b2;(2)a﹣b.24.先化简,再求值:[b(a﹣3b)﹣a(3a+2b)+(3a﹣b)(2a﹣3b)]÷(﹣3a),其中a、b满足2a﹣8b﹣5=0.25.若x+y=3,且(x+2)(y+2)=12.(1)求xy的值;(2)求x2+3xy+y2的值.北师大新版七年级下册《第1章整式的乘除》参考答案与试题解析一、选择题1.(3分)下列等式不成立的是()A.(ab)2=a2b2B.a5÷a2=a3C.(a﹣b)2=(b﹣a)2D.(a+b)2=(﹣a+b)2【分析】分别根据幂的乘方及积的乘方法则、同底数幂的除法法则及完全平方公式对各选项进行逐一分析即可.【解答】解:A、(ab)2=a2b2,故本选项错误;B、a5÷a2=a3,故本选项错误;C、(a﹣b)2=(b﹣a)2,故本选项错误;D、(a+b)2=a2+b2+2ab≠(﹣a+b)2=a2+b2﹣2ab故本选项正确.故选:D.2.(3分)如果9x2+kx+25是一个完全平方式,那么k的值是()A.30 B.±30 C.15 D.±15【分析】本题考查的是完全平方公式的理解应用,式中首尾两项分别是3x和5的平方,所以中间项应为加上或减去3x和5的乘积的2倍,所以kx=±2×3x×5=±30x,故k =±30.【解答】解:∵(3x±5)2=9x2±30x+25,∴在9x2+kx+25中,k=±30.故选:B.3.(3分)若多项式x2+mx+36因式分解的结果是(x﹣2)(x﹣18),则m的值是()A.﹣20 B.﹣16 C.16 D.20【分析】把分解因式的结果利用多项式乘以多项式法则计算,利用多项式相等的条件求出m的值即可.【解答】解:x2+mx+36=(x﹣2)(x﹣18)=x2﹣20x+36,可得m=﹣20,故选:A.4.(3分)如图将4个长、宽分别均为a,b的长方形,摆成了一个大的正方形,利用面积的不同表示方法写出一个代数恒等式是()A.a2+2ab+b2=(a+b)2B.a2﹣2ab+b2=(a﹣b)2C.4ab=(a+b)2﹣(a﹣b)2D.(a+b)(a﹣b)=a2﹣b2【分析】根据图形的组成以及正方形和长方形的面积公式,知:大正方形的面积﹣小正方形的面积=4个矩形的面积.【解答】解:∵大正方形的面积﹣小正方形的面积=4个矩形的面积,∴(a+b)2﹣(a﹣b)2=4ab,即4ab=(a+b)2﹣(a﹣b)2.故选:C.5.(3分)若(x+m)(x﹣8)中不含x的一次项,则m的值为()A.8 B.﹣8 C.0 D.8或﹣8【分析】先根据多项式乘以多项式法则展开式子,并合并,不含x的一次项就是含x项的系数等于0,求解即可.【解答】解:∵(x+m)(x﹣8)=x2﹣8x+mx﹣8m=x2+(m﹣8)x﹣8m,又结果中不含x的一次项,∴m﹣8=0,∴m=8.故选:A.6.(3分)若x2﹣x﹣m=(x﹣m)(x+1)且x≠0,则m等于()A.﹣1 B.0 C.1 D.2【分析】已知等式右边利用多项式乘以多项式法则化简,再利用多项式相等的条件求出m 的值即可.【解答】解:x2﹣x﹣m=(x﹣m)(x+1)=x2+(1﹣m)x﹣m,可得1﹣m=﹣1,解得:m=2.故选:D.7.(3分)若3x=18,3y=6,则3x﹣y=()A.6 B.3 C.9 D.12【分析】根据同底数幂除法法则进行计算即可.【解答】解:∵3x=18,3y=6,∴3x﹣y==3.故选:B.8.(3分)下列各式中为完全平方式的是()A.x2+2xy+4y2B.x2﹣2xy﹣y2C.﹣9x2+6xy﹣y2D.x2+4x+16【分析】完全平方式有a2+2ab+b2和a2﹣2ab+b2两个,根据以上内容逐个判断即可.【解答】解:A、x2+2xy+y2才是完全平方式,而x2+2xy+4y2不是完全平方式,故本选项错误;B、x2﹣2xy+y2才是完全平方式,而x2﹣2xy﹣y2不是完全平方式,故本选项错误;C、﹣9x2+6xy﹣y2=﹣(3x﹣y)2,是完全平方式,故本选项正确;D、x2+4x+4才是完全平方式,而x2+4x+16不是完全平方式,故本选项错误;故选:C.9.(3分)已知(m﹣n)2=32,(m+n)2=4000,则m2+n2的值为()A.2014 B.2015 C.2016 D.4032【分析】根据完全平方公式,即可解答.【解答】解:(m﹣n)2=32,m2﹣2mn+n2=32 ①,(m+n)2=4000,m2+2mn+n2=4000 ②,①+②得:2m2+2n2=4032m2+n2=2016.故选:C.10.(3分)利用平方差公式计算(2x﹣5)(﹣2x﹣5)的结果是()A.4x2﹣5 B.4x2﹣25 C.25﹣4x2D.4x2+25【分析】利用平方差公式进行计算即可得解.【解答】解:(2x﹣5)(﹣2x﹣5),=(﹣5)2﹣(2x)2,=25﹣4x2.故选:C.11.(3分)若(x﹣2)(x+3)=x2+ax+b,则a、b的值分别为()A.a=5,b=6 B.a=1,b=﹣6 C.a=1,b=6 D.a=5,b=﹣6 【分析】已知等式左边利用多项式乘多项式法则计算,利用多项式相等的条件求出a与b 的值即可.【解答】解:∵(x﹣2)(x+3)=x2+x﹣6=x2+ax+b,∴a=1,b=﹣6.故选:B.12.(3分)已知a+b=3,ab=2,则a2+b2的值为()A.3 B.4 C.5 D.6【分析】根据完全平方公式得出a2+b2=(a+b)2﹣2ab,代入求出即可.【解答】解:∵a+b=3,ab=2,∴a2+b2=(a+b)2﹣2ab=32﹣2×2=5,故选:C.二、填空题(题型注释)13.(3分)已知x m=3,y n=2,求(x2m y n)﹣1的值.【分析】根据幂的乘方,可得负整数指数幂,再根据负整数指数幂与正整数指数幂互为倒数,可得答案.【解答】解:x﹣2m=(x m)﹣2=3﹣2=,y﹣n=(y n)﹣1=.(x2m y n)﹣1=x﹣2m y﹣n=×=,故答案为:.14.(3分)若a2﹣4a+b2﹣10b+29=0,则a= 2 ,b= 5 .【分析】运用配方法把原式化为(a﹣2)2+(b﹣5)2=0,根据非负数的性质列出算式,求出a、b的值.【解答】解:∵a2﹣4a+b2﹣10b+29=0,∴(a﹣2)2+(b﹣5)2=0,∴a﹣2=0,b﹣5=0,解得a=2,b=5.15.(3分)(﹣5a2+4b2)()=25a4﹣16b4,括号内应填()A.5a2+4b2B.5a2﹣4b2C.﹣5a2﹣4b2D.﹣5a2+4b2【分析】根据平方差公式的逆用找出这两个数写出即可.【解答】解:∵(﹣5a2+4b2)(﹣5a2﹣4b2)=25a4﹣16b4,∴应填:﹣5a2﹣4b2.故选:C.16.(3分)99×101=(100﹣1 )×(100+1 )=9999 .【分析】直接利用平方差公式进行计算得出答案.【解答】解:99×101=(100﹣1)×(100+1)=9999.故答案为:9999.17.(3分)若a﹣b=1,则代数式a2﹣b2﹣2b的值为 1 .【分析】运用平方差公式,化简代入求值,【解答】解:因为a﹣b=1,a2﹣b2﹣2b=(a+b)(a﹣b)﹣2b=a+b﹣2b=a﹣b=1,故答案为:1.18.(3分)若a+b=6,ab=4,则(a﹣b)2=20 .【分析】根据完全平方公式,对已知的算式和各选项分别整理,得出a2+b2=28,然后再去括号即可得出答案.【解答】解:∵a+b=6,ab=4,∴(a+b)2=36,a2+b2+2ab=36,∴a2+b2=28,∴(a﹣b)2=a2+b2﹣2ab=28﹣8=20,故答案为:20.19.(3分)若a2+b2=5,ab=2,则(a+b)2=9 .【分析】根据完全平方公式直接代入解答即可.【解答】解:∵(a+b)2=a2+b2+2ab,∴把a2+b2与ab代入,得(a+b)2=5+2×2=9.20.(3分)将4个数排成2行、2列,两边各加一条竖直线记成,定义=ad﹣bc,若=6,则x=±.【分析】根据新定义得到(x+1)2﹣(1﹣x)(x﹣1)=6,然后整理得到x2=2,再利用直接开平方法解方程即可.【解答】解:根据题意得(x+1)2﹣(1﹣x)(x﹣1)=6,整理得x2=2,x=±,所以x1=,x2=﹣.故答案为±.三、计算题21.化简求值.(a+b)(a﹣b)+(a+b)2,其中a=3,b=﹣.【分析】原式第一项利用平方差公式化简,第二项利用完全平方公式展开,去括号合并得到最简结果,将a与b的值代入计算即可求出值.【解答】解:原式=a2﹣b2+a2+2ab+b2=2a2+2ab,当a=3,b=﹣时,原式=18﹣2=16.22.(16分)计算(1)a3b2c÷a2b(2)(﹣x3)2•(﹣x2)3(3)(﹣4x﹣3y)2(4)(x+2y﹣3)(x﹣2y+3)【分析】(1)根据单项式除以单项式法则进行计算即可;(2)先算乘方,再算乘法即可;(3)根据完全平方公式进行计算即可;(4)先变形,再根据平方差公式进行计算,最后根据完全平方公式进行计算即可.【解答】解:(1)a3b2c÷a2b=abc;(2)(﹣x3)2•(﹣x2)3=x6•(﹣x6)=﹣x12;(3)(﹣4x﹣3y)2=16x2+24xy+9y2;(4)(x+2y﹣3)(x﹣2y+3)=[x+(2y﹣3)][x﹣(2y﹣3)]=x2﹣(2y﹣3)2=x2﹣4y2+12y﹣9.四、解答题23.若a2b+ab2=30,ab=6,求下列代数式的值:(1)a2+b2;(2)a﹣b.【分析】(1)已知等式左右两边相除,利用多项式除以单项式法则计算求出a+b的值,两边平方后利用完全平方公式化简,将ab的值代入计算即可求出所求式子的值;(2)将原式平方,利用完全平方公式化简,将各自的值代入计算,开方即可求出值.【解答】解:(1)由a2b+ab2=30,ab=6,得(a2b+ab2)÷ab=ab(a+b)÷ab=30÷6=5,即a+b=5,∴(a+b)2=25,即a2+2ab+b2=25,∴a2+b2=25﹣2ab=25﹣2×6=13;(2)(a﹣b)2=a2﹣2ab+b2=13﹣2×6=1,∴a﹣b=±1.24.先化简,再求值:[b(a﹣3b)﹣a(3a+2b)+(3a﹣b)(2a﹣3b)]÷(﹣3a),其中a、b满足2a﹣8b﹣5=0.【分析】先算乘法,再合并同类项,最后算除法,代入求出即可.【解答】解:[b(a﹣3b)﹣a(3a+2b)+(3a﹣b)(2a﹣3b)]÷(﹣3a)=[ab﹣3b2﹣3a2﹣2ab+6a2﹣9ab﹣2ab+3b2]÷(﹣3a)=(3a2﹣12ab)÷(﹣3a)=﹣a+4b,∵2a﹣8b﹣5=0,∴2a﹣8b=5,∴﹣a+4b =﹣,∴原式=﹣.25.若x+y=3,且(x+2)(y+2)=12.(1)求xy的值;(2)求x2+3xy+y2的值.【分析】(1)先去括号,再整体代入即可求出答案;(2)先变形,再整体代入,即可求出答案.【解答】解:(1)∵x+y=3,(x+2)(y+2)=12,∴xy+2x+2y+4=12,∴xy+2(x+y)=8,∴xy+2×3=8,∴xy=2;(2)∵x+y=3,xy=2,∴x2+3xy+y2=(x+y)2+xy=32+2=11.11/ 11。
北师大版数学七年级下册第一章整式的乘除-测试卷及答案
北师大版七年级数学下册第一章整式的乘除评卷人得分一、单选题1.计算(a3)2的结果是()A.a5B.a6C.a8D.a9 2.下列计算正确的是()A.a3-a2=a B.a2·a3=a6C.(3a)3=9a3D.(a2)2=a4 3.已知x+y﹣4=0,则2y•2x的值是()A.16B.﹣16C.18D.84.下列运算正确的是()A.﹣2x2﹣3x2=﹣5x2B.6x2y3+2xy2=3xyC.2x3•3x2=6x6D.(a+b)2=a2﹣2ab+b25.下列计算正确的是()A.a3•a=a3B.(2a+b)2=4a2+b2C.a8b÷a2=a4b D.(﹣3ab3)2=9a2b66.下列各式:①(x-2y)(2y+x);②(x-2y)(-x-2y);③(-x-2y)(x+2y);④(x-2y)(-x+2y).其中能用平方差公式计算的是()A.①②B.①③C.②③D.②④7.如果x2+10x+_____=(x+5)2,横线处填()A.5B.10C.25D.±108.若a+b=5,ab=﹣24,则a2+b2的值等于()A.73B.49C.43D.239.已知a=96,b=314,c=275,则a、b、c的大小关系是()A.a>b>c B.a>c>b C.c>b>a D.b>c>a10.观察下列各式及其展开式:(a+b)2=a2+2ab+b2(a+b)3=a3+3a2b+3ab2+b3(a+b)4=a4+4a3b+6a2b2+4ab3+b4(a+b)5=a5+5a4b+10a3b2+10a2b3+5ab4+b5…请你猜想(a+b )10的展开式第三项的系数是()A .36B .45C .55D .66评卷人得分二、填空题11.如果x n y 4与2xy m 相乘的结果是2x 5y 7,那么mn=_____.12.若162482m m ⋅⋅=,则m =______.13.若3x =12,3y =4,则3x ﹣y =_____.14.3108与2144的大小关系是__________15.已知长方形的面积为4a 2-4b 2,如果它的一边长为a+b ,则它的周长为______.16.若4x 2+2(k-3)x+9是完全平方式,则k=______.17.已知x 2+y 2+10=2x +6y ,则x 21+21y 的值为_______18.已知△ABC 的三边长为整数a ,b ,c ,且满足a 2+b 2-6a-4b +13=0,则c 为______评卷人得分三、解答题19.化简:(x 4)3+(x 3)4﹣2x 4•x 820.化简:4(a+2)(a+1)-7(a+3)(a -3)21.化简:(x 3)2÷x 2÷x+x 3•(﹣x)2•(﹣x 2)22.化简:[a(a 2b 2-ab)-b(-a 3b-a 2)]÷a 2b23.化简:(x+2)(x-2)+(3x-1)(3x+1).24.化简:(a ﹣2b ﹣3c)(a ﹣2b+3c)25.化简:(2a+1)2﹣(2a+1)(﹣1+2a)26.化简:(x-1)2(x+1)2-1.27.(1)如图是用4个全等的长方形拼成的一个“回形”正方形,图中阴影部分面积用2种方法表示可得一个等式,这个等式为______.(2)若(4x﹣y)2=9,(4x+y)2=169,求xy的值.28.若我们规定三角“”表示为:abc;方框“”表示为:(x m+y n).例如:=1×19×3÷(24+31)=3.请根据这个规定解答下列问题:(1)计算:=______;(2)代数式为完全平方式,则k=______;(3)解方程:=6x2+7.参考答案1.B【解析】试题分析:(a3)2=a6,故选B.考点:幂的乘方与积的乘方.2.D【解析】A.a3与a2不能合并,故A错误;B.a2⋅a3=a5,故B错误;C.(3a)3=27a3,故C错误;D.(a2)2=a4,故D正确.故选D.3.A【解析】∵x+y-4=0,∴x+y=4,∴2y·2x=2x+y=24=16.故选A.点睛:a m·a n=a m+n.4.A【解析】【分析】根据合并同类项法则、单项式乘单项式法则、完全平方公式逐一判断即可.【详解】A、-2x2-3x2=-5x2,此选项正确;B、6x2y3与2xy2不是同类项,不能合并,此选项错误;C、2x3•3x2=6x5,此选项错误;D、(a+b)2=a2+2ab+b2,此选项错误;故选A.【点睛】本题主要考查合并同类项、单项式乘单项式、完全平方公式,熟练掌握法则和公式是解题的关键.5.D【解析】【分析】根据同底数幂的除法、完全平方公式、单项式除以单项式进行计算即可.【详解】A.a3•a=a4,故A错误;B.(2a+b)2=4a2+b2+4ab,故B错误;C.a8b÷a2=a6b,故C错误;D.(﹣3ab3)2=9a2b6,故D正确;故选D.【点睛】本题考查的是整式的计算,熟练掌握计算法则是解题的关键.6.A【解析】试题分析:将4个算式进行变形,看那个算式符合(a+b)(a﹣b)的形式,由此即可得出结论.解:①(x﹣2y)(2y+x)=(x﹣2y)(x+2y)=x2﹣4y2;②(x﹣2y)(﹣x﹣2y)=﹣(x﹣2y)(x+2y)=4y2﹣x2;③(﹣x﹣2y)(x+2y)=﹣(x+2y)(x+2y)=﹣(x+2y)2;④(x﹣2y)(﹣x+2y)=﹣(x﹣2y)(x﹣2y)=﹣(x﹣2y)2;∴能用平方差公式计算的是①②.故选A.点评:本题考查了平方差公式,解题的关键是将四个算式进行变形,再与平方差公式进行比对.本题属于基础题,难度不大,解决该题型题目时,牢记平分差公式是解题的关键.7.C【解析】试题解析:设需要填空的数为A,则原式为:x2+10x+A=(x+5)2.∴x2+10x+A=x2+10x+25,∴A=25.故选C.8.A【解析】∵a+b=5,∴a2+2ab+b2=25,∵ab=﹣24,∴a2+b2=25+2×24=73,故选A.【点睛】本题考查了完全平方公式的应用,熟记完全平方公式是解题的关键.9.C【解析】【分析】根据幂的乘方可得:a=69=312,c=527=315,易得答案.【详解】因为a=69=312,b=143,c=527=315,所以,c>b>a故选C【点睛】本题考核知识点:幂的乘方.解题关键点:熟记幂的乘方公式.10.B【解析】【分析】归纳总结得到展开式中第三项系数即可.【详解】解:解:(a+b )2=a 2+2ab+b 2;(a+b )3=a 3+3a 2b+3ab 2+b 3;(a+b )4=a 4+4a 3b+6a 2b 2+4ab 3+b 4;(a+b )5=a 5+5a 4b+10a 3b 2+10a 2b 3+5ab 4+b 5;(a+b )6=a 6+6a 5b+15a 4b 2+20a 3b 3+15a 2b 4+6ab 5+b 6;(a+b )7=a 7+7a 6b+21a 5b 2+35a 4b 3+35a 3b 4+21a 2b 5+7ab 6+b 7;第8个式子系数分别为:1,8,28,56,70,56,28,8,1;第9个式子系数分别为:1,9,36,84,126,126,84,36,9,1;第10个式子系数分别为:1,10,45,120,210,252,210,120,45,10,1,则(a+b )10的展开式第三项的系数为45.故选B .【点睛】本题考查了完全平方公式的规律,根据给的式子得出规律是解题的关键.11.12【解析】41457222n m n m x y xy x y x y ++⋅==,∴n +1=5,m +4=7,解得:m =3,n =4,∴mn =12.故答案为12.12.3【解析】【分析】先将4m 、8m 化成底数为2的幂,然后利用同底数幂的乘法求解即可.【详解】∵248m m ⋅⋅=23511622222m m m +⨯⨯==,∴m=3.故答案为:3.【点睛】此题主要考查了同底数幂相乘的运算方法以及幂的逆运算,熟练掌握运算法则是解题的关键.13.3【解析】【分析】首先应用含3x,3y的代数式表示3x-y,然后将3x,3y的值代入即可求解.【详解】解:∵3x=12,3y=4,∴3x-y=3x÷3y,=12÷4,=3.故答案为:3.【点睛】本题主要考查同底数幂的除法性质的逆用,熟练掌握运算性质并灵活运用是解题的关键.14.3108>2144【解析】【分析】把3108和2144化为指数相同的形式,然后比较底数的大小.【详解】解:3108=(33)36=2736,2144=(24)36=1636,∵27>16,∴2736>1636,即3108>2144.故答案为3108>2144.【点睛】本题考查了幂的乘方,解答本题的关键是掌握幂的乘方的运算法则.【解析】【分析】直接利用多项式除法运算法计算得出其边长,进而得出答案.【详解】由题意得,长方形的另一边长为:(4a2-4b2)÷(a+b)=4a-4b,∴该长方形的周长为:(4a-4b+a+b)×2=10a-6b,故:应填10a-6b【点睛】本题主要考查多项式的除法运算,解题关键是正确掌握运算法则.16.9或﹣3【解析】原式可化为(2x)2+2(k-3)x+32,又∵4x2+2(k-3)x+9是完全平方式,∴4x2+2(k-3)x+9=(2x±3)2,∴4x2+2(k-3)x+9=4x2±12x+9,∴2(k-3)=±12,解得:k=9或-3,故答案为9或-3.【点睛】本题主要考查了完全平方式,根据平方项确定出这两个数是解题的关键,熟记完全平方公式对解题非常重要.17.64【解析】∵x2+y2+10=2x+6y,∴x2+y2+10-2x-6y=0,∴(x-1)2+(y-3)2=0,∵(x-1)2≥0,(y-3)2≥0,∴x-1=0,y-3=0,解得:x=1,y=3;∴x21+21y=121+21×3=63+1=64,故答案为:64.18.2或3或4【解析】【分析】由a2+b2-6a-4b+13=0,,得(a-3)2+(b-2)2=0,求得a、b的值,再根据三角形的三边关系定理求得c的取值范围,根据c为整数即可求得c值.【详解】∵a2+b2-6a-4b+13=0,∴(a-3)2+(b-2)2=0,∴a-3=0,b-2=0,解得a=3,b=2,∵1<c<5,且c为整数,∴c=2、3、4,故答案为:2或3或4.【点睛】本题主要考查了非负数的性质、完全平方公式、三角形三边关系,根据非负数的性质求得a、b的值,再利用三角形的三边关系确定c的值是解决此类题目的基本思路.19.0【解析】【分析】直接利用整式运算法-乘方的运算则计算得出答案.【详解】解:原式=x12+x12-2x12=0【点睛】本题主要考查整式的混合运算,正确运用整式运算法-乘方的运算是解答题目的关键. 20.-3a2+12a+71【解析】【分析】根据整式四则混合运算的顺序和法则计算即可.【详解】解:4(a+2)(a+1)-7(a+3)(a-3)=4(a2+3a+2)-7(a2-9)=4a2+12a+8-7a2+63=-3a2+12a+71.故答案为:-3a2+12a+71.【点睛】本题考查了整式的混合运算.21.x3﹣x7【解析】【分析】直接利用整式运算法则-乘方的运算计算得出答案.【详解】(x3)2÷x2÷x+x3•(﹣x)2•(﹣x2)=x6÷x2÷x-x3•x2•x2=x6-2-1-x3+2+2=x3﹣x7【点睛】本题主要考查整式的混合运算,正确运用整式运算法-乘方的运算是解答题目的关键. 22.2ab【解析】【分析】先算乘法,再合并同类项,最后算除法.【详解】解:[a(a2b2-ab)-b(-a3b-a2)]÷a2b=(a3b2-a2b+a3b2+a2b)÷a2b=2a3b2÷a2b=2ab.故答案为:2ab.【点睛】本题考查了整式的混合运算,能正确根据整式的运算法则进行化简是解此题的关键.23.10x2-5.【解析】【分析】根据平方差公式以及整式的运算法则即可求出答案.【详解】原式=x 2-4+9x 2-1=10x 2-5.【点睛】本题考查了平方差公式,解答本题的关键是掌握平方差公式的形式,这是需要我们熟练记忆的内容,属于基础题型.24.a 2+4b 2﹣4ab ﹣9c 2【解析】【分析】原式利用平方差公式化简,再利用完全平方公式展开即可得到结果.【详解】原式=[][]a 2b 3c a 2b 3c---+=22a 2b 3c ()--=222449a b ab c +--.故答案为222449a b ab c +--.【点睛】本题考查平方差公式,完全平方公式.25.4a+2【解析】【分析】运用完全平方和公式、多项式乘多项式法则去括号后,再合并同类项即可.【详解】(2a+1)2﹣(2a+1)(﹣1+2a)=4a 2+4a+1-4a 2+1=4a+2【点睛】考查了整式的混合运算,解本题的关键运用完全平方和公式((a+b)2=a2+2ab+b2)和多项式乘多项式法则((a+b)(c+d)=ac+ad+bc+bd).26.x4-2x2.【解析】【分析】先利用平方差公式进行计算,然后利用完全平方公式进行计算.【详解】解:(x-1)2(x+1)2-1=[(x-1)(x+1)]2-1=(x2-1)2-1=x4-2x2+1-1=x4-2x2.故答案为:x4-2x2.【点睛】本题考查了利用平方差公式和完全平方公式对整式进行化简.27.(1)4ab;(2)10.【解析】【分析】(1)根据长方形面积公式列①式,根据面积差列②式,得出结论;(2)由(1)的结论得出(2x+y)2-(2x-y)2=8xy,把已知条件代入即可.【详解】=4ab①,(1)S阴影=4S长方形S阴影=S大正方形-S空白小正方形=(a+b)2-(b-a)2②,由①②得:(a+b)2-(a-b)2=4ab,故答案为:(a+b)2-(a-b)2=4ab;(2)∵(4x+y)2-(4x-y)2=16xy,∴16xy=169-9,∴xy=10.【点睛】本题考查了完全平方公式几何意义的理解,此题有机地把代数与几何图形联系在一起,利用几何图形的面积公式直接得出或由其图形的和或差得出.28.(1)32-;(2)±3;(3)x=-4.【解析】【详解】解:(1)=[2×(-3)×1]÷[(-1)4+31]=-6÷4=-3 2.故答案为3 2-;(2)=[x2+(3y)2]+xk•2y=x2+9y2+2kxy,∵代数式为完全平方式,∴2k=±6,解得k=±3.故答案为±3;(3)=6x2+7,(3x-2)(3x+2)]-[(x+2)(3x-2)+32]=6x2+7,解得x=-4.。
北师大版七年级下册数学第一章整式的乘除测试题(附答案)
北师大版七年级下册数学第一章整式的乘除测试题(附答案)北师大版七年级下册数学第一章整式的乘除测试题(附答案)一、单选题1.某种细胞的直径是0. 00000024m,将0. 00000024用科学记数法表示为()A. 2.4×10-7B.C.D.2.下列运算正确的是()A. a3+a3=a6B. a6a4=a24C. a4-a4=a0D. a0a-1=a3.计算的结果是()A. B. C. D.4.下列运算正确的是()A. B. a3·a2=a5 C. (a4)2=a6 D. a3+a4=a75.从图1到图2的变化过程可以发现的代数结论是()A. (a+b)(a﹣b)=a2﹣b2B. a2﹣b2=(a+b)(a﹣b)C. (a+b)2=a2+2ab+b2D. a2+2ab+b2=(a+b)26.(3a+2)(4a2﹣a﹣1)的结果中二次项系数是()A. ﹣3B. 8C. 5D. ﹣57.学生作业本每页大约为7.5忽米(1厘米=1000忽米),请用科学记数法将7.5忽米记为米,则正确的记法为()A. 7.5× 米B. 0.75× 米C. 0.75× 米D. 7.5× 米8.下列运算正确的是()A. a+2a2=3a3B. a2?a3=a6C. (a3)2=a5D. a6÷a2=a49.小数0.000000059用科学记数法应表示为()A. 5.9×107B. 5.9×108C. 5.9×10﹣7D. 5.9×10﹣810.已知x+ =5,那么x2+ =()A. 10B. 23C. 25D. 2711.如图使用4个全等三角形与1个小正方形镶嵌而成的正方形图案已知大正方形面积为49,小正方形面积为4,若用x、y表示直角三角形的两直角边(x>y),下列四个说法:①x2+y2=49;②x?y=2;③2xy+4=49;④x+y=9. 其中正确的是()A. ①②B. ①②③C. ①②④D. ①②③④12.在求1+6+62+63+64+65+66+67+68+69的值时,小林发现:从第二个加数起每一个加数都是前一个加数的6倍,于是她设:S=1+6+62+63+64+65+66+67+68+69①然后在①式的两边都乘以6,得:6S=6+62+63+64+65+66+67+68+69+610②②﹣①得6S﹣S=610﹣1,即5S=610﹣1,所以S= ,得出答案后,爱动脑筋的小林想:如果把“6”换成字母“a”(a≠0且a≠1),能否求出1+a+a2+a3+a4+…+a2014的值?你的答案是()A. B. C. D. a2015﹣1二、填空题13.计算:________.14.已知某种纸一张的厚度约为0.0089cm,用科学记数法表示这个数为________.15.计算:(12a3﹣6a2)÷(﹣2a)=________16.当m=________时,成立.17.计算2﹣2+()0=________ .18.已知,,则的值是________.19.如图,有4个圆A,B,C,D,且圆A与圆B的半径之和等于圆C的半径,圆B与圆C的半径之和等于圆D的半径.现将圆A,B,C摆放如图甲,圆B,C,D摆放如图乙.若图甲和图乙的阴影部分面积分别为4π和12π.则圆D面积为________ 。
七年级数学下册第一章《整式的乘除》综合测试卷-北师大版(含答案)
七年级数学下册第一章《整式的乘除》综合测试卷-北师大版(含答案)(满分100分,限时60分钟)一、选择题(共10小题,每小题3分,共30分)1.若2a=5,2b=3,则2a+b=()A.8B.2C.15D.12.计算(-x2)·(-x)4的结果是()A.x6B.x8C.-x6D.-x83.下列式子能用平方差公式计算的是()A.(2x-y)(-2x+y)B.(2x+1)(-2x-1)C.(3a+b)(3b-a)D.(-m-n)(-m+n)4.(2022江苏泰州泰兴济川中学月考)下列运算中,正确的是()A.a8÷a2=a4B.(-m)2·(-m3)=-m5C.x3+x3=x6D.(a3)3=a65.(2022江苏淮安洪泽期中)若a>0且a x=2,a y=3,则a x-y的值为()A.23B.1 C.−1 D.326.4a7b5c3÷(-16a3b2c)÷(18a4b3c2)等于()A.aB.1C.-2D.-17.【整体思想】已知m-n=1,则m2-n2-2n的值为()A.1B.-1C.0D.28.如果x2-(a-1)x+9是一个完全平方式,则a的值为()A.7B.-4C.7或-5D.7或-49.【新独家原创】若a=(π-2 023)0,b=2 0222-2 021×2 023,c=-23,则a-b-c的值为()A.2 021B.2 022C.8D.110.【转化思想】从前,一位庄园主把一块长为a米,宽为b米(a>b>100)的长方形土地租给租户张老汉,第二年,他对张老汉说:“我把这块地的长增加10米,宽减少10米,继续租给你,租金不变,你也没有吃亏,你看如何?”如果这样,你觉得张老汉的租地面积会()A.变小了B.变大了C.没有变化D.无法确定二、填空题(共6小题,每小题3分,共18分)11.计算:(−13)100×3101=.12.(2022广东佛山月考)已知a+b=8,ab=15,则a2+b2=.13.(2022江苏盐城滨海第一初级中学月考)已知4×16m×64m=421,则m的值为.14.已知一个三角形的面积等于8x3y2-4x2y3,一条边长等于8x2y2,则这条边上的高等于.15.调皮的弟弟把小明的作业本撕掉了一角,留下一道残缺不全的题目,如图所示,请你帮小明算出被除式等于.÷(5x)=x2-3x+6.16.【学科素养·几何直观】有两个大小不同的正方形A和B,现将A、B并列放置后构造新的正方形如图1,其阴影部分的面积为16.将B放在A的内部得到图2,其阴影部分(正方形)的面积为3,则正方形A,B的面积之和为.三、解答题(共5小题,共52分)17.(2022宁夏银川三中月考)(14分)计算:(1)4y·(-2xy2);(2)(3x2+12y−23y2)·(−12xy)2;(3)(2a+3)(b2+5);(4)(6x3y3+4x2y2-3xy)÷(-3xy).18.(12分)计算:(1)-12+(π-3.14)0-(−13)−2+(-2)3;(2)2 001×1 999(运用乘法公式);(3)(x+y+3)(x+y-3).,y=-1.19.(6分)先化简,再求值:(2x+3y)2-(2x+y)(2x-y),其中x=1320.(2022江苏泰州二中月考)(10分)(1)已知m+4n-3=0,求2m·16n的值;(2)已知n为正整数,且x2n=4,求(x3n)2-2(x2)2n的值.21.【代数推理】(2022河北保定十七中期中)(10分)阅读下列材料:利用完全平方公式,将多项式x2+bx+c变形为(x+m)2+n的形式,然后由(x+m)2≥0就可求出多项式x2+bx+c的最小值.例题:求x2-12x+37的最小值.解:x2-12x+37=x2-2x·6+62-62+37=(x-6)2+1,∵不论x取何值,(x-6)2总是非负数,即(x-6)2≥0,∴(x-6)2+1≥1,∴当x=6时,x2-12x+37有最小值,最小值是1.根据上述材料,解答下列问题:(1)填空:x2-14x+=(x-)2;(2)将x2+10x-2变形为(x+m)2+n的形式,并求出x2+10x-2的最小值;(3)如图,第一个长方形的长和宽分别是(3a+2)和(2a+5),面积为S1,第二个长方形的长和宽分别是5a和(a+5),面积为S2,试比较S1与S2的大小,并说明理由.参考答案1.C当2a=5,2b=3时,2a+b=2a×2b=5×3=15,故选C.2.C(-x2)·(-x)4=-x2·x4=-x6,故选C.3.D A.原式=-(2x-y)(2x-y)=-(2x-y)2,故原式不能用平方差公式进行计算,此选项不符合题意;B.原式=-(2x+1)(2x+1)=-(2x+1)2,故原式不能用平方差公式进行计算,此选项不符合题意;C.原式=(3a+b)(-a+3b),故原式不能用平方差公式进行计算,此选项不符合题意;D.原式=(-m)2-n2=m2-n2,原式能用平方差公式进行计算,此选项符合题意.故选D.4.B a8÷a2=a6,故A选项错误;(-m)2·(-m3)=-m5,故B选项正确;x3+x3=2x3,故C选项错误;(a3)3=a9,故D选项错误.故选B.5.A a x-y=a x÷a y=2÷3=23.故选A.6.C4a7b5c3÷(-16a3b2c)÷(18a4b3c2)=-14a4b3c2÷(18a4b3c2)=-2.故选C.7.A∵m-n=1,∴原式=(m+n)(m-n)-2n=m+n-2n=m-n=1,故选A.8.C∵x2-(a-1)x+9是一个完全平方式,∴x2-(a-1)x+9=(x+3)2或x2-(a-1)x+9=(x-3)2,∴a-1=±6,解得a=-5或a=7,故选C.9.C∵a=(π-2 023)0=1,b=2 0222-(2 022-1)×(2 022+1)=2 0222-2 0222+1=1,c=-23=-8,∴a-b-c=1-1+8=8.故选C.10.A由题意可知原土地的面积为ab平方米, 第二年按照庄园主的想法,土地的面积变为(a+10)(b-10)=ab-10a+10b-100=[ab-10(a-b)-100]平方米,∵a>b,∴ab-10(a-b)-100<ab, ∴租地面积变小了,故选A.11.3解析原式=(13)100×3101=(13×3)100×3=3.故答案是3.12.34解析∵a+b=8,ab=15,∴(a+b)2=a2+2ab+b2=a2+30+b2=64,则a2+b2=34.故答案为34.13.4解析∵4×16m×64m=421,∴4×42m×43m=421,∴41+5m=421,∴1+5m=21,∴m=4.故答案为4.14.2x-y解析易知该边上的高=2(8x3y2-4x2y3)÷(8x2y2)=16x3y2÷(8x2y2)-8x2y3÷(8x2y2)=2x-y.故答案为2x-y.15.5x3-15x2+30x解析由题意可得被除式等于5x·(x2-3x+6)=5x3-15x2+30x.故答案为5x3-15x2+30x.16.19解析设正方形A的边长为a,正方形B的边长为b,由题图1得(a+b)2-a2-b2=16,∴2ab=16,∴ab=8,由题图2得a2-b2-2(a-b)b=3,∴a2+b2-2ab=3,∴a2+b2=3+2ab=3+2×8=19,∴正方形A,B的面积之和为19.故答案为19.17.解析(1)4y·(-2xy2)=-8xy3.(2)原式=(3x2+12y−23y2)·14x2y2=3 4x4y2+18x2y3−16x2y4.(3)(2a+3)(b2+5)=ab+10a+32b+15.(4)(6x3y3+4x2y2-3xy)÷(-3xy)=-2x2y2-43xy+1.18.解析(1)原式=-1+1-9-8=-17.(2)2 001×1 999=(2 000+1)(2 000-1)=2 0002-1=3 999 999.(3)(x+y+3)(x+y-3)=[(x+y)+3][(x+y)-3]=(x+y)2-9=x2+2xy+y2-9.19.解析(2x+3y)2-(2x+y)(2x-y) =(4x2+12xy+9y2)-(4x2-y2)=4x2+12xy+9y2-4x2+y2=12xy+10y2.当x=13,y=-1时,原式=12×13×(-1)+10×(-1)2=6.20.解析(1)∵m+4n-3=0,∴m+4n=3,∴2m·16n=2m·24n=2m+4n=23=8.(2)原式=x6n-2x4n=(x2n)3-2(x2n)2=64-2×16=64-32=32.21.解析(1)49;7.(2)x2+10x-2=x2+10x+25-25-2=x2+10x+25-27=(x+5)2-27≥-27, ∴当x=-5时,x2+10x-2有最小值,为-27.(3)由题意得,S1=(2a+5)(3a+2)=6a2+19a+10,S2=5a(a+5)=5a2+25a,∴S1-S2=6a2+19a+10-(5a2+25a)=a2-6a+10=(a-3)2+1,∵(a-3)2≥0,∴(a-3)2+1≥1,∴S1-S2>0,∴S1>S2.。
最新北师大版七年级下册第一章整式的乘除计算题专项训练
第一章 整式的乘除计算题专项练习(北师大版数学 七年级下册)1、4(a+b)+2(a+b)-5(a+b)2、(3mn +1)(3mn-1)-8m 2n 23、()02313721182⨯⎪⎭⎫ ⎝⎛-⨯-⨯+----4、[(xy-2)(xy+2)-2x 2y 2+4]÷(xy)5、化简求值:)4)(12()12(2+-+-a a a ,其中2-=a6、222)2()41(ab b a -⋅ 7、)312(6)5(222x xy xy x --+ 8、()()()()2132-+--+x x x x9、⎪⎭⎫⎝⎛-÷⎪⎭⎫ ⎝⎛+-xy xy xy 41412210、化简求值))(()2(2y x y x y x -+-+,其中21,2=-=y x 11.计算:2)())((y x y x y x ++---12.先化简再求值:)4)(12()2(2+-+-a a a ,其中2-=a 13、)2)(2(2-+-x x x 14、3223)2()3(x x --- 15、24)2()2(b a b a +÷+16、1232-124×122(利用乘法公式计算) 17、[])(2)2)(1(x x x -÷-++ 18、(2x 2y)3·(-7xy 2)÷(14x 4y 3)19、化简求值:当2=x ,25=y 时,求()()()()x xy y x y x y x 2]4222[2-÷--+++的值 20、)43(22b a a --21、)2)(2(b a b a -+ 22、()()321+-x x23、+--229)3(b b a (—3.14)024、先化简,再求值()()2226543xy xy xy y x -⋅+-⋅,其中21,2==y x 25、3-2+(31)-1+(-2)3+(892-890)026、(9a 4b 3c )÷(2a 2b 3)·(-43a 3bc 2) 27、(15x 2y 2-12x 2y 3-3x 2)÷(-3x)228、()4(23)(32)a b a b a b +--+-29、23628374)21()412143(ab b a b a b a -÷-+30、()()()1122+--+x x x31、3-2+(31)-1+(-2)3+(892-890)032、先化简再求值:()()()3222a ab b b ab a b a -++++-,其中2,41=-=b a33、()4(23)(32)a b a b a b +--+-。
(完整版)北师大初中数学七年级(下册)第一章整式的乘除练习题(带答案)【幂的乘方、积的乘方、完全平方公式】
北师大版 七年级(下册) 第一章整式的乘除 分节练习第1节 同底数幂的乘法01、【基础题】 (1)67)3()3(-⨯-; (2)111111113⨯)(; (3)—53x x ⋅ (4)122+⋅m m b b01.1、【基础题】 (1)=-⋅23b b (2)=-⋅3)(a a (3)=--⋅32)()(y y (4)=--⋅43)()(a a(5)=-⋅2433 (6)=--⋅67)5()5( (7)=--⋅32)()(q q n(8)=--⋅24)()(m m(9)=-32 (10)=--⋅54)2()2((11)=--⋅69)(b b(12)=--⋅)()(33a a01.2、【综合I 】 (1)=++⋅⋅21n n n a a a (2)=⋅⋅n n n b b b 53 (3)=+-⋅⋅132m m b b b b (4)=--⋅4031)1()1((5)=⨯-⨯672623 (6)=⨯+⨯54373602、【基础题】光在真空中的速度约为3⨯810m/s ,太阳光照耀到 地球 上大约需要5210⨯s ,那么 地球距离太阳大约有多远?02.1、【基础题】已知每平方千米的土地上,一年内从太阳得到的能量相当于燃烧81.310kg ⨯煤所产生的能量,那么我国629.610km ⨯的土地上,一年内从太阳得到的能量相当于燃烧煤多少千克?第2节 幂的乘方与积的乘方03、【基础题】 (1) (102)3 ; (2) (b 5)5 ; (3) (a n )3;(4) -(x 2)m ; (5) (y 2)3 · y ; (6) 2(a 2)6 - (a 3)403.1【基础题】 (1)_____)(33=x (2)_____)(52=-x (3)_____)(532=⋅a a(4)________)()(4233=⋅-m m (5)_____)(32=n x03.2、 【综合II 】04、【基础题】 (1)2)3(x ; (2)5)2(b -; (3)4)2(xy -; (4)na )3(2. 04.1、【基础题】 (1)4()ab ; (2)3(2)xy -; (3)23(310)-⨯; (4)23(2)ab 04.2、【综合I 】 (1)200720080.254⨯; (2)2334(310)(10)⨯⋅-;(3)2323()()()n n na b a b -⋅--; (4)3232733(3)(4)(5)a a a a a -⋅+-⋅-04.3、【综合II 】 若2,3,n n x y == 求 3()n xy 的值.04.4【综合I 】 计算:1010)128910()1218191101(⨯⨯⋯⨯⨯⨯•⨯⨯⋯⨯⨯⨯.第3节 同底数幂的除法05、【基础题】计算 :(1)m 9÷m 3; (2)(﹣a )6÷(﹣a )3;(3)(﹣8)6÷(﹣8)5; (4)62m+3÷6m .05.1、【基础题】计算 (1)a 7÷a 4; (2)(﹣m )8÷(﹣m )3; (3)(xy )7÷(xy )4; (4)x 2m+2÷x m+2; (5)x 6÷x 2•x ; (6)(x ﹣y )5÷(y ﹣x )305.2【综合I 】计算: ⑴3459)(a a a ÷•; ⑵347)()()(a a a -⨯-÷-;⑶533248÷•; ⑷[]233234)()()()(x x x x -÷-•-÷-.05.3、【综合 I 】 已知n m n ma a a -==243,求,的值.06、【基础题】用小数或分数表示下列各数: (1)310—; (2)2087—⨯; (3)4106.1—⨯.06.1、【基础题】用分数或小数表示下列各数: (1)0)21(; (2)33—; (3)5103.1—⨯; (4)25—. 07、【基础题】用科学记数法表示下列各数 (1) 732400 (2) -6643919000(3) 0.00000006005 (4) -0.0000021707.1、【基础题】用科学记数法表示下列各数 (1)0.00000072; (2)0.000861; (3)0.0000000003425第4节 整式的乘法 08、【基础题】计算:(1)xy xy 3122•; (2)322b a —)3(a —•; (3)22)2(7xyz z xy •.08.1、【基础题】计算: (1)xy 4·(-23xy ); (2)b a 3·c ab 5; (3)y x 22·2)(xy -; (4)3252y x ·xyz 85; (5)-32z xy ·32)(y x -; (6)-3ab ·22abc ·32)(c a .09、【基础题】计算: (1)6x 2•3xy (2)(4a ﹣b 2)•(﹣2b )(3)(3x 2y ﹣2x+1)•(﹣2xy ); (4) 2(322z xy z y x ++)•xyz09.1、【基础题】(1) (﹣12a 2b 2c )•(﹣abc 2)2 ; (2) (3a 2b ﹣4ab 2﹣5ab ﹣1)•(﹣2ab 2);(3)﹣6a •(﹣﹣a+2); (4)﹣3x •(2x 2﹣x+4)(5) (﹣a 2b )(b 2﹣a+); (6).09.2、【综合Ⅰ】 先化简,再求值 3a (2a 2﹣4a+3)﹣2a 2(3a+4),其中a=-210、【基础题】 计算: (1)(21)(3)x x ++; (2)(2)(3)m n m n +-; (3)2(1)a -; (4)(3)(3)a b a b +-;(5)2(21)(4)x x --; (6)2(3)(25)x x +-; (7)(7)()()33a bc bc a ---; (8)(3x -2y)2-(3x +2y)210.1【基础题】计算:(1)(6)(3)x x -- ; (2)11()()23x x +-; (3)(32)(2)x x ++; (4)(41)(5)y y --;(5)2(2)(4)x x -+; (6)22()()x y x xy y -++10.2、【基础题】计算: ))((e d c c b a ++++第5节 平方差公式11、【基础题】利用平方差 公式 计算: (1)(2)(2)(a a +-= 2)(- 2)= ;(2)(43)(34)(a b b a -+= 2)(- 2)= ; (3)(58)(58)(x x -+--= 2)(- 2)= ; (4)(23)(23)(a b a b -++= 2)(- 2)= ; (5)()()(a b c a b c +++-= 2)(- 2);(6)()()(x y a b x y a b ++++--= 2)(- 2).11.1、【基础题】利用平方差公式 计算: (1)(3)(3)a b a b +-; (2)(32)(32)a a +-+ ; (3)5149⨯;(4) (34)(34)(23)(32)x x x x +--+-; (5) ))((y x y x nn +-; (6) )231)(312(a b b a ---.11.2、【基础题】用平方差公式进行计算: (1)103×97; (2)118×122; (3)20011 ⨯ 99911.3、【综合Ⅰ】计算:(1))1)(1)(1(2+-+a a a ; (2) 2244()()()()a b a b a b a b -+++.(3)222))((b a b a b a a +-+; (4))32(2)52)(52(--+-x x x x ;(5))1)(1()2)(2(-++-+x x y x y x ; (6))31)(31()1(+---x x x x ; (7))()3)(3(y x y y x y x +++-; (8))23)(23()21)(21(b a b a b a b a +---+第6节 完全平方公式12、【基础题】 用完全平方公式 计算: (1)2)32(-x ; (2)2)54(y x +; (3)2)(a mn -;(4)263; (5)299812.1、【基础题】用完全平方公式计算:(1)(a+3)2 ; (2)(5x -2)2 ; (3)(-1+3a )2; (4)(13a+15b )2 ; (5)(-a -b )2 ; (6)(-a 2+12)2; (7)(xy 2+4)2 ; (8)(a+1)2-a 2 (9)(-2m 2-12n 2)2; (10)1012 ; (11)1982 ; (12)19.9212.2、【综合Ⅰ】计算: (1)(a+2b )(a -2b )-(a+b )2 ; (2)(x -12)2-(x -1)(x -2); (3)(x -2y )(x +2y )-(x +2y )2; (4)(a +b +c )(a +b -c );(5)(2a +1)2-(1-2a )2; (6)(3x -y )2-(2x +y )2+5x (y -x ).(7))12)(12(-+++y x y x ; (8))3)(1()2)(2(-+-+-x x x x ; (9)22)1()1(--+ab ab ; (10))2)((4)2(2y x y x y x +---. 12.3、【综合Ⅰ】先化简,再求值: (1) (2x -1)(x+2)-(x -2)2-(x+2)2,其中x=-13. (2) (x +2y )(x -2y )(x 2-4y 2),其中x =2,y =-1.12.4【综合Ⅲ】 根据已知条件,求值:(1)已知x -y =9,x ·y =5,求x 2+y 2的值;(2)已知a (a -1)+(b -a 2)=-7,求222b a +-ab 的值.(3)已知x +1x =3, 求 x 2+21x和(x -1x )2的值.第7节 整式的除法 13、【基础题】计算:(1)y x y x 232353÷-; (2)bc a c b a 3234510÷; (3)3423214)7()2(y x xy y x ÷-•; (4)24)2()2(b a b a +÷+.14、【基础题】计算:(1)b b ab 2)86(÷+; (2)a a a a 3)61527(23÷+-; (3)xy xy y x 3)69(22÷-;(4))21()213(22xy xy xy y x -÷+-.14.1、【综合Ⅰ】填空:(1)223293m m m m a b a b +-÷ =___________; (2) 8a 2b 2c ÷_________=2a 2bc ; (3)(7x 3-6x 2+3x)÷3x=_________. (4)__________÷73(210)510⨯=-⨯. (5)(____________________)·235444234826x y x y x y x y =--.七(下)第一章分节练习 参考答案 第1节 答案01、【答案】 (1)13)3(-; (2)41111)(; (3)—8x ; (4)1m 4+b . 01.1【答案】(1)5b - (2)4a - (3)5y - (4)7a - (5)-729 (6)135- (7)32+-n q(8)6m - (9)-8 (10)-512 (11)15b - (12)6a01.2【答案】 (1)33+n a (2)n b 9 (3)22+m b (4)-1 (5)0 (6)73 02、【答案】 1.51110⨯ m. 02.1【答案】 解:9.6×106×1.3×108=1.248×1015(kg)第2节 答案03、【答案】 (1)106;(2)b 25;(3)a 3n ;(4)-x 2m ;(5)y 7;(6)a 12.03.1【答案】 (1)9x ; (2)—10x ; (3)11a ; (4)—17m ; (5)n x 6 03.2【答案 】04、【答案】 (1)92x ; (2)—325b ; (3)1644y x ; (4)n n a 23. 04.1【答案】 (1)44a b ; (2)338x y -; (3)72.710-⨯; (4)368a b . 04.2【答案】 (1)4; (2)192.710⨯; (3)232n n a b -; (4)9100a -. 04.3【答案】 216【解析】 333()n n n xy x y =⋅33()()n n x y =⋅3323=⨯216= 04.4【答案】 1第3节 答案05、【答案】(1)m 9÷m 3=m 9﹣3=m 6; (2)(﹣a )6÷(﹣a )3=(﹣a )6﹣3=(﹣a )3=﹣a 3; (3)(﹣8)6÷(﹣8)5=(﹣8)6﹣5=(﹣8)1=﹣8; (4)62m+3÷6m =6(2m+3)﹣m =6m+305.1、【答案】(1)a 7÷a 4=a 3; (2)(﹣m )8÷(﹣m )3=(﹣m )5=﹣m 5; (3)(xy )7÷(xy )4=(xy )3=x 3y 3; (4)x 2m+2÷x m+2=x m ; (5)x 6÷x 2•x=x 4•x=x 5. (6)(x ﹣y )5÷(y ﹣x )3=﹣(y ﹣x )5÷(y ﹣x )3=﹣(y ﹣x )2;05.2【答案】 ⑴2a ; ⑵6a ;⑶533248÷•=569222÷•=102; ⑷7x -.05.3 【答案】49 【解析】∵a m =3,a n =4,∴a 2m ﹣n =a 2m ÷a n =(a m )2÷a n =32÷4=.06、【答案 】(1)0.001 (2)641(3)0.00016 06.1【答案】 (1)1 (2)271 (3)0.000013 (4)25107、【答案】 (1)7.324×105; (2)-6.643919×109; (3)6.005×10-8; (4)-2.17×10-6 07.1、【答案】 (1) 7.2710—⨯; (2) 8.61410—⨯; (3)3.4251010—⨯第4节 答案 08、【答案】 (1)3232y x ; (2)336b a ; (3)34328z y x 08.1【答案】(1)-842y x ; (2)c b a 64; (3)234y x ; (4)z y x 4341; (5)357z y x ; (6)-2548c b a .09、【答案】(1)18x 3y ; (2)﹣8ab+2b 3; (3)﹣6x 3y 2+4x 2y ﹣2xy ;(4)432232222z y x z xy yz x ++09.1【答案 】(1)﹣; (2)﹣6a 3b 3+8a 2b 4+10a 2b 3+2ab 2;(3) 3a 3+2a 2﹣12a . (4)﹣6x 3+3x 2﹣12x . (5)﹣a 2b 3+a 3b ﹣a 2b ; (6)x 3y 5﹣x 3y 6+x 2y 4.09.2、【答案】-98【解析】3a (2a 2﹣4a+3)﹣2a 2(3a+4)=6a 3﹣12a 2+9a ﹣6a 3﹣8a 2=﹣20a 2+9a ,当a=﹣2时,原式=﹣20×4﹣9×2=﹣98.10、【答案】(1)2273x x ++; (2)226m mn n --; (3)221a a -+; (4)229a b -;(5)32284x x x --+; (6)3225615x x x -+-; (7)-29a +22c b ; (8)-xy 2410.1【答案】(1)2918x x -+; (2)21166x x +-; (3)2384x x ++; (4)24215y y -+; (5)32248x x x -+-; (6)33x y -.10.2【答案】 ce cd c be bd bc ae ad ac ++++++++2第5节 答案 11、【答案】(1)(2)(2)(a a +-=a 2)(- 22)= - 2 4 a ;(2)(43)(34)(a b b a -+=4a 2)(-3b 2)=22169a b - ; (3)(58)(58)(x x -+--=5- 2)(-8x 2)=22564x - ;(4)(23)(23)(a b a b -++=3b 2)(-2a 2)=2294b a - ; (5)()()(a b c a b c +++-=a b + 2)(-c 2);(6)()()(x y a b x y a b ++++--=x y + 2)(-a b + 2).11.1【答案】(1)229a b -; (2)249a -; (3)2499; (4)23510x x --; (5)22y xn-; (6)22491a b -.11.2【答案】 (1)9991; (2)14396; (3)399999911.3【答案】 (1)14-a ; (2)88a b -; (3)4a ; (4)256-x ; (5)14222--y x ;(6)91+x -; (7)xy x +29; (8)228415a b -第6节 答案12、【答案】 (1) 91242+-x x ; (2) 22254016y xy x ++; (3)2222a amn n m +-; (4)3969;(5)99600412.1【答案】(1)a 2+6a+9; (2)25x 2-20x+4 ; (3)9a 2-6a+1; (4)19a 2+215ab+125b 2; (5)a 2+2ab+b 2 ; (6)a 4-a 2+14; (7)x 2y 4+8xy 2+16; (8)2a+1; (9)4m 4+2m 2n 2+14n 4; (10)10 201; (11)39 204; (12)396.01 12.2【答案】 (1)-2ab -5b 2 ; (2)2x -74; (3)-4xy -8y 2; (4)a 2+2ab+b 2-c 2; (5)8a ; (6)-5xy ; (7)14422-++y xy x ; (8)12-x ; (9)ab 4; (10)xy y 892-.12.3、【答案】 (1)原式=3x -10=-11(12) 原式=x 4-8x 2y 2+16y 4=012.4、【答案】 (1)91; (2)249; (3) x 2+21x=7, (x -1x )2 =5第7节 答案 13、【答案】 (1)251y -; (2)c ab 22; (3)234y x -; (4)2244b ab a ++. 14、【答案】 (1)43+a ; (2)2592+-a a ; (3)y x 23-; (4)126-+-y x 14.1【答案】 (1)33m a b -;(2)4b ; (3)273x -2x+1;(4)1110-; (5)3213222x y x y --。
北师大版七年级数学下册第一章《整式的乘除》试题
北师大版七年级数学(下)第一章《整式的乘除》测试题班别:________ 姓名:________ 成绩:__________一.选择题(每题2分)1、下列运算正确的是:【 】A.a 5·a 5=a 25B.a 5+a 5=a 10C .a 5·a 5=a 10 D.a 5·a 3=a 152、计算 (-2a 2)2的结果是:【 】A 2a 4B -2a 4C 4a 4D -4a43、用小数表示3×10-2的结果为:【 】A -0.03B -0.003C 0.03D 0.0034、 下列各题能用同底数幂乘法法则进行计算的是:【 】(A ). ()()x y x y -+23(B ). ()()--+x y x y 2 (C ). ()()x y x y +++22(D ). ----()()x y x y 23 5、下列各式中计算正确的是:【 】632m 2m 22m 1052734a )a ( (D). a )a ()a ( C). ( a ])a [( (B). x )x ( ).A (-=-==-=-=6、若m 为正整数,且a =-1,则122)(+--m m a 的值是:【 】(A ). 1 (B ). -1 (C ). 0 (D ). 1或-17、如果(x -2)(x +3) = x 2+px +q ,那么p 、q 的值为 ( )A .p =5,q =6B .p =1,q =-6C .p =1,q =6D .p =5,q =-68、规定一种运算:a*b=ab+a+b,则a*(-b )+ a*b 计算结果为( )A. 0B. 2aC. 2bD.2a b9、若N b a b a ++=-22)32()32(,则N 的代数式是( )10、如图,一块四边形绿化园地,四角都做有半径为R 的圆形喷水池,则这四个喷水 池占去的绿化园地的面积为( )A 、22R πB 、24R πC 、2R πD 、不能确定二、填空题(每题3分,共18分)1、(-a 2)5÷(-a )3=2、已知8·22m -1·23m =217,则m= 3、若x 2-kx +25是一个完全平方式,则k =4、 如果x +y =6, xy =7, 那么x 2+y 2=5、若5x-3y-2=0,则531010x y ÷=_________6、如果3,9m na a ==,则32m n a -=________。
北师大版七年级数学下册第一章整式的乘除单元练习题
第一章 整式的乘除§13.1幂的运算§13.1.1同底数幂的乘法一、填空题1.计算:103×105=2.计算:(a -b )3·(a -b )5=3.计算:a·a 5·a 7=4. 计算:a(____)·a 4=a 20(在括号内填数) 二、选择题1.32x x •的计算结果是( )A.5xB.6xC.8xD.9x2.下列各式正确的是( )A .3a 2·5a 3=15a 6 B.-3x 4·(-2x 2)=-6x 6C .x 3·x 4=x 12 D.(-b )3·(-b )5=b 83.下列各式中,①824x x x =•,②6332x x x =•,③734a a a =•,④1275a a a =+,⑤734)()(a a a =-•- 正确的式子的个数是( )A.1个B.2个C.3个D.4个4.若1621=+x ,则x 等于( )A.7B.4C.3D.2.三、解答题1、计算:(1)、25)32()32(y x y x +•+ (2)、32)()(a b b a -•-(3)、62753m m m m m m •+•+•2、已知8=m a ,32=n a ,求n m a +的值.§13.1.2幂的乘方一、选择题1.计算23x )(的结果是( )A .5xB .6xC .8xD .9x2.下列计算错误的是( ) A .32a a a =• B .222a b a b •=)( C .532a a =)( D .-a+2a=a 3.计算32)(y x 的结果是( )A .y x 5B .y x 6C . y x 32D .36y x 4.计算22a 3-)(的结果是( ) A .43a B .43a - C .49a D .49a -二、填空题1.43a -)(=_____.2.若3m x=2,则9m x =_____. 3.若2n a =3,则23n 2a )(=____. 三、计算题1.计算:32x x •+23x )(.§13.1.3积的乘方1.计算:()[]23n 23yx -•3.已知273×94=x3,求x 的值.§13.1.4同底数幂的除法一、填空题1.计算:26a a ÷= ,25)()(a a -÷-= .2.在横线上填入适当的代数式:146_____x x =•,26_____x x =÷.3.计算:559x x x •÷ = ,)(355x x x ÷÷ = . 4.计算:89)1()1(+÷+a a = .5.计算:23)()(m n n m -÷-=___________. 二、选择题1.下列计算正确的是( )A .(-y )7÷(-y )4=y3 ;B .(x+y )5÷(x+y )=x4+y4;C .(a -1)6÷(a -1)2=(a -1)3 ;D .-x5÷(-x3)=x2.2.计算:()()()4325a a a -÷⋅-的结果,正确的是( )A.7a ;B.6a -;C.7a - ;D.6a .3. 对于非零实数m ,下列式子运算正确的是( )A .923)(m m = ;B .623m m m =⋅;C .532m m m =+ ;D .426m m m =÷.4.若53=x ,43=y ,则y x -23等于( )A.254 B.6 C.21 D.20三、解答题1.计算:⑴24)()(xy xy ÷; ⑵2252)()(ab ab -÷-;⑶24)32()32(y x y x +÷+; ⑷347)34()34()34(-÷-÷-.2.计算:⑴3459)(a a a ÷•; ⑵347)()()(a a a -⨯-÷-;4. 解方程:(1)15822=•x ;5. 已知3,9m n a a ==,求32m n a -的值.§13.2整式的乘法§13.2.1 单项式与单项式相乘一、判断题:(1)73a ·82a =566a ( ) (2)85a ·85a =1616a ( )(3)34x ·53x =87x ( ) (4)-33y ·53y =-153y ()(5)32m ·53m =155m ( )二、选择题1、下列计算正确的是 ( )A 、2a ·3a =6aB 、2x +2x =24xC 、42x -)(=-164xD 、(-22a )(-33a )=65a2.下列说法完整且正确的是( )A .同底数幂相乘,指数相加;B .幂的乘方,等于指数相乘;C .积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘;D .单项式乘以单项式,等于系数相乘,同底数幂相乘3.下列关于单项式乘法的说法中不正确的是( )A .单项式之积不可能是多项式;B .单项式必须是同类项才能相乘;C .几个单项式相乘,有一个因式为0,积一定为0;D .几个单项式的积仍是单项式三、解答题1.计算:(1)23x 5.2-)((-43x )(2)(-410)(5×510)(3×210)(3)(-432a c b )(-x 2a b )3§13.2.2 单项式与多项式相乘一.判断: (1)31(3x+y )=x+y ( )(2)-3x (x -y )=-32x -3xy ( )(3)3(m+2n+1)=3m+6n+1 ( )(4)(-3x )(22x -3x+1)=63x -92x +3x ( )二、选择题1.下列说法正确的是( )A .多项式乘以单项式,积可以是多项式也可以是单项式;B .多项式乘以单项式,积的次数是多项式的次数与单项式次数的积;C .多项式乘以单项式,积的系数是多项式系数与单项式系数的和;D .多项式乘以单项式,积的项数与多项式的项数相等4.x (y -z )-y (z -x )+z (x -y )的计算结果是( )A .2xy+2yz+2xzB .2xy -2yzC .2xyD .-2yz三、计算:(1)(a -3b )(-6a ) (2)n x (1n x -x -1)(3)-5a(a+3)-a(3a -13) (4)-22a (21ab+2b )-5ab(2a -1)§13.2.3多项式与多项式相乘一.判断:(1)(a+3)(a -2)=2a -6 ( )(2)(4x -3)(5x+6)=202x -18 ( )(3)(1+2a )(1-2a )=42a -1 ( )(4)(2a -b )(3a -b )=62a -5ab+2b ( )(5)(am -n )m+n=a 2m -2n (m ≠n ,m>0,n>0,且m>n ) ( )二、选择题1.下列计算正确的是( )A .(2x -5)(3x -7)=62x -29x+35B .(3x+7)(10x -8)=302x +36x+56C .(-3x+21)(-31x )=32x +21x+61D .(1-x )(x+1)+(x+2)(x -2)=22x -32.计算结果是22x -x -3的是( )A .(2x -3)(x+1)B .(2x -1)(x -3)C .(2x+3)(x -1)D .(2x -1)(x+3)三.计算:(1)(x -2y )(x+3y ) (2)(x -1)(2x -x+1)(3)(-2x+92y )(312x -5y ) (4)(22a -1)(a -4)-(2a +3)(2a -5)四、实际应用1.求图中阴影部分的面积(图中长度单位:米).2.长方形的长是(a+2b )cm ,宽是(a+b )cm ,求它的周长和面积.§13.3 乘法公式§13.3.1 两数和乘以这两数的差一、选择题1、20022-2001×2003的计算结果是( )A 、 1B 、-1C 、2D 、-22、下列运算正确的是( )A.2 b)+(a =2a +2bB. 2 b)-(a =2a -2bC. (a+m)(b+n)=ab+mnD. (m+n)(-m+n)=-2m +2n二、填空题1、若2x -2y =12,x+y=6则x=_____; y=______.2、( + )( - )=a2 - 9三、利用平方差公式计算:(1)502×498;§13.3.2 两数和的平方一、判断题;(1) 2 b)-(a =2a -2b ( )(2) 2 2b)+(a =2a +2ab +22b ( )(3) 2 b)-(-a = -2a -2ab +2b ( )(4) 2 b)-(a =2 a)-(b ( )二、填空题1、2 b)+(a +2 b)-(a = ;2、2x + +9=(_____+______)2;3、42a +kab +92b 是完全平方式,则k = ;4、()2 -8xy +2y =2y - )( 三、运用平方差或完全平方公式计算:(1)(2a +5b )(2a -5b ) (2)(-2a -1)(-2a +1);(3)24b -2a ()(;(4)2b +2a )(四、解答题1、已知:2 b)+(a =7 ,2 b)-(a =9,求2a +2b 及ab 的值。
北师大版七年级数学下册题第一章_整式的乘除 (1.1——1.7) 随堂练习(附答案)
1.1同底数幂的乘法一、单选题1.计算3()()x y x y -⋅-=( ).A.4()x y -B.3()x y -C.4()x y --D.4()x y +2.下列计算过程正确的是( )A.2358x x x x ⋅⋅=B.347x y xy ⋅=C.57(9)(3)3-⋅-=-D.56()()x x x --= 3.下列各式的计算结果为7a 的是( )A.25()()a a -⋅-B.25()()a a -⋅- C.25()()a a -⋅- D.6()()a a -⋅- 4.当0,a n <为正整数时,52()()n a a -⋅-的值 ( )A.正数B.负数c.非正数 D.非负数 5.10,10x ya b ==,则210x y ++等于( )A.2abB.a b +C.2a b ++D.100ab6.已知2,3,m n x x ==则m n x +的值是( )A.5B. 6C. 8D. 97.计算·53a a 正确的是( ) A. 2aB. 8aC. 10aD.15a8.在等式3211()a a a ⋅⋅=中,括号里面的代数式是( ).A.7aB.8aC.6aD.3a9.已知m n 34a a ==,,则m+n a 的值为( ).A.12B.7 二、解答题10.求下列各式中x 的值.(1)21381243;x +=⨯(2)3141664 4.x -⨯=⨯三、填空题11.已知34x =,则23x += .12.计算34x x x ⋅+的结果等于________.13.已知1428m +=,则4m = .14.若2m 5x x x ⋅=,则m =_____.参考答案1.答案:A解析:2.答案:D解析:选项A 中,2351359x x x x x ++⋅⋅==,故本选项错误;选项B 中,3x 与4y 不是同底数幕,不能运算,故本选项错误;选项C 中,5257(9)(3)3(3)3-⋅-=-⋅-=,故本选项错误;选项D 中,5516()()()x x x x +--=-=,故本选项正确.故选D3.答案:C解析:选项A 中,275()()a a a -⋅-=-,故此选项错误;选项B 中,257()()a a a -⋅-=-,故此选项错误;选项C 中,275()()a a a -⋅-=,故此选项正确;选项D 中,67()()a a a ⋅-=--.故此选项错误.4.答案:A解析:5225()()(),n n a a a +-⋅-=-∴当0,a n <为正整数,即0a ->时,25()0,n a +->是正数5.答案:D解析:2210101010100x y x y ab ++=⨯⨯=.6.答案:B解析:2,3,23 6.m n m n m n x x x x x +==∴=⋅=⨯=7.答案:B解析:8.答案:C解析:9.答案:A解析:10.答案:解(1)21381243x +=⨯2145333x +=⨯则219x +=解得4x =(2)31416644x -⨯=⨯3124444x -⨯=314x +=则1x =解得解析:11.答案:36解析:223334936x x +=⋅=⨯=.12.答案:42x解析:13.答案:7解析:因为11444m m +=⨯,所以4428m ⨯=,所以47.m =14. 答案:3 1.2幂的乘方与积的乘法一、单选题1.下列运算正确的是( )A.326x x x ⋅=11=C.224+=x x xD.()22436x x = 2.计算(-2x 2)3的结果是( )A.-8x 6B.-6x 6C.-8x 5D.-6x 53.下列各式计算正确的是( )A. 235ab ab ab +=B. ()22345a ba b -=C. =D. ()2211a a +=+4.计算(-xy 2)3的结果是( )A.-x 3y 6B.x 3y 6C.x 4y 5D.-x 4y 55.下列运算正确的是( )A.x 2·x 3=x 6B.x 3+x 2=x 5C.(3x 3)2=9x 5D.(2x)2=4x 26.计算正确的是( )A.a 3-a 2=aB.(ab 3)2=a 2b 5C.(-2)0=0D.3a 2·a -1=3a 7.下列计算正确的是( )A.a 3·a 2=a 6B.3a+2a 2=5a 2C.(3a)3=9a 3D.(-a 3)2=a 6 8.计算(-x 2)3的结果是( )A.-x 5B.x 5C.x 6D.-x 6 9.计算(-a 2)5的结果是( )A.a 7B.-a 7C.a 10D.-a 10 二、解答题10.已知 333,2,m n a b ==求()()332242m n m n m n a b a b a b ⋅+-的值 。
北师大版七年级数学下册第一章《整式的乘除》达标测试卷(含解析)
第一章达标测试卷一、选择题(每题3分,共30分)1.计算(-a 2)3的结果是( )A .a 5B .a 6C .-a 5D .-a 62.计算:20·2-3等于( )A .-18B .18C .0D .83.斑叶兰的一粒种子重约0.000 000 5 g ,将0.000 000 5用科学记数法表示为( )A .5×107B .5×10-7C .0.5×10-6D .5×10-64.下列运算正确的是( )A .x 2·x 3=x 6B .x 2y ·2xy =2x 3yC .(-3xy )2=9x 2y 2D .x 6÷x 3=x 25.计算4m ·8-1÷2m 的结果为16,则m 的值等于( )A .7B .6C .5D .46.下列四个算式:①5x 2y 4÷15xy =xy 3; ②16a 6b 4c ÷8a 3b 2=2a 3b 2c ; ③9x 8y 2÷3x 2y =3x 4y ; ④(12m 3-6m 2-4m )÷(-2m )=-6m 2+3m +2.其中正确的有( )A .0个B .1个C .2个D .3个7.下列运用平方差公式计算,错误..的是( ) A .(a +b )(a -b )=a 2-b 2 B .(x +1)(x -1)=x 2-1C .(2x +1)(2x -1)=2x 2-1D .(-a +b )(-a -b )=a 2-b 28.若(a +2b )2=(a -2b )2+A ,则A 等于( )A .8abB .-8abC .8b 2D .4ab9.若a =-0.32,b =-3-2,c =⎝ ⎛⎭⎪⎫-13-2,d =⎝ ⎛⎭⎪⎫-130,则a ,b ,c ,d 的大小关系是( )A .a <b <c <dB .b <a <d <cC .a <d <c <bD .c <a <d <b10.在边长为a的正方形中挖去一个边长为b的小正方形(a>b)(如图①),把余下的部分剪拼成一个长方形(如图②),根据两个图形中阴影部分的面积相等,可以验证()A.(a+b)2=a2+2ab+b2B.(a-b)2=a2-2ab+b2C.a2-b2=(a+b)(a-b) D.(a+2b)(a-b)=a2+ab-2b2二、填空题(每题3分,共30分)11.计算:a(a+1)=__________.12.如果x+y=-1,x-y=8,那么代数式x2-y2的值是________.13.某种计算机每秒可做4×108次运算,它工作3×103 s运算的次数为__________.14.如果9x2+kx+25是一个完全平方式,那么k的值是________.15.计算:(-13xy2)2·[xy(2x-y)+xy2]=__________.16.计算:(7x2y3z+8x3y2)÷4x2y2=______________.17.若(x+2m)(x-8)中不含..x的一次项,则m的值为________.18.若3x=a,9y=b,则3x-2y的值为________.19.如图,一个长方形花园ABCD,AB=a,AD=b,该花园中建有一条长方形小路LMPQ和一条平行四边形小路RSTK,若LM=RS=c,则该花园中可绿化部分(即除去小路后剩余部分)的面积为________________.20.《数书九章》中的秦九韶算法是我国南宋时期的数学家秦九韶提出的一种多项式简化算法.在现代,利用计算机解决多项式的求值问题时,秦九韶算法依然是最优的算法.例如,计算“当x=8时,多项式3x3-4x2-35x+8的值”,按照秦九韶算法,可先将多项式3x3-4x2-35x+8一步步地进行改写:3x3-4x2-35x+8=x(3x2-4x-35)+8=x[x(3x-4)-35]+8.按改写后的方式计算,它一共做了3次乘法,3次加法,与直接计算相比节省了乘法次数,使计算量减少.计算当x=8时,多项式的值为1 008.请参考上述方法,将多项式x3+2x2+x-1改写为_______________________;当x=8时,多项式的值为________.三、解答题(21,26题每题12分,22,23题每题8分,其余每题10分,共60分)21.计算:(1)(-12ab)(23ab2-2ab+43b);(2)(a+b)(a-b)+4ab3÷4ab;(3)(2x-y-z)(y-2x-z);(4)(2x+y)(2x-y)+(x+y)2-2(2x2-xy).22.用简便方法计算:(1)102×98;(2)112×92.23.先化简,再求值:(1)(x +y )(x -y )-(4x 3y -8xy 3)÷2xy ,其中x =-1,y =1;(2)(x -1)2-x (x -3)+(x +2)(x -2),其中x 2+x -5=0.24.有这样一道题:计算⎣⎢⎡⎦⎥⎤3x (2xy +1)-26x 2y 2÷2y +⎝ ⎛⎭⎪⎫72xy 2·47y -1÷3x 的值,其中x =2 022,y =-2 023,甲同学把x =2 022,y =-2 023错抄成x =2 002,y =-2 013,但他的计算结果也是正确的.请你解释一下这是为什么.25.如图,一块半圆形钢板,从中挖去直径分别为x,y的两个半圆形.(1)求剩下钢板的面积;(2)当x=2,y=4时,剩下钢板的面积是多少?(π取3.14)26.先计算,再找出规律,然后根据规律填空.(1)计算:①(a-1)(a+1)=________;②(a-1)(a2+a+1)=________;③(a-1)(a3+a2+a+1)=________.(2)根据(1)中的计算,用字母表示出你发现的规律.(3)根据(2)中的结论,直接写出结果:①(a-1)(a9+a8+a7+a6+a5+a4+a3+a2+a+1)=__________;②若(a-1)·M=a15-1,则M=______________________________________;③(a-b)(a5+a4b+a3b2+a2b3+ab4+b5)=__________;④(2x-1)(16x4+8x3+4x2+2x+1)=__________.答案一、1.D 2.B 3.B 4.C 5.A 6.C 7.C 8.A 9.B 10.C二、11.a 2+a 12.-8 13.1.2×101214.±30 15.29x 4y 5 16.74yz +2x17.4 18.a b 19.ab -ac -bc +c 220.x [x (x +2)+1]-1;647三、21.解:(1)原式=-12ab ·23ab 2+⎝ ⎛⎭⎪⎫-12ab ·(-2ab )+⎝ ⎛⎭⎪⎫-12ab ·43b =-13a 2b 3+a 2b 2-23ab 2;(2)原式=a 2-b 2+b 2=a 2;(3)原式=[-z +(2x -y )]·[-z -(2x -y )]=(-z )2-(2x -y )2=z 2-(4x 2-4xy +y 2)=z 2-4x 2+4xy -y 2;(4)原式=4x 2-y 2+x 2+y 2+2xy -4x 2+2xy =x 2+4xy .22.解:(1)102×98=(100+2)×(100-2)=1002-22=10 000-4=9 996;(2)112×92=(10+1)2×(10-1)2=[(10+1)×(10-1)]2=(100-1)2=10 000-200+1=9 801.23.解:(1)原式=x 2-y 2-2x 2+4y 2=-x 2+3y 2.当x =-1,y =1时,原式=-x 2+3y 2=-(-1)2+3×12=2.(2)原式=x 2-2x +1-x 2+3x +x 2-4=x 2+x -3.因为x 2+x -5=0,所以x 2+x =5.所以原式=x 2+x -3=5-3=2.24.解:因为[3x (2xy +1)-26x 2y 2÷2y +⎝ ⎛⎭⎪⎫72xy 2·47y -1]÷3x =(6x 2y +3x -13x 2y +494x 2y 2·47y -1)÷3x =(6x 2y +3x -13x 2y +7x 2y )÷3x =1, 所以上式的值与x ,y 的取值无关.所以错抄成x =2 002,y =-2 013,结果也是正确的.25.解:(1)S剩=12·π⎣⎢⎡⎭⎪⎫(x+y22-⎝⎛⎭⎪⎫x22-⎝⎛⎭⎪⎫y22]=14πxy.答:剩下钢板的面积为π4xy.(2)当x=2,y=4时,S剩≈14×3.14×2×4=6.28.答:剩下钢板的面积约是6.28.26.解:(1)①a2-1②a3-1③a4-1(2)规律:(a-1)(a n+a n-1+a n-2+…+a3+a2+a+1)=a n+1-1(n为正整数).(3)①a10-1②a14+a13+a12+a11+…+a3+a2+a+1③a6-b6④32x5-1。
新北师大版七年级数学下册第一章《整式的乘除》单元练习题含答案解析 (52)
一、选择题(共10题)1. 若 a ,b 是实数,则 2(a 2+b 2)(a +b )2 的值必是 ( ) A .正数 B .负数 C .非正数 D .非负数2. 下列计算正确的是 ( ) A . (−2a )3=−8a 3 B . a 2⋅a 2=2a 4 C . (a 3)2=a 5D . a 3÷a 3=a3. 下列运算正确的是 ( ) A . a 3⋅a 2=a 5 B . 2a 2+a 2=2a 3 C . (a 3)2=a 5 D . (3a )3=3a 34. 计算 (−2)1000⋅(12)999⋅22+22+22+⋯+22⏟64个的结果为 ( )A . −29B . 2129C . 29D . −21295. 任何一个正整数 n 都可以进行这样的分解:n =s ×t (s ,t 是正整数,且 s ≤t ),如果 p ×q 在 n 的所有这种分解中两因数之差的绝对值最小,我们就称 p ×q 是 n 的最佳分解,并规定:F (n )=pq .例如 18 可以分解成 1×18,2×9,3×6 这三种,这时就有 F (18)=36=12,给出下列关于 F (n ) 的说法:① F (2)=12,② F (48)=13;③ F (n 2+n )=n n+1;④若 n 是一个完全平方数,则 F (n )=1,其中正确说法的个数是 ( ) A . 4 B . 3 C . 2 D . 16. 为了书写简便,18 世纪数学家欧拉引进了求和符号“∑”.例如:∑k n k=1=1+2+3+⋯+(n −1)+n ,∑(x +k )n k=5=(x +5)+(x +6)+(x +7)+⋯+(x +n ).已知:∑[(x +k )(x −n k=3k +1)]=4x 2+4x +m ,则 m 的值为 ( ) A . 40 B . −68 C . −40 D . −1047. 下列计算正确的是 ( ) A . a 3+a 3=a 6 B . (a 3)2=a 6 C . a 6÷a 2=a 3 D . (ab )3=ab 38. 下列有四个结论,其中正确的是 ( ) ①若 (x −1)x+1=1,则 x 只能是 2;②若 (x −1)(x 2+ax +1) 的运算结果中不含 x 2 项,则 a =1;③若 a +b =10,ab =2,则 a −b =2; ④若 4x =a ,8y =b ,则 22x−3y 可表示为 ab .A .①②③④B .②③④C .①③④D .②④9. 计算 (−110a 2y)3⋅(10a 2y 2) 的结果是 ( ) A . −1100a 8y 5 B . −a 4y 5C .1100a 8y 5D . −310a 8y 510. 若 x +1x =3,求x 2x 4+x 2+1的值是 ( )A . 18B .110C . 12D . 14二、填空题(共7题) 11. 填空.(1)已知 x +y =5,xy =3,则 x 2+y 2 的值为 . (2)已知 x −y =5,x 2+y 2=51,则 (x +y )2 的值为 .(3)已知 x +y +z =1,x 2+y 2−3z 2+4z =7,则 xy −z (x +y ) 的值为 .12. 已知 x 2+2x +2y +y 2+2=0,则 x 2018+y 2019= .13. 计算:(−23)−2= ;(−2)−3= ;(π−227)0= .14. 已知 x 2−y 2=2019,且 x =673−y ,则 x −y = .15. 计算:(1)(a +1)(a +2)= ; (2)(x −3)(x +1)= .16. 若 (x +2)(x +3)=7,则代数式 2−10x −2x 2 的值为 .17. 若 (x −1)(x 2+5ax −a ) 的乘积中不含 x 2 项,则 a 的值为 .三、解答题(共8题) 18. 阅读理解题阅读材料:两个两位数相乘,如果这两个因数的十位数字相同,个位数字的和是10,该类乘法的速算方法是;将一因数的十位数字与另一个因数的十位数字加1的和相乘,所得的积作为计算结果的后两位(数位不足的两位,用零补齐).比如47×43,它们的乘积的前两位是4×(4+1)=20,它们乘积的后两位是7×3=21.所以47×43=2021;再如62×68,它们乘积的前两位是6×(6+1)=42,它们乘积的后两位是2×8=16,∴62×68=4216.又如21×29,2×(2+1)=6,不足两位,就将6写在百位;1×9=9,不足两位,就将9写在个位,十位上写零,所以21×29=609.该速算方法可以用我们所学的整式的乘法的知识说明其合理性:设其中一个因数的十位数字为a,个位数字是b,(a,b表示1到9的整数)则该数可表示为10a+b,另一因数可表示为10a+(10−b).两数相乘可得:(10a+b)[10a+(10−b)]=100a2+10a(10−b)+10ab+b(10−b)=100a2+100a+b(10−b)=100a(a+1)+b(10−b).(注:其中a(a+1)表示计算结果的前两位,b(10−b)表示计算结果的后两位.)问题:两个两位数相乘,如果其中一个因数的十位数字与个位数字相同,另一因数的十位数字与个位数字之和是10.如44×73,77×28,55×64等.(1) 探索该类乘法的速算方法,请以44×73为例写出你的计算步骤.(2) 设十位数字与个位数字相同的因数的十位数字是a,则该数可以表示为.设另一因数的十位数字是b,则该数可以表示为.(a,b表示1∼9的正整数)(3) 请针对问题(1),(2)的计算,模仿阅读材料中所用的方法写出.如:100a(a+1)+b(10−b)的运算式.19.(2a−b)5÷(b−2a)3.20.计算:(1) 59.8×60.2.(2) 99×101×10001.(3) 1022.(4) 5402−543×537.21.从边长为a的大正方形纸板中挖去一个边长为b的小正方形纸板后,将剩下的纸板沿虚线裁成四个相同的等腰梯形,如图①,然后拼成一个平行四边形,如图②,分别计算这两个图形阴影部分的面积,结果验证了什么公式?请将结果与同伴交流下.22.设n,n+1,n+2,n+3为四个连续的自然数.小明说,只要已知其中两个较大数的乘积与两个较小数的乘积的差,我就能很快得出这四个连续自然数.你能说出其中的奥秘吗?23.如图,长为60cm,宽为x(cm)的大长方形被分割为7小块,除阴影A,B外,其余5块是形状、大小完全相同的小长方形,其较短一边长为y(cm).(1) 从图可知,每个小长方形较长的一边长是cm(用含y的代数式表示).(2) 分别用含x,y的代数式表示阴影A,B的面积,并计算阴影A,B的面积差.(3) 当y=10时,阴影A与阴影B的面积差会随着x的变化而变化吗?请你作出判断,并说明理由.24.阅读题.材料一:若一个整数m能表示成a2−b2(a,b为整数)的形式,则称这个数为“完美数”.例如,3=22−12,9=32−02,12=42−22,则3,9,12都是“完美数”;再如,M=x2+ 2xy=(x+y)2−y2,(x,y是整数),所以M也是”完美数”.材料二:任何一个正整数n都可以进行这样的分解:n=p×q(p,q是正整数,且p≤q).如果p×q在n的所有这种分解中两因数之差的绝对值最小,我们就称p×q是n的最佳分解,并且规定F(n)=pq.例如18=1×18=2×9=3×6,这三种分解中3和6的差的绝对值最小,所以就有F(18)=36=12.请解答下列问题:(1) 8(填写“是”或“不是”)一个完美数,F(8)=.(2) 如果m和n都是”完美数”,试说明mn也是“完美数”.(3) 若一个两位数n的十位数和个位数分别为x,y(1≤x≤9),n为“完美数”且x+y能够被8整除,求F(n)的最大值.25.如图,在长方形ABCD中,横向阴影部分为长方形,另一阴影部分为平行四边形,依图中标注的数据(a>b),求图中空白部分的面积.答案一、选择题(共10题)1. 【答案】D【解析】∵a2≥0,b2≥0,(a+b)2≥0,∴2(a2+b2)(a+b)2的值必是非负数.【知识点】完全平方公式、多项式乘多项式2. 【答案】A【知识点】同底数幂的除法、幂的乘方、同底数幂的乘法、积的乘方3. 【答案】A【知识点】积的乘方4. 【答案】C【解析】原式=(2)1000×12999×(22×64)=2×(22×26)=29.【知识点】同底数幂的乘法、有理数的乘方5. 【答案】B【解析】∵2=1×2,∴1×2是2的最佳分解,∴F(2)=12,即①正确;∵48=1×48,48=2×24,48=3×16,48=4×12,48=6×8,∴6×8是48的最佳分解,∴F(48)=68=23,即②错误;∵n2+n=n(n+1),∴F(n2+n)=nn+1,即③正确;若n是一个完全平方数,则设n=a×a(a是正整数),∴F(n)=aa=1,即④正确;综上所述,①③④正确,共三个.【知识点】单项式乘多项式6. 【答案】B【知识点】多项式乘多项式7. 【答案】B【解析】a3+a3=2a3,因此选项A不正确;(a3)2=a3×2=a6,因此选项B正确;a6÷a2=a6−2=m4,因此选项C不正确;(ab)3=a3b3,因此选项D不正确.【知识点】同底数幂的除法8. 【答案】D【解析】①若(x−1)x+1=1,则x可以为−1,此时(−2)0=1,故①错误,从而排除选项A和C;由于选项B和D均含有②④,故只需考查③.∵(a−b)2=(a+b)2−4ab=102−4×2=92,∴a−b=±√92,故③错误.【知识点】同底数幂的除法、多项式乘多项式9. 【答案】A【知识点】单项式乘单项式10. 【答案】A【解析】∵x+1x=3,∴(x+1x )2=9,即x2+1x2=9−2=7,∴x4+x2+1x2=x2+1+1x2=7+1=8,∴x2x4+x2+1=18.【知识点】完全平方公式二、填空题(共7题)11. 【答案】19;77;−3【解析】(1)x2+y2=(x+y)2−2xy=25−6=19.(2)(x+y)2=x2+y2+2xy=x2+y2+[(x2+y2)−(x−y)2]=2(x2+y2)−(x−y)2=2×51−25=77.(3)∵x+y+z=1,∴x+y=1−z,(x+y)2=(1−z)2,x2+2xy+y2=1−2z+z2,x2+y2−z2+2z=1−2xy.∴ x2+y2−3z2+4z=(x2+y2−z2+2z)−2z2+2z=(1−2xy)−2z2+2z=1−2xy+2z(1−z)=1−2xy+2z(x+y).又∵x2+y2−3z2+4z=7,∴1−2xy+2z(x+y)=7,2xy−2z(x+y)=−6,xy−z(x+y)=−3.【知识点】简单的代数式求值、完全平方公式12. 【答案】0【解析】∵x2+2x+2y+y2+2=0,∴(x2+2x+1)+(y2+2y+1)=0,∴(x+1)2+(y+1)2=0,∴x+1=0,y+1=0,解得:x=−1,y=−1,∴x2018+y2019=(−1)2018+(−1)2019=1+(−1)=0.【知识点】完全平方公式13. 【答案】94;−18;1【知识点】负指数幂运算14. 【答案】3【解析】∵x2−y2=2019,∴(x+y)(x−y)=2019,∵x=673−y,∴x+y=673,∴x−y=2019673=3.故答案为:3.【知识点】平方差公式15. 【答案】a2+3a+2;x2−2x−3【知识点】单项式乘多项式16. 【答案】0【知识点】多项式乘多项式17. 【答案】0.2【解析】原式=x3+5ax2−ax−x2−5ax+a =x3+(5a−1)x2−6ax+a.∵乘积中不含x2项,∴5a−1=0,解得:a=0.2.【知识点】多项式乘多项式三、解答题(共8题)18. 【答案】(1) ∵4×7+4=32,4×3=12,∴44×73=3212.(2) 10a+a;10b+(10−b)(3) 设其中一个因数的十位数字为a,个位数字也是a,则该数可表示为10a+a,设另一因数的十位数字是b,则该数可以表示为10b+(10−b)(a,b表示1到9的整数).两数相乘可得:(10a+a)[10b+(10−b)]=100ab+10a(10−b)+10ab+a(10−b)=100ab+100a+a(10−b)=100a(b+1)+a(10−b).【解析】(2) 十位数字与个位数字相同的因数的十位数字是a,则该数可以表示为10a+a,另一因数的十位数字是b,则该数可以表示为10b+(10−b).【知识点】多项式乘多项式、有理数的乘法、简单列代数式19. 【答案】−(2a−b)2.【知识点】同底数幂的除法20. 【答案】(1)59.8×60.2=(60−0.2)×(60+0.2) =602−0.22=3600−0.04(2)99×101×10001=(100−1)×(100+1)×10001 =9999×10001=(10000−1)(10000+1)=100002−1=99999999.(3) 1022=(100+2)2=1002+2×100×2+22=10000+400+4=10404.(4)5402−543×537=5402−(540+3)×(540−3) =5402−(5402−9)=9.【知识点】平方差公式、完全平方公式21. 【答案】题图①中的阴影部分(四个等腰梯形)的面积为a2−b2,题图②中的阴影部分(平行四边形)的面积为(a+b)(a−b),由此可验证:(a+b)(a−b)=a2−b2.【知识点】平方差公式22. 【答案】(n+3)(n+2)−n(n+1)=4n+6.若知道它们的差为x,则n=x−64.【知识点】多项式乘多项式23. 【答案】(1) 60−3y(2) 阴影A的面积:(x−2y)(60−3y)=6y2+60x−3xy−120y;阴影B的面积:3y(x+3y−60)=3xy+9y2−180y.阴影A的面积与阴影B的面积差A−B=−3y2+60y−6xy+60x.(3) 当y=10时,A−B=300,故阴影A,B的面积差不会改变.【知识点】多项式乘多项式、简单的代数式求值、简单列代数式24. 【答案】(1) 是;12(2) 设m=a2−b2,n=c2−d2,其中a,b,c,d均为整数,则mn=(a2−b2)(c2−d2)=a2c2−a2d2−b2c2+b2d2=(ac+bd)2−(ad+bc)2.∵a,b,c,d均为整数,∴ac+bd与ad+bc也是整数,即mn是“完美数”.(3) ∵两个一位数相加能被8整除,∴x+y=8或16,∴n=79或97或88或71或17或26或62或35或53或44,∵n为“完美数”,∴n=79或97或88或71或17或35或53或44,其中F(79)=179,F(97)=197,F(88)=811,F(71)=171,F(17)=117,F(35)=57,F(53)=153,F(44)=411,∴F(n)的最大值为811.【解析】(1) ∵8=32−12,∴8是完美数,F(8)=24=12.【知识点】有理数的乘方、多项式乘多项式、整除25. 【答案】a2−2ac−b2+c2.【知识点】多项式乘多项式11。
北师大版七年级数学下册第一章 整式的乘除练习(含答案)
第一章 整式的乘除一、单选题1.计算3a a ⋅=( )A .3aB .4aC .32aD .42a2.化简32()a -的结果是( )A .5aB .5a -C .6aD .6a -3.下列运算正确的是( )A .2a a a +=B .23a a a =gC .623a a a ÷=D .()325a a = 4.计算-()2163a ab ⋅-的结果正确的是( ) A .32a b B .32a b - C .22a b - D .22a b5.若多项式(2x ﹣1)(x ﹣m)中不含x 的一次项,则m 的值为( )A .2B .﹣2C .12D .﹣126.若m 为大于0的整数,则(m +1)2-(m -1)2一定是( ).A .3的倍数B .4的倍数C .6的倍数D .16的倍数 7.已知a+b =5,ab =3,则a 2+b 2=( )A .25B .22C .19D .13 8.面积为的长方形一边长为另一边长为( ) A . B . C . D . 9.如图,从边长为(4a +)cm 的正方形纸片中剪去一个边长为(1a +)cm 的正方形(0a >),剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙),则矩形的面积为( )10.已知1232015,,,...a a a a 均为负数,122014232015(...)(...)M a a a a a a =++++++,122015232014(...)(...)N a a a a a a =++++++,则M 与N 的大小关系是( )A .M N =B .M N >C .M N <D .无法确定二、填空题 11.201920200.125(8)⨯-=____.若2•4m •8m =221,则m =____.12.已知5a b +=-,4ab =,化简()()22a b --的结果是__________.13.记x=(1+2)(1+22)(1+24)(1+28)…(1+2n ),且x+1=2128,则n=______. 14.已知2249x kxy y ++是一个完全平方式,则k 的值是_________________.三、解答题15.(1)已知2m a =,3n a =,求:①m n a +的值;②32m n a -的值;(2)已知2328162x ⨯⨯=,求x 的值16.化简:(1)y 5(2y 5)2﹣3(y 5)3(2)3x 2(2y ﹣x )﹣3y (2x 2﹣y )17.在计算()()x a x b ++时,甲把错b 看成了6,得到结果是:2812x x ++;乙错把a 看成了a -,得到结果:26x x +-.(1)求出,a b 的值;(2)在(1)的条件下,计算()()x a x b ++的结果.18.如图1,在一个边长为a 的正方形木板上锯掉一个边长为b 的正方形, 并把余下的部分沿虚线剪开拼成图2的形状.(1)请用两种方法表示阴影部分的面积图1得: ; 图2得 ;(2)由图1与图2 面积关系,可以得到一个等式: ;(3)利用(2)中的等式,已知2216a b -=,且a+b=8,则a-b= . 19.先阅读并理解下面的例题,再按要求解答下列问题例题:求代数式248y y ++的最小值解:22248444(2)4y y y y y ++=+++=++因为()220y +≥,所以()2244y ++≥,所以248y y ++的最小值是4. (1)代数式()2215x -+的最小值为____________;(2)求代数式224m m ++的最小值答案1.B2.C3.B4.A5.D6.B7.C8.A9.C10.B11.8 412.1813.6414.12或-12.15.(1)①6;②98;(2)6 16.(1)y 15;(2)﹣3x 3+3y 2.17.(1)a=2,b=3;(2)256x x ++.18.(1)22a b -,()()a b a b +-;(2)()()22a b a b a b -=+-;(3)2. 19.(1)5;(2)3。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章整式的乘除1.逆用幂的运算法则解题(1)逆用同底数幂相乘的法则解题:同底数幂相乘的法则是a m×a n=a m+n(m,n都是正整数),反过来是a m+n=a m×a n.逆用同底数幂相乘的法则解题,能使运算简便.【例】已知a m=2,a n=3,求a m+n的值.【标准解答】因为a m+n=a m·a n,把a m=2,a n=3代入a m+n,得a m+n=2×3=6.(2)逆用幂的乘方的法则解题:幂的乘方法则是(a m)n=a mn(m,n都是正整数),反过来是a mn=(a m)n.逆用幂的乘方的法则解题,能使运算简便.【例】已知a m=2,求a2m的值.【标准解答】因为a2m=(a m)2,把a m=2代入a2m,得a2m=22=4.(3)逆用积的乘方的法则解题:积的乘方的法则是(a×b)n=a n×b n(n是正整数).反过来是a n×b n=(a×b)n.逆用积的乘方的法则解题,能使运算简便.【例】计算:×22016.【标准解答】×22016=×2=12015×2=2.(4)逆用同底数幂相除的法则解题:同底数幂相除的法则是a m÷a n=a m-n(m、n都是正整数),反过来是a m-n=a m÷a n.逆用同底数幂相除的法则解题,能使运算简便.【例】已知a m=2,a n=3,求a m-n的值.【标准解答】因为a m-n=a m÷a n,把a m=2,a n=3代入a m-n,得a m-n=2÷3=.1.已知a m=2,a n=3,求a3m+2n的值.2.当4x=9时,计算21-2x的值是多少?3.求(-8)2015×(0.125)2016的值.2.用图形面积表示整式的乘法法则(公式)(1)用图形面积表示平方差公式:数形结合是重要的数学思想方法之一,通过两个图形的面积变化来直观的反映平方差公式.【例】将图甲中阴影部分的小长方形变换到图乙位置,你根据两个图形的面积关系得到的数学公式是.【标准解答】图甲的面积可以表示为(a-b)·(a+b),图乙可以看作一个边长为a的正方形去掉一个边长为b的正方形,其面积等于a2-b2,因此有(a+b)(a-b)=a2-b2.答案:(a+b)(a-b)=a2-b2(2)用图形面积表示多项式乘以多项式的法则:数形结合是重要的数学思想方法之一,通过数和形两个方面可说明多项式乘以多项式的法则.【例】新知识一般有两类:第一类是不依赖于其他知识的新知识,如“数”“字母表示数”这样的初始性的知识;第二类是在某些旧知识的基础上进行联系、推广等方式产生的知识,大多数知识是这样的知识.(1)多项式乘以多项式的法则,是第几类知识?(2)在多项式乘以多项式之前,你已拥有的有关知识是哪些?(写出三条即可)(3)请你用已拥有的有关知识,通过数和形两个方面说明多项式乘以多项式的法则是如何获得的?(用(a+b)(c+d)来说明)【标准解答】(1)是第二类知识.(2)单项式乘以多项式(分配律),字母表示数,数可以表示线段的长或图形的面积等.(3)用数来说明:(a+b)(c+d)=(a+b)c+(a+b)d=ac+bc+ad+bd.用形来说明:如图,边长为a+b和c+d的矩形,分割前后的面积相等,即(a+b)(c+d)=ac+bc+ad+bd.(3)用杨辉三角表示完全平方公式的系数:杨辉三角反映了两数和的n次方,即展开式各项的系数的规律,直观形象,简单易记. 【例】我国古代数学的许多发现都曾位居世界前列,其中“杨辉三角”就是一例.如图,这个三角形的构造法则:两腰上的数都是1,其余每个数均为其上方左右两数之和,它给出了(n为正整数)的展开式(按a的次数由大到小的顺序排列)的系数规律.例如,在三角形中第三行的三个数1,2,1,恰好对应=a2+2ab+b2展开式中的系数;第四行的四个数1,3,3,1,恰好对应着=a3+3a2b+3ab2+b3展开式中的系数等.(1)根据上面的规律,写出的展开式.(2)利用上面的规律计算:25-5×24+10×23-10×22+5×2-1.【标准解答】(1)=a5+5a4b+10a3b2+10a2b3+5ab4+b5.(2)原式=25+5×24×(-1)+10×23×(-1)2+10×22×(-1)3+5×2×(-1)4+(-1)5=(2-1)5=1.1.如图,矩形ABCD的面积为(用含x的代数式表示).2.先阅读后作答:我们已经知道,根据几何图形的面积关系可以说明完全平方公式,实际上还有一些等式也可以用这种方式加以说明.例如:(2a+b)(a+b)=2a2+3ab+b2,就可以用图①的面积关系来说明.(1)根据图②写出一个等式.(2)已知等式:(x+p)(x+q)=x2+(p+q)x+pq,请你画出一个相应的几何图形加以说明.3.有足够多的长方形和正方形的卡片,如图:(1)如果选取1号、2号、3号卡片分别为1张、2张、3张,可拼成一个长方形(不重叠无缝隙).请画出这个长方形的草图,并运用拼图前后面积之间的关系说明这个长方形的代数意义..这个长方形的代数意义是.(2)小明想用类似的方法解释多项式乘法(a+3b)(2a+b)=2a2+7ab+3b2,那么需用2号卡片张,3号卡片张.4.如图a是一个长为2m、宽为2n的长方形,沿图中虚线用剪刀均匀分成四块形状大小完全一样的小长方形,然后按图b形状拼成一个大正方形.(1)你认为图b中的阴影部分的正方形的边长等于多少?(2)观察图b你能写出下列三个代数式之间的等量关系吗?代数式:(m+n)2,(m-n)2,mn.(3)已知m+n=9,mn=14,求(m-n)2的值.3.整式乘除中的整体思想(1)先利用公式将所求多项式变形,再整体代入求值.【例】已知实数a,b满足a+b=5,ab=3,则a-b= .【标准解答】将a+b=5两边平方得:(a+b)2=a2+b2+2ab=25,将ab=3代入得:a2+b2=19,所以(a-b)2=a2+b2-2ab=19-6=13,则a-b=±.答案:±(2)当两个三项式相乘时,通过添括号把其中两项看成一个整体,再利用乘法公式进行计算. 【例】化简:(x+2y-z)(x-2y-z)-(x+y-z)2.【标准解答】(x+2y-z)(x-2y-z)-(x+y-z)2=[(x-z)+2y][(x-z)-2y]-[(x+y)-z]2=(x-z)2-4y2-(x+y)2+2z(x+y)-z2=x2-2xz+z2-4y2-x2-2xy-y2+2xz+2yz-z2=-5y2-2xy+2yz.1.若m+n =2,mn =1,则m2+n2= .2.计算:(1)(3x-2y+5)2.(2)(2a-b+1)(b-1+2a).3.如果(2a+2b+1)(2a+2b-1)=63,求a+b的值.4.整式加减中的规律探索问题(1)数表中的“规律探究”通过观察、分析、比较数表,根据数表中每一行、列中数的自身特点和数表中前后数之间的联系来发现、归纳规律.【例】观察下列数表:第一列第二列第三列第四列第一行 1 2 3 4第二行 2 3 4 5第三行 3 4 5 6第四行 4 5 6 7………………请猜想第n行第n列上的数是.【标准解答】通过观察、分析、比较可知:第1行与第1列,第2行与第2列,第3行与第3列,第4行与第4列,交叉点上的数依次为1、3、5、7,它们是连续的奇数,所以可猜想第n行与第n列交叉点上的数为2n-1. 答案:2n-1(2)图形中的“规律探究”从简单图形入手,抓住随着“编号”或“序号”增加时,后一个图形与前一个图形相比,通过类比、计算等方法找出数量上的变化规律,从而推出一般性的结论,再验证所总结规律的正确性.【例1】如图,观察每一个图中黑色正六边形的排列规律,则第10个图中黑色正六边形有个.【标准解答】第1个图有1个黑色正六边形,第2个图有4=22个黑色正六边形,第3个图有9=32个黑色正六边形,…,第n个图有n2个黑色正六边形,因此第10个图有100个黑色正六边形.答案:100【例2】如图,每个图案都由若干个棋子摆成,按照此规律,第n个图案中棋子的总个数可用含n的代数式表示为.【标准解答】从行上看,每个图中棋子的行数等于图形的序号n,而列数比图形的序号多1,即为n+1,所以第n个图案中棋子的总个数为n(n+1).答案:n(n+1)(3)等式中的“规律探究”观察等式的左、右两边的数式,随着序号变化有何特点,通过分析、比较、归纳,得出规律.【例】观察下列等式:12+2×1=1×(1+2)22+2×2=2×(2+2)32+2×3=3×(3+2)……则第n个等式可以表示为.【标准解答】通过观察可以发现,等式的左边是两项,第1项是从1开始的整数的平方,第2项是2与这个整数的乘积,所以在左边可用一般式子表示为n2+2n(n为大于等于1的整数),每一项等式的右边是这个整数与2的和的积,所以可用一般的式子表示为n,所以第n个等式为n2+2n=n.答案:n2+2n=n(4)算式中的“规律探究”依据算式找寻规律就是根据每个算式自身特点,以及前后算式之间的联系发现归纳规律.【例】已知:=3×2=6,=5×4×3=60,=5×4×3×2=120,=6×5×4×3=360,…,观察前面的计算过程,寻找计算规律计算= (直接写出计算结果),并比较(填“>”“<”或“=”).【标准解答】=7×6=42,=9×8×7×6×5=15 120,=10×9×8=720,所以>.答案:42 >1.观察下列各式及其展开式=a2+2ab+b2=a3+3a2b+3ab2+b3=a4+4a3b+6a2b2+4ab3+b4=a5+5a4b+10a3b2+10a2b3+5ab4+b5……请你猜想的展开式第三项的系数是( )A.36B.45C.55D.662.一组按照规律排列的式子:x,,,,,……,其中第8个式子是;第n个式子是.(n为正整数)3.如图是一组有规律的图案,第1个图案由4个▲组成,第2个图案由7个▲组成,第3个图案由10个▲组成,第4个图案由13个▲组成,…,则第n(n为正整数)个图案由个▲组成.4.将全体正整数排成一个三角形数阵,根据上述排列规律,数阵中第10行从左至右的第5个数是.12 34 5 67 8 9 10……5.观察下列关于自然数的等式:(1)32—4×12=5 ①(2)52—4×22=9 ②(3)72—4×32=13 ③……根据上述规律解决下列问题:(1)完成第四个等式:92—4×( )2=( ).(2)写出你猜想的第n个等式(用含n的式子表示),并验证其正确性.5.乘法公式在实际生活中的应用乘法公式在实际应用中主要是解决有关整式的计算求值问题,使运算量大大减少,显示利用公式的优越性和使用价值,是数学联系实际的一个重要方面.(1)用乘法公式解决面积问题【例】光明幼儿园有一个游戏场和一个桂花园,所占地的形状都是正方形,面积也相同.后来重新改建,扩大了游戏场,缩小了桂花园,扩大后的游戏场地仍为正方形,边长比原来增大了3米,缩小后的桂花园也为正方形,边长比原来减少了2米,设它们原来的边长为x米,请表示出扩大后的游戏场地比缩小后的桂花园的面积多多少平方米,并计算x=16时的值.【标准解答】(x+3)2-(x-2)2=(x2+6x+9)-(x2-4x+4)=x2+6x+9-x2+4x-4=10x+5.当x=16时,原式=10×16+5=165(平方米)所以扩大后的游戏场地比缩小后的桂花园的面积多(10x+5)平方米,当x=16时,为165平方米.(2)用乘法公式解决包装问题【例】将一条边长为2.4m镀金彩边剪成两段,恰好可用来镶两张大小不同的正方形壁画的边,而两张壁画的面积相差1 200 cm2,这条彩边应剪成多长的两段?【标准解答】设较大正方形壁画的周长为xcm,则较小正方形壁画的周长为(240-x)cm.由题意,得-=1200,即-=1200.去括号,得-3600+30x-=1200,即30x=4800.解得x=160,240-160=80(cm).所以这条彩边应剪成长为160cm,80cm的两段.某商人对数字“8”情有独钟,他每年八月份都要到制作广告牌的张师傅那里做两个一大一小的正方形广告牌,面积之差为8的倍数.请问两张广告牌的边长至少要满足什么样的条件,才能符合商人的要求.跟踪训练答案解析1.逆用幂的运算法则解题【跟踪训练】1.【解析】a3m+2n=a3m×a2n=×.把a m=2,a n=3代入得a3m+2n=23×32=8×9=72.2.【解析】因为4x=(2)2x=9,所以21-2x=2÷22x=2÷9=.3.【解析】∵(ab)n=a n b n,∴(-8)2015×(0.125)2016=[(-8)×0.125]2015×0.125=(-1)2015×0.125=(-1)×0.125=-0.125.2.用图形面积表示整式的乘法法则(公式)【跟踪训练】1.【解析】面积=AD×AB=(x+3)(x+2).答案:(x+3)(x+2)2.【解析】(1)(a+2b)(2a+b)=2a2+5ab+2b2.(2)画出的图形如图所示.3.【解析】(1)图形如下:代数意义为:a2+3ab+2b2=(a+b)(a+2b).(2)需用2号卡片3张,3号卡片7张.4.【解析】(1)m-n.(2)(m-n)2=(m+n)2-4mn.(3)当m+n=9,mn=14时,(m-n)2=(m+n)2-4mn=92-4×14=81-56=25.3.整式乘除中的整体思想【跟踪训练】1.【解析】m2+n2=(m+n)2-2mn=2.答案:22.【解析】(1)(3x-2y+5)2=[(3x-2y)+5]2 =(3x-2y)2+10(3x-2y)+25=9x2-12xy+4y2+30x-20y+25.(2)(2a-b+1)(b-1+2a)=[2a-(b-1)][2a+(b-1)]=4a2-(b-1)2=4a2-b2+2b-1.3.【解析】∵(2a+2b+1)(2a+2b-1)=63, ∴[(2a+2b)+1][(2a+2b)-1]=63,∴(2a+2b)2-1=63,∴(2a+2b)2=64,∴2a+2b=8或2a+2b=-8,∴a+b=4或a+b=-4,∴a+b的值为4或-4.4.整式加减中的规律探索问题【跟踪训练】1.【解析】选B.∵由杨辉三角可得:∴的展开式第三项的系数是45.2.【解析】根据前5个数,可以得到这一组数排列的规律是分子的指数是从1开始的奇数,分母是底数从1开始的自然数的平方,因此第8个式子是=,第n个式子是.答案:3.【解析】观察发现:第一个图形有3×2-3+1=4个三角形;第二个图形有3×3-3+1=7个三角形;第三个图形有3×4-3+1=10个三角形;…第n个图形有3(n+1)-3+1=3n+1个三角形.答案:3n+14.【解析】由排列的规律可得,第n-1行结束的时候排了1+2+3+…+n-1=n(n-1)个数.所以第n行从左向右的第5个数为n(n-1)+5.所以当n=10时,第10行从左向右的第5个数为50.答案:505.【解析】(1)92-4×42=17.(2)(2n+1)2-4×n2=4n+1;∵左边=4n2+4n+1-4n2=4n+1=右边,∴等式成立.5.乘法公式在实际生活中的应用【跟踪训练】分析:若设两张广告牌的边长大的为a米,小的为b米,即可得a2-b2=8n(n为正整数),若以a=3,b=1为例发现32-12=8,符合条件;若a=4,b=2,则42-22=12,不符合条件;若a=5,b=3,则52-32=16=8×2,符合条件……这样多写几组,便可发现两个相邻的奇数,其中较大的与较小的平方差是8的倍数.【解析】设两张广告牌的边长是相邻的奇数时,两张广告牌的面积之差是8的倍数,因为(2n+1)2-(2n-1)2=(4n2+4n+1)-(4n2-4n+1)=8n(n为正整数).。