2009年中考答案中考数学试卷真题(附答案解析)

合集下载

【中考数学】有理数解答题训练经典题目(附答案)

【中考数学】有理数解答题训练经典题目(附答案)

【中考数学】有理数解答题训练经典题目(附答案)一、解答题1.点A、O、B、C从左向右依次在数轴上的位置如图所示,点O在原点,点A、B、C表示的数分别是a、b、c .(1)若a=﹣2,b=4,c=8,D为AB中点,F为BC中点,求DF的长.(2)若点A到原点的距离为3,B为AC的中点.①用b的代数式表示c;②数轴上B、C两点之间有一动点M,点M表示的数为x,无论点M运动到何处,代数式|x﹣c|﹣5|x﹣a|+bx+cx 的值都不变,求b的值.2.已知表示5与-2之差的绝对值,实际上也可理解为5与-2两数在数轴上所对应的两点之间的距离请试着探索:(1)找出所有符合条件的整数,使,这样的整数是________;(2)利用数轴找出,当时,的值是________;(3)利用数轴找出,当取最小值时,的范围是________.3.已知有理数a,b,c在数轴上的位置如图所示:解答下列式子:(1)比较a,,c的大小(用“<”连接);(2)若,试化简等式的右边;(3)在(2)的条件下,求的值.4.如图,点、、是数轴上三点,点表示的数为,, .(1)写出数轴上点、表示的数:________,________.(2)动点,同时从,出发,点以每秒个单位长度的速度沿数轴向右匀速运动,点以个单位长度的速度沿数向左匀速运动,设运动时间为秒.①求数轴上点,表示的数(用含的式子表示);② 为何值时,点,相距个单位长度.5.如图,数轴上点A,B分别对应数a,b.其中a<0,b>0.(1)当a=﹣2,b=6时,求a-b=________,线段AB的中点对应的数是________;(直接填结果)(2)若该数轴上另有一点M对应着数m.①当a=﹣4,b=8,点M在A,B之间,且AM=3BM时,求m的值.②当m=2,b>2,且AM=2BM时,求代数式a+2b+20的值.6.同学们都知道,|5-(-2)|表示5与-2之差的绝对值,实际上也可理解为5与-2两数在数轴上所对的两点之间的距离.试探索:(1)求|5-(-2)|=________.(2)找出所有符合条件的整数x,使得|x+5|+|x-2|=7这样的整数是________.(3)由以上探索猜想对于任何有理数x,|x-3|+|x-6|是否有最小值?如果有写出最小值,如果没有说明理由.7.观察下列等式,,,以上三个等式两边分别相加得:(1)猜想并写出: ________(2)计算: ________(3)探究并计算:8.(1)阅读下面材料:点、在数轴上分别表示实数,,、两点之间的距高表示为当、两点中有一点在原点时,不妨设点在原点,如图1,;当、都不在原点时,①如图2,点、都在原点的右侧,;②如图3,点、都在原点的左侧,;③如图4,点、在原点的两侧,;(1)回答下列问题:①数轴上表示2和5的两点间的距离是________,数轴上表示-2和-5的两点之间的距离是________,数轴上表示1和-3的两点之间的距离是________;②数轴上表示和-1的两点和之间的距离是________,如果,那么为________;③当代数式取最小值时,相应的的取值范围是________;④求的最小值,提示:.9.点A在数轴上对应的数为3,点B对应的数为b,其中A、B两点之间的距离为5 (1)求b的值(2)当B在A左侧时,一点D从原点O出发以每秒2个单位的速度向左运动,请问D运动多少时间,可以使得D到A、B两点的距离之和为8?(3)当B在A的左侧时,一点D从O出发以每秒2个单位的速度向左运动,同时点M从B出发,以每秒1个单位的速度向左运动,点N从A出发,以每秒4个单位的速度向右运动;在运动过程中,MN的中点为P,OD的中点为Q,请问MN-2PQ的值是否会发生变化?若发生变化,请说明理由;如果没有变化,请求出这个值.10.已知数轴上,点A和点B分别位于原点O两侧,AB=14,点A对应的数为a,点B对应的数为b.(1)若b=-4,则a的值为________.(2)若OA=3OB,求a的值.(3)点C为数轴上一点,对应的数为c.若O为AC的中点,OB=3BC,直接写出所有满足条件的c的值.11.如图,数轴上两点分别表示有理数-2和5,我们用来表示两点之间的距离.(1)直接写出的值=________;(2)若数轴上一点表示有理数m,则的值是________;(3)当代数式∣n +2∣+∣n -5∣的值取最小值时,写出表示n的点所在的位置;(4)若点分别以每秒2个单位长度和每秒3个单位长度的速度同时向数轴负方向运动,求经过多少秒后,点到原点的距离是点到原点的距离的2倍.12.阅读材料:如图①,若点B把线段分成两条长度相等的线段AB和BC,则点B叫做线段AC的中点.回答问题:(1)如图②,在数轴上,点A所表示的数是﹣2,点B所表示的数是0,点C所表示的数是3.①若A是线段DB的中点,则点D表示的数是________;②若E是线段AC的中点,求点E表示的数________.(2)在数轴上,若点M表示的数是m,点N所表示的数是n,点P是线段MN的中点.①若点P表示的数是1,则m、n可能的值是________(填写符合要求的序号);(i)m=0,n=2;(ii)m=﹣5,n=7;(iii)m=0.5,n=1.5;(iv)m=﹣1,n=2②直接用含m、n的代数式表示点P表示的数________.13.数轴上点A表示的数为10,点M,N分别以每秒a个单位长度,每秒b个单位长度的速度沿数轴运动,a,b满足|a-5|+(b-6)2=0.(1)请真接与出a=________,b=________;(2)如图1,点M从A出发沿数轴向左运动,到达原点后立即返回向右运动:同时点N从原点0出发沿数轴向左运动,运动时间为t,点P为线段ON的中点若MP=MA,求t的值: (3)如图2,若点M从原点向右运动,同时点N从原点向左运动,运动时间为t时M运动到点A的右侧,若此时以M,N,O,A为端点的所有线段的长度和为142,求此时点M对应的数.14.我们知道,|a|表示数a在数轴上的对应点与原点的距离.如:|5|表示5在数轴上的对应点到原点的距离。

2009年上海中考数学试卷分析2

2009年上海中考数学试卷分析2

以几何图形为背景的压轴题闵行中心马德岩近年中考试题或模拟考题能反映命题风格、命题热点、命题形式(特别是新题型)的新动向、新导向,以近年中考题为基本素材,有利于考生适应中考情境,提高中考复习的针对性。

中考题型的创新形式主要有:情景题、应用题、开放题、操作题、探索题等,体现出“经历、体验、探索”的过程性目标。

此类题目是学生得分的薄弱环节,主要涉及到的题目为:图形翻折、平移、旋转的运动变化、函数思想的形成、方程思想的建立等等。

应对此类问题学生应该要用数学的眼光观察世界,用数学知识、数学思想方法去分析问题、解决问题。

这类试题往往情景较为新颖,问题也较为灵活,每年的分值在25分左右。

下面以2009年上海中考最后一题为点来分析这类问题解决的方法。

已知9023ABC AB BC AD BC P ∠===°,,,∥,为线段BD 上的动点,点Q 在射线AB 上,且满足PQ ADPC AB=(如图8所示). (1)当2AD =,且点Q 与点B 重合时(如图9所示),求线段PC 的长;(2)在图8中,联结AP .当32AD =,且点Q 在线段AB 上时,设点B Q 、之间的距离为x ,APQ PBCS y S =△△,其中APQ S △表示APQ △的面积,PBC S △表示PBC △的面积,求y 关于x 的函数解析式,并写出函数定义域; (3)当AD AB <,且点Q 在线段AB 的延长线上时(如图10所示),求QPC ∠的大小.数学思想方法是数学知识在更高层次上的抽象和概括,在重点考查最基本、通用的数学规律和数学技能的同时,这道试题突出考查学生对数学思想方法的领悟。

解:(1)AD=2,且Q 点与B 点重合,根据题意,∠PDA ,因为∠A=90。

PQ/PC=AD/AB=1,所以:△PQC 为等腰直角三角形,BC=3,所以:PC=3 /2,(2)如图:根据题意,两个三角形的面积可以分别表示成S1,S2, 高分别是H ,h ,则:S1=(2-x )H/2=(2*3/2)/2-(x*H/2)-(3/2)*(2-h)/2S2=3*h/2 因为两S1/S2=y ,消去H,h,得:Y=-(1/4)*x+(1/2),定义域:当点P 运动到与D 点重合时,X 的取值就是最大值,当PC 垂直BD 时,这时X=0,连接DC,作QDADPCBQ 图8DAPCB(Q ) 图9图10CADPBQ垂直DC,由已知条件得:B、Q、D、C四点共圆,则由圆周角定理可以推知:三角形QDC相似于三角形ABD则QD/DC=AD/AB=3/4,令QD=3t,DC=4t,则:QC=5t,(t>0)由勾股定理得:直角三角形AQD中:(3/2)^2+(2-x)^2=(3t)^2直角三角形QBC中:3^2+x^2=(5t)^2整理得:(8x-7)(8x-43)=0得x1=7/8 x2=(43/8)>2(舍去) 所以函数:Y=-(1/4)*x+1/2的定义域为[0,7/8](3)因为:PQ/PC=AD/AB,假设PQ不垂直PC,则可以作一条直线PQ′垂直于PC,与AB交于Q′点,则:Q′,B,P,C四点共圆,由圆周角定理推知,三角形P Q′C相似于三角形ABD,根据相似三角形的性质得:PQ′/PC=AD/AB,又由于PQ/PC=AD/AB 所以,点Q′与点Q重合,所以角∠QPC=90。

2009年湖北省荆门市中考数学试卷(word版含答案)

2009年湖北省荆门市中考数学试卷(word版含答案)

湖北省荆门市二00九年初中毕业生学业考试数学注意事项:1.答卷前,考生务必将自己的姓名、准考证填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上指定位置.2.选择题每小题选出答案后,用2B 铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案.答在试卷上无效.3.填空题和解答题用0.5毫米的黑色墨水签字笔答在答题卡上每题对应的答题区域内.答在试卷上无效.4.考试结束,请将本试题卷和答题卡一并上交.录入者注:荆门市2009年中考采取网上阅卷.一、选择题(本大题共10小题,每小题只有唯一正确答案,每小题3分,共30分)1.|-9|的平方根是( )(A)81. (B)±3. (C)3. (D)-3.2.计算22()ab a b-的结果是( ) (A)a . (B)b . (C)1. (D)-b .3.如图,Rt △ABC 中,∠ACB =90°,∠A =50°,将其折叠,使点A 落在边CB 上A ′处,折痕为CD ,则∠A ′DB =( )(A)40°. (B)30°. (C)20°. (D)10°.4.从只装有4个红球的袋中随机摸出一球,若摸到白球的概率是p 1,摸到红球的概率是p 2,则( )(A)p 1=1,p 2=1. (B)p 1=0,p 2=1. (C)p 1=0,p 2=14. (D)p 1=p 2=14. 5x +y )2,则x -y 的值为( )(A)-1. (B)1. (C)2. (D)3.6.等腰梯形ABCD 中,E 、F 、G 、H 分别是各边的中点,则四边形EFGH 的形状是( )(A)平行四边形. (B)矩形. (C)菱形. (D)正方形.7.关于x 的方程ax 2-(a +2)x +2=0只有一解(相同解算一解),则a 的值为( )(A)a =0. (B)a =2. (C)a =1. (D)a =0或a =2.8.函数y =ax +1与y =ax 2+bx +1(a ≠0)的图象可能是( )第3题图 A 'BD(B) (C) (D)9.长方体的主视图与左视图如图所示(单位:cm),则其俯视图的面积是( )(A)12cm 2. (B)8cm 2. (C)6cm 2. (D)4cm 2.10.若不等式组0,122x a x x +⎧⎨->-⎩≥有解,则a 的取值范围是( )(A)a >-1. (B)a ≥-1. (C)a ≤1. (D)a <1.二、填空题(本大题共8小题,每小题3分,共24分)11.104cos30sin60(2)2008)-︒︒+--=______.12.定义a ※b =a 2-b ,则(1※2)※3=______.13.将点P 向左平移2个单位,再向上平移1个单位得到P ′(-1,3),则点P 的坐标是______.14.函数y =(x -2)(3-x )取得最大值时,x =______.15.如图,Rt △ABC 中,∠C =90°,AC =6,BC =8.则△ABC 的内切圆半径r =______.16.从分别标有1、2、3、4的四张卡片中,一次同时抽2张,其中和为奇数的概率是______.17.直线y =ax (a >0)与双曲线y =3x交于A (x 1,y 1)、B (x 2,y 2)两点,则4x 1y 2-3x 2y 1=______. 18.如图,正方形ABCD 边长为1,动点P 从A 点出发,沿正方形的边按逆时针方向运动,当它的运动路程为2009时,点P 所在位置为______;当点P 所在位置为D 点时,点P 的运动路程为______(用含自然数n 的式子表示).三、解答题(本大题共7个小题,满分66分)19.(本题满分6分)已知x =2y =22211()()x y x y x y x y x y +----+的值.第18题图 BD A (P )C第15题图 rBAC O 第9题图20.(本题满分8分)如图,在□ABCD 中,∠BAD 为钝角,且AE ⊥BC ,A F ⊥CD .(1)求证:A 、E 、C 、F 四点共圆;(2)设线段BD 与(1)中的圆交于M 、N .求证:BM =ND .21.(本题满分10分)星期天,小明和七名同学共8人去郊游,途中,他用20元钱去买饮料,商店只有可乐和奶茶,已知可乐2元一杯,奶茶3元一杯,如果20元钱刚好用完.(1)有几种购买方式?每种方式可乐和奶茶各多少杯?(2)每人至少一杯饮料且奶茶至少二杯时,有几种购买方式?22.(本题满分10分)某校学生会干部对校学生会倡导的“助残”自愿捐款活动进行抽样调查,得到一组学生捐款情况的数据,下图是根据这组数据绘制的统计图,图中从左到右各长方形高度之比为3∶4∶5∶8∶2,又知此次调查中捐15元和20元的人数共39人.(1)他们一共抽查了多少人?捐款数不少于20元的概率是多少?(2)这组数据的众数、中位数各是多少?(3)若该校共有2310名学生,请估算全校学生共捐款多少元?23.(本题满分10分)如图,半径为O 内有互相垂直的两条弦AB 、CD 相交于P 点.(1)求证:P A ·PB =PC ·PD ;(2)设BC 的中点为F ,连结FP 并延长交AD 于E ,求证:EF ⊥AD :(3)若AB =8,CD =6,求OP 的长.第20题图 NMF E B DAC 第23题图第22题图元24.(本题满分10分)一次函数y =kx +b 的图象与x 、y 轴分别交于点A (2,0),B (0,4).(1)求该函数的解析式;(2)O 为坐标原点,设OA 、AB 的中点分别为C 、D ,P 为OB 上一动点,求PC +PD 的最小值,并求取得最小值时P 点的坐标.25.(本题满分12分)一开口向上的抛物线与x 轴交于A (m -2,0),B (m +2,0)两点,记抛物线顶点为C ,且AC ⊥BC .(1)若m 为常数,求抛物线的解析式;(2)若m 为小于0的常数,那么(1)中的抛物线经过怎么样的平移可以使顶点在坐标原点?(3)设抛物线交y 轴正半轴于D 点,问是否存在实数m ,使得△BCD 为等腰三角形?若存在,求出m 的值;若不存在,请说明理由.湖北省荆门市二00九年初中毕业生学业考试试卷数学试题参考答案及评分标准说明:除本答案给出的解法外,如有其它正确解法,可按步骤相应给分.一、选择题(本大题共10小题,每小题只有唯一正确答案,每小题3分,共30分)题号 1 2 3 4 5 6 7 8 9 10答案 B B D B C C D C A A二、填空题(本大题共8小题,每小题3分,共24分)11.32;12.-2;13.(1,2);14.52;15.2;16.23;17.-3;18.点B ;4n +3(录入者注:填4n -1(n 为正整数)更合适)三、解答题(本大题共7个小题,满分66分)19.解:2211()()x y x y x y x y x y +----+=22222222()()x y x y y x x y x y+----第25题图=2214xy x y -=4-…………………………………………………………………4分当x =2y =22211()()x y x y x y x y x y+----+=-4…………………………6分 20.解:∵AE ⊥BC ,A F ⊥CD ,∴∠AEC =∠AFC =90°.∴∠AEC +∠AFC =180°.∴A 、E 、C 、F 四点共圆;…………………………………4分(2)由(1)可知,圆的直径是AC ,设AC 、BD 相交于点O ,∵ABCD 是平行四边形,∴O 为圆心.∴OM =ON .∴BM =DN .…………………………………………………………………8分21.解:(1)设买可乐、奶茶分别为x 、y 杯,根据题意得2x +3y =20(且x 、y 均为自然数) …………………………………………………………2分 ∴x =203y -≥0 解得y ≤203 ∴y =0,1,2,3,4,5,6.代入2x +3y =20 并检验得 10,0;x y =⎧⎨=⎩7,2;x y =⎧⎨=⎩4,4;x y =⎧⎨=⎩1,6.x y =⎧⎨=⎩……………………………………………………………6分 所以有四种购买方式,每种方式可乐和奶茶的杯数分别为:(亦可直接列举法求得)10,0;7,2;4,4;1,6.………………………………………………………………7分(2)根据题意:每人至少一杯饮料且奶茶至少二杯时,即y ≥2且x +y ≥8由(1)可知,有二种购买方式.……………………………………………………………10分22.解:(1)设捐15元的人数为5x ,则根据题意捐20元的人数为8x .∴5x +8x =39,∴x =3∴一共调查了3x +4x +5x +8x +2x =66(人) ……………………………………………3分 ∴捐款数不少于20元的概率是3056611=.…………………………………………………5分 (2)由(1)可知,这组数据的众数是20(元),中位数是15(元).……………………………7分(3)全校学生共捐款(9×5+12×10+15×15+24×20+6×30)÷66×2310=36750(元) …………………10分23.(1)∵∠A 、∠C 所对的圆弧相同,∴∠A =∠C .∴Rt △APD ∽Rt △CPB ,∴AP PD CP PB=,∴P A ·PB =PC ·PD ;………………………3分 (2)∵F 为BC 的中点,△BPC 为Rt △,∴FP =FC ,∴∠C =∠CPF .又∠C =∠A ,∠DPE =∠CPF ,∴∠A =∠DPE .∵∠A +∠D =90°,∴∠DPE +∠D =90°.∴EF ⊥AD .………………………………………………………7分 (3)作OM ⊥AB 于M ,ON ⊥CD 于N ,同垂径定理:∴OM 2=2-42=4,ON 2=2-32=11又易证四边形MONP 是矩形,∴OP =7分24.解:(1)将点A 、B 的坐标代入y =kx +b 并计算得k =-2,b =4.∴解析式为:y =-2x +4;…………………………………………………………………5分(2)设点C 关于点O 的对称点为C ′,连结PC ′、DC ′,则PC =PC ′.∴PC+PD=PC′+PD≥C′D,即C′、P、D共线时,PC+PD的最小值是C′D.连结CD,在Rt△DCC′中,C′D=易得点P的坐标为(0,1).………………………………………………………………10分(亦可作Rt△AOB关于y轴对称的△)25.解:(1)设抛物线的解析式为:y=a(x-m+2)(x-m-2)=a(x-m)2-4a.…………2分∵AC⊥BC,由抛物线的对称性可知:△ACB是等腰直角三角形,又AB=4,∴C(m,-2)代入得a=12.∴解析式为:y=12(x-m)2-2.…………………………5分(亦可求C点,设顶点式)(2)∵m为小于零的常数,∴只需将抛物线向右平移-m个单位,再向上平移2个单位,可以使抛物线y=12(x-m)2-2顶点在坐标原点.………………………………………7分(3)由(1)得D(0,12m2-2),设存在实数m,使得△BOD为等腰三角形.∵△BOD为直角三角形,∴只能OD=OB.……………………………………………9分∴12m2-2=|m+2|,当m+2>0时,解得m=4或m=-2(舍).当m+2<0时,解得m=0(舍)或m=-2(舍);当m+2=0时,即m=-2时,B、O、D三点重合(不合题意,舍)综上所述:存在实数m=4,使得△BOD为等腰三角形.……………………………12分。

中考数学勾股定理(讲义及答案)附解析

中考数学勾股定理(讲义及答案)附解析

一、选择题1.如图,在ABC ∆中,,90︒=∠=AB AC BAC ,ABC ∠的平分线BD 与边AC 相交于点D ,DE BC ⊥,垂足为E ,若CDE ∆的周长为6,则ABC ∆的面积为( ).A .36B .18C .12D .9 2.如图所示,在中,,,.分别以,,为直径作半圆(以为直径的半圆恰好经过点,则图中阴影部分的面积是( )A .4B .5C .7D .63.如图,在等腰Rt ABC △中,908C AC ∠==°,,F 是AB 边上的中点,点D 、E 分别在AC 、BC 边上运动,且保持AD CE =.连接DE 、DF 、EF .在此运动变化的过程中,下列结论:①DFE △是等腰直角三角形;②四边形CDFE 不可能为正方形;③DE 长度的最小值为4;④四边形CDFE 的面积保持不变;⑤△CDE 面积的最大值为8.其中正确的结论是( )A .①④⑤B .③④⑤C .①③④D .①②③4.如图是由“赵爽弦图”变化得到的,它由八个全等的直角三角形拼接而成,记图中正方形ABCD 、正方形EFGH 、正方形MNKT 的面积分别为S 1、S 2、S 3.若S 1+S 2+S 3=15,则S 2的值是( )A .3B .154C .5D .1525.若直角三角形的三边长分别为-a b 、a 、+a b ,且a 、b 都是正整数,则三角形其中一边的长可能为()A .22B .32C .62D .826.如图,A 、B 两点在直线l 的两侧,点A 到直线l 的距离AC=4,点B 到直线l 的距离BD=2,且CD=6,P 为直线CD 上的动点, 则PA PB -的最大值是( )A .62B .22C .210D .67.如图,在△ABC 中,∠ACB =90°,AB 的中垂线交AC 于D ,P 是BD 的中点,若BC =4,AC =8,则S △PBC 为( )A .3B .3.3C .4D .4.58.将一根 24cm 的筷子,置于底面直径为 15cm ,高 8cm 的装满水的无盖圆柱形水杯中,设筷子浸没在杯子里面的长度为 hcm ,则 h 的取值范围是( )A .h≤15cmB .h≥8cmC .8cm≤h≤17cmD .7cm≤h≤16cm9.如图,在矩形ABCD 中,AB =8,BC =4,将矩形沿AC 折叠,点B 落在点B ′处,则重叠部分△AFC 的面积为( )A .12B .10C .8D .610.有下列的判断: ①△ABC 中,如果a 2+b 2≠c 2,那么△ABC 不是直角三角形②△ABC 中,如果a 2-b 2=c 2,那么△ABC 是直角三角形③如果△ABC 是直角三角形,那么a 2+b 2=c 2以下说法正确的是( )A .①②B .②③C .①③D .②二、填空题11.如图是一个三级台阶,它的每一级的长、宽和高分别为5 dm 、3 dm 和1 dm ,A 和B 是这个台阶两个相对的端点,A 点有一只蚂蚁,想到B 点去吃可口的食物.请你想一想,这只蚂蚁从A 点出发,沿着台阶面爬到B 点的最短路程是 dm .12.如图所示的网格是正方形网格,则ABC ACB ∠+∠=__________°(点A ,B ,C 是网格线交点).13.如图,在△ABC 中,OA =4,OB =3,C 点与A 点关于直线OB 对称,动点P 、Q 分别在线段AC 、AB 上(点P 不与点A 、C 重合),满足∠BPQ =∠BAO.当△PQB 为等腰三角形时,OP 的长度是_____.14.如图,在ABC 中,D 是BC 边中点,106AB AC ==,,4=AD ,则BC 的长是_____________.15.在ABC ∆中,90BAC ∠=︒,以BC 为斜边作等腰直角BCD ∆,连接DA ,若22AB =,42AC =,则DA 的长为______.16.如图在三角形纸片ABC 中,已知∠ABC =90º,AC =5,BC=4,过点A 作直线l 平行于BC ,折叠三角形纸片ABC ,使直角顶点B 落在直线l 上的点P 处,折痕为MN ,当点P 在直线l 上移动时,折痕的端点M 、N 也随之移动,若限定端点M 、N 分别在AB 、BC 边上(包括端点)移动,则线段AP 长度的最大值与最小值的差为________________.17.如图,30AOB ∠=︒,点,M N 分别在,OA OB 上,且6,8OM ON ==,点,P Q 分别在,OB OA 上运动,则PM PQ QN ++的最小值为______.18.如图,△ABC 中,AB=AC=13,BC=10,AD 是BAC ∠的角平分线,E 是AD 上的动点,F 是AB 边上的动点,则BE+EF 的最小值为_____.19.在ABC 中,12AB AC ==,30A ∠=︒,点E 是AB 中点,点D 在AC 上,32DE =,将ADE 沿着DE 翻折,点A 的对应点是点F ,直线EF 与AC 交于点G ,那么DGF △的面积=__________.20.如图,在等腰△ABC 中,AB =AC ,底边BC 上的高AD =6cm ,腰AC 上的高BE =4m ,则△ABC 的面积为_____cm 2.三、解答题21.在等边ABC 中,点D 是线段BC 的中点,120,EDF DE ∠=︒与线段AB 相交于点,E DF 与射线AC 相交于点F .()1如图1,若DF AC ⊥,垂足为,4,F AB =求BE 的长;()2如图2,将()1中的EDF ∠绕点D 顺时针旋转一定的角度,DF 仍与线段AC 相交于点F .求证:12BE CF AB +=.()3如图3,将()2中的EDF ∠继续绕点D 顺时针旋转一定的角度,使DF 与线段AC 的延长线交于点,F 作DN AC ⊥于点N ,若,DN FN =设,BE x CF y ==,写出y 关于x 的函数关系式.22.如图1,在△ABC 中,AB =AC ,∠BAC =90°,D 为AC 边上一动点,且不与点A 点C 重合,连接BD 并延长,在BD 延长线上取一点E ,使AE =AB ,连接CE .(1)若∠AED =20°,则∠DEC = 度;(2)若∠AED =a ,试探索∠AED 与∠AEC 有怎样的数量关系?并证明你的猜想; (3)如图2,过点A 作AF ⊥BE 于点F ,AF 的延长线与EC 的延长线交于点H ,求证:EH 2+CH 2=2AE 2.23.如图,在边长为2的等边三角形ABC 中,D 点在边BC 上运动(不与B ,C 重合),点E 在边AB 的延长线上,点F 在边AC 的延长线上,AD DE DF ==. (1)若30AED ∠=︒,则ADB =∠______.(2)求证:BED CDF △≌△.(3)试说明点D 在BC 边上从点B 至点C 的运动过程中,BED 的周长l 是否发生变化?若不变,请求出l 的值,若变,请求出l 的取值范围.24.在等腰Rt △ABC 中,AB =AC ,∠BAC =90°(1)如图1,D ,E 是等腰Rt △ABC 斜边BC 上两动点,且∠DAE =45°,将△ABE 绕点A 逆时针旋转90后,得到△AFC ,连接DF①求证:△AED ≌△AFD ;②当BE =3,CE =7时,求DE 的长;(2)如图2,点D 是等腰Rt △ABC 斜边BC 所在直线上的一动点,连接AD ,以点A 为直角顶点作等腰Rt △ADE ,当BD =3,BC =9时,求DE 的长.25.如图,△ACB 和△ECD 都是等腰直角三角形,∠ACB =∠ECD =90°,点D 在边AB 上,点E 在边AC 的左侧,连接AE .(1)求证:AE =BD ;(2)试探究线段AD 、BD 与CD 之间的数量关系;(3)过点C 作CF ⊥DE 交AB 于点F ,若BD :AF =1:2,CD 36,求线段AB 的长.26.如图, ABD 为边长不变的等腰直角三角形,AB AD =,90BAD ∠=︒,在 ABD外取一点 E ,以A 为直角顶点作等腰直角AEP △,其中 P 在 ABD 内部,90EAP ∠=︒,2AE AP ==,当E 、P 、D 三点共线时,7BP =.下列结论:①E 、P 、D 共线时,点B 到直线AE 的距离为5;②E 、P 、D 共线时, 13ADP ABP S S ∆∆+=+;=532ABD S ∆+③; ④作点 A 关于 BD 的对称点 C ,在 AEP 绕点 A 旋转的过程中,PC 的最小值为5+232-;⑤AEP △绕点A 旋转,当点E 落在AB 上,当点P 落在AD 上时,取BP 上一点N ,使得AN BN =,连接 ED ,则AN ED ⊥.其中正确结论的序号是___.27.如果一个三角形的两条边的和是第三边的两倍,则称这个三角形是“优三角形”,这两条边的比称为“优比”(若这两边不等,则优比为较大边与较小边的比),记为k . (1)命题:“等边三角形为优三角形,其优比为1”,是真命题还是假命题?(2)已知ABC 为优三角形,AB c =,AC b =,BC a =,①如图1,若90ACB ∠=︒,b a ≥,6b =,求a 的值.②如图2,若c b a ≥≥,求优比k 的取值范围.(3)已知ABC 是优三角形,且120ABC ∠=︒,4BC =,求ABC 的面积.28.(1)如图1,在Rt ABC ∆中,90ACB ∠=︒,60A ∠=︒,CD 平分ACB ∠.求证:CA AD BC +=.小明为解决上面的问题作了如下思考:作ADC ∆关于直线CD 的对称图形A DC '∆,∵CD 平分ACB ∠,∴A '点落在CB 上,且CA CA '=,A D AD '=.因此,要证的问题转化为只要证出A D A B ''=即可.请根据小明的思考,写出该问题完整的证明过程.(2)参照(1)中小明的思考方法,解答下列问题:如图3,在四边形ABCD 中,AC 平分BAD ∠,10BC CD ==,17AC =,9AD =,求AB 的长.29.已知ABC ∆中,90ACB ∠=︒,AC BC =,过顶点A 作射线AP .(1)当射线AP 在BAC ∠外部时,如图①,点D 在射线AP 上,连结CD 、BD ,已知21AD n =-,21AB n =+,2BD n =(1n >).①试证明ABD ∆是直角三角形;②求线段CD 的长.(用含n 的代数式表示)(2)当射线AP 在BAC ∠内部时,如图②,过点B 作BD AP ⊥于点D ,连结CD ,请写出线段AD 、BD 、CD 的数量关系,并说明理由.30.定义:在△ABC 中,若BC =a ,AC =b ,AB =c ,若a ,b ,c 满足ac +a 2=b 2,则称这个三角形为“类勾股三角形”,请根据以上定义解决下列问题:(1)命题“直角三角形都是类勾股三角形”是 命题(填“真”或“假”);(2)如图1,若等腰三角形ABC 是“类勾股三角形”,其中AB =BC ,AC >AB ,请求∠A 的度数;(3)如图2,在△ABC 中,∠B =2∠A ,且∠C >∠A .①当∠A =32°时,你能把这个三角形分成两个等腰三角形吗?若能,请在图2中画出分割线,并标注被分割后的两个等腰三角形的顶角的度数;若不能,请说明理由; ②请证明△ABC 为“类勾股三角形”.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】利用角平分定理得到DE=AD ,根据三角形内角和得到∠BDE=∠BDA ,再利用角平分线定理得到BE=AB=AC ,根据CDE ∆的周长为6求出AB=6,再根据勾股定理求出218AB =,即可求得ABC ∆的面积.【详解】∵90BAC ︒∠=,∴AB ⊥AD,∵DE BC ⊥,BD 平分ABC ∠,∴DE=AD ,∠BED=90BAC ︒∠=,∴∠BDE=∠BDA ,∴BE=AB=AC ,∵CDE ∆的周长为6,∴DE+CD+CE=AC+CE=BC=6,∵,90︒=∠=AB AC BAC∴22236AB AC BC +==,∴2236AB =, 218AB =,∴ABC ∆的面积=211922AB AC AB ⋅⋅==, 故选:D.【点睛】此题考查角平分线定理的运用,勾股定理求边长,在利用角平分线定理时必须是两个垂直一个平分同时运用,得到到角两边的距离相等的结论. 2.D解析:D【解析】【分析】先利用勾股定理计算BC 的长度,然后阴影部分的面积=以AB 为直径的半圆面积+以BC 为直径的半圆面积+-以AC 为直径的半圆面积. 【详解】解:在中 ∵,, ∴, ∴BC=3,∴阴影部分的面积=以AB 为直径的半圆面积+以BC 为直径的半圆面积+-以AC 为直径的半圆面积=6.故选D. 【点睛】本题考查扇形面积的计算和勾股定理.在本题中解题关键是用重叠法去表示阴影部分的面积. 3.A解析:A【分析】作常规辅助线连接CF ,由SAS 定理可证△CFE 和△ADF 全等,从而可证∠DFE=90°,DF=EF .所以△DEF 是等腰直角三角形;由割补法可知四边形CDFE 的面积保持不变;△DEF 是等腰直角三角形2DF ,当DF 与BC 垂直,即DF 最小时,DE 取最小值42,△CDE 最大的面积等于四边形CDEF 的面积减去△DEF 的最小面积.【详解】连接CF;∵△ABC是等腰直角三角形,∴∠FCB=∠A=45°,CF=AF=FB;∵AD=CE,∴△ADF≌△CEF;∴EF=DF,∠CFE=∠AFD;∵∠AFD+∠CFD=90°,∴∠CFE+∠CFD=∠EFD=90°,∴△EDF是等腰直角三角形.当D. E分别为AC、BC中点时,四边形CDFE是正方形.∵△ADF≌△CEF,∴S△CEF=S△ADF,∴S四边形CEFD=S△AFC.由于△DEF是等腰直角三角形,因此当DE最小时,DF也最小;即当DF⊥AC时,DE最小,此时DF=12BC=4.∴22当△CEF面积最大时,此时△DEF的面积最小.此时S△CEF=S四边形CEFD−S△DEF=S△AFC−S△DEF=16−8=8,则结论正确的是①④⑤.故选A.【点睛】本题考查全等三角形的判定与性质, 等腰直角三角形性质.要证明线段或者角相等,一般证明它们所在三角形全等,如果不存在三角形可作辅助线解决问题.4.C解析:C【解析】将四边形MTKN的面积设为x,将其余八个全等的三角形面积一个设为y,∵正方形ABCD,正方形EFGH,正方形MNKT的面积分别为S1,S2,S3,S1+S2+S3=15,∴得出S1=8y+x,S2=4y+x,S3=x,∴S1+S2+S3=3x+12y=15,即3x+12y=15,x+4y=5,所以S2=x+4y=5,故答案为5.点睛:将四边形MTKN的面积设为x,将其余八个全等的三角形面积一个设为y,用x,y表示出S 1,S 2,S 3,再利用S 1+S 2+S 3=15求解是解决问题的关键.5.B解析:B【解析】由题可知(a-b )2+a 2=(a+b )2,解得a=4b ,所以直角三角形三边分别为3b ,4b ,5b ,当b=8时,4b=32,故选B .6.C解析:C【解析】试题解析:作点B 关于直线l 的对称点B ',连接AB '并延长,与直线l 的交点即为使得PA PB -取最大值时对应的点.P此时.PA PB PA PB AB -=-'='过点B '作B E AC '⊥于点,E 如图,四边形B DCE '为矩形,6, 2.B E CD EC B D BD ∴=====''2.AE ∴=22210.AB AE B E ''+=PA PB -的最大值为:210.故答案为:210.7.A解析:A【分析】根据线段垂直平分线的性质得到DA=DB ,根据勾股定理求出BD ,得到CD 的长,根据三角形的面积公式计算,得到答案.【详解】解:∵点D在线段AB的垂直平分线上,∴DA=DB,在Rt△BCD中,BC2+CD2=BD2,即42+(8﹣BD)2=BD2,解得,BD=5,∴CD=8﹣5=3,∴△BCD的面积=12×CD×BC=12×3×4=6,∵P是BD的中点,∴S△PBC=12S△BCD=3,故选:A.【点睛】本题考查的是线段垂直平分线的性质、直角三角形的性质、勾股定理,掌握线段垂直平分线上的点到线段两端点的距离相等是解题的关键.8.C解析:C【分析】筷子浸没在水中的最短距离为水杯高度,最长距离如下图,是筷子斜卧于杯中时,利用勾股定理可求得.【详解】当筷子笔直竖立在杯中时,筷子浸没水中距离最短,为杯高=8cmAD是筷子,AB长是杯子直径,BC是杯子高,当筷子如下图斜卧于杯中时,浸没在水中的距离最长由题意得:AB=15cm,BC=8cm,△ABC是直角三角形∴在Rt△ABC中,根据勾股定理,AC=17cm∴8cm≤h≤17cm故选:C【点睛】本题考查勾股定理在实际生活中的应用,解题关键是将题干中生活实例抽象成数学模型,然后再利用相关知识求解.9.B解析:B【分析】已知AD 为CF 边上的高,要求AFC △的面积,求得FC 即可,求证AFD CFB '△≌△,得B F DF '=,设DF x =,则在Rt AFD △中,根据勾股定理求x ,于是得到CF CD DF =-,即可得到答案.【详解】解:由翻折变换的性质可知,AFD CFB '△≌△,'DF B F ∴=,设DF x =,则8AF CF x ==-,在Rt AFD △中,222AF DF AD =+,即222(8)4x x -=+,解得:3x =,835CF CD FD ∴=-=-=, 1102AFC S AF BC ∴=⋅⋅=△. 故选:B .【点睛】本题考查矩形的性质、折叠的性质、勾股定理等内容,根据折叠的性质得到AFD CFB '△≌△是解题的关键.10.D解析:D【分析】欲判断三角形是否为直角三角形,这里给出三边的长,需要验证两小边的平方和等于最长边的平方即可.【详解】①c 不一定是斜边,故错误;②正确;③若△ABC 是直角三角形,c 不是斜边,则a 2+b 2≠c 2,故错误,所以正确的只有②,故选D.【点睛】本题考查了勾股定理以及勾股定理的逆定理,熟练掌握勾股定理以及勾股定理的逆定理的内容是解题的关键.二、填空题11.【解析】试题分析:将台阶展开,如图,331312,5,AC BC =⨯+⨯==222169,AB AC BC ∴=+=13,AB ∴=即蚂蚁爬行的最短线路为13.dm考点:平面展开:最短路径问题.12.45【分析】如下图,延长BA 至网络中的点D 处,连接CD. ABC ACB DAC ∠+∠=∠,只需证△ADC 是等腰直角三角形即可【详解】如下图,延长BA 至网络中的点D 处,连接CD设正方形网络每一小格的长度为1则根据网络,555BC=5,∴5其中BD 、DC 、BC 边长满足勾股定理逆定理∴∠CDA=90°∵AD=DC∴△ADC 是等腰直角三角形∴∠DAC=45°故答案为:45°【点睛】本题是在网格中考察勾股定理的逆定理,解题关键是延长BA ,构造处△ABC 的外角∠CAD13.1或78【分析】 分为三种情况:①PQ BP =,②BQ QP =,③BQ BP =,由等腰三角形的性质和勾股定理可求解.【详解】解:分为3种情况:①当PB PQ =时,4=OA ,3OB =,∴5BC AB ===, C 点与A 点关于直线OB 对称,BAO BCO ∴∠=∠,BPQ BAO ∠=∠,BPQ BCO ∴∠=∠,APB APQ BPQ BCO CBP ∠=∠+∠=∠+∠,APQ CBP ∴∠=∠,在APQ 和CBP 中,BAO BCP APQ B PQ B P C P ∠=∠⎧⎪∠=∠⎨=⎪⎩, ()APQ CBP AAS ∴△≌△,∴5AP BC ==,1OP AP OA ∴=-=;②当BQ BP =时,BPQ BQP ∠=∠,BPQ BAO ∠=∠,BAO BQP ∴∠=∠,根据三角形外角性质得:BQP BAO ∠>∠,∴这种情况不存在;③当QB QP =时,QBP BPQ BAO ∠=∠=∠,PB PA ∴=,设OP x =,则4PB PA x ==-在Rt OBP △中,222PB OP OB =+,222(4)3x x ∴-=+, 解得:78x =; ∴当PQB △为等腰三角形时,1OP =或78; 【点睛】本题考查了勾股定理,等腰三角形的性质,全等三角形的性质和判定的应用,解题的关键是熟练掌握所学的性质进行解题,注意分类讨论.14.【分析】延长AD至点E,使得DE=AD=4,结合D是中点证得△ADC≌△EDB,进而利用勾股定理逆定理可证得∠E=90°,再利用勾股定理求得BD长进而转化为BC长即可.【详解】解:如图,延长AD至点E,使得DE=AD=4,连接BE,∵D是BC边中点,∴BD=CD,又∵DE=AD,∠ADC=∠EDB,∴△ADC≌△EDB(SAS),∴BE=AC=6,又∵AB=10,∴AE2+BE2=AB2,∴∠E=90°,∴在Rt△BED中,2222=++=,BD BE DE64213∴BC=2BD=13故答案为:13【点睛】本题考查了全等三角形的判定及性质、勾股定理及其逆定理,正确作出辅助线是解决本题的关键.15.6或2.【分析】由于已知没有图形,当Rt△ABC固定后,根据“以BC为斜边作等腰直角△BCD”可知分两种情况讨论:①当D点在BC上方时,如图1,把△ABD绕点D逆时针旋转90°得到△DCE,证明A、C、E三点共线,在等腰Rt△ADE中,利用勾股定理可求AD长;②当D点在BC下方时,如图2,把△BAD绕点D顺时针旋转90°得到△CED,证明过程类似于①求解.【详解】解:分两种情况讨论:①当D点在BC上方时,如图1所示,把△ABD绕点D逆时针旋转90°,得到△DCE,则∠ABD=∠ECD,2,AD=DE,且∠ADE=90°在四边形ACDB中,∠BAC+∠BDC=90°+90°=180°,∴∠ABD+∠ACD=360°-180°=180°,∴∠ACD+∠ECD=180°,∴A、C、E三点共线.∴AE=AC+CE=42+22=62在等腰Rt△ADE中,AD2+DE2=AE2,即2AD2=(62)2,解得AD=6②当D点在BC下方时,如图2所示,把△BAD绕点D顺时针旋转90°得到△CED,则CE=AB=22,∠BAD=∠CED,AD=AE且∠ADE=90°,所以∠EAD=∠AED=45°,∴∠BAD=90°+45°=135°,即∠CED=135°,∴∠CED+∠AED=180°,即A、E、C三点共线.∴AE=AC-CE=42-22=22在等腰Rt△ADE中,2AD2=AE2=8,解得AD=2.故答案为:6或2.【点睛】本题主要考查了旋转的性质、勾股定理,解决这类等边(或共边)的两个三角形问题,一般是通过旋转的方式作辅助线,转化线段使得已知线段于一个特殊三角形中进行求解.1671【分析】分别找到两个极端,当M与A重合时,AP取最大值,当点N与C重合时,AP取最小,即可求出线段AP长度的最大值与最小值之差【详解】如图所示,当M 与A 重合时,AP 取最大值,此时标记为P 1,由折叠的性质易得四边形AP 1NB 是正方形,在Rt △ABC 中,2222AB=AC BC =54=3--,∴AP 的最大值为A P 1=AB=3如图所示,当点N 与C 重合时,AP 取最小,过C 点作CD ⊥直线l 于点D ,可得矩形ABCD ,∴CD=AB=3,AD=BC=4,由折叠的性质有PC=BC=4,在Rt △PCD 中,2222PD=PC CD =43=7--,∴AP 的最小值为AD PD=47-线段AP 长度的最大值与最小值之差为(1AP AP=347=71-- 71【点睛】本题考查勾股定理的折叠问题,可以动手实际操作进行探索.17.10【分析】首先作M 关于OB 的对称点M ′,作N 关于OA 的对称点N ′,连接M ′N ′,即为MP +PQ +QN 的最小值,易得△ONN ′为等边三角形,△OMM ′为等边三角形,∠N ′OM ′=90°,继而可以求得答案.【详解】作M 关于OB 的对称点M ′,作N 关于OA 的对称点N ′,连接M ′N ′,即为MP +PQ +QN 的最小值.根据轴对称的定义可知:∠N ′OQ =∠M ′OB =30°,∠ONN ′=60°,OM ′=OM =6,ON ′=ON =8,∴△ONN ′为等边三角形,△OMM ′为等边三角形,∴∠N ′OM ′=90°.在Rt △M ′ON ′中,M ′N 22''OM ON +. 故答案为10.【点睛】本题考查了最短路径问题,根据轴对称的定义,找到相等的线段,得到直角三角形是解题的关键.18.12013【解析】 ∵AB=AC ,AD 是角平分线,∴AD ⊥BC ,BD=CD , ∴B 点,C 点关于AD 对称,如图,过C 作CF ⊥AB 于F ,交AD 于E ,则CF=BE+FF 的最小值,根据勾股定理得,AD=12,利用等面积法得:AB ⋅CF=BC ⋅AD ,∴CF=BC AD AB ⋅=101213⨯=12013故答案为12013. 点睛:本题主要考查的是翻折的性质、垂线段最短、勾股定理的应用及三角形面积的等积法.明确当CF ⊥AB 时,CF 有最小值是解题的关键.19.39或639【分析】通过计算E 到AC 的距离即EH 的长度为3,所以根据DE 的长度有两种情况:①当点D 在H 点上方时,②当点D 在H 点下方时,两种情况都是过点E 作EH AC ⊥交AC 于点E ,过点G 作GQ AB ⊥交AB 于点Q ,利用含30°的直角三角形的性质和勾股定理求出AH,DH 的长度,进而可求AD 的长度,然后利用角度之间的关系证明AG GE =,再利用等腰三角形的性质求出GQ 的长度,最后利用2DGF AED AEG SS S =-即可求解. 【详解】①当点D 在H 点上方时,过点E 作EH AC ⊥交AC 于点E ,过点G 作GQ AB ⊥交AB 于点Q ,12AB = ,点E 是AB 中点,162AE AB ∴== . ∵EH AC ⊥,90AHE ∴∠=︒ .30,6A AE ∠=︒=,132EH AE ∴== , 22226333AH AE EH ∴=-=-=. 32DE =,2222(32)33DH DE EH ∴=-=-= ,DH EH ∴=,333AD AH DH =-=,45EDH ∴∠=︒,15AED EDH A ∴∠=∠-∠=︒ .由折叠的性质可知,15DEF AED ∠=∠=︒,230AEG AED ∴∠=∠=︒ ,AEG A ∴∠=∠,AG GE ∴= . 又GQ AE ⊥ ,132AQ AE ∴== . 30A ∠=︒ , 12GQ AG ∴=. 222GQ AQ AG += , 即2223(2)GQ GQ +=, 3GQ ∴= .2DGF AED AEG S S S =- ,112(333)36363922DGF S ∴=⨯⨯-⨯-⨯⨯=-; ②当点D 在H 点下方时,过点E 作EH AC ⊥交AC 于点E ,过点G 作GQ AB ⊥交AB 于点Q ,12AB = ,点E 是AB 中点,162AE AB ∴== . ∵EH AC ⊥,90AHE ∴∠=︒.30,6A AE ∠=︒= ,132EH AE ∴== , 22226333AH AE EH ∴=-=-=.3DE =,3DH ∴=== ,DH EH ∴=,3AD AH DH =+=,45DEH ∴∠=︒ ,90105AED A DEH ∴∠=︒-∠+∠=︒ .由折叠的性质可知,105DEF AED ∠=∠=︒,218030AEG AED ∴∠=∠-︒=︒ ,AEG A ∴∠=∠,AG GE ∴= . 又GQ AE ⊥ ,132AQ AE ∴== . 30A ∠=︒,12GQ AG ∴= . 222GQ AQ AG += , 即2223(2)GQ GQ +=,GQ ∴= .2DGF AED AEG S S S =- ,1123)36922DGF S ∴=⨯⨯⨯-⨯=,综上所述,DGF △的面积为9或9.故答案为:9或9.【点睛】本题主要考查折叠的性质,等腰三角形的判定及性质,等腰直角三角形的性质,勾股定理,含30°的直角三角形的性质,能够作出图形并分情况讨论是解题的关键.20.【分析】根据三角形等面积法求出32AC BC = ,在Rt△ACD 中根据勾股定理得出AC 2=14BC 2+36,依据这两个式子求出AC 、BC 的值.【详解】 ∵AD 是BC 边上的高,BE 是AC 边上的高, ∴12AC•BE=12BC•AD, ∵AD=6,BE =4,∴AC BC =32, ∴22AC BC =94, ∵AB=AC ,AD⊥BC,∴BD=DC =12BC , ∵AC 2﹣CD 2=AD 2,∴AC 2=14BC 2+36, ∴221364BC BC +=94, 整理得,BC 2=3648⨯, 解得:BC=∴△ABC 的面积为12×cm 2故答案为:【点睛】本题考查了三角形的等面积法以及勾股定理的应用,找出AC 与BC 的数量关系是解答此题的关键.三、解答题21.(1)BE =1;(2)见解析;(3)(2y x =【分析】(1)如图1,根据等边三角形的性质和四边形的内角和定理可得∠BED =90°,进而可得∠BDE =30°,然后根据30°角的直角三角形的性质即可求出结果;(2)过点D 作DM ⊥AB 于M ,作DN ⊥AC 于N ,如图2,根据AAS 易证△MBD ≌△NCD ,则有BM =CN ,DM =DN ,进而可根据ASA 证明△EMD ≌△FND ,可得EM =FN ,再根据线段的和差即可推出结论;(3)过点D 作DM ⊥AB 于M ,如图3,同(2)的方法和已知条件可得DM =DN =FN =EM ,然后根据线段的和差关系可得BE +CF =2DM ,BE ﹣CF =2BM ,在Rt △BMD 中,根据30°角的直角三角形的性质可得DMBM ,进而可得BE +CF(BE ﹣CF ),代入x 、y 后整理即得结果.【详解】解:(1)如图1,∵△ABC 是等边三角形,∴∠B =∠C =60°,BC =AC =AB =4.∵点D是线段BC的中点,∴BD=DC=12BC=2.∵DF⊥AC,即∠AFD=90°,∴∠AED=360°﹣60°﹣90°﹣120°=90°,∴∠BED=90°,∴∠BDE=30°,∴BE=12BD=1;(2)过点D作DM⊥AB于M,作DN⊥AC于N,如图2,则有∠AMD=∠BMD=∠AND=∠CND=90°.∵∠A=60°,∴∠MDN=360°﹣60°﹣90°﹣90°=120°.∵∠EDF=120°,∴∠MDE=∠NDF.在△MBD和△NCD中,∵∠BMD=∠CND,∠B=∠C,BD=CD,∴△MBD≌△NCD(AAS),∴BM=CN,DM=DN.在△EMD和△FND中,∵∠EMD=∠FND,DM=DN,∠MDE=∠NDF,∴△EMD≌△FND(ASA),∴EM=FN,∴BE+CF=BM+EM+CN-FN=BM+CN=2BM=BD=12BC=12AB;(3)过点D作DM⊥AB于M,如图3,同(2)的方法可得:BM=CN,DM=DN,EM=FN.∵DN =FN ,∴DM =DN =FN =EM ,∴BE +CF =BM +EM +FN -CN =NF +EM =2DM =x +y ,BE ﹣CF =BM +EM ﹣(FN -CN )=BM +NC =2BM =x -y ,在Rt △BMD 中,∵∠BDM =30°,∴BD =2BM ,∴DM =22=3BD BM BM -,∴()3x y x y +=-,整理,得()23y x =-.【点睛】本题考查了等边三角形的性质、四边形的内角和定理、全等三角形的判定与性质、30°角的直角三角形的性质以及勾股定理等知识,具有一定的综合性,正确添加辅助线、熟练掌握上述知识是解题的关键.22.(1)45度;(2)∠AEC ﹣∠AED =45°,理由见解析;(3)见解析【分析】(1)由等腰三角形的性质可求∠BAE =140°,可得∠CAE =50°,由等腰三角形的性质可得∠AEC =∠ACE =65°,即可求解;(2)由等腰三角形的性质可求∠BAE =180°﹣2α,可得∠CAE =90°﹣2α,由等腰三角形的性质可得∠AEC =∠ACE =45°+α,可得结论;(3)如图,过点C 作CG ⊥AH 于G ,由等腰直角三角形的性质可得EH 2EF ,CH =2CG ,由“AAS ”可证△AFB ≌△CGA ,可得AF =CG ,由勾股定理可得结论.【详解】解:(1)∵AB =AC ,AE =AB ,∴AB =AC =AE ,∴∠ABE =∠AEB ,∠ACE =∠AEC ,∵∠AED =20°,∴∠ABE =∠AED =20°,∴∠BAE =140°,且∠BAC =90°∴∠CAE =50°,∵∠CAE +∠ACE +∠AEC =180°,且∠ACE =∠AEC ,∴∠AEC =∠ACE =65°,∴∠DEC =∠AEC ﹣∠AED =45°,故答案为:45;(2)猜想:∠AEC ﹣∠AED =45°,理由如下:∵∠AED =∠ABE =α,∴∠BAE =180°﹣2α,∴∠CAE =∠BAE ﹣∠BAC =90°﹣2α,∵∠CAE +∠ACE +∠AEC =180°,且∠ACE =∠AEC ,∴∠AEC =45°+α,∴∠AEC ﹣∠AED =45°;(3)如图,过点C 作CG ⊥AH 于G ,∵∠AEC ﹣∠AED =45°,∴∠FEH =45°,∵AH ⊥BE ,∴∠FHE =∠FEH =45°,∴EF =FH ,且∠EFH =90°,∴EH 2EF ,∵∠FHE =45°,CG ⊥FH ,∴∠GCH =∠FHE =45°,∴GC =GH ,∴CH 2CG ,∵∠BAC =∠CGA =90°,∴∠BAF +∠CAG =90°,∠CAG +∠ACG =90°,∴∠BAF =∠ACG ,且AB =AC ,∠AFB =∠AGC ,∴△AFB ≌△CGA (AAS )∴AF =CG ,∴CH 2AF ,∵在Rt △AEF 中,AE 2=AF 2+EF 2, 2AF )2+2EF )2=2AE 2,∴EH 2+CH 2=2AE 2.【点睛】本题是综合了等腰直角三角形的性质,全等三角形的性质与判定的动点问题,三个问题由易到难,在熟练掌握各个相关知识的基础上找到问题之间的内部联系,层层推进去解答是关键.23.(1)90°;(2)证明见解析;(3)变化,234l +≤<.(1)由等边三角形的性质可得∠ABC=∠ACB=60°,由等腰三角形的性质可求DAE=∠DEA=30°,由三角形内角和定理可求解;(2)根据等腰三角形的性质,可证得∠CDF=∠DEA 和∠EDB=∠DFA ,由此可利用“ASA”证明全等;(3)根据全等三角形的性质可得l =2+AD ,根据AD 的取值范围即可得出l 的取值范围.【详解】解:(1)∵△ABC 是等边三角形,∴AB=AC=BC=2,∠ABC=∠ACB=60°,∵AD=DE∴∠DAE=∠DEA=30°,∴∠ADB=180°-∠BAD-∠ABD=90°,故答案为:90°;(2)∵AD=DE=DF ,∴∠DAE=∠DEA ,∠DAF=∠DFA ,∵∠DAE+∠DAF=∠BAC=60°,∴∠DEA+∠DFA=60°,∵∠ABC=∠DEA+∠EDB=60°,∴∠EDB=∠DFA ,∵∠ACB=∠DFA+∠CDF=60°,∴∠CDF=∠DEA ,在△BDE 和△CFD 中∵CDF DEA DE DF EDB DFA ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△BDE ≌△CFD (ASA )(3)∵△BDE ≌△CFD ,∴BE=CD ,∴l =BD+BE+DE=BD+CD+AD=BC+AD=2+AD ,当D 点在C 或B 点时,AD=AC=AB=2,此时B 、D 、E 三点在同一条直线上不构成三角形,2+AD=4;当D 点在BC 的中点时,∵AB=AC ,∴BD=112BC =,AD ==此时22l AD =+=综上可知24l +≤<.本题考查全等三角形的性质和判定,勾股定理,等边三角形的性质,等腰三角形的性质,三角形内角和定理.(1)掌握等腰三角形等边对等角是解决此问的关键;(2)中注意角之间的转换;(3)中注意临界点是否可取.24.(1)①见解析;②DE =297;(2)DE 的值为 【分析】(1)①先证明∠DAE =∠DAF ,结合DA =DA ,AE =AF ,即可证明;②如图1中,设DE =x ,则CD =7﹣x .在Rt △DCF 中,由DF 2=CD 2+CF 2,CF =BE =3,可得x 2=(7﹣x )2+32,解方程即可;(2)分两种情形:①当点E 在线段BC 上时,如图2中,连接BE .由△EAD ≌△ADC ,推出∠ABE =∠C =∠ABC =45°,EB =CD =5,推出∠EBD =90°,推出DE 2=BE 2+BD 2=62+32=45,即可解决问题;②当点D 在CB 的延长线上时,如图3中,同法可得DE 2=153.【详解】(1)①如图1中,∵将△ABE 绕点A 逆时针旋转90°后,得到△AFC ,∴△BAE ≌△CAF ,∴AE =AF ,∠BAE =∠CAF ,∵∠BAC =90°,∠EAD =45°,∴∠CAD +∠BAE =∠CAD +∠CAF =45°,∴∠DAE =∠DAF ,∵DA =DA ,AE =AF ,∴△AED ≌△AFD (SAS );②如图1中,设DE =x ,则CD =7﹣x .∵AB =AC ,∠BAC =90°,∴∠B =∠ACB =45°,∵∠ABE =∠ACF =45°,∴∠DCF =90°,∵△AED ≌△AFD (SAS ),∴DE =DF =x ,∵在Rt △DCF 中, DF 2=CD 2+CF 2,CF =BE =3,∴x 2=(7﹣x )2+32,∴x =297, ∴DE =297; (2)∵BD =3,BC =9,∴分两种情况如下:①当点E 在线段BC 上时,如图2中,连接BE .∵∠BAC=∠EAD=90°,∴∠EAB=∠DAC,∵AE=AD,AB=AC,∴△EAB≌△DAC(SAS),∴∠ABE=∠C=∠ABC=45°,EB=CD=9-3=6,∴∠EBD=90°,∴DE2=BE2+BD2=62+32=45,∴DE=35;②当点D在CB的延长线上时,如图3中,连接BE.同理可证△DBE是直角三角形,EB=CD=3+9=12,DB=3,∴DE2=EB2+BD2=144+9=153,∴DE=317,综上所述,DE的值为35或317.【点睛】本题主要考查旋转变换的性质,三角形全等的判定和性质以及勾股定理,添加辅助线,构造旋转全等模型,是解题的关键.25.(1)见解析;(2)BD2+AD2=2CD2;(3)AB=2+4.【分析】(1)根据等腰直角三角形的性质证明△ACE≌△BCD即可得到结论;(2)利用全等三角形的性质及勾股定理即可证得结论;(3)连接EF,设BD=x,利用(1)、(2)求出EF=3x,再利用勾股定理求出x,即可得到答案.【详解】(1)证明:∵△ACB和△ECD都是等腰直角三角形∴AC=BC,EC=DC,∠ACB=∠ECD=90°∴∠ACB﹣∠ACD=∠ECD﹣∠ACD∴∠ACE=∠BCD,∴△ACE≌△BCD(SAS),∴AE=BD.(2)解:由(1)得△ACE ≌△BCD ,∴∠CAE =∠CBD ,又∵△ABC 是等腰直角三角形,∴∠CAB =∠CBA =∠CAE =45°,∴∠EAD =90°,在Rt △ADE 中,AE 2+AD 2=ED 2,且AE =BD ,∴BD 2+AD 2=ED 2,∵ED =2CD ,∴BD 2+AD 2=2CD 2,(3)解:连接EF ,设BD =x ,∵BD :AF =1:2AF =2x ,∵△ECD 都是等腰直角三角形,CF ⊥DE ,∴DF =EF ,由 (1)、(2)可得,在Rt △FAE 中,EF 22AF AE +22(22)x x +3x , ∵AE 2+AD 2=2CD 2,∴222(223)2(36)x x x ++=,解得x =1,∴AB =2+4.【点睛】此题考查三角形全等的判定及性质,等腰直角三角形的性质,勾股定理.26.②③⑤【分析】①先证得ABE ADP ≅,利用邻补角和等腰直角三角形的性质求得90PEB ∠=︒,利用勾股定理求出BE ,即可求得点B 到直线AE 的距离;②根据①的结论,利用APD ABP ABE APB S S S S ∆∆∆+=+AEP BEP S S ∆∆=+即可求得结论; ③在Rt AHB 中,利用勾股定理求得2AB ,再利用三角形面积公式即可求得ABD S ∆; ④当A P C 、、共线时,PC 最小,利用对称的性质,AB BC =的长,再求得AC 的长,即可求得结论;⑤先证得ABP ADE ≅,得到ABP ADE ∠=∠,根据条件得到ABP NAB ∠=∠,利用互余的关系即可证得结论.【详解】①∵ABD 与AEP 都是等腰直角三角形,∴90BAD ∠=︒,90EAP ∠=︒,AB AD =,AE AP =,45APE AEP ∠=∠=︒, ∴EAB PAD ∠=∠, ∴()ABE ADP SAS ≅,∴180********AEB APD APE ∠=∠=︒-∠=︒-︒=︒,∴1354590PEB AEB AEP ∠=∠-∠=︒-︒=︒,∴222PE BE PB +=,∵2AE AP ==,90EAP ∠=︒, ∴22PE AE ==,∴()22227BE +=, 解得:3BE =,作BH ⊥AE 交AE 的延长线于点H ,∵45AEP ∠=︒,90PEB ∠=︒, ∴180180904545HEB PEB AEP ∠=︒-∠-∠=︒-︒-︒=︒,∴26sin 453HB BE =︒==, ∴点B 到直线AE 6,故①错误; ②由①知:ABE ADP ≅,2EP =,3BE =∴APD ABP ABE APB S S S S ∆∆∆∆+=+AEP BEP S S ∆∆=+1122AE AP PE EB =⨯⨯+⨯⨯ 11222322=⨯ 13=,故②正确;③在Rt AHB 中,由①知:6EH HB ==∴622 AH AE EH=+=+,22222256623AB AH BH⎛⎫⎛⎫=+=++=+⎪ ⎪⎪ ⎪⎭⎝⎭,21153222ABDS AB AD AB∆=⋅==+,故③正确;④因为AC是定值,所以当A P C、、共线时,PC最小,如图,连接BC,∵A C、关于BD的对称,∴523AB BC==+∴225231043AC BC==+=+∴minPC AC AP=-,10432=+⑤∵ABD与AEP都是等腰直角三角形,∴90BAD∠=︒,90EAP∠=︒,AB AD=,AE AP=,在ABP和ADE中,AB ADBAP DAEAP AE=⎧⎪∠=∠⎨⎪=⎩,∴()ABP ADE SAS≅,∴ABP ADE∠=∠,∵AN BN=,∴ABP NAB∠=∠,∴EAN ADE∠=∠,∵90EAN DAN∠+∠=︒,∴90ADE DAN∠+∠=︒,∴AN DE⊥,故⑤正确;综上,②③⑤正确,故答案为:②③⑤.【点睛】本题是三角形的综合题,主要考查了等腰直角三角形的性质,全等三角形的判定和性质,勾股定理的应用,三角形的面积公式,综合性强,全等三角形的判定和性质的灵活运用是解题的关键.27.(1)该命题是真命题,理由见解析;(2)①a 的值为92;②k 的取值范围为13k ≤<;(3)ABC ∆的面积为2033或1235. 【分析】 (1)根据等边三角形的性质、优三角形和优比的定义即可判断;(2)①先利用勾股定理求出c 的值,再根据优三角形的定义列出,,a b c 的等式,然后求解即可;②类似①分三种情况分析,再根据三角形的三边关系定理得出每种情况下,,a b c 之间的关系,然后根据优比的定义求解即可;(3)如图(见解析),设BD x =,先利用直角三角形的性质、勾股定理求出AC 、AB 的长及ABC ∆面积的表达式,再类似(2),根据优三角形的定义分三种情况分别列出等式,然后解出x 的值,即可得出ABC ∆的面积.【详解】(1)该命题是真命题,理由如下:设等边三角形的三边边长为a则其中两条边的和为2a ,恰好是第三边a 的2倍,满足优三角形的定义,即等边三角形为优三角形又因该两条边相等,则这两条边的比为1,即其优比为1故该命题是真命题;(2)①90,6CB b A ∠=︒=22236c a b a ∴=++根据优三角形的定义,分以下三种情况:当2a b c +=时,26236a a +=+,整理得24360a a -+=,此方程没有实数根。

2009年河北省中考数学试卷(含答案及考点解析)

2009年河北省中考数学试卷(含答案及考点解析)

2009年河北省初中毕业生升学文化课考试数 学 试 卷一、选择题(本大题共12个小题,每小题2分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1. (-1)3等于( )A .-1B .1C .-3D .3【解析】本题考查了有理数的乘方。

(-1)3=-1,故选A . 答案:A2.在实数范围内,x 有意义,则x 的取值范围是( )A .x ≥0B .x ≤0C .x >0D .x <0【解析】本题考查了二次根式有意义的条件,由二次根式有意义的条件可知:x ≥0,故选A 。

答案:A3.如图1,在菱形ABCD 中,AB = 5,∠BCD = 120°,则对角线AC 等于( )A .20B .15C .10D .5【解析】本题考查了菱形的性质和等边三角形的判定。

根据菱形的性质知:AB =BC ,∠B +∠BCD =180°,又有∠BCD =120°,∴∠B =60°,所以三角形ABC 为等边三角形,所以AC =AB =5。

答案:D4.下列运算中,正确的是( )A .4m -m =3B .―(m ―n )=m +nC .(m 2)3=m 6D .m 2÷m 2=m【解析】本题考查整式的运算。

答案:C5.如图2,四个边长为1的小正方形拼成一个大正方形,A 、B 、O 是小正方形顶点,⊙O 的半径为1,P 是⊙O 上的点,且位于右上方的小正方形内,则∠APB 等于( ) A .30° B .45° C .60° D .90°【解析】本题考查了圆周角和圆心角的有关知识。

根据圆周角定理:一条弧所对的圆周角等于它所对的圆心角的一半,所以本题的答案为90°×12=45°。

答案:BBACD图1A 图2图36.反比例函数y =1x(x >0)的图象如图3所示,随着x 值的增大,y 值( )A .增大B .减小C .不变D .先减小后增大【解析】本题考查反比例函数的性质。

2009年天水市中考数学试题及答案

2009年天水市中考数学试题及答案

a b0 E C D12009年中考天水市数学试题A 卷(100分)一、选择题(本大题共10小题,每小题4分,共40分)1.计算:2×|-3|=( )A .6B .-6C .±6D .-12.实数a 、b 在数轴上的位置如图所示,则a 与b 的大小关系是( ) A .a >b B .a =bC .a <bD .不能判断3.2008年底,我国居民储蓄总值约为28万亿元(人民币),数据28万亿精确到( ) A .个位 B .万位 C .亿位 D .万亿位 4.如图,AB ∥CD ,∠1=120º,∠ECD =70º,∠E 的大小是( ) A .30º B .40º C .50º D .60º 5.如果分式 |x |-1x 2+3x +2的值等于0,那么x 的值为( )A .-1B .1C .-1或1D .1或26.不等式组⎩⎨⎧x ≥0x <1的解集在数轴上表示,正确的是( )7.“赵爽弦图”是四个全等的直角三角形与中间一个小正方形拼成的大正方形(如图所示),小亮同学随机地向大正方形及其内部区域投针,若直角三角形的两条直角边的长分别是2和1,则针扎到小正方形(阴影)区域的概率是( )A . 1 3B . 1 4C . 1 5D .558.如图,EB 为半圆O 的直径,点A 在EB 的延长线上,AD 切半圆O 于点D ,BC ⊥AD 于点C ,AB =2,半圆O 的半径为2,则BC 的长为( )A .2B .1C .1.5D .0.59.如图,把一张长方形纸片对折,折痕为AB ,以AB 的中点O 为 顶点把平角∠AOB 三等分,沿平角的三等分线折叠,将折叠的图形剪出一个以O 为顶点的等腰三角形,那么剪出的平面图形一定是( )A .正三角形B .正方形C .正五边形D .正六边形10.下图中所示几何体的主视图是( )A BOO二、填空题(本大题共8小题,每小题4分,共32分)11.函数y=x+2x-4中,自变量x的取值范围是.12.小强同学在下面的4个计算中:①(a-b)2=a2-b2、②(-2a3)2=4a6、③a3+a2=a5、④-(a-1)=-a+1,做正确的题目是(填题目序号).13.如图,在△ABC中,AB=AC,如果tanB=43,那么sinA2=.14.如图,射线l甲、l乙分别表示甲、乙两名运动员在自行车比赛中所走路程S与时间t的函数关系图象,则甲的速度乙的速度(用“>”、“=”、“<”填空).15.如图,在四边形ABCD中,AB=BC=CD=DA,对角线AC与BD相交于点O,若不增加任何字母与辅助线,要使四边形ABCD是正方形,则还需增加一个条件是.16.小华的妈妈为爸爸买了一件衣服和一条裤子,共用了306元,其中衣服按标价打七折,裤子按标价打八折,衣服的标价为300元,则裤子的标价为元.17.正方形OABC在坐标系中的位置如图所示,将正方形OABC绕O点顺时针旋转90º后,B 点的坐标为.18.观察下列计算:12+1·(2+1)=(2-1)(2+1)=1,(12+1+13+2)(3+1)=[(2-1)+(3-2)](3+1)=2,(12+1+13+2+14+3)(4+1)=[(2-1)+(3-2)+(4-3)](4+1)=3,……从以上计算过程中找出规律,并利用这一规律进行计算:(12+1+13+2+14+3+…+1200+2009)(2010+1)=.三、解答题(本大题共3小题,其中19题10分,20、21题均为9分,共28分)19.(本题共10分,每小题均为5分)Ⅰ.解方程:2x2-5x+2=0.Ⅱ.已知|a-2|+b-3=0,计算a2+abb2·a2-aba2-b2的值.AB CAB DO20.如图,AB 是⊙O 的直径,BD 是⊙O 的弦,延长BD 到点C ,使DC =BD ,连接AC ,过点D 作DE ⊥AC ,垂足为E . (1)求证:AB =AC ; (2)若⊙O 的半径为4,∠BAC =60º,求DE 的长.21(1)该月小王手机话费共多少元?(2)扇形统计图中,表示短信费的扇形圆心角为多少度? (3)请将表格补充完整;(4)请将条形统计图补充完整.能费话费 话费费金额/元月功能费B 卷(50分)四、解答题(本大题共50分)22.(8分)如图,九年级某班同学要测量校园内旗杆的高度,在地面的C 点处用测角器测得旗杆顶A 点的仰角∠AFE =60º,再沿直线CB 后退8m 到D 点,在D 点又用测角器测得旗杆顶A 点的仰角∠AGE =45º;已知测角器的高度为1.6m ,求旗杆AB 的高度(3≈1.73,结果保留一位小数).23.(10分)如图,在平面直角坐标系xOy 中,矩形OEFG 的顶点E 的坐标为(4,0),顶点G的坐标为(0,2),将矩形OEFG 绕点O 逆时针旋转,使点F 落在y 轴的点N 处,得到矩形OMNP ,OM 与GF 交于点A .(1)判断△OGA 和△OMN 是否相似,并说明理由; (2)求图象经过点A 的反比例函数的解析式;(3)设(2)中的反比例函数图象交EF 于点B ,求直线AB 的解析式.P C P D 图① 图② 图③ 24.(10分)为了保护环境,某企业决定购买10台污水处理设备,现有A 、B 两种型号的设备,(1)该企业有哪几种购买方案?(2)若企业每月产生的污水量为2040吨,为了节约资金,应选择哪种购买方案?(3)在第(2)问的条件下,若每台设备的使用年限为10年,污水厂处理污水费为每吨10元,请你计算,该企业自己处理污水与排到污水厂处理相比较,10年共节约资金多少万元?(注:企业处理污水的费用包括购买设备的资金和消耗费) 25.(10分)在正方形ABCD 中,点P 是CD 边上一动点,连接P A ,分别过点B 、D 作BE ⊥P A 、DF ⊥P A ,垂足分别为E 、F ,如图①.(1)请探究BE 、DF 、EF 这三条线段的长度具有怎样的数量关系?若点P 在DC 的延长线上,如图②,那么这三条线段的长度之间又具有怎样的数量关系?若点P 在CD 的延长线上呢,如图③,请分别直接写出结论; (2)就(1)中的三个结论选择一个加以证明.26.(12分)如图1,在平面直角坐标系xOy中,二次函数y=ax2+bx+c(a>0)的图象顶点为D,与y轴交于点C,与x轴交于点A、B,点A在原点的左侧,点B的坐标为(3,0),OB=OC,tan∠ACO=1 3.(1)求这个二次函数的解析式;(2)若平行于x轴的直线与该抛物线交于点M、N,且以MN为直径的圆与x轴相切,求该圆的半径长度;(3)如图2,若点G(2,y)是该抛物线上一点,点P是直线AG下方的抛物线上的一动点,当点P运动到什么位置时,△AGP的面积最大?求此时点P的坐标和△AGP的最大面积.图1 图2。

2024年重庆市中考真题数学试卷(A卷)含答案解析

2024年重庆市中考真题数学试卷(A卷)含答案解析

2024年重庆市中考真题(A卷)数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.下列四个数中,最小的数是()A.2-B.0C.3D.1 2 -2.下列四种化学仪器的示意图中,是轴对称图形的是()A.B.C.D.【答案】C【分析】此题考查了轴对称图形的概念,根据概念逐一判断即可,如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,这时,我们也可以说这个图形关于这条直线(成轴)对称,熟练掌握知识点是解题的关键.【详解】A、不是轴对称图形,故本选项不符合题意;B、不是轴对称图形,故本选项不符合题意;C、是轴对称图形,故本选项符合题意;D、不是轴对称图形,故本选项不符合题意;故选:C.3.已知点()3,2-在反比例函数()0ky k x=≠的图象上,则k 的值为( )A .3-B .3C . 6-D .64.如图,AB CD ∥,165∠=︒,则2∠的度数是( )A .105︒B .115︒C .125︒D .135︒【答案】B【分析】本题主要考查了平行线的性质,根据平行线的性质得3165∠=∠=︒,由邻补角性质得23180∠+∠=︒,然后求解即可,熟练掌握两直线平行,同位角相等是解题的关键.【详解】解:如图,∵AB CD ∥,∴3165∠=∠=︒,∵23180∠+∠=︒,∴2115∠=︒,故选:B .5.若两个相似三角形的相似比是1:3,则这两个相似三角形的面积比是( )A .1:3B .1:4C .1:6D .1:9【答案】D【分析】此题考查了相似三角形的性质,根据“相似三角形的面积比等于相似比的平方”解答即可.【详解】解:两个相似三角形的相似比是1:3,则这两个相似三角形的面积比是1:9,故选:D .6.烷烃是一类由碳、氢元素组成的有机化合物质,下图是这类物质前四种化合物的分子结构模型图,其中灰球代表碳原子,白球代表氢原子.第1种如图①有4个氢原子,第2种如图②有6个氢原子,第3种如图③有8个氢原子,……按照这一规律,第10种化合物的分子结构模型中氢原子的个数是( )A .20B .22C .24D .26【答案】B【分析】本题考查数字的变化类,根据图形,可归纳出规律表达式的特点,再解答即可.【详解】解:由图可得,第1种如图①有4个氢原子,即2214+⨯=第2种如图②有6个氢原子,即2226+⨯=第3种如图③有8个氢原子,即2238+⨯=⋯,∴第10种化合物的分子结构模型中氢原子的个数是:221022+⨯=;故选:B .7.已知m =m 的范围是( )A .23m <<B .34m <<C .45m <<D .56m <<8.如图,在矩形ABCD 中,分别以点A 和C 为圆心,AD 长为半径画弧,两弧有且仅有一个公共点.若4=AD ,则图中阴影部分的面积为( )A .328π-B .4π-C .324π-D .8π-根据题意可得2AC AD =∵矩形ABCD ,∴AD BC =在Rt ABC △中,AB =9.如图,在正方形ABCD 的边CD 上有一点E ,连接AE ,把AE 绕点E 逆时针旋转90︒,得到FE ,连接CF 并延长与AB 的延长线交于点G .则FGC E的值为( )AB C D 由旋转得,90EA EF AEF =∠=︒,∵四边形ABCD 是正方形,∴90D Ð=°,DC AB ∥,DA =∴D H ∠=∠,10.已知整式1110:n n n n M a x a x a x a --++++ ,其中10,,,n n a a - 为自然数,n a 为正整数,且1105n n n a a a a -+++++= .下列说法:①满足条件的整式M 中有5个单项式;②不存在任何一个n ,使得满足条件的整式M 有且只有3个;③满足条件的整式M 共有16个.其中正确的个数是( )A .0B .1C .2D .3【答案】D【分析】本题考查的是整式的规律探究,分类讨论思想的应用,由条件可得04n ≤≤,再分类讨论得到答案即可.【详解】解:∵10,,,n n a a - 为自然数,n a 为正整数,且1105n n n a a a a -+++++= ,∴04n ≤≤,当4n =时,则2104345a a a a a +++++=,∴41a =,23100a a a a ====,满足条件的整式有4x ,当3n =时,则210335a a a a ++++=,∴()()3210,,,2,0,0,0a a a a =,()1,1,0,0,()1,0,1,0,()1,0,0,1,满足条件的整式有:32x ,32x x +,3x x +,31x +,当2n =时,则21025a a a +++=,∴()()210,,3,0,0a a a =,()2,1,0,()2,0,1,()1,2,0,()1,0,2,()1,1,1,满足条件的整式有:23x ,22x x +,221x +,22x x +,22x +,21x x ++;当1n =时,则1015a a ++=,∴()()10,4,0a a =,()3,1,()1,3,()2,2,满足条件的整式有:4x ,31x +,3x +,22x +;当0n =时,005a +=,满足条件的整式有:5;∴满足条件的单项式有:4x ,32x ,23x ,4x ,5,故①符合题意;不存在任何一个n ,使得满足条件的整式M 有且只有3个;故②符合题意;满足条件的整式M 共有1464116++++=个.故③符合题意;故选D二、填空题11.计算:011(3)(2π--+= .12.若一个多边形的每一个外角都等于40°,则这个多边形的边数是 .【答案】9【详解】解:360÷40=9,即这个多边形的边数是9.故答案为:9.13.重庆是一座魔幻都市,有着丰富的旅游资源.甲、乙两人相约来到重庆旅游,两人分别从A 、B 、C 三个景点中随机选择一个景点游览,甲、乙两人同时选择景点B 的概率为 .由图可知,共有9种等可能的情况,其中甲、乙两人同时选择景点∴甲、乙两人同时选择景点B 的的概率为19,故答案为:19.14.随着经济复苏,某公司近两年的总收入逐年递增.该公司2021年缴税40万元,2023年缴税48.4万元,该公司这两年缴税的年平均增长率是 .【答案】10%【分析】本题主要考查一元二次方程的应用.设平均增长率为x ,然后根据题意可列方程进行求解.【详解】解:设平均增长率为x ,由题意得:()240148.4x +=,解得:10.110%x ==,2 2.1x =-(不符合题意,舍去);故答案为:10%.15.如图,在ABC 中,延长AC 至点D ,使CD CA =,过点D 作DE CB ∥,且DE DC =,连接AE 交BC 于点F .若CAB CFA ∠=∠,1CF =,则BF = .【答案】3【分析】先根据平行线分线段成比例证AF EF =,进而得22DE CD AC CF ====,4AD =,再证明CAB DEA ≌,得4BC AD ==,从而即可得解.16.若关于x 的不等式组()411321x x x x a -⎧<+⎪⎨⎪+≥-+⎩至少有2个整数解,且关于y 的分式方程13211a y y-=---的解为非负整数,则所有满足条件的整数a 的值之和为 .17.如图,以AB 为直径的O 与AC 相切于点A ,以AC 为边作平行四边形ACDE ,点D 、E 均在O 上,DE 与AB 交于点F ,连接CE ,与O 交于点G ,连接DG .若10,8AB DE ==,则AF = .DG = .∵以AB 为直径的O 与AC ∴AB AC ⊥,∴90CAB ∠=︒,∵四边形ACDE 为平行四边形,∴∥D E A C ,8AC DE ==,18.我们规定:若一个正整数A 能写成2m n -,其中m 与n 都是两位数,且m 与n 的十位数字相同,个位数字之和为8,则称A 为“方减数”,并把A 分解成2m n -的过程,称为“方减分解”.例如:因为26022523=-,25与23的十位数字相同,个位数字5与3的和为8,所以602是“方减数”,602分解成26022523=-的过程就是“方减分解”.按照这个规定,最小的“方减数”是 .把一个“方减数”A 进行“方减分解”,即2A m n =-,将m 放在n 的左边组成一个新的四位数B ,若B 除以19余数为1,且22m n k +=(k 为整数),则满足条件的正整数A 为 .三、解答题19.计算:(1)()()22x x y x y -++;(2)22111a a a a -⎛⎫+÷ ⎪+.20.为了解学生的安全知识掌握情况,某校举办了安全知识竞赛.现从七、八年级的学生中各随机抽取20名学生的竞赛成绩(百分制)进行收集、整理、描述、分析.所有学生的成绩均高于60分(成绩得分用x 表示,共分成四组:A .6070x <≤;B .7080x <≤;C .8090x <≤;D .90100x <≤),下面给出了部分信息:七年级20名学生的竞赛成绩为:66,67,68,68,75,83,84,86,86,86,86,87,87,89,95,95,96,98,98,100.八年级20名学生的竞赛成绩在C 组的数据是:81,82,84,87,88,89.七、八年级所抽学生的竞赛成绩统计表年级七年级八年级平均数8585中位数86b 众数a 79根据以上信息,解答下列问题:(1)上述图表中=a ______,b =______,m =______;(2)根据以上数据分析,你认为该校七、八年级中哪个年级学生的安全知识竞赛成绩较好?请说明理由(写出一条理由即可);(3)该校七年级有400名学生,八年级有500名学生参加了此次安全知识竞赛,估计该校七、八年级参加此次安全知识竞赛成绩优秀()90x >的学生人数是多少?【答案】(1)86,87.5,40;(2)八年级学生竞赛成绩较好,理由见解析;(3)该校七、八年级参加此次安全知识竞赛成绩优秀的学生人数是320人.【分析】(1)根据表格及题意可直接进行求解;(2)根据平均分、中位数及众数分析即可得出结果;(3)由题意可得出参加此次竞赛活动成绩优秀的百分比,然后可进行求解;本题主要考查扇形统计图及中位数、众数、平均数,熟练掌握扇形统计图及中位数、众数、平均数是解题的关键.【详解】(1)根据七年级学生竞赛成绩可知:86出现次数最多,则众数为86,八年级竞赛成绩中A 组:2010%2⨯=(人),B 组:2020%4⨯=(人),21.在学习了矩形与菱形的相关知识后,小明同学进行了更深入的研究,他发现,过矩形的一条对角线的中点作这条对角线的垂线,与矩形两边相交的两点和这条对角线的两个端点构成的四边形是菱形,可利用证明三角形全等得到此结论.根据他的想法与思路,完成以下作图与填空:(1)如图,在矩形ABCD中,点O是对角线AC的中点.用尺规过点O作AC的垂线,分别交AB,CD于点E,F,连接AF,CE.(不写作法,保留作图痕迹)(2)已知:矩形ABCD,点E,F分别在AB,CD上,EF经过对角线AC的中点O,且⊥.求证:四边形AECF是菱形.EF AC证明:∵四边形ABCD是矩形,.∴AB CD∠=∠.∴①,OCF OAE∵点O是AC的中点,∴②.∴CFO AEO≅△△(AAS).∴③.又∵OA OC =,∴四边形AECF 是平行四边形.∵EF AC ⊥,∴四边形AECF 是菱形.进一步思考,如果四边形ABCD 是平行四边形呢?请你模仿题中表述,写出你猜想的结论:④.【答案】(1)见解析(2)①OFC OEA ∠=∠;②OA OC =;③OF OE =;④四边形AECF 是菱形【分析】本题主要考查了矩形的性质,平行四边形的性质与判定,菱形的判定,垂线的尺规作图:(1)根据垂线的尺规作图方法作图即可;(2)根据矩形或平行四边形的对边平行得到OFC OEA ∠=∠,OCF OAE ∠=∠,进而证明()AAS CFO AEO ≌,得到OF OE =,即可证明四边形AECF 是平行四边形.再由EF AC ⊥,即可证明四边形AECF 是菱形.【详解】(1)解:如图所示,即为所求;(2)证明:∵四边形ABCD 是矩形,∴AB CD .∴OFC OEA ∠=∠,OCF OAE ∠=∠.∵点O 是AC 的中点,∴OA OC =.∴()AAS CFO AEO ≌.∴OF OE =.又∵OA OC =,∴四边形AECF 是平行四边形.∵EF AC ⊥,∴四边形AECF 是菱形.猜想:过平行四边形的一条对角线的中点作这条对角线的垂线,与平行四边形两边相交的两点和这条对角线的两个端点构成的四边形是菱形;证明:∵四边形ABCD 是平行四边形,∴AB CD .∴OFC OEA ∠=∠,OCF OAE ∠=∠.∵点O 是AC 的中点,∴OA OC =.∴()AAS CFO AEO ≌.∴OF OE =.又∵OA OC =,∴四边形AECF 是平行四边形.∵EF AC ⊥,∴四边形AECF 是菱形.故答案为:①OFC OEA ∠=∠;②OA OC =;③OF OE =;④四边形AECF 是菱形.22.为促进新质生产力的发展,某企业决定投入一笔资金对现有甲、乙两类共30条生产线的设备进行更新换代.(1)为鼓励企业进行生产线的设备更新,某市出台了相应的补贴政策.根据相关政策,更新1条甲类生产线的设备可获得3万元的补贴,更新1条乙类生产线的设备可获得2万元的补贴.这样更新完这30条生产线的设备,该企业可获得70万元的补贴.该企业甲、乙两类生产线各有多少条?(2)经测算,购买更新1条甲类生产线的设备比购买更新1条乙类生产线的设备需多投入5万元,用200万元购买更新甲类生产线的设备数量和用180万元购买更新乙类生产线的设备数量相同,那么该企业在获得70万元的补贴后,还需投入多少资金更新生产线的设备?【答案】(1)该企业甲类生产线有10条,则乙类生产线各有20条;(2)需要更新设备费用为1330万元23.如图,在ABC 中,6AB =,8BC =,点P 为AB 上一点,过点P 作PQ BC ∥交AC 于点Q .设AP 的长度为x ,点P ,Q 的距离为1y ,ABC 的周长与APQ △的周长之比为2y .(1)请直接写出1y ,2y 分别关于x 的函数表达式,并注明自变量x 的取值范围;(2)在给定的平面直角坐标系中画出函数1y ,2y 的图象;请分别写出函数1y ,2y 的一条性质;(3)结合函数图象,直接写出12y y >时x 的取值范围.(近似值保留一位小数,误差不超过0.2)(3)解:由函数图象可知,当12y y >时x 的取值范围2.26x <≤.24.如图,甲、乙两艘货轮同时从A 港出发,分别向B ,D 两港运送物资,最后到达A 港正东方向的C 港装运新的物资.甲货轮沿A 港的东南方向航行40海里后到达B 港,再沿北偏东60︒方向航行一定距离到达C 港.乙货轮沿A 港的北偏东60︒方向航行一定距离到达D 港,再沿南偏东30︒方向航行一定距离到达C 港. 1.41≈ 1.73≈,2.45≈)(1)求A ,C 两港之间的距离(结果保留小数点后一位);(2)若甲、乙两艘货轮的速度相同(停靠B 、D 两港的时间相同),哪艘货轮先到达C 港?请通过计算说明.∴90AEB CEB ∠=∠=︒,由题意可知:45GAB ∠=︒,∴45BAE ∠=︒,∴cos 40cos AE AB BAE =∠=⨯∴tan 202tan CE BE EBC =∠=25.如图,在平面直角坐标系中,抛物线()240y ax bx a =++≠经过点()1,6-,与y 轴交于点C ,与x 轴交于A B ,两点(A 在B 的左侧),连接tan 4AC BC CBA ∠=,,.(1)求抛物线的表达式;(2)点P 是射线CA 上方抛物线上的一动点,过点P 作PE x ⊥轴,垂足为E ,交AC 于点D .点M 是线段DE 上一动点,MN y ⊥轴,垂足为N ,点F 为线段BC 的中点,连接AM NF ,.当线段PD 长度取得最大值时,求AM MN NF ++的最小值;(3)将该抛物线沿射线CA 方向平移,使得新抛物线经过(2)中线段PD 长度取得最大值时的点D ,且与直线AC 相交于另一点K .点Q 为新抛物线上的一个动点,当QDK ACB ∠∠=时,直接写出所有符合条件的点Q 的坐标.∴()4,0A -,设直线AC 的解析式为y =代入()4,0A -,得04m =-解得1m =,∴直线AC 的解析式为y =()当0y =时,046x =--,解得32x =-,∴3,02G ⎛⎫- ⎪⎝⎭∵()4,0A -,()0,4C ,∴OA OC =,∴45OAC OCA ∠=∠=︒,∵DR x ∥轴,26.在ABC 中,AB AC =,点D 是BC 边上一点(点D 不与端点重合).点D 关于直线AB 的对称点为点E ,连接,AD DE .在直线AD 上取一点F ,使EFD BAC ∠∠=,直线EF 与直线AC 交于点G .(1)如图1,若60,,BAC BD CD BAD α∠=︒<∠=,求AGE ∠的度数(用含α的代数式表示);(2)如图1,若60,BAC BD CD ∠=︒<,用等式表示线段CG 与DE 之间的数量关系,并证明;(3)如图2,若90BAC ∠=︒,点D 从点B 移动到点C 的过程中,连接AE ,当AEG △为等腰三角形时,请直接写出此时CG AG 的值.∵EFD BAC ∠∠=,BAC ∠∴60EFD ∠=︒∵1EFD BAD ∠=∠+∠=∠∴160α∠=︒-,∵,AB AC EFD BAC =∠=∠∴=45ABC ∠︒,由轴对称知EAB ∠=∠试题31设BAD BAE β∠=∠=,∴90DAC GAF ∠=∠=︒∴GAE EAF GAF ∠=∠-∠∵GE GA =,。

2009年山东省聊城市中考数学试题及答案

2009年山东省聊城市中考数学试题及答案

Q -1.3 0 2.4 1 3.7 (单位:km ) O P R SAB FD2009年中考聊城市数学试题一、选择题(本题共12小题,每小题3分,共36分)1.计算(-3)2+4的结果是( )A .-5B .-2C .10D .132.如图,数轴上的点P 、O 、Q 、R 、S 表示某城市一条大街上的五个公交车站点,有一辆公交车距P 站点3km ,距Q 站点0.7km ,则这辆公交车的位置在( ) A .R 站点与S 站点之间 B .P 站点与O 站点之间C .O 站点与Q 站点之间D .Q 站点与R 站点之间3.在显微镜下,人体内一种细胞的形状可以近似地看成圆,它的半径约为0.00000078m ,这个数据用科学记数法表示为( )A .0.78×10-4mB .7.8×10-7mC .7.8×10-8mD .78×10-8m 4.如图是由七个相同的小正方体堆成的物体,这个物体的俯视图是( )5.下列运算正确的是( )A .2m 3+m 3=3m 6B .m 3·m 2=m 6C .(-m 4)3=m 7D .m 6÷2m 2= 12m 46.如图,在Rt △ABC 中,AB =AC ,AD ⊥BC ,垂足为D .E 、F 分别是CD 、AD 上的点,且CE =AF .如果∠AED =62º,那么∠DBF =( ) A .62º B .38º C .28º D .26º7.下列事件中是不确定事件的为( ) A .367人中至少有2人的生日相同 B .今年国庆节这一天,我市的最高气温是28℃ C .掷6枚相同的硬币,3枚正面向上4枚正面向下D .掷两枚普通的骰子,掷得的点数之和不是奇数就是偶数8.已知矩形ABCD 的边AB =6,AD =8.如果以点A 为圆心作⊙A ,使B 、C 、D 三点中在圆内和在圆外都至少有一个点,那么⊙A 的半径r 的取值范围是( ) A .6<r <10 B .8<r <10 C .6<r ≤8 D .8<r ≤109.小莹准备用纸板制作一顶圆锥形“圣诞帽”,使“圣诞帽”的底面周长为π18cm ,高为40cm .裁剪纸板时,小莹应剪出的扇形的圆心角约为( ) A .72º B .79º C .82º D .85º10.如图,一次函数y =kx +b 的图象与反比例函数y = mx 的图象交于A 、B 两点.当一次函数的值大于反比例函数的值时,自变量x 的 取值范围是( )A .-2<x <1B .0<x <1C .x <-2和0<x <1D .-2<x <1和x >1 11.如图,已知矩形ABCD 中,AB =8,BC =π5.分别以A .B .C .D .BA CD E FO……B 、D 为圆心,AB 为半径画弧,两弧分别交对角线BD 于点E 、F ,则图中阴影部分的面积为( )A .π4B .π5C .π8D .π1012.在一次“寻宝”游戏中,寻宝人找到了如图所示两个标志点A (2,1)、B (4,-1),这两个标志点到“宝藏”点的距离都 是10,则“宝藏”点的坐标是( ) A .(10,10) B .(-2,1)C .(5,2)或(1,-2)D .(2,-1)或(-2,1) 二、填空题(本题共5小题,每小题3分,共15分)13.一元二次方程(x +1)(x -1)=2(x +1)的根是 . 14.如图,O 是正六边形ABCDEF 的中心,图形中可由△OBC 绕点O 逆时针旋转120º得到的三角形是 .15.一副三角板如图叠放在一起,则图中∠α的度数是 .16.“五一”节期间,某商场开展购物抽奖活动.抽奖箱内有标号分别为1、2、3、4四个质地、大小相同的小球,顾客从中任意摸出一个球,然后放回,摇匀后再摸出一个球.如果两次摸出的球的标号之和为“8”得一等奖,那么顾客抽出一等奖概率是 . 17.如图,依次连接第一个矩形各边的中点得到一个菱形,再依次连接菱形各边的中点得到第二个矩形,按照此方法继续下去.已知第一个矩形的面积为1,则第n 个矩形的面积为 .三、解答题(本题共8小题,共69分)18.(6分)解方程:x -2 x +2 +84-x 2 =1.19.(7分)如图,某住宅楼进入地下储藏室的坡道AB 的长为3.2m ,坡角是45º.为改善坡道的安全性,将原坡道AB 改建成坡道AC ,使BC 的长为1.5m ,求坡角α的度数(精确到1º).20.(8分)“立定跳远”是我市初中毕业生体育测试项目之一.测试时,记录下学生立定跳远的成绩,然后按照评分标准转化为相应的分数,满分10分.其中男生立定跳远的评注:成绩栏里的每个范围,含最低值,不含最高值.某校九年级有480名男生参加立定跳远测试,现从中随机抽取10名男生测试成绩(单位:分)如下:1.962.38 2.56 2.04 2.34 2.17 2.60 2.26 1.87 2.32请完成下列问题:(1)求这10名男生立定跳远成绩的极差和平均数;(2)求这10名男生立定跳远得分的中位数和众数;(3)如果将9分(含9分)以上定为“优秀”,请你估计这480名男生中得优秀的人数.21.(8分)今年2月份,电脑被列为国家惠农政策的“家电下乡”商品,小亮家在这个月买了一台电脑和一套沙发共消费4560元.购买这台电脑享受政府补贴13%(即电脑销售价格的13%由政府支付),沙发价格也比上月降价10%,这样小亮家购买这两种商品比上月购买少花640元.小亮家购买电脑和沙发各消费多少元?N 22.(8分)如图,在△ABC 中,点O 是AC 边上的一个动点,过点O 作MN ∥BC ,交∠ACB的平分线于点E ,交∠ACB 的外角平分线于点F .(1)求证:OC = 12EF ;(2)当点O 位于AC 边的什么位置时,四边形AECF 是矩形?并给出证明.23.(10分)徒骇河大桥是我市第一座特大型桥梁,大桥桥体造型新颖,气势恢宏,两条拱肋如长虹卧波,极具时代气息(如图①).大桥为中承式悬索拱桥,大桥的主拱肋ACB 是抛物线的一部分(如图②),跨径AB 为100m ,拱高OC 为25m ,抛物线顶点C 到桥面的距离为17m .(1)请建立适当的坐标系,求该抛物线所对应的函数关系式;(2)七月份汛期来临,河水水位上涨,假设水位比AB所在直线高出1.96m ,这时位于水面上的拱肋的跨径是多少?在不计桥面厚度的情况,一条高出水面4.6m 的游船是否能够顺利通过大桥?C EB C P D A R Q l24.(10分)如图,⊙O 是△ABC 的内切圆,与AB 、BC 、CA 分别相切于点D 、E 、F ,∠DEF =45º.连接BO 并延长交AC 于点G ,AB =4,AG =(1)求∠A 的度数;(2)求⊙O 的半径.25.(12分)如图,已知正方形ABCD 的边长与Rt △PQR 的直角边PQ 的长均为4cm ,QR=8cm ,AB 与QR 在同一条直线l 上.开始时点Q 与点B 重合,让△PQR 以1cm/s 速度在直线l 上运动,直至点R 与点A 重合为止,t s 时△PQR 与正方形ABCD 重叠部分的面积记为S cm 2.(1)当t =3s 时,求S 的值;(2)求S 与t 之间的函数关系式,并写出自变量t 的取值范围;(3)写出t 为何值时,重叠部分的面积S 有最大值,最大值是多少?。

2009年江苏省中考数学试卷(附答案)

2009年江苏省中考数学试卷(附答案)

江苏省2009年中考数学试卷说明: 1.本试卷共6页,包含选择题(第1题~第8题,共8题)、非选择题(第9题~第28题,共20题)两部分.本卷满分150分,考试时间为120分钟.考试结束后,请将本试卷和答题卡一并交回. 2.答题前,考生务必将本人的姓名、准考证号填写在答题卡相应的位置上,同时务必在试卷的装订线内将本人的姓名、准考证号、毕业学校填写好,在试卷第一面的右下角填写好座位号. 3.所有的试题都必须在专用的“答题卡”上作答,选择题用2B铅笔作答、非选择题在指定位置用0.5毫米黑色水笔作答.在试卷或草稿纸上答题无效. 4.作图必须用2B 铅笔作答,并请加黑加粗,描写清楚.一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号涂在答题卡相应位置.......上) 1.2-的相反数是( )A .2B .2-C .12D .12- 2.计算23()a 的结果是( ) A .5a B .6a C .8a D .23a3.如图,数轴上A B 、两点分别对应实数a b 、则下列结论正确的是( )10 a b (第3题)A .0a b +>B .0ab >C .0a b ->D .||||0a b ->4.下面四个几何体中,左视图是四边形的几何体共有( )A .1个B .2个C .3个D .4个5.如图,在55⨯移方法中,正确的是( ) A .先向下平移3格,再向右平移1格 B .先向下平移2格,再向右平移1格 C .先向下平移2格,再向右平移2格 D .先向下平移3格,再向右平移2格6.某商场试销一种新款衬衫,一周内销售情况如下表所示: 商场经理要了解哪种型号最畅销,则上述数据的统计量中,对商场经理来说最有意义的是( )A .平均数B .众数C .中位数D .方差 7.如图,给出下列四组条件: ①AB DE BC EF AC DF ===,,; ②AB DE B E BC EF =∠=∠=,,; ③B E BC EF C F ∠=∠=∠=∠,,;圆柱 圆锥 球 正方(第5题)图图AC BDFE(第7题)④AB DE AC DF B E ==∠=∠,,.其中,能使ABC DEF △≌△的条件共有( ) A .1组 B .2组 C .3组 D .4组 8.下面是按一定规律排列的一列数: 第1个数:11122-⎛⎫-+⎪⎝⎭; 第2个数:2311(1)(1)1113234⎛⎫⎛⎫---⎛⎫-+++ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭; 第3个数:234511(1)(1)(1)(1)11111423456⎛⎫⎛⎫⎛⎫⎛⎫-----⎛⎫-+++++ ⎪⎪⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭; ……第n 个数:232111(1)(1)(1)111112342n n n -⎛⎫⎛⎫⎛⎫----⎛⎫-++++ ⎪⎪⎪ ⎪+⎝⎭⎝⎭⎝⎭⎝⎭. 那么,在第10个数、第11个数、第12个数、第13个数中,最大的数是( )A .第10个数B .第11个数C .第12个数D .第13个数二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程,请把答案直接填写在答题卡相应位......置.上) 9.计算2(3)-= .10x 的取值范围是 .11.江苏省的面积约为102 600km 2,这个数据用科学记数法可表示为 km 2.12.反比例函数1y x=-的图象在第 象限.13.某县2008年农民人均年收入为7 800元,计划到2010年,农民人均年收入达到9 100元.设人均年收入的平均增长率为x ,则可列方程 . 14.若2320a a --=,则2526a a +-= . 15.如图,一个圆形转盘被等分成五个扇形区域,上面分别标有数字1、2、3、4、5,转盘指针的位置固定,转动转盘后任其自由停止.转动转盘一次,当转盘停止转动时,记指针指向标有偶数所在区域的概率为P (偶数),指针指向标有奇数所在区域的概率为P (奇数),则P (偶数) P (奇数)(填“>”“<”或“=”).16.如图,AB 是O ⊙的直径,弦C D A B ∥.若65ABD ∠=°,则A D C ∠= .17.已知正六边形的边长为1cm ,分别以它的三个不相邻的顶点为圆心,1cm 长为半径画弧(如图),则所得到的三条弧的长度之和为 cm (结果保留π).18是梯形ABCD 的中位线,DEF△的面积为24cm ,则梯形ABCD 的面积为 cm 2. 三、解答题(本大题共有10小题,共96分.请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤) 19.(本题满分8分)计算: (1)0|2|(1--++(2)2121a a a a a -+⎛⎫-÷ ⎪⎝⎭.(第15AD E BCF (第16(第17(第1820.(本题满分8分)某市对九年级学生进行了一次学业水平测试,成绩评定分A、B、C、D四个等第.为了解这次数学测试成绩情况,相关部门从该市的农村、县镇、城市三类群体的学生中共抽取2 000名学生的数学成绩进行统计分析,相应数据的统计图表如下:21.(本题满分8的机会相同,那么这多少?22.(本题满分8分)一辆汽车从A地驶往B地,前路段为普通公3路,其余路段为高速公路.已知汽车在普通公路上行驶的速度为60km/h,在高速公路上行驶的速度为100km/h,汽车从A地到B地一共行驶了2.2h.请你根据以上信息,就该汽车行驶的“路程”或“时间”,提出一个用二元一次方程组.......解决的问题,并写出解答过程.23.(本题满分10分)如图,在梯形ABCD中,∥,∥,∥,、两点在边BC上,且四边形AEFD是A D B C A B D E A F D平行四边形.(1)AD与BC有何等量关系?请说明理由;A DCBFE(2)当AB DC =时,求证:ABCD 是矩形.24.(本题满分10分)如图,已知二次函数221y x x =--的图象的顶点为A .二次函数2y ax bx =+的图象与x 轴交于原点O 及另一点C ,它的顶点B 在函数221y x x =--的图象的对称轴上. (1)求点A 与点C 的坐标;(2)当四边形AOBC 为菱形时,求函数2y ax bx =+25.(本题满分10分)如图,在航线l点A 到航线l 的距离为2km ,点B 位于点A 北偏东距10km 处.现有一艘轮船从位于点B 南偏西76该航线自西向东航行,5min 后该轮船行至点A 的正北方向的D 处. (1)求观测点B 到航线l 的距离;(2)求该轮船航行的速度(结果精确到0.1km/h ).(参考数据:1.73,sin760.97°≈,cos760.24°≈,tan76 4.01°≈)26.(本题满分10分) (1)观察与发现小明将三角形纸片()ABC AB AC >AB 边上,折痕为AD ,展开纸片(如图①);再次折叠该三角形纸片,使点A 和点D 重合,折痕为EF ,展平纸片后得到AEF △(如图②).小明认为AEF △是等腰三角形,你同意吗?请说明理由.(2)实践与运用AACDB图A CDB图F E将矩形纸片ABCD 沿过点B 的直线折叠,使点A 落在BC 边上的点F 处,折痕为BE (如图③);再沿过点E 的直线折叠,使点D 落在BE 上的点D '处,折痕为E G (如图④);再展平纸片(如图⑤).求图⑤中α∠的大小.27.(本题满分12分)某加油站五月份营销一种油品的销售利润y (万元)与销售量x (万升)之间函数关系的图象如图中折线所示,该加油站截止到13日调价时的销售利润为4万元,截止至15日进油时的销售利润为5.5万元.(销售利润=(售价-成本价)×销售量)请你根据图象及加油站五月份该油品的所有销售记录提供的信息,解答下列问题:(1)求销售量x 为多少时,销售利润为4万元; (2)分别求出线段AB 与BC 所对应的函数关系式;(3)我们把销售每升油所获得的利润称为利润率,那么,在O A 、AB 、BC 三段所表示的销售信息中,哪一段的利润率最大?(直接写出答案)28.(本题满分DE 与x 轴和y 轴分别交于点(30)D ,和点(04)E ,.以1个单位长度/秒的速度沿x 轴向左作匀速运动,与此同时,动点P 从点D 出发,也以1个单位长度ED C F B A图③ E D C AB F G ADEC B F G 图④ 图⑤1日:有库存6万升,成本价4元/升,售价5元/升. 13日:售价调整为5.5元/升.15日:进油4万升,成本价4.5元/升.31日:本月共销售10万升.五月份销售记录(万升)/秒的速度沿射线DE 的方向作匀速运动.设运动时间为t 秒. (1)请用含t 的代数式分别表示出点C 与点P 的坐标;(2)以点C 为圆心、12t 个单位长度为半径的C ⊙与x 轴交于A 、B 两点(点A 在点B 的左侧),连接PA 、PB .二、填空题(本大题共有10小题,每小题3分,共30分)9.9 10.1x ≥ 11.51.02610⨯ 12.二、四 13.27800(1)9100x +=14.1 15.< 16.25 17.2π 18.16 三、解答题(本大题共有10小题,共96分.解答必须写出必要的文字说明、推理步骤或证明过程)19.解:(1)原式2123=-+=. ··········· (4分)(2)原式2221(1)(1)(1)1(1)1a a a a a a a a a a a --+-+=÷=⨯=--. (8分) 20.解:(1)280,48,180. ············ (3分)(2)抽取的学生中,成绩不合格的人数共有(804848)176++=,所以成绩合格以上的人数为20001761824-=,估计该市成绩合格以上的人数为182460000547202000⨯=. 答:估计该市成绩合格以上的人数约为54720人. ··· (8分) 21.解:用树状图分析如下:P (1个男婴,2个女婴)38=.答:出现1个男婴,2个女婴的概率是38. ······· (8分) 22.解:本题答案不惟一,下列解法供参考.解法一??????问题:普通公路和高速公路各为多少千米? (3分) 解:设普通公路长为x km ,高度公路长为y km .根据题意,得2 2.2.60100x y x y =⎧⎪⎨+=⎪⎩,解得60120x y =⎧⎨=⎩,. ········ (7分) 答:普通公路长为60km ,高速公路长为120km . ···· (8分) 解法二 问题:汽车在普通公路和高速公路上各行驶了多少小时? ························· (3分) 解:设汽车在普通公路上行驶了x h ,高速公路上行驶了y h .根据题意,得 2.2602100.x y x y +=⎧⎨⨯=⎩,解得11.2.x y =⎧⎨=⎩,········ (7分)答:汽车在普通公路上行驶了1h ,高速公路上行驶了1.2h .(8分)(男男男) (男男女) 女 男(男女男) (男女女)女 女(女男男) (女男女)女 男(女女男)(女女女) 女 女男女 开始第一个第二个 第三个 所有结果23.(1)解:13AD BC =. ·············· (1分) 理由如下:AD BC AB DE AF DC ∥,∥,∥,∴四边形ABED 和四边形AFCD 都是平行四边形.AD BE AD FC ==,.又四边形AEFD 是平行四边形,AD EF ∴=.AD BE EF FC ∴===.13AD BC ∴=. ··················· (5分)(2)证明:四边形ABED 和四边形AFCD 都是平行四边形,DE AB AF DC ∴==,. AB DC DE AF =∴=,.又四边形AEFD 是平行四边形,∴四边形AEFD 是矩形. (10分) 24.解:(1)2221(1)2y x x x =--=--,所以顶点A 的坐标为(12)-,. ······ (3分)因为二次函数2y ax bx =+的图象经过原点,且它的顶点在二次函数221y x x =--图象的对称轴l 上,所以点C 和点O 关于直线l 对称,所以点C 的坐标为(20),. ······ (6分)(2)因为四边形AOBC 是菱形,所以点B 和点A 关于直线OC 对称,因此,点B 的坐标为(12),.因为二次函数2y ax bx =+的图象经过点B (12),,(20)C ,,所以2420.a b a b +=-⎧⎨+=⎩,解得24a b =-⎧⎨=⎩,.所以二次函数2y ax bx =+的关系式为224y x x =-+. ···· (10分)25.解:(1)设AB 与l 交于点O .在Rt AOD △中,6024cos60AD OAD AD OA ∠====°,,°. 又106AB OB AB OA =∴=-=,.在Rt BOE △中,60cos603OBE OAD BE OB ∠=∠=∴==°,°(km ). ∴观测点B 到航线l 的距离为3km . ·········· (4分) (2)在Rt AOD △中,tan 60OD AD ==°.在Rt BOE △中,tan 60OE BE ==°DE OD OE ∴=+=.在Rt CBE △中,763tan 3tan76CBE BE CE BE CBE ∠==∴=∠=°,,°.3tan 76 3.38CD CE DE ∴=-=-°.15min h 12=,1212 3.3840.6112CD CD ∴==⨯≈(km/h ). 答:该轮船航行的速度约为40.6km/h . ······· (10分)26.解:(1)同意.如图,设AD 与EF 交于点G .由折叠知,AD 平分BAC ∠,所以BAD CAD ∠=∠.又由折叠知,90AGE DGE ∠=∠=°,所以90AGE AGF ∠=∠=°,所以AEF AFE ∠=∠.所以AE AF =,即AEF △为等腰三角形. ······ (5分)(2)由折叠知,四边形ABFE 是正方形,45AEB ∠=°,所以A CD B FE G135BED ∠=°.又由折叠知,BEG DEG ∠=∠,所以67.5DEG ∠=°. 从而9067.522.5α∠=-=°°°. ············· (10分)27.解法一:(1)根据题意,当销售利润为4万元,销售量为4(54)4÷-=(万升).答:销售量x 为4万升时销售利润为4万元. ····· (3分)(2)点A 的坐标为(44),,从13日到15日利润为5.54 1.5-=(万元), 所以销售量为1.5(5.54)1÷-=(万升),所以点B 的坐标为(55.5),. 设线段AB 所对应的函数关系式为y kx b =+,则445.55.k b k b =+⎧⎨=+⎩,解得 1.52.k b =⎧⎨=-⎩, ∴线段AB 所对应的函数关系式为 1.52(45)y x x =-≤≤. ·· (6分) 从15日到31日销售5万升,利润为1 1.54(5.5 4.5) 5.5⨯+⨯-=(万元). ∴本月销售该油品的利润为5.5 5.511+=(万元),所以点C 的坐标为(1011),.设线段BC 所对应的函数关系式为y mx n =+,则 5.551110.m n m n =+⎧⎨=+⎩,解得1.10.m n =⎧⎨=⎩, 所以线段BC 所对应的函数关系式为 1.1(510)y x x =≤≤. · (9分)(3)线段AB . ·················· (12分) 解法二:(1)根据题意,线段OA 所对应的函数关系式为(54)y x =-,即(04)y x x =≤≤.当4y =时,4x =.答:销售量为4万升时,销售利润为4万元. ····· (3分)(2)根据题意,线段AB 对应的函数关系式为14(5.54)(4)y x =⨯+-⨯-,即 1.52(45)y x x =-≤≤. ··············· (6分) 把 5.5y =代入 1.52y x =-,得5x =,所以点B 的坐标为(55.5),. 截止到15日进油时的库存量为651-=(万升). 当销售量大于5万升时,即线段BC 所对应的销售关系中, 每升油的成本价144 4.5 4.45⨯+⨯==(元). 所以,线段BC 所对应的函数关系为y =(1.552)(5.5 4.4)(5) 1.1(510)x x x ⨯-+--=≤≤.······ (9分) (3)线段AB . ·················· (12分)28.解:(1)(50)C t -,,34355P t t ⎛⎫- ⎪⎝⎭,. ········· (2分) (2)①当C ⊙的圆心C 由点()50M ,向左运动,使点A 到点D 并随C ⊙继续向左运动时, 有3532t -≤,即43t ≥.当点C 在点D 左侧时,过点C 作CF ⊥射线DE ,垂足为F ,则由CDF EDO∠=∠, 得CDF EDO △∽△,则3(5)45CF t --=.解得485t CF -=. 由12CF ≤t ,即48152t t -≤,解得163t ≤. ∴当C ⊙与射线DE 有公共点时,t 的取值范围为41633t ≤≤. (5分) ②当PA AB =时,过P 作PQ x ⊥轴,垂足为Q ,有222PA PQ AQ =+ 221633532525t t t ⎛⎫=+--+ ⎪⎝⎭. 2229184205t t t ∴-+=,即2972800t t -+=. 解得1242033t t ==,. ······ (7分)当PA PB =时,有PC AB ⊥, 3535t t ∴-=-.解得35t =. ··· (9分) 当PB AB =时,有222221613532525PB PQ BQ t t t ⎛⎫=+=+--+ ⎪⎝⎭.221324205t t t ∴++=,即278800t t --=. 解得452047t t ==-,(不合题意,舍去). ········ (11分) ∴当PAB △是等腰三角形时,43t =,或4t =,或5t =,或203t =.(12分)。

中考数学试卷4(含答案解析).docx

中考数学试卷4(含答案解析).docx

中考数学试卷一、选择题(共10小题,每小题3分,满分30分) 1. (3 分)(2019・广州)| - 6|=( )A. - 6B. 6C.-丄D.丄6 62. (3分)(2019・广州)广州正稳步推进碧道建设,营造“水清岸绿、鱼翔浅底、水草丰美、白鹭成群”的生态廊道,使之成为老百姓美好生活的好去处.到今年底各区完成碧道试 点建设的长度分别为(单位:千米):5, 5.2, 5, 5, 5, 6.4, 6, 5, 6.68, 48.4, 6.3,这 组数据的众数是( ) 3. (3分)(2019•广州)如图,有一斜坡AB,坡顶B 离地面的高度BC 为30,”,斜坡的倾 斜角是"AC,若taS 送,则此斜坡的水平距离AC 为(的切线条数为( )6. (3分)(2019•广州)甲、乙二人做某种机械零件,已知每小时甲比乙少做8个,甲做120 个所用的时间与乙做150个所用的时间相等,设甲每小时做x 个零件,下列方程正确的 是(A. 120 = 150B. 120 ==150Xx-8 x+8XC. 120= 150D. 120 ==150 x-8XXx+87. (3分)(2019・广州)如图,口ABCD 中,对角线AC, BD 相交于点O, 且E, F, G, H 分别是AO, BO, CO, DO 的中点,则下列说法正确的是()A. 5B. 5.2C. 6D. 6.4B. 50mC. 30mD. 12m4. (3分)(2019•广州)下列运算正确的是( A. - 3 - 2= - 1C. x 3*x 5=x 15B. 3X (-丄)2=-丄335. (3分)(2019・广州) 平面内,OO 的半径为1,点P 到O 的距离为2,过点P 可作OOA. 0条B. 1条C. 2条D.无数条A. 75mA.EH=HGB.四边形EFGH是平行四边形C.AC±BDD.AABO的面积是△EFO的面积的2倍& (3分)(2019•广州)若点A ( - 1, yi), B(2,加,C(3,加在反比例函数■的x 图象上,则yi, y2,丁3的大小关系是()A. y3<j2<yiB. yi<yi<y3C. yi<y3<j2D. yi<j2<j39.(3分)(2019•广州)如图,矩形ABCD中,对角线AC的垂直平分线EF分别交BC, AD于点E, F,若BE=3, AF=5,则AC的长为()10.(3分)(2019・广州)关于x的一元二次方程(^ - 1)x-k+2=0有两个实数根xi,XI,若(M1 - X2+2)(XI - X2 - 2)+2X1X2= - 3,则斤的值()A. 0 或2B. - 2 或2C. - 2D. 2二、填空题(共6小题,每小题3分,满分18分)11.(3 分)(2019・广州)如图,点A, B, C 在直线/上,PBM, PA^6cm, PB=5cm, PC=7cm,则点P到直线/的距离是_________ cm.12.(3分)(2019・广州)代数式丿=有意义时,x应满足的条件是________ .13.(3 分)(2019・广州)分解因式:x2y+2xy+y= ____ .14.(3分)(2019•广州)一副三角板如图放置,将三角板ADE绕点A逆时针旋转a (0°B 重合),ZDAM=45°,点F 在射线AM 上,且CF 与AD 相交于点G, 连接EC, EF, EG,则下列结论:①ZECF=45° ; @/\AEG 的周长为(1+V2) a ;③BEZ+DG^EG 2;(4)A£AF 的面2 「 积的最大值丄#.8其中正确的结论是 _______ •(填写所有正确结论的序号)三、解答题(共9小题,满分102分)17. (9分)(2019・广州)解方程组:JxVFl .Ix+3y=918. (9 分)(2019・广州)如图,D 是 AB 上一点,DF 交 AC 于点 E, DE=FE, FC//AB, 求证:/\ADE 竺 CFE.点E 在边AB ±运动(不与点A,角形,则该圆锥侧面展开扇形的弧长为 _______ .(结果保留“)正方形ABCD 的边长为a,A(1)化简P;(2)若点(a, b)在一次函数的图象上,求P的值.20.(10分)(2019・广州)某中学抽取了40名学生参加“平均每周课外阅读时间”的调查,由调查结果绘制了如下不完整的频数分布表和扇形统计图.频数分布表组别时间/小时频数/人数A组OWrvi2B组1£V2mC组2Wt<310D组3WfV412E组4WrV57F组总54请根据图表中的信息解答下列问题:(1)求频数分布表中m的值;(2)求B组,C组在扇形统计图中分别对应扇形的圆心角度数,并补全扇形统计图;(3)已知F组的学生中,只有1名男生,其余都是女生,用列举法求以下事件的概率: 从F组中随机选取2名学生,恰好都是女生.扇形统计图AS21.(12分)(2019・广州)随着粤港澳大湾区建设的加速推进,广东省正加速布局以5G等为代表的战略性新兴产业,据统计,目前广东5G基站的数量约1.5万座,计划到2020年底,全省5G 基站数是目前的4倍,到2022年底,全省5G 基站数量将达到17.34万座. (1) 计划到2020年底,全省5G 基站的数量是多少万座?(2)按照计划,求2020年底到2022年底,全省5G 基站数量的年平均增长率.22. (12分)(2019・广州)如图,在平面直角坐标系xOy 中,菱形ABCD 的对角线AC 与 BD 交于点P ( - 1, 2), AB Lx 轴于点E,正比例函数的图象与反比例函数丁=卫二1x的图象相交于A, P 两点. (1) 求m, n 的值与点A 的坐标; (2) 求证:△CPDsMEO ; (3)求 sinZCDB 的值.23. (12分)(2019・广州)如图,G )O 的直径AB=10,弦AC=8,连接BC.(1)尺规作图:作弦CD,使CD=BC (点D 不与B 重合),连接AD ;(保留作图痕迹, 不写作法)24. (14分)(2019・广州)如图,等边△ABC 中,AB=6,点D 在BC 上,BD=4,点、E 为 边AC 上一动点(不与点C 重合),关于DE 的轴对称图形为 (1) 当点F 在AC 上时,求证:DF//AB ;(2)设的面积为Si, AABF 的面积为S2,记S=Si-S2, S 是否存在最大值?若存在,求出S 的最大值;若不存在,请说明理由;求四边形ABCD 的周长.(3)当B, F, E三点共线时.求AE的长.25.(14分)(2019*广州)已知抛物线G:y-rm? -2mx-3有最低点.(1)求二次函数y—mx2 - 2mx - 3的最小值(用含,"的式子表示);(2)将抛物线G向右平移加个单位得到抛物线G1.经过探究发现,随着加的变化,抛物线G1顶点的纵坐标y与横坐标x之间存在一个函数关系,求这个函数关系式,并写出自变量x 的取值范围;(3)记(2)所求的函数为H,抛物线G与函数H的图象交于点P,结合图象,求点P 的纵坐标的取值范围.中考数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分) 1. (3 分)(2019•广州)|-6|=( 【考点】绝对值.【分析】根据负数的绝对值等于它的相反数解答. 【解答】解:-6的绝对值是| - 6|=6. 故选:B.2. (3分)(2019・广州)广州正稳步推进碧道建设,营造“水清岸绿、鱼翔浅底、水草丰美、白鹭成群”的生态廊道,使之成为老百姓美好生活的好去处.到今年底各区完成碧道试 点建设的长度分别为(单位:千米):5, 5.2, 5, 5, 5, 6.4, 6, 5, 6.68, 48.4, 6.3,这 组数据的众数是( ) A. 5B. 5.2C. 6D. 6.4【考点】众数.【分析】众数是一组数据中出现次数最多的数据,注意众数可以不止一个. 【解答】解:5出现的次数最多,是5次,所以这组数据的众数为5 故选:A. 3. (3分)(2019•广州)如图,有一斜坡坡顶B 离地面的高度为30加,斜坡的倾 斜角是ZBAC,若tanZB4C=Z,则此斜坡的水平距离AC 为()【考点】解直角三角形的应用-坡度坡角问题.【分析】根据题目中的条件和图形,利用锐角三角函数即可求得AC 的长,本题得以解 决.A. - 6B. 50mC. 30mD. 12mA. 75m【解答】解:•.•ZBC4=90° , tanZBAC=兰,BC=30m,55 "AC "AC解得,AC=75,故选:A.4.(3分)(2019-r州)下列运算正确的是()A.- 3 - 2= - 1B. 3X(-丄)2=-丄3 3C. ^•^—x15D. Va*Vab=a,Vb【考点】实数的运算;同底数幕的乘法.【分析】直接利用有理数混合运算法则、同底数幕的乘除运算法则分别化简得出答案.【解答】解:A、-3-2= -5,故此选项错误;B、3X (-丄)2=_,故此选项错误;3 3C、x i,x5—x s,故此选项错误;D、\/~a* V ab=fl Vb> 正确.故选:D.5.(3分)(2019・广州)平面内,OO的半径为1,点P到O的距离为2,过点P可作OO 的切线条数为()A. 0条B. 1条C. 2条D.无数条【考点】切线的性质.【分析】先确定点与圆的位置关系,再根据切线的定义即可直接得出答案.【解答】解:•••O0的半径为1,点P到圆心0的距离为2,d>Y,.•.点P与OO的位置关系是:P在OO外,•.•过圆外一点可以作圆的2条切线,故选:C.6.(3分)(2019・广州)甲、乙二人做某种机械零件,已知每小时甲比乙少做8个,甲做120个所用的时间与乙做150个所用的时间相等,设甲每小时做x个零件,下列方程正确的是()A. 120 = 150B. 120 = 150C. 120 = 150D. 120=150x~8 x x x+8【考点】由实际问题抽象出分式方程.【分析】设甲每小时做乂个零件,根据甲做120个所用的时间与乙做150个所用的时间相等得出方程解答即可.【解答】解:设甲每小时做x个零件,可得:120丿50,x x+8故选:D.7.(3分)(2019・广州)如图,口ABCD中,AB=2, AD=4,对角线AC, BD相交于点O,且E, F, G, H分别是AO, BO, CO, DO的中点,则下列说法正确的是()A.EH=HGB.四边形EFGH是平行四边形C.AC1BDD.△ABO的面积是△EFO的面积的2倍【考点】三角形的面积;平行四边形的判定与性质.【分析】根据题意和图形,可以判断各个选项中的结论是否成立,本题得以解决.【解答】解:•:E, F, G, H分别是AO, BO, CO, DO的中点,在°ABCD中,AB=2,AD=4,:.EH=1-AD^2,:.EH^HG,故选项A错误;•:E, F, G, H分别是AO, BO, CO, DO 的中点,•'•EH专AD 今BC=FG,•••四边形EFGH是平行四边形,故选项B正确;由题目中的条件,无法判断AC和BD是否垂直,故选项C错误;•••点E、F分别为OA和OB的中点,:.EF=L^, EF//AB,:,Z\OEF<^/\OAB,...S AAEF _ .-EF)2 4,^AOAB 壮4即△ABO的面积是△EFO的面积的4倍,故选项D错误,故选:B.& (3分)(2019・广州)若点A ( - 1, yi), B(2,以),C (3, %)在反比例函数的X 图象上,则yi, y2, y3的大小关系是()A. y3<y2<yiB. y2<yi<y3C. yi<y3<y2D. yi<y2<y3【考点】反比例函数图象上点的坐标特征.【分析】根据反比例函数图象上点的坐标特征求出八%、为的值,比较后即可得出结论.【解答】解:•••点A ( - 1, yi), B(2, 丁2), C(3, y3)在反比例函数y=^-的图象上,X .-.ji=-^-= - 6, y2=—=3, j3=—=2,-1 2 3又T - 6<2<3,.'.yi<y3<y2.故选:C.9.(3分)(2019・广州)如图,矩形ABCD中,对角线AC的垂直平分线EF分别交BC, AD于点E, F,若BE=3, AF=5,则AC的长为()A. 4^5B. 4A/3C. 10D. 8【考点】全等三角形的判定与性质;线段垂直平分线的性质;矩形的性质.【分析】连接AE,由线段垂直平分线的性质得出OA^OC, AE=CE,证明COE得出AF=CE=5,得出AE=CE=5, BC=BE+CE=8,由勾股定理求出AB =V A E2-BE2=4,再由勾股定理求出AC即可.【解答】解:连接AE,如图:TEF是AC的垂直平分线,・・・OA=OC, AE=CE,・・•四边形ABCD是矩形,:.ZB=90° , AD//BC,:.ZOAF=ZOCE f'ZAOF=ZCOE在ZvlOF和ACOE 中,OA=OCZOAF^ZOCE•••△AOF竺△COE (ASA),:.AF=CE=5f:.AE=CE=5f BC=BE+CE=3+5 = 8,/MB=V A E2-BE2=V52-32=4,A c=V A B2+BC2= V42 + 82=4^:10.(3分)(2019・广州)关于x的一元二次方程(^ - 1) x-k+2^0有两个实数根xi,Xi,若(xi - X2+2) (xi -池-2) +2x1x2= - 3,贝!]丘的值( )A. 0或2B. -2 或2C. - 2D. 2【考点】根的判别式;根与系数的关系.【分析】由根与系数的关系可得出X\+X2 — k - 1, X\X2— - k+2,结合(X1-X2+2)(XI - X2 -2) +2X1X2= - 3可求出k的值,根据方程的系数结合根的判别式△三0可得出关于k 的一元二次不等式,解之即可得出)1的取值范围,进而可确定丘的值,此题得解.【解答】解:•••关于x的一元二次方程(^- 1) x-k+2=0的两个实数根为血,池,・*.X1+X2 —- 1, X1X2= ~ k+2....(XI - X2+2) (XI - X2 - 2) +2X1X2= - 3,即(X1+X2)2 - 2X1X2 - 4= - 3,(k- 1) 2+2斤-4-4= - 3,解得:k=±2.•••关于x的一元二次方程Ck- 1) x _ k+2=0有实数根,- (E-1) F-4X1X (-好2)三0,解得:k^2y/2 - 1 或kW - 2A/2 - 1 >.'.k=2.故选:D.二、填空题(共6小题,每小题3分,满分18分)11.(3 分)(2019・广州)如图,点A, B, C在直线/上,PBM, PA^Gcm, PB=5cm, PC【考点】点到直线的距离.【分析】根据点到直线的距离是直线外的点到这条直线的垂线段的长度,可得答案.【解答】解:TPB丄/, PB=5cm,■-.P到I的距离是垂线段PB的长度5cm,故答案为:5.12.(3分)(2019・广州)代数式卓=有意义时,x应满足的条件是x>8x-8【考点】62:分式有意义的条件;72:二次根式有意义的条件.【分析】直接利用分式、二次根式的定义求出x的取值范围.【解答】解:代数式有意义时,x-8x - 8>0,解得:x>8.故答案为:x>&13.(3 分)(2019・广州)分解因式:A+2xy+y= y (x+1)2.【考点】提公因式法与公式法的综合运用.【分析】首先提取公因式y,再利用完全平方进行二次分解即可.【解答】解:原式=y C+2x+l)=y(x+1)故答案为:y(x+1)2.14.(3分)(2019•广州)一副三角板如图放置,将三角板ADE绕点A逆时针旋转a (0°<a<90°),使得三角板ADE的一边所在的直线与BC垂直,则a的度数为15°或【考点】角的计算.【分析】分情况讨论:®DE±BC ; @ADLBC. 【解答】解:分情况讨论:① 当 DELBC 时,ZBAD= 180° - 60° - 45° =75° , .*.a=90° - ZBAD= 15° ; ② 当 AD1BC 时,a=90° - ZC=90° - 30° =60° . 故答案为:15°或60°15. (3分)(2019-r 州)如图放置的一个圆锥,它的主视图是直角边长为2的等腰直角三 角形,则该圆锥侧面展开扇形的弧长为—2近 兀(结果保留“)【分析】根据圆锥侧面展开扇形的弧长=底面圆的周长即可解决问题. 【解答】解:•••某圆锥的主视图是一个腰长为2的等腰直角三角形, •••斜边长为2迈, 则底面圆的周长为2屈T,•••该圆锥侧面展开扇形的弧长为2妨, 故答案为2屈T.16. (3分)(2019・广州)如图,正方形ABCD 的边长为a,点E 在边AB 上运动(不与点A, B 重合),ZDAM=45°,点F 在射线AM 上,且AF=^E, CF 与AD 相交于点G, 连接EC, EF, EG,则下列结论:①ZECF=45° ; @AAEG 的周长为(1+返)a ;(3)BE 2+DG 2^EG 2;④△E4F 的面 积的最大值L A8其中正确的结论是①④.(填写所有正确结论的序号)弧长的计算;圆锥的计算;简单几何体的三视图;由三视图判断几何体.【考点】二次根式的应用;勾股定理;相似三角形的判定与性质.【分析】①正确•如图1中,在BC上截取BH=BE,连接EH.证明△ FAE竺厶EHC(SAS), 即可解决问题.②③错误.如图2中,延长AD到H,使得DH=BE,则厶CBE丝HCDH (SAS),再证明厶GCE竺厶GCH (SAS),即可解决问题.④正确.设BE=x,则AE=a-x, AF=^,构建二次函数,利用二次函数的性质解决最值问题.【解答】解:如图1中,在BC上截取BH=BE,连接EH.•:BE=BH, ZEBH=90° ,:.EH=y[2PE, ':AF=^2^E,:.AF=EH,':ZDAM=ZEHB=45° , ZBAD=90° ,:.ZFAE=ZEHC= 135° ,\'BA=BC, BE=BH,:.AE^HC,.•.△FAE竺AEHC (SAS),:.EF=EC, ZAEF^ZECH,V ZECH+ZCEB=9Q° ,A ZAEF+ZCEB^90° ,A ZF£C=90° ,:.ZECF=ZEFC=45° ,故①正确,如图2中,延长AD到H,使得DH=BE,则厶CBE竺“CDH (SAS),・•・ ZECB = ZDCH,:.ZECH=ZBCD=90° ,:.ZECG=ZGCH=45° ,•・・CG=CG, CE=CH,:.AGCE^AGCH (SAS),・・・EG=GH,•:GH=DG+DH, DH=BE,・・・EG=BE+DG,故③错误,AAEG 的周长=AE+EG+AG=AG+GH=AD+DH+AE=AE+EB+AD=AB+AD = 2a,故②错误,设BE=x,贝lj AE=a - x, AF=\[^c,・*.S/\AEF=—(a - x) Xx= -- —(x2 - ax+^-a1 - Az?)=-丄(兀-^)2+^2,2 2 2 2 4 4 2 2 8护时,△仙的面积的最大值为护故④正确,故答案为①④.\G三、解答题(共9小题,满分102分)17.(9分)(2019・广州)解方程组:(xVFl .Ix+3y=9【考点】解二元一次方程组.【分析】运用加减消元解答即可.【解答】解:$于I:,]x+3y=9②②-①得,4y=2,解得y=2,把y=2代入①得,x - 2=1,解得兀=3, 故原方程组的解为]x=3.1尸218.(9 分)(2019・广州)如图,D 是 AB 1.一点,DF 交AC 于点E, DE=FE, FC//AB,【考点】全等三角形的判定.【分析】利用AAS证明:△ ADE竺CFE.【解答】证明:TFC/AB,:.ZA=ZFCE, ZADE= ZF,在△ADE与△ CFE中:'ZA=ZFCF•二ZADE=ZF>卫E=EF.•.△ADE竺ACFE (AAS).19.(10 分)(2019・广州)已知―至一--1(a^±b)a2-b2 a+b(1)化简P;(2)若点(a, b)在一次函数y=x-迈的图象上,求P的值.【考点】一次函数图象上点的坐标特征.【分析】(1)P=- 2a -丄= ____________ 2a ________ = 2a-a+b_=丄;2_^2 a+b (a+b)(a~b) a+b (a+b)(a~b) a~ba(2)将点(a, b)代入y=x-迈得到Q-Z?=伍,再将伍代入化简后的F,即可求解;【解答】解:(1) P= 2a -丄= _______________ 2a_ _=丄;a'-b? a+b (a+b) (a-b) a+b (a+b) (a-b) a~b(2) .点(a, b)在一次函数y—x - \[2的图象上,•• b=ci - ^2?.'.a - b—^f2,•p=.V20.(10分)(2019-r州)某中学抽取了40名学生参加“平均每周课外阅读时间”的调查,由调查结果绘制了如下不完整的频数分布表和扇形统计图.请根据图表中的信息解答下列问题:(1)求频数分布表中Ml的值;(2)求B组,C组在扇形统计图中分别对应扇形的圆心角度数,并补全扇形统计图;(3)已知F组的学生中,只有1名男生,其余都是女生,用列举法求以下事件的概率: 从F组中随机选取2名学生,恰好都是女生.扇形统计图【考点】频数(率)分布表;扇形统计图;列表法与树状图法.【分析】(1)用抽取的40人减去其他5个组的人数即可得出加的值;(2)分别用360°乘以B组,C组的人数所占的比例即可;补全扇形统计图;(3)画出树状图,即可得出结果.【解答】解:(1)加=40-2-10- 12-7-4=5;(2)B组的圆心角=360° X旦=45° ,40C组的圆心角= 360°或丄。

2009年河南省中考数学试卷(解析版)

2009年河南省中考数学试卷(解析版)

2009年河南省中考数学试卷一、选择题(共6小题,每小题3分,满分18分) 1.(3分)﹣5的相反数是( )A.51B.-51C.-5D.5【分析】根据相反数的定义直接求得结果. 【解答】解:﹣5的相反数是5. 故答案为:D .【点评】本题主要考查了相反数的性质,只有符号不同的两个数互为相反数,0的相反数是0.2.(3分)不等式﹣2x <4的解集是( )A .x >﹣2B .x <﹣2C .x >2D .x <2【分析】利用不等式的基本性质,将两边同除以﹣2,得x >﹣2. 【解答】解:系数化为1得,x >﹣2.故选A .【点评】本题考查了不等式的性质3:不等式两边同除以同一个负数,不等号的方向改变.在这一点上学生容易想不到改变不等号的方向误选B ,而导致错误的发生.3.(3分)下列调查适合普查的是( )A .调查2009年6月份市场上某品牌饮料的质量B .了解中央电视台直播北京奥运会开幕式的全国收视率情况C .环保部门调查5月份黄河某段水域的水质量情况D .了解全班同学本周末参加社区活动的时间【分析】调查方式的选择需要将普查的局限性和抽样调查的必要性结合起来,具体问题具体分析,普查结果准确,所以在要求精确、难度相对不大,实验无破坏性的情况下应选择普查方式,当考查的对象很多或考查会给被调查对象带来损伤破坏,以及考查经费和时间都非常有限时,普查就受到限制,这时就应选择抽样调查.【解答】解:A :调查2009年6月份市场上某品牌饮料的质量具有破坏性,适合用抽样调查; B 、C :了解中央电视台直播北京奥运会开幕式的全国收视率情况以及环保部门调查5月份黄河某段水域的水质量情况,范围比较大,普查的意义或价值不大,应选择抽样调查; D :了解全班同学本周末参加社区活动的时间适合普查.故选D . 【点评】适合普查的方式一般有以下几种: ①范围较小;②容易掌控;③不具有破坏性;④可操作性较强.基于以上各点,“了解全班同学本周末参加社区活动的时间”适合普查,其它几项都不符合以上特点,不适合普查.4.(3分)方程x2=x的解是()A.x=1 B.x=0 C.x1=1,x2=0 D.x1=﹣1,x2=0【分析】方程移项后提取公因式化为积的形式,然后利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解.【解答】解:方程移项得:x2﹣x=0,分解因式得:x(x﹣1)=0,可得x=0或x﹣1=0,解得:x1=1,x2=0.故选C【点评】此题考查了解一元二次方程﹣因式分解法,熟练掌握因式分解的方法是解本题的关键.5.(3分)如图所示,在平面直角坐标系中,点A、B的坐标分别为(﹣2,0)和(2,0).月牙①绕点B顺时针旋转90°得到月牙②,则点A的对应点A′的坐标为()A.(2,2)B.(2,4)C.(4,2)D.(1,2)【分析】根据旋转的性质,旋转不改变图形的形状、大小及相对位置.【解答】解:连接A′B,由月牙①顺时针旋转90°得月牙②,可知A′B⊥AB,且A′B=AB,由A(﹣2,0)、B(2,0)得AB=4,于是可得A′的坐标为(2,4).故选B.【点评】本题主要考查平面直角坐标系及图形的旋转变换的相关知识,学生往往因理解不透题意而出现问题.6.(3分)一个几何体由一些大小相同的小正方体组成,如图是它的主视图和俯视图,那么组成该几何体所需小正方体的个数最少为()A.3 B.4 C.5 D.6【分析】从俯视图中可以看出最底层小正方体的个数及形状,从主视图可以看出每一层小正方体的层数和个数,从而算出总的个数.【解答】解:由题中所给出的主视图知物体共两列,且左侧一列高一层,右侧一列最高两层;由俯视图可知左侧一行,右侧两行,于是,可确定左侧只有一个小正方体,而右侧可能是一行单层一行两层,也可能两行都是两层.所以图中的小正方体最少4块,最多5块.故选B.【点评】本题主要考查三视图的相关知识:主视图主要确定物体的长和高,左视图确定物体的宽和高,俯视图确定物体的长和宽.二、填空题(共9小题,每小题3分,满分27分)7.(3分)16的平方根是±4.【分析】根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的平方根,由此即可解决问题.【解答】解:∵(±4)2=16,∴16的平方根是±4.故答案为:±4.【点评】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.8.(3分)如图,AB∥CD,CE平分∠ACD,若∠1=25°,那么∠2的度数是50度.【分析】根据平行线的性质、角平分线的定义,可得∠2=2∠1=50度.【解答】解:∵AB∥CD,CE平分∠ACD,∠1=25°,∴∠2=∠1+∠3,∵∠1=∠3=25°,∴∠2=25°+25°=50°.【点评】本题考查平行线的性质、角平分线的定义.9.(3分)下图是一个简单的运算程序.若输入x的值为﹣2,则输出的数值为6.【分析】本题其实是代数式求值的问题,即当x=﹣2时,求x2+2的值,直接代入即可求得结果.【解答】解:由图示可得(﹣2)2+2=6.【点评】如果能理解了算式实际表达的意思,直接代入即可求得结果,学生的困难在于理解不了运算程序,从而造成失误.也有学生把(﹣2)2当成了﹣4,从而得到错误结果﹣2.10.(3分)如图,在平行四边形ABCD中,AC与BD交于点O,点E是BC边的中点,OE=1,则AB 的长是2.【分析】根据平行四边形的性质证明点O为AC的中点,而点E是BC边的中点,可证OE为△ABC的中位线,利用中位线定理解题.【解答】解:由平行四边形的性质可知AO=OC,而E为BC的中点,即BE=EC,∴OE为△ABC的中位线,OE=AB,由OE=1,得AB=2.故答案为2.【点评】本题结合平行四边形的性质考查了三角形的中位线的性质:三角形的中位线平行于第三边,且等于第三边的一半.11.(3分)如图,AB为半圆O的直径,延长AB到点P,使BP=AB,PC切半圆O于点C,点D是上和点C不重合的一点,则∠CDB的度数为30度.【分析】连接OC,由切线的性质得OC⊥PC,于是易得Rt△OCP中,OC=OB=PB;利用30°所对的边等于斜边的一半,可得∠P=30°,于是得∠COP=60°,再由“同弧所对的圆周角等于它所对的圆心角的一半”得∠CDB=30度.【解答】解:连接OC,∵PC切半圆O于点C,∴OC⊥PC,∴OC=OB=PB,∴∠P=30°,即∠COP=60°,∴∠CDB=∠COP=30°.【点评】本题考查了直角三角形中30°角的确定及圆周角与圆心角的关系,属综合性稍强的题目,学生由于应用中的某一类知识欠缺导致出现错误.12.(3分)点A(2,3)在反比例函数的图象上,当1≤x≤3时,y的取值范围是2≤y≤6.【分析】首先根据点A(2,3)在反比例函数的图象上,求出系数k的值,可得y=,然后根据1≤x≤3,进而求出y的取值范围.【解答】解:∵点A(2,3)在反比例函数的图象上,∴3=,解得k=6,∴y=,∵1≤x≤3,∴2≤y≤6.故答案为2≤y≤6.【点评】本题主要考查反比例函数的性质,解答本题的关键是求出反比例函数的系数k的值,还要熟练掌握解不等式的知识点,此题基础题,比较简单.13.(3分)在一个不透明的袋子中有2个黑球、3个白球,它们除颜色外其他均相同.充分摇匀后,先摸出1个球不放回,再摸出1个球,那么两个球都是黑球的概率为.【分析】列举出所有情况,看所求的情况占总情况的多少即可.【解答】解:∴一共有20种情况,两个球都是黑球的有两种,∴两个球都是黑球的概率为=.【点评】如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.14.(3分)动手操作:在矩形纸片ABCD中,AB=3,AD=5.如图所示,折叠纸片,使点A落在BC 边上的A′处,折痕为PQ,当点A′在BC边上移动时,折痕的端点P、Q也随之移动.若限定点P、Q 分别在AB、AD边上移动,则点A′在BC边上可移动的最大距离为2.【分析】本题关键在于找到两个极端,即BA′取最大或最小值时,点P或Q的位置.经实验不难发现,分别求出点P与B重合时,BA′取最大值3和当点Q与D重合时,BA′的最小值1.所以可求点A′在BC边上移动的最大距离为2.【解答】解:当点P与B重合时,BA′取最大值是3,当点Q与D重合时(如图),由勾股定理得A′C=4,此时BA′取最小值为1.则点A′在BC边上移动的最大距离为3﹣1=2.故答案为:2【点评】本题考查了学生的动手能力及图形的折叠、勾股定理的应用等知识,难度稍大,学生主要缺乏动手操作习惯,单凭想象造成错误.上,点D、E在OB上,点F在上,则阴影部分的面积为(结果保留π).【分析】首先要明确S阴影=S扇形OAB﹣S△OCD﹣S正方形CDEF,然后依面积公式计算即可.【解答】解:连接OF,∵∠AOD=45°,四边形CDEF是正方形,∴OD=CD=DE=EF,于是Rt△OFE中,OE=2EF,∵OF=,EF2+OE2=OF2,∴EF2+(2EF)2=5,解得:EF=1,∴EF=OD=CD=1,∴S阴影=S扇形OAB﹣S△OCD﹣S正方形CDEF=﹣×1×1﹣1×1=.【点评】本题失分率较高,学生的主要失误在于找不到解题的切入点,不知道如何添加辅助线,也有学生对直角三角形三边关系不熟悉,误认为∠FOB=30°造成失误.三、解答题(共8小题,满分75分)16.(8分)先化简,然后从中选取一个你认为合适的数作为x的值代入求值.【分析】首先利用分式的运算方法进行化简,本题有两种方法:一是对括号里的式子先通分、合并,再将后式除法变为乘法,分解因式后约分;二是先把后式除法变乘法,再利用乘法分配律化简.在选值计算时,要保证在分式有意义的情况下选值.【解答】解:原式==,∵x﹣1≠0,x+1≠0,∴x≠±1,原式=.【点评】本题所考查的内容“分式的运算”是数与式的核心内容,全面考查了有理数、整式、分式运算等多个知识点,要合理寻求简单运算途径的能力及分式运算.这是个分式混合运算题,运算顺序是先乘除后加减,加减法时要注意把各分母先因式分解,确定最简公分母进行通分;做除法时要注意先把除法运算转化为乘法运算,而做乘法运算时要注意先把分子、分母能因式分解的先分解,然后约分.17.(9分)如图所示,∠BAC=∠ABD,AC=BD,点O是AD、BC的交点,点E是AB的中点.试判断OE和AB的位置关系,并给出证明.【分析】首先进行判断:OE⊥AB,由已知条件不难证明△BAC≌△ABD,得∠OBA=∠OAB再利用等腰三角形“三线合一”的性质即可证得结论.【解答】解:OE垂直且平分AB.证明:在△BAC和△ABD中,,∴△BAC≌△ABD(SAS).∴∠OBA=∠OAB,∴OA=OB.又∵AE=BE,∴OE⊥AB.又点E是AB的中点,∴OE垂直且平分AB.【点评】本题考查了全等三角形的判定与性质及等腰三角形的性质;解决此类问题,要熟练掌握三角形全等的判定、等腰三角形的性质等知识.18.(9分)2008年北京奥运会后,同学们参与体育锻炼的热情高涨.为了解他们平均每周的锻炼时间,小明同学在校内随机调查了50名同学,统计并制作了如下的频数分布表和扇形统计图.根据上述信息解答下列问题:(1)m=,n=;(2)在扇形统计图中,D组所占圆心角的度数为度;(3)全校共有3000名学生,估计该校平均每周体育锻炼时间不少于6小时的学生约有多少名?【分析】(1)利用总数和C所占的百分比即可求出m,进而求出n;(2)求出D组所占的百分比,再求D组所占圆心角的度数即可;(3)利用样本估计总体,先求出该校平均每周体育锻炼时间不少于6小时的学生所占的百分比,即可求出答案.【解答】解:(1)由统计表和扇形图可知:m=50×16%=8人;n=50﹣8﹣15﹣20﹣1﹣2=4人;(2)扇形统计图中,D组所占圆心角的度数=360×=144度;(3)该校平均每周体育锻炼时间不少于6小时的学生站的百分比==78%,则3000名学生,估计该校平均每周体育锻炼时间不少于6小时的学生约有3000×78%=2340人.【点评】解决这类问题的关键是要弄清楚频数的意义,理解频数分布表与扇形统计图的对应关系,还要掌握用样本估计总体的统计思想.19.(9分)暑假期间,小明和父母一起开车到距家200千米的景点旅游.出发前,汽车油箱内储油45升;当行驶150千米时,发现油箱剩余油量为30升.(1)已知油箱内余油量y(升)是行驶路程x(千米)的一次函数,求y与x的函数关系式;(2)当油箱中余油量少于3升时,汽车将自动报警.如果往返途中不加油,他们能否在汽车报警前回到家?请说明理由.【分析】先设函数式为:y=kx+b,然后利用两对数值可求出函数的解析式,把x=400代入函数解析式可得到y,有y的值就能确定是否能回到家.【解答】解:(1)设y=kx+b,当x=0时,y=45,当x=150时,y=30,∴,解得,∴y=x+45(0≤x≤450);(2)当x=400时,y=×400+45=5>3,∴他们能在汽车报警前回到家.【点评】解题思路:本题考查一次函数的实际应用,用待定系数法求一次函数的解析式,再通过其解析式计算说明问题.由一次函数的解析式的求法,找到两点列方程组即可解决.20.(9分)如图所示,电工李师傅借助梯子安装天花板上距地面2.90m的顶灯.已知梯子由两个相同的矩形面组成,每个矩形面的长都被六条踏板七等分,使用时梯脚的固定跨度为1m.矩形面与地面所成的角α为78度.李师傅的身高为1.78m,当他攀升到头顶距天花板0.05~0.20m时,安装起来比较方便.他现在竖直站立在梯子的第三级踏板上,请你通过计算判断他安装是否比较方便?(参考数据:sin78°≈0.98,cos78°≈0.21,tan78°≈4.70.)【分析】本题中问题的解决要弄清楚电工李师傅所站的地方离地面的高度,通过解直角三角形来解决.首先可求得点A离地面的距离,再用相似三角形对应边成比例,或者同角三角函数的比例,求得第三级离地面的高度,即可求得他头顶离房顶的距离.【解答】解:过点A作AE⊥BC于点E,过点D作DF⊥BC于点F.∵AB=AC,∴CE=BC=0.5.在Rt△AEC和Rt△DFC中,∵tan78°=,∴AE=EC×tan78°≈0.5×4.70=2.35.又∵sinα==,DF=•AE=×AE≈1.007.∴李师傅站在第三级踏板上时,头顶距地面高度约为:1.007+1.78=2.787.头顶与天花板的距离约为:2.90﹣2.787≈0.11.∵0.05<0.11<0.20,∴他安装比较方便.【点评】命题立意:考查利用解直角三角形知识解决实际问题的能力.要求学生应用数学知识解决问题,在正确分析题意的基础上建立数学模型,把实际问题转化为数学问题.21.(10分)如图,在Rt△ABC中,∠ACB=90°,∠B=60°,BC=2.点O是AC的中点,过点O的直线l从与AC重合的位置开始,绕点O作逆时针旋转,交AB边于点D,过点C作CE∥AB交直线l于点E,设直线l的旋转角为α.(1)①当α=30度时,四边形EDBC是等腰梯形,此时AD的长为1;②当α=60度时,四边形EDBC是直角梯形,此时AD的长为 1.5;(2)当α=90°时,判断四边形EDBC是否为菱形,并说明理由.【分析】(1)根据旋转的性质和等腰梯形的性质,①假设四边形EDBC是等腰梯形,根据题目已知条件及外角和定理可求α,AD;②假设四边形EDBC是直角梯形,根据题目已知条件及内角和定理可求α,AD.(2)根据∠α=∠ACB=90°先证明四边形EDBC是平行四边形.再利用Rt△ABC中,∠ACB=90°,∠B=60°,BC=2求得AB,AC,AO的长度;在Rt△AOD中,∠A=30°,AD=2,可求BD,比较得BD=BC,可证明四边形EDBC是菱形.【解答】解:(1)①当四边形EDBC是等腰梯形时,∵∠EDB=∠B=60°,而∠A=30°,∴α=∠EDB﹣∠A=30°,∴△ADO是等腰三角形,∴AD=OD,过点O作OF∥BC,∵BC⊥AC,∴OF⊥AC,∴OF是△ABC的中位线,∴OF=BC=1,∵α=∠EDB﹣∠A=30°,∴∠ODF=60°=∠DOF=60°,∴△ODF是等边三角形,∴OD=OF=DF=1,∵∠A=∠α=30°,∴AD=OD=1;②当四边形EDBC是直角梯形时,∠ODA=90°,而∠A=30°,根据三角形的内角和定理,得α=90°﹣∠A=60°,此时,AD=AC×=1.5.(2)当∠α=90°时,四边形EDBC是菱形.∵∠α=∠ACB=90°,∴BC∥ED,∵CE∥AB,∴四边形EDBC是平行四边形.在Rt△ABC中,∠ACB=90°,∠B=60°,BC=2,∴∠A=30°,∴AB=4,AC=2,∴AO==.在Rt△AOD中,∠A=30°,OD=AD,AD==,∴AD=2,∴BD=2,∴BD=BC.又∵四边形EDBC是平行四边形,∴四边形EDBC是菱形.【点评】解决此问题,既要弄清等腰梯形、直角梯形及菱形的判定,又要掌握有关旋转的知识,在直角三角形中,30度角所对的直角边等于斜边的一半,也是解决问题的关键.22.(10分)某家电商场计划用32 400元购进“家电下乡”指定产品中的电视机、冰箱、洗衣机共15台.三种家电的进价和售价如表所示:(1)在不超出现有资金的前提下,若购进电视机的数量和冰箱的数量相同,洗衣机数量不大于电视机数量的一半,商场有哪几种进货方案?(2)国家规定:农民购买家电后,可根据商场售价的13%领取补贴.在(1)的条件下,如果这15台家电全部销售给农民,国家财政最多需补贴农民多少元?进价(元/台)售价(元/台)价格种类电视机20002100冰箱24002500洗衣机16001700【分析】(1)由题意可知:电视机的数量和冰箱的数量相同,则洗衣机的数量等于总台数减去2倍的电视机或洗衣机的数量,又知洗衣机数量不大于电视机数量的一半,则15﹣2x ≤x;根据各个电器的单价以及数量,可列不等式2000x+2400x+1600(15﹣2x)≤32400;根据这两个不等式可以求得x 的取值,根据x的取值可以确定有几种方案;(2)分别计算出方案一和方案二的家电销售的总额,分别将总额乘以13%,即可求得补贴农民的钱数.【解答】解:(1)设购进电视机、冰箱各x台,则洗衣机为(15﹣2x)台依题意得:解这个不等式组,得6≤x≤7∵x为正整数,∴x=6或7;方案1:购进电视机和冰箱各6台,洗衣机3台;方案2:购进电视机和冰箱各7台,洗衣机1台;(2)方案1需补贴:(6×2100+6×2500+3×1700)×13%=4251(元);方案2需补贴:(7×2100+7×2500+1×1700)×13%=4407(元);答:国家的财政收入最多需补贴农民4407元.【点评】对于方案设计的问题,首先考虑的是如何根据已知条件列出不等式,在所求得的取值范围中找出符合题意的值,得出可能产生的几种方案.23.(11分)如图,在平面直角坐标系中,已知矩形ABCD的三个顶点B(4,0)、C(8,0)、D(8,8).抛物线y=ax2+bx过A、C两点.(1)直接写出点A的坐标,并求出抛物线的解析式;(2)动点P从点A出发.沿线段AB向终点B运动,同时点Q从点C出发,沿线段CD向终点D运动.速度均为每秒1个单位长度,运动时间为t秒.过点P作PE⊥AB交AC于点E.①过点E作EF⊥AD于点F,交抛物线于点G.当t为何值时,线段EG最长?②连接EQ.在点P、Q运动的过程中,判断有几个时刻使得△CEQ是等腰三角形?请直接写出相应的t值.【分析】(1)由于四边形ABCD为矩形,所以A点与D点纵坐标相同,A点与B点横坐标相同;(2)①根据相似三角形的性质求出点E的横坐标表达式即为点G的横作标表达式.代入二次函数解析式,求出纵标表达式,将线段最值问题转化为二次函数最值问题解答.②若构成等腰三角形,则三条边中有两条边相等即可,于是可分EQ=QC,EC=CQ,EQ=EC三种情况讨论.若有两种情况时间相同,则三边长度相同,为等腰三角形.【解答】解:(1)因为点B的横坐标为4,点D的纵坐标为8,AD∥x轴,AB∥y轴,所以点A的坐标为(4,8).将A(4,8)、C(8,0)两点坐标分别代入y=ax2+bx得,解得a=﹣,b=4.故抛物线的解析式为:y=﹣x2+4x;(2)①在Rt△APE和Rt△ABC中,tan∠PAE==,即=.∴PE=AP=t.PB=8﹣t.∴点E的坐标为(4+t,8﹣t).∴点G的纵坐标为:﹣(4+t)2+4(4+t)=﹣t2+8.∴EG=﹣t2+8﹣(8﹣t)=﹣t2+t.∵﹣<0,∴当t=4时,线段EG最长为2.②共有三个时刻.(①)当EQ=QC时,因为Q(8,t),E(4+t,8﹣t),QC=t,所以根据两点间距离公式,得:(t﹣4)2+(8﹣2t)2=t2.整理得13t2﹣144t+320=0,解得t=或t==8(此时E、C重合,不能构成三角形,舍去).(②)当EC=CQ时,因为E(4+t,8﹣t),C(8,0),QC=t,所以根据两点间距离公式,得:(4+t﹣8)2+(8﹣t)2=t2.整理得t2﹣80t+320=0,t=40﹣16,t=40+16>8(此时Q不在矩形的边上,舍去).(③)当EQ=EC时,因为Q(8,t),E(4+t,8﹣t),C(8,0),所以根据两点间距离公式,得:(t﹣4)2+(8﹣2t)2=(4+t﹣8)2+(8﹣t)2,解得t=0(此时Q、C重合,不能构成三角形,舍去)或t=.于是t1=,t2=,t3=40﹣16.【点评】抛物线的求法是函数解析式中的一种,通常情况下用待定系数法,即先列方程组,再求未知系数,这种方法本题比较适合.对于压轴题中的动点问题、极值问题,先根据条件“以静制动”,用未知系数表示各自的坐标,如果能构成二次函数,即可通过配方或顶点坐标公式求其极值.。

部编版初中九年级数学反比例函数(含中考真题解析答案)

部编版初中九年级数学反比例函数(含中考真题解析答案)

部编版初中九年级数学反比例函数(含中考真题解析答案)反比例函数(含答案)?解读考点知识点 1.反比例函数概念反比例函数概2.反比例函数图象念、图象和性3.反比例函数的性质质 4.一次函数的解析式确定名师点晴会判断一个函数是否为反比例函数。

知道反比例函数的图象是双曲线,。

会分象限利用增减性。

能用待定系数法确定函数解析式。

会用数形结合思想解决此类问题.反比例函5.反比例函数中比例系数的几何能根据图象信息,解决相应的实际问题.数的应用意义能解决与三角形、四边形等几何图形相关的计算和证明。

?2年中考【2021年题组】y?1.(2021崇左)若反比例函数kx的图象经过点(2,-6),则k的值为()A.-12 B.12 C.-3 D.3【答案】A.【解析】y?试题分析:∵反比例函数kx的图象经过点(2,��6),∴k?2?(?6)??12,解得k=��12.故选A.考点:反比例函数图象上点的坐标特征. 2.(2021苏州)若点A(a,b)在反比例函数A.0 B.��2 C.2 D.��6 【答案】B.【解析】y?y?2x的图象上,则代数式ab��4的值为()试题分析:∵点(a,b)反比例函数22b?x上,∴a,即ab=2,∴原式=2��4=��2.故选B.考点:反比例函数图象上点的坐标特征. 3.(2021来宾)已知矩形的面积为10,长和宽分别为x和y,则y关于x的函数图象大致是()- 1 -A. B. C.D.【答案】C.考点:1.反比例函数的应用;2.反比例函数的图象.4.(2021河池)反比例函数y1?mx(x?0)的图象与一次函数y2??x?b的图象交于A,B两点,其中A(1,2),当y2?y1时,x的取值范围是()A.x<1 B.1<x<2 C.x>2 D.x<1或x>2 【答案】B.【解析】试题分析:根据双曲线关于直线y=x对称易求B(2,1).依题意得:如图所示,当1<x<2时,y2?y1.故选B.考点:反比例函数与一次函数的交点问题.- 2 -5.(2021贺州)已知k1?0?k2,则函数y?k1x和y?k2x?1的图象大致是()A.【答案】C.B.C. D.考点:1.反比例函数的图象;2.一次函数的图象. 6.(2021宿迁)在平面直角坐标系中,点A,B的坐标分别为(��3,0),(3,0),点P在y?反比例函数2x的图象上,若△PAB为直角三角形,则满足条件的点P的个数为()A.2个 B.4个 C.5个 D.6个【答案】D.【解析】y?试题分析:①当∠PAB=90°时,P点的横坐标为��3,把x=��3代入此时P点有1个;22y??x得3,所以2222222(x?3)?()(x?3)?()22x,PB=x,AB2 ②当∠APB=90°,设P(x,x),PA=222222(x?3)?()?(x?3)?()222(3?3)xxPA?PB?AB==36,因为,所以=36,整理得2x4?9x2?4?0,所以x2?9?659?65x2?22,或,所以此时P点有4个;y?22y?x得3,所以此时P点有1个;③当∠PBA=90°时,P点的横坐标为3,把x=3代入综上所述,满足条件的P点有6个.故选D.考点:1.反比例函数图象上点的坐标特征;2.圆周角定理;3.分类讨论;4.综合题.7.(2021自贡)若点(的点,并且x1,y1),(x2,y2),(x3,y3y??),都是反比例函数1x图象上y1?0?y2?y3,则下列各式中正确的是()- 3 -A.D.x1?x2?x3 B.x1?x3?x2 C.x2?x1?x3x2?x3?x1【答案】D.【解析】试题分析:由题意得,点(的点,且(x1,y1)xy,xy,(2,2)(3,3)都是反比例函数y??1x上y1?0?y2?y3,xy,xy位于第三象限,x?x3,则(2,2)(3,3)y随x的增大而增大,2 x1,y1)位于第一象限,x1最大,故x1、x2、x3的大小关系是x2?x3?x1.故选D.考点:反比例函数图象上点的坐标特征.8.(2021凉山州)以正方形ABCD两条对角线的交点O为坐标原点,建立如图所示的平面y?直角坐标系,双曲线3x经过点D,则正方形ABCD的面积是()A.10 B.11 C.12 D.13 【答案】C.考点:反比例函数系数k的几何意义.y?9.(2021眉山)如图,A、B是双曲线kx上的两点,过A点作AC⊥x轴,交OB于D点,垂足为C.若△ADO的面积为1,D为OB的中点,则k的值为()48A.3 B.3 C.3 D.4- 4 -【答案】B.考点:1.反比例函数系数k的几何意义;2.相似三角形的判定与性质. 10.(2021内江)如图,正方形ABCD位于第一象限,边长为3,点A在直线y=x上,点Ay?的横坐标为1,正方形ABCD的边分别平行于x轴、y轴.若双曲线有公共点,则k的取值范围为()kx与正方形ABCDA.1<k<9 B.2≤k≤34 C.1≤k≤16 D.4≤k<16 【答案】C.【解析】试题分析:点A在直线y=x上,其中A点的横坐标为1,则把x=1代入y=x解得y=1,则Ay?的坐标是(1,1),∵AB=BC=3,∴C点的坐标是(4,4),∴当双曲线kx经过点(1,1)时,k=1;当双曲线kx经过点(4,4)时,k=16,因而1≤k≤16.故选C.考点:1.反比例函数与一次函数的交点问题;2.综合题.- 5 -11.(2021孝感)如图,△AOB是直角三角形,∠AOB=90°,OB=2OA,点A在反比例函y?数1ky?x的图象上.若点B在反比例函数x的图象上,则k的值为()A.��4 B.4 C.��2 D.2【答案】A.考点:1.反比例函数图象上点的坐标特征;2.相似三角形的判定与性质;3.综合题.41012.(2021宜昌)如图,市煤气公司计划在地下修建一个容积为m3的圆柱形煤气储存室,则储存室的底面积S(单位:m2)与其深度d(单位:m)的函数图象大致是()- 6 -【答案】A.B. C. D.考点:1.反比例函数的应用;2.反比例函数的图象.y?13.(2021三明)如图,已知点A是双曲线2x在第一象限的分支上的一个动点,连接AO并延长交另一分支于点B,过点A作y轴的垂线,过点B作x轴的垂线,两垂线交于点C,随着点A的运动,点C的位置也随之变化.设点C的坐标为(m,n),则m,n满足的关系式为()A.n??2m B.【答案】B.【解析】n??24n??m C.n??4m D.m2试题分析:∵点C的坐标为(m,n),∴点A的纵坐标是n,横坐标是:n,∴点A 的坐22标为(n,n),∵点C的坐标为(m,n),∴点B的横坐标是m,纵坐标是:m,∴点B2nm?2222mmn??mn,∴m2n2?4,又∵m<0,n>0,∴的坐标为(m,m),又∵n,∴- 7 -mn??2,∴n??2m,故选B.考点:反比例函数图象上点的坐标特征.y?14.(2021株洲)从2,3,4,5中任意选两个数,记作a和b,那么点(a,b)在函数图象上的概率是()12x1111A.2 B.3 C.4 D.6【答案】D.考点:1.列表法与树状图法;2.反比例函数图象上点的坐标特征.OA3?OB4.15.(2021乌鲁木齐)如图,在直角坐标系xOy中,点A,B分别在x轴和y轴,∠y?AOB的角平分线与OA的垂直平分线交于点C,与AB交于点D,反比例函数kx的图象2过点C.当以CD为边的正方形的面积为7时,k的值是()- 8 -A.2 B.3 C.5 D.7 【答案】D.考点:1.反比例函数综合题;2.综合题;3.压轴题. 16.(2021重庆市)如图,在平面直角坐标系中,菱形ABCD在第一象限内,边BC与x轴y?平行,A,B两点的纵坐标分别为3,1.反比例函数ABCD的面积为()3x的图象经过A,B两点,则菱形A.2 B.4 C.22 D.42 【答案】D.【解析】y?试题分析:过点A作x轴的垂线,与CB的延长线交于点E,∵A,B两点在反比例函数3x的图象上且纵坐标分别为3,1,∴A,B横坐标分别为1,3,∴AE=2,BE=2,∴AB=22,S菱形ABCD=底×高=22×2=42,故选D.- 9 -考点:1.菱形的性质;2.反比例函数图象上点的坐标特征;3.综合题.17.(2021临沂)在平面直角坐标系中,直线y??x?2与反比例函数1y?x的图象有2个公共点,则b的取值范围是公共点,若直线y??x?b与反比例函数()y?1x的图象有唯一A.b>2 B.��2<b<2 C.b>2或b<��2 D.b<��2 【答案】C.考点:反比例函数与一次函数的交点问题. 18.(2021滨州)如图,在x轴的上方,直角∠BOA绕原点O按顺时针方向旋转,若∠BOA12y??y?x、x的图象交于B、A两点,则∠OAB的大小的变化趋势为的两边分别与函数()- 10 -A.逐渐变小 B.逐渐变大 C.时大时小 D.保持不变【答案】D.考点:1.相似三角形的判定与性质;2.反比例函数图象上点的坐标特征;3.综合题. 19.(2021扬州)已知一个正比例函数的图象与一个反比例函数的一个交点坐标为(1,3),则另一个交点坐标是.【答案】(��1,��3).【解析】试题分析:∵反比例函数的图象与经过原点的直线的两个交点一定关于原点对称,∴另一个交点的坐标与点(1,3)关于原点对称,∴该点的坐标为(��1,��3).故答案为:(��1,��3).考点:反比例函数图象的对称性.20.(2021泰州)点(a��1,1)、(a+1,2)在反比例函数yyy?k?k?0?x的图象上,若y1?y2,- 11 -则a的范围是.【答案】��1<a<1.考点:1.反比例函数图象上点的坐标特征;2.分类讨论.y?21.(2021南宁)如图,点A在双曲线23ky?x(x?0)上,x(x?0)点B在双曲线上(点B在点A的右侧),且AB∥x轴.若四边形OABC是菱形,且∠AOC=60°,则k= .【答案】63.【解析】y?试题分析:因为点A在双曲线2323x(x?0)上,设A点坐标为(a,a),因为四23边形OABC是菱形,且∠AOC=60°,所以OA=2a,可得B点坐标为(3a,a),可得:3a?k=23a=63,故答案为:63.考点:1.菱形的性质;2.反比例函数图象上点的坐标特征;3.综合题. 22.(2021桂林)如图,以?ABCO的顶点O为原点,边OC所在直线为x轴,建立平面直y?角坐标系,顶点A、C的坐标分别是(2,4)、(3,0),过点A的反比例函数交BC于D,连接AD,则四边形AOCD的面积是.kx的图象- 12 -【答案】9.考点:1.平行四边形的性质;2.反比例函数系数k的几何意义;3.综合题;4.压轴题. 23.(2021贵港)如图,已知点A1,A2,…,An均在直线y?x?1上,点B1,B2,…,y??Bn均在双曲线1x上,并且满足:A1B1⊥x轴,B1A2⊥y轴,A2B2⊥x轴,B2A3⊥y轴,…,AnBn⊥x轴,BnAn+1⊥y轴,…,记点An的横坐标为an(n为正整数).若则a2021= .a1??1,【答案】2.- 13 -考点:1.反比例函数图象上点的坐标特征;2.一次函数图象上点的坐标特征;3.规律型;4.综合题.24.(2021南京)如图,过原点O的直线与反比例函数y1,y2的图象在第一象限内分别交于点A,B,且A为OB的中点,若函数y1?1x,则y2与x的函数表达式是.【答案】【解析】y2?4x.试题分析:过A作AC⊥x轴于C,过B作BD⊥x轴于D,∵点A在反比例函数y1?1x上,11∴设A(a,a),∴OC=a,AC=a,∵AC⊥x轴,BD⊥x轴,∴AC∥BD,∴△OAC∽△ACOCOAACOCOA12?????OBD,∴BDODOB,∵A为OB的中点,∴BDODOB2,∴BD=2AC=a,- 14 -2k2y2?2a??4yx,∴k=aOD=2OC=2a,∴B(2a,a),设,∴2与x的函数表达式是:y2?44y2?x.故答案为:x.考点:1.反比例函数与一次函数的交点问题;2.综合题;3.压轴题.y?25.(2021攀枝花)如图,若双曲线kx(k?0)与边长为3的等边△AOB(O为坐标原点)的边OA、AB分别交于C、D两点,且OC=2BD,则k的值为.363【答案】25.- 15 -考点:1.反比例函数图象上点的坐标特征;2.等边三角形的性质;3.综合题.93(x>0)y?x26.(2021荆门)如图,点A1,A2依次在的图象上,点B1,B2依次在x轴的正半轴上,若△A1OB1,△A2B1B2均为等边三角形,则点B2的坐标为.【答案】(62,0).- 16 -考点:1.反比例函数图象上点的坐标特征;2.等边三角形的性质;3.综合题;4.压轴题. 27.(2021南平)如图,在平面直角坐标系xOy中,△OAB的顶点A在x轴正半轴上,OCy?是△OAB的中线,点B,C在反比例函数于.3x(x?0)的图象上,则△OAB的面积等9【答案】2.考点:1.反比例函数系数k的几何意义;2.综合题. 28.(2021烟台)如图,矩形OABC的顶点A、C的坐标分别是(4,0)和(0,2),反比y?例函数kx(x>0)的图象过对角线的交点P并且与AB,BC分别交于D,E两点,连接OD,OE,DE,则△ODE的面积为.- 17 -15【答案】4.考点:1.反比例函数系数k的几何意义;2.反比例函数综合题;3.综合题. 29.(2021玉林防城港)已知:一次函数y??2x?10的图象与反比例函数y?kx(k?0)的图象相交于A,B两点(A在B的右侧).(1)当A(4,2)时,求反比例函数的解析式及B点的坐标;(2)在(1)的条件下,反比例函数图象的另一支上是否存在一点P,使△PAB是以AB为直角边的直角三角形?若存在,求出所有符合条件的点P的坐标;若不存在,请说明理由.(3)当A(a,��2a+10),B(b,��2b+10)时,直线OA与此反比例函数图象的另一支交BC5?BD2,求△ABC的面积.于另一点C,连接BC交y轴于点D.若y?【答案】(1)81?x,B(1,8);(2)(��4,��2)、(��16,2);(3)10.- 18 -【解析】y?试题分析:(1)把点A的坐标代入kx,就可求出反比例函数的解析式;解一次函数与反比例函数的解析式组成的方程组,就可得到点B的坐标;(2)①若∠BAP=90°,过点A作AH⊥OE于H,设AP与x轴的交点为M,如图1,对于y=��2x+10,当y=0时,��2x+10=0,解得x=5,∴点E(5,0),OE=5.∵A(4,2),∴OH=4,AH=2,∴HE=5��4=1.∵AH⊥OE,∴∠AHM=∠AHE=90°.又∵∠BAP=90°,∴∠AME+∠AEM=90°,∠AME+∠MAH=90°,∴∠MAH=∠AEM,∴△AHM∽△EHA,∴AHMH2MH??EHAH,∴12,∴MH=4,∴M(0,0),可设直线AP的解析式为y?mx,1?y?x??2??x?4811?y??y?xy?2?x,2,则有4m?2,解得m=2,∴直线AP的解析式为解方程组?得:??x??4?y??2,∴点P的坐标为(��4,��2)或?.1②若∠ABP=90°,同理可得:点P的坐标为(��16,2).?- 19 -1综上所述:符合条件的点P的坐标为(��4,��2)、(��16,2);?(3)过点B作BS⊥y轴于S,过点C作CT⊥y轴于T,连接OB,如图2,则有BS∥CT,CDCTBC5CTCD3????BD2.∵A(a,��2a+10)∴△CTD∽△BSD,∴BDBS.∵BD2,∴BS,B(b,��2b+10),∴C(��a,2a��考点:1.反比例函数综合题;2.待定系数法求一次函数解析式;3.反比例函数与一次函数的交点问题;4.相似三角形的判定与性质;5.压轴题.【2021年题组】1. (2021年湖南湘潭)如图,A、B两点在双曲线线段,已知S阴影=1,则S1+S2=()y?4x上,分别经过A、B两点向轴作垂- 20 -④若OABC是菱形,则两双曲线既关于x轴对称,也关于y轴对称.其中正确的结论是(把所有正确的结论的序号都填上).【答案】①④.考点:1.反比例函数综合题;2. 反比例函数的图象和k的几何意义;3.平行四边形、矩形的性质和菱形的性质.- 26 -9. (2021年湖北荆州)如图,已知点A是双曲线y?2x在第一象限的分支上的一个动点,连结AO并延长交另一分支于点B,以AB为边作等边△ABC,点C在第四象限.随着点A的运动,点C的位置也不断变化,但点C始终在双曲线是.y?kx(k<0)上运动,则k的值【答案】��6.考点:1.单动点问题;2.曲线上点的坐标与方程的关系;3. 等边三角形的性质;4.相似三角形的判定和性质;5.锐角三角函数定义;6.特殊角的三角函数值.- 27 -10. (2021年江苏淮安)如图,点A(1,6)和点M(m,n)都在反比例函数y?kx(x>0)的图象上,(1)k的值为;(2)当m=3,求直线AM的解析式;(3)当m>1时,过点M作MP⊥x轴,垂足为P,过点A作AB⊥y轴,垂足为B,试判断直线BP与直线AM的位置关系,并说明理由.【答案】(1)6;(2)y=��2x+8;(3)直线BP与直线AM的位置关系为平行,.- 28 -考点:1.反比例函数综合题;2.待定系数法的应用;3.曲线上点的坐标与方程的关系;4.相似三角形的判定和性质;5.平行的判定.?考点归纳归纳 1:反比例函数的概念基础知识归纳:一般地,函数(k是常数,k0)叫做反比例函数。

2009年白露中学中考数学试卷分析

2009年白露中学中考数学试卷分析

2009年白露中学中考数学试卷分析执笔:彭样光2009年中考在前两年基础上稳中有变,与去年相比难度有所下降,既充分体现了新课程标准的指导思想,又注重双基考查和能力及数学思想方法的考查,是一套比较适合大多数考生口味的成功试卷。

一、试卷总体情况1、试卷结构:本卷共六大题,25小题,满分120分,考试时间120分钟,其中选择题占25%,填空题占15%,解答题占60%。

2、考试内容:涉及到新课程标准的各个知识领域:数与式,空间与图形,统计与概率,分值分别占54分、48分和18分,题量合理为学生提供足够思考空间。

易中难三个档次的题目分值比约为4:2:1,整卷难度系数约0.67。

试题具有一定梯度,难度比往年有下降,尤其体现在压轴题上,今年第25题有较多学生能动手解答,且有一定量的学生能够得到较高的分值。

3、在知识点覆盖方面,不再刻意追求知识点覆盖率,同时注意到了避免偏题怪题,着重考查了支撑学科知识体系的知识主干内容,及应用性较强的知识(如数与式中的组合变形运算,函数与方程的综合,解直角三角形与圆的综合等知识)同时也有部分知识点没有考到:如分式方程、圆中有关的角等知识。

二、试卷基本特点1、关注基础知识,基本技能,基本方法和基本思想的考查,试题着重考查数与式的运算,方程、函数、统计、三角形、四边形等学科中的核心内容及数形结合思想,函数与方程思想,分类讨论及转化思想等。

2、试题加强了对操作、探究与实践能力的考查力度,如:第22题、24题、25题。

3、试题陈述准确精练、易懂,让学生更易于分析理解。

4、试题考查的思路从知识立意转向能力立意方面也有新突破,正确引导数学教学应由重视知识积累转向重视问题探索,培养学生学数学用数学的能力,同时也有利于更新数学教师的观念,促进其投身于数学教学与考试改革中去。

5、不足之处:①对数学尖子生的区分度不太明显;②第25题卷面所留学生答题空间稍少,学生答题表述过挤。

三、试卷分析及试卷评价2、各大题质量分析①选择题(第1~10题)主要考查学生对基础知识和基础能力的掌握情况,比较容易出错是第5、9两题,反映部分学生的空间思维能力还跟不上。

数学中考分类试题(含答案)

数学中考分类试题(含答案)

1有理数一、选择题1.(2009年福建省泉州市)计算:=-0)5(( ).A .1B .0C .-1D .-5【答案】A2.(2009年梅州市)12-的倒数为( ) A .12B .2C .2-D .1-【答案】C3.(2009年抚顺市)某市在一次扶贫助残活动中,共捐款2580000元.将2580000元用科学记数法表示为( )A .72.5810⨯元 B .70.25810⨯元 C .62.5810⨯元 D .625.810⨯元 【答案】C4.(2009年抚顺市)2-的相反数是( ) A .2 B .12-C .2-D .12【答案】A5.(2009年绵阳市)2009年初甲型H1N1流感在墨西哥暴发并在全球蔓延,我们应通过注意个人卫生加强防范.研究表明,甲型H1N1流感球形病毒细胞的直径约为0.00000156 m ,用科学记数法表示这个数是 A .0.156×10-5 B .0.156×105 C .1.56×10-6 D .1.56×106 【答案】C 6.(2009年绵阳市)如果向东走80 m 记为80 m ,那么向西走60 m 记为 A .-60 m B .︱-60︱m C .-(-60)m D .601m 【答案】A 7.(2009呼和浩特)2-的倒数是( ) A .12-B .12C .2D .2-答案:A8.(2009年龙岩)-2的相反数是( )A .-2B .2C .21D .-21 【答案】B 9.(2009年铁岭市)目前国内规划中的第一高楼上海中心大厦,总投入约14 800 000 000元.14 800 000 000元用科学记数法表示为( ) A .111.4810⨯元 B .90.14810⨯元C .101.4810⨯元D .914.810⨯元【答案】C10.(2009年黄石市)12-的倒数是( ) A .2 B .12 C .12- D .2-【答案】D11.(2009年广东省)《广东省2009年重点建设项目计划(草案)》显示,港珠澳大桥工程估算总投资726亿元,用科学记数法表示正确的是( )A .107.2610⨯ 元B .972.610⨯ 元C .110.72610⨯ 元 D .117.2610⨯元 【答案】A 12.(2009年枣庄市)实数a ,b 在数轴上的对应点如图所示,则下列不等式中错误..的是( ) A .0ab > B .0a b +< C .1ab <D .0a b -< 【答案】C13.(2009年枣庄市)-12的相反数是( ) A .2 B .2- C .12 D .12-【答案】C14.(2009年赤峰市)景色秀美的宁城县打虎石水库,总库容量为119600000立方米,用科学计数法表示为 ( ) A 、1.196×108立方米 B 、1.196×107立方米 C 、11.96×107立方米 D 、0.1196×109立方米 【答案】A15.(2009年赤峰市)3(3)-等于( ) A 、-9 B 、9 C 、-27 D 、2716.(2009贺州)计算2)3(-的结果是( ).A .-6B .9C .-9D .6 【答案】B 17.(2009年浙江省绍兴市)甲型H1N1流感病毒的直径大约是0.000 000 081米,用科学记数法可表示为( )A .8.1×190-米 B .8.1×180-米 C .81×190-米 D .0.81×170-米 【答案】B 18.(2009年江苏省)2-的相反数是( ) A .2 B .2-C .12D .12-【答案】A 19.(2009贵州黔东南州)下列运算正确的是( C ) A 、39±= B 、33-=- C 、39-=- D 、932=-【答案】B20.(2009年淄博市)如果2()13⨯-=,则“”内应填的实数是( D )A . 32B . 23C .23-D .32-21.(2009襄樊市)通过世界各国卫生组织的协作和努力,甲型H1N1流感疫情得到了有效的控制,到目前为止,全球感染人数约为20000人左右,占全球人口的百分比约为0.0000031,将数字0.0000031用科学记数法表示为( B ) A .53.110-⨯ B .63.110-⨯ C .73.110-⨯ D .83.110-⨯ 解析:本题考查科学记数法,0.0000031=63.110-⨯,故选B 。

2009年沈阳中考数学试题真题及答案(WORD排版)

2009年沈阳中考数学试题真题及答案(WORD排版)

A B CE DF2009年中考沈阳市数学试题一、选择题(每小题3分,共24分)1.-6的相反数是( )A .-6B .- 1 6C . 16D .62.如图是某几何体的三视图,则该几何体的名称是( )A .圆柱B .圆锥C .棱柱D .长方体3.据《沈阳日报》报道,今年前四个月辽宁省进出口贸易总值达164亿美元.164亿美元用科学记数法可以表示为( )A .16.4×10亿美元B .1.64×102亿美元C .16.4×102亿美元D .1.64×103亿美元4.下列图形中,既是轴对称图形,又是中心对称图形的是( )5.反比例函数y = 1x的图象在( )A .第一、二象限B .第一、三象限C .第二、四象限D .第三、四象限 6.一个三角形的周长是36cm ,以这个三角形各边中点为顶点的三角形的周长是( ) A .8cm B .12cm C .15cm D .18cm 7.下列说法错误的是( )A .必然发生的事件发生的概率为1B .不可能发生的事件发生的概率为0C .不确定事件发生的概率为0D .随机事件发生的概率介于0和1之间8.如图,AC 是矩形ABCD 的对角线,E 是边BC 延长线上一点,AE 与CD 交于点F ,则图中相似三角形共有( )A .2对B .3对C .4对D .5对 二、填空题(每小题3分,共24分)9.如图,数轴上A 、B 两点表示的数分别为a 、b ,则a 、b 两数的大小关系是 .10.一元二次方程x 2+2x =0的解是 .11.在一节综合实践课上,五名同学手工作品的数量(单位:件)分别是:3、8、5、3、4.则这组数据的中位数是 件.12.不等式4x -2≤2的解集是 .主视图 俯视图 左视图BC 13.小莉与小华约定周日10点整到敬老院看望老人.10点整,时钟上的时针与分针所夹的锐角是 度.14.有一组单项式:a 2,- a 3 2, a 3,- a 4,….观察它们构成规律,用你发现的规律写出第10个单项式为 .15.如图,在平面直角坐标系中,已知点A (1,0)和点B (0,3),点C 在坐标平面内.若以A 、B 、C 为顶点构成的三角形是等腰 三角形,且底角为30º,则满足条件的点C 有 个. 16.如图,市政府准备修建一座高AB =6m 的过街天桥,已知天桥的坡面AC 与地面BC 的夹角∠ACB 的正弦值为35,则坡面AC 的长度为 m .三、(第17小题6分,第18、19小题各8分,第20小题10,共32分)17.计算:|12|3181--⎪⎭⎫⎝⎛-+-.18.先化简,再求值:x x +1 ÷ 3xx 2-1,其中=3+1.19.如图,AB 是⊙O 的直径,点C 在AB 的延长线,CD 与⊙O 相切于点D ,∠C =20º.求∠ADC 的度数.20.七巧板是我国流传已久的一种智力玩具.小鹏在玩七巧板时用它画成了3幅图案并将它贴在3张完全相同的不透明卡片上,如图.小鹏将这3张卡片背面朝上洗匀后放在桌子上,从中随机抽取一张卡片,放回后洗匀,再随机抽取一张卡片.请你用列表法或画树状图(树形图)法,帮助小鹏求出两张卡片上的图案都是小动物的概率(卡片名称可用字母表示).A B C DEFMN四、(每小题10分,共20分)21.如图,在□ABCD 中,点E 在AD 上,连接BE ,DF ∥BE 交BC 于点F ,AF 与BE 交与点M ,CE 与DF 交于点N .求证:四边形MFNE 是平行四边形.22.先阅读下列材料,再解答后面的问题.材料:密码学是一门很神秘、很有趣的学问.在密码学中,直接可以看到的信息称为明码,加密后的信息称为密码,任何密码只要找到了明码与密码的对应关系—蜜钥,就可以破译它.密码学与数学是有关系的.为此,八年级一班数学兴趣小组经过研究实验,用所学的一:因此,“自”字经加密转换后的结果是“9140”. (1)请你求出当蜜钥为y =3x +13时,“信”字经加密转换后的结果;(2)为了提高密码的保密程度,需要频繁地更换蜜钥.若“自信”二字用新的蜜钥进行加请求出这个新的蜜钥,并直接写出“信”字用新的蜜钥加密转换后的结果.五、(本题12分)23.吸烟有害健康.你知道吗,被动吸烟夜大大危害着人类的健康.为此,联合国规定每年的5月31日为“世界无烟日”.为配合今年的“世界无烟日”宣传活动,小明和同学们在学校所在地区开展了以“我支持的戒烟方式”为主题的问卷调查活动,征求市民的意见,并将调查结果分析整理后,制成了统计图:(1)求小明和同学们一共随机调查了多少人? (2)根据以上信息,请你把统计图补充完整; (3)如果该地区有2万人,那么请你根据以上调查结果,估计该地区大约有多少人支持“强制戒烟”这种戒烟方式?六、(本题12分)24.种植能手小李的试验田可种植A 种作物或B 种作物(A 、B 两种作物不能同时种植),原有的种植情况如下表.通过参加农业科技培训,小李提高了种植技术.现准备在原有的基础上增种作物,以提高总产量,但根据科学种植的经验,每增种1棵A 种或B 种作物,都会导致单棵作物平均产量减少0.2kg ,而且每种作物的增种量都不能超过原有数量的(1)A种作物增种m 棵后,单棵平均产量为 kg ,B 种作物增种n 棵后,单棵平均产量为 kg ;(2)求y A 与m 之间的函数关系式及y B 与n 之间的函数关系式;(3)求提高种植技术后小李增种何种作物可获得最大总产量?最大总产量是多少?戒烟戒烟戒烟 戒烟七、(本题12分)25.将两个全等的直角三角形ABC 和DBE 按图①方式摆放,其中∠ACB =∠DEB =90º,∠A=∠D =30º,点E 落在AB 上,DE 所在直线交AC 所在直线于点F . (1)求证:AF +EF =DE ;(2)若将图①中的△DBE 绕点B 按顺时针方向旋转角α,且0º<α<60º,其他条件不变,请在图②中画出变换后的图形,并直接写出(1)中的结论是否仍然成立; (3)若将图①中的△DBE 绕点B 按顺时针方向旋转角β,且60º<β<180º,其他条件不变,如图③.你认为(1)中的结论还成立吗?若成立,写出证明过程;若不成立,请写出此时AF 、EF 与DE 之间的关系,并说明理由.八、(本题14分)26.如图,在平面直角坐标系中,点O 为坐标原点.△OAB 的边OA 在x 轴的正半轴上,点A 的坐标为(2,0),点B 在第一象限内,且OB =3,∠OBA =90º.以OB 所在直线折叠Rt △OAB ,使点A 落在点C 处. (1)求证:△OAC 为等边三角形;(2)点D 在x 轴上,且点D 的坐标为(4,0).点P 为线段OC 上一动点(点P 不与点O 重合),连接P A 、PD .设PC =x ,S △P AD =y ,求y 与x 之间的函数关系式;(3)在(2)的条件下,当x = 1 2时,过点A 作AM ⊥PD 于点M ,若k = 7AM2PD,求证:二次函数y =-2x 2-(7k -33)x +3k 的图象关于y 轴对称.ACB图①图②沈阳市2009年中等学校招生统一考试数学试题参考答案及评分标准一、选择题(每小题3分,共24分)1.D 2.A 3.B 4.B 5.B 6.D 7.C 8.C 二、填空题(每小题3分,共24分)9.a <b 10. x 1=0,x 2=-2 11. 4 12. x ≤1 13. 60 14.1011a - 15.6 16. 10.三、(第17小题6分,第18、19小题各8分,第20小题10分,共32分)17.解:原式=12322+-- ·················································································· 4分 =22- ························································································································· 6分18.解:原式=xx x x 3112-⋅+ =x x x x x 3)1)(1(1-+⋅+ =31-x ····························································································································· 6分当31+=x 时,原式=3131-+=33······························································ 8分 19.解:∵连接OD ······················································· 1分∵CD 与⊙O 相切于点D ,∴∠CDO =90° ∵∠C =20°,∴∠COD =90°-20°=70° ∵OD =OA ,∴∠A =∠ADO ············································· 6分 又∵∠ADO =∠A =21∠COD =35° ∴∠CDA =∠CDO +∠ADO =125° ······································· 8分或画树状图(树形图)得······································································································································· 6分 由表格(或画树状图/树形图)可知,共有9种等可能性结果,其中两张卡片上的图案都是小动物的结果有4种. ······································································································ 8分∴P (两张卡片上的图案都是小动物)=94. ······························································ 10分 四、(每小题10分,共20分)21.证明:∵四边形ABCD 是平行四边形,∴AD =BC ,AD //BC 又∵DF //BE ,∴四边形BEDF 是平行四边形. ∴DE =BF . ········································· 5分 ∴AD -DE =BC -BF ,即AE =CF 又∵AE //CF ,∴四边形AFCE 是平行四边形 ∴MF //NE ,∴四边形MFNE 是平行四边形. ······························································ 10分 22.解:⑴∵X 的明码是24,其密码值y =3×24+13=85;I 的密码值y =40; N 的明码是14,其密码值y =3×14+13=55. ································································ 3分 ∴“信”字经加密转换后的结果是“854055”. ··························································· 4分⑵根据题意,得⎩⎨⎧+=+=b k b k 9362670解得⎩⎨⎧==182b k ··················································································································· 7分∴这个新的密钥是y =2x +18 ∴“信”字用新的密钥加密转换后的结果是“663646”. ········································ 10分 五、(本题12分)23.解:⑴20÷10%=200(人)所以,此小组一共随机调查了200人 ············································································ 3分 ⑵如图···································································· 9分 ⑶20000×45%=9000(人)所以,该地区大约有9000人支持强制戒烟. ··························································· 12分 六、(本题12分) 24.解:⑴(30-0.2m );(26-0.2n ) ············································································· 2分 ⑵y A =)2.030)(50(m m -+,即 y A =1500202.02++-m my B =)2.026)(60(n n -+,即 y B =1560142.02++-n n ···································· 7分⑶由⑵得y A =150020022++-m m =2000)50(2.02+--m ,∵-0.2<0,∴当m =50时,y A 有最大值,但m ≤50×80%,即m ≤40 ∴当m =40时,y A 的最大值为1980y B =1560142.02++-n n =1805)35(2.02+--n∵-0.2<0,∴当n =35时,y B 有最大值,并且n ≤60×80%,即n ≤48 ∴当n =35时,y B 的最大值为1805. ············································································ 11分 又∵1980>1805, ∴小李增种A 种作物可获得最大产量,最大产量是1980千克. ······························ 12分 七、(本题12分)25.解:⑴连接BF (如图①), ····················································································· 1分 ∵△ABC ≌△DBE ,∴BC =BE ,AC =DE . ∵∠ACB =∠DEB =90°,∴∠BCF =∠BEF =90°,∵BF =BF ,∴Rt △BFC ≌Rt △BFE . ························································································· 3分∴CF =EF . 又∵AF +CF =AC ,∴AF +EF =DE . ··························································· 5分 ⑵画出正确图形如图② ···································································································· 7分 ⑴中的结论AF +EF =DE 仍然成立. ·············································································· 8分 ⑶不成立.此时AF 、EF 与DE 的关系为AF - EF =DE ················································ 9分 理由:连接BF (如图③),∵△ABC ≌△DBE ,∴BC =BE ,AC =DE , ∵∠ACB =∠DEB =90°,∴∠BCF =∠BEF =90°. 又∵BF =BF ,∴Rt △BFC ≌Rt △BFE . ·········································································· 10分 ∴CF =EF . 又∵AF -CF =AC ,∴AF -EF = DE . ······················································ 11分 ∴⑴中的结论不成立. 正确的结论是AF -EF = DE ················································· 12分八、(本题14分)26.解:⑴由题意可知 OA =OC .∵∠OBA =90°,OB =3,A 的坐标为(2,0),∴sin ∠OAB =23,∴∠OAB =60,∴△OAC 为等边三角形. ····································· 3分 ⑵由⑴可知OC =OA =2,∠COA =60°.∵PC =x ,∴OP =2-x 过点P 作PE ⊥OA 于点E ,在Rt △POE 中,sin ∠POE =OP PE ,即232=-x PE ,∴PE =323)2(23+-=-x x . ·············································································· 7分 图③ 图②图①∴S △P AD =PE AD ⋅21PE PE =⋅-=)24(21,∴y 323+-=x ······························· 9分 ⑶当x =21时,即PC =21,∴OP =23.在Rt △POE 中,PE =OP ·sin ∠POE =433 OE = OP ·cos ∠POE =43,∴DE =OD -OE =413434=- ∴在Rt △PDE 中,PD =27)413()433(2222=+=+DE PE ······························ 10分 又∵S △P AD 323+-=x 32123+⨯-=433=∴S △P AD =AM PD ⋅21433=,∴AM 433=,∴k =PD AM 27=733 ∴k x k x y 3)337(22+---==7333)337337(22⨯+-⨯--x x ∴7922+-=x y ··········································································································· 13分 ∵此二次函数图象的对称轴是直线x =0,∴此二次函数的图象关于y 轴对称. ········ 14分(以上答案仅供参考,如有其它做法,可参照给分)。

(完整)专题二中考数学转化思想(含答案)-,推荐文档

(完整)专题二中考数学转化思想(含答案)-,推荐文档

第2讲转化思想概述:在解数学题时,所给条件往往不能直接应用,•此时需要将所给条件进行转化,这种数学思想叫转化思想,在解题中经常用到.典型例题精析例1.(2002,上海)如图,直线y=12x+2分别交x,y轴于点A、C、P•是该直线上在第一象限内的一点,PB⊥x轴,B为垂足,S△ABP=9.(1)求P点坐标;(2)设点R与点P在同一反比例函数的图象上,且点R在直线PB右侧.作RT⊥x轴,•T为垂足,当△BRT与△AOC相似时,求点R的坐标.分析:(1)求P点坐标,进而转化为求PB、OB的长度,P(m,n)•再转为方程或方程组解,因此是求未知数m,n值.∵S△ABP=9,∴涉及AO长,应先求AO长,由于A是直线y=12x+2与x轴的交点,∴令y=0,得0=12x+2,∴x=-4,∴AO=4.∴(4)2m n=9…①又∵点P(m,n)在直线y=12x+2上,∴n=12m+2…②联解①、②得m=2,n=3,∴P(2,3).(2)令x=0,代入y=12x+2中有y=2,∴OC=2,∴△AOC∽△BRT,设BT=a,RT=b.分类讨论:①当24ba =…①又由P点求出可确定反比例函数y=6 x又∵R(m+a,b)在反比例函数y=6x上∴b=6m a+……②联解①、②可求a,b值,进而求到R点坐标.②当24ab=时,方法类同于上.例2.(2002,南京)已知:抛物线y1=a(x-t-1)2+t2(a,t是常数,a≠0,t≠0)•的顶点是A,抛物线y2=x2-2x+1的顶点是B.(1)判断点A是否在抛物线y2=x2-2x+1上,为什么?(2)如果抛物线y1=a(x-t-1)2+t2经过点B,①求a的值;②这条抛物线与x轴的两个交点和它的顶点A能否构成直角三角形?•若能,求出t的值;若不能,请说明理由.分析:(1)∵y1的顶点为(t+1,t2),代入y2检验x2-2x+1=(t+1)2-2(t+1)+1=t2+2t+1-2t-2+1=t2,∴点A在y2=x2-2x+1的抛物线上.(2)①由y2=x2-2x+1=(x-1)2+0,∴y2顶点B(1,0),因为y1过B点,∴0=a(1-t-1)2+t 2⇒at2+t2=0.∵t≠0,∴t2≠0,∴a=-1.①当a=-1时,y=-(x-t-1)2+t2,它与x轴的两个交点纵坐标为零,即y1=0,有0=-(x-t-1)2+t2⇒x-t-1=±t∴x1=t+t+1=2t+1, x2=-t+t+1=1.情况一:两交点为E(2t+1,0),F(1,0).而A(t+1,t2)由对称性有AF=AE(如图)∴只能是∠FAE=90°,AF2=AD2+DF2.而FD=OD-OF=t+1-1=t,A D=t2,∴AF2=t2+t2=AE2,FE=OE-OF=2t+1-1=2t.令EF2=AF2+AE2,则有(2t)2=2(t2+t2),4t2=2t4+2t2,∵t≠0,∴t2-1=0,∴t=±1.情况二:E(1,0),F(2t+1,0)用分析法若△FAE为直角三角形,由抛物线对称性有AF=AE即△AFE为等腰直角三角形.且D为FE中点,∵A(t+1,t2),∴AD=t2,OD=t+1,∴AD=DE,∴t2=OE-OD=1-(t+1),t2=-t,∴t1=0(不合题意,舍去),t2=-1.故这条抛物线与x轴两交点和它们的顶点A能够成直角三角形,这时t=±1.中考样题看台1.(2003,海南)已知抛物线y=ax2+bx+c开口向下,并且经过A(0,1)和M(2,-3)两点.(1)若抛物线的对称轴为x=-1,求此抛物线的解析式;(2)如果抛物线的对称轴在y轴的左侧,试求a的取值范围;(3)如果抛物线与x轴交于B、C两点,且∠BAC=90°,求此时a的值.2.(2003,南宁)如图,已知E是△ABC的内心,∠A的平分线交BC于点F,•且与△ABC 的外接圆相交于点D.(1)求证:∠DBE=∠DEB;(2)若AD=8cm,DF:FA=1:3,求DE的长.3.(2003,山东)如图是由五个边长都是1的正方形纸片拼接而成的,过点A 1的直线分别与BC 1、BE 交于M 、N ,且被直线MN 分成面积相等的上、下两部分. (1)求1MB +1NB的值; (2)求MB 、NB 的长;(3)将图沿虚线折成一个无盖的正方形纸盒后,求点MN 间的距离.D 2C 2B 1A 1D 1C 1BC AE D NM F4.(2004,云南)如图,MN 表示某引水工程的一段设计路线,从M 到N•的走向为南偏东30°,在M 的南偏东60°方向上有一点A ,以A 为圆心,500•米为半径的圆形区域为居民区,取MN 上另一点B ,测得BA 的方向为南偏东75°,已知MB=400米,通过计算,如果不改变方向,输水线路是否会穿过居民区?东北ABNM5.(2004,丽水市)如图,在平面直角坐标系中,已知OA=12厘米,OB=6厘米,点P•从点O 开始沿OA 边向点A 以1厘米/秒的速度移动;点Q 从点B 开始沿BO 边向点O 以1厘米/秒的速度移动,如果P 、Q 同时出发,用t (秒)表示移动的时间(0≤t ≤6),那么 (1)设△POQ 的面积为y ,求y 关于t 的函数解析式;(2)当△POQ 的面积最大时,将△POQ 沿直线PQ 翻折后得到△PCQ ,试判断点C•是否落在直线AB 上,并说明理由;(3)当t 为何值时,△POQ 与△AOB 相似.B Ay xQ PO考前热身训练1.已知抛物线y=(x-2)2-m 2(常数m>0)的顶点为P . (1)写出抛物线的开口方向和P 点的坐标;(2)若此抛物线与x 轴的两个交点从左到右分别为A 、B ,并且∠APB=90°,试求△ABP 的周长.2.已知m ,n 是关于x 方程x 2+(x+2t=0的两个根,且m 2过点Q (m ,n )的直线L 1与直线L 2交于点A (0,t ),直线L 1,L 2分别与x 轴的负半轴交于点B 、C ,如图,△ABC 为等腰三角形. (1)求m ,n ,t 的值; (2)求直线L 1,L 2的解析式;(3)若P 为L 2上一点,且△ABO ∽△ABP ,求P 点坐标.l 2Al 1BCy xQO3.如图,正方形ABCD 中,AB=1,BC 为⊙O 的直径,设AD 边上有一动点P (不运动至A 、D ),BP 交⊙O 于点F ,CF 的延长线交AB 于点E ,连结PE .(1)设BP=x ,CF=y ,求y 与x 之间的函数关系式,并写出自变量x 的取值范围; (2)当CF=2EF 时,求BP 的长;(3)是否存在点P ,使△AEP ∽△BEC (其对应关系只能是A ↔B ,E ↔E ,P ↔C )?如果存在,•试求出AP 的长;如果不存在,请说明理由.BCE答案:中考样题看台1.(1)抛物线解析式是y=-12x2-x+1(2)由题意得:1423ca b c=⎧⎨++=-⎩消去c,得b=-2a-2,•又∵抛物线开口向下,对称轴在y轴左侧,∴2aba<⎧⎪⎨-<⎪⎩∴b<0,∴b=-2a-2<0,解得a>-1,∴a的取值范围是-1<a<0(3)由抛物线开口向下,且经过点A(0,1)知:它与x轴的两个交点B、C分别在原点的两旁,此时B、C两点的横坐标异号OA=c=1,又∠BAC=90°,∴点A必在以BC为直径的圆上;又∵OA⊥BC于O,∴OA2=OB·OC,又∵b=-2a-2,c=1,∴抛物线方程变为:y=ax2-2(a+1)x+1,设此抛物线与x轴的两个交点分别为B(x1,0),C(x2,0),则x1、x2是方程ax2-2(a+1)x+1=0的两根,∴x1·x2=1a,∴OB·OC=│x1│·│x2│=│x1x2│=-x1x2,(∵x1·x2<0),•∴OB·OC=-1a,又∵OA2=OB·OD,OA=1,∴1=-1a,解得a=-1,经检验知:当a=-1时,所确定的抛物线符合题意,故a的值为-1.2.(1)证明,由已知∴∠1=∠2,∠3=∠4,∵∠BED=∠3+∠1,∠5=∠2,∴∠4+∠5=∠3+∠1,即∠EBD=∠BED.(2)△BFD∽△ABD,∴BD2=AD·FD.∵DF:FA=1:3,AD=8,∴DF:AD=1:4,∴184DF =,DF=2cm ,∴BD 2=16,∴DE=BD=4cm . 3.(1)∵111NB MB A B MB =,即11NB MBMB =-, 得MB+NB=MB ·NB ,两边同除以MB ·NB 得1MB +1NB=1. (2)12MB ·NB=52,即MB ·NB=5, 又由(1)可知MB+NB=MB ·NB=5,∴MB 、NB•分别是方程x 2-5x+5=0的两个实数根,x 1=52+,x 2=52-, ∵MB<NB ,∴(3)B 1MN=1.4.解:过A 作AC ⊥MN 于C ,设AC 长为x 米,由题意可知,∠AMC=30°,∠ABC=45°, •∴MC=AC ·cot30°=3x ,BC=AC=x ,∵MC-BC=MB=400.解得x=200(3+1)(米).• ∴x>500,∴不改变方向,输水线路不会穿过居民区.5.解:(1)∵OA=12,OB=6,由题意,得BQ=1×t=t ,OP=1×t=t . ∴OQ=6-t ,∴y=12וOP ×OQ=12×t (6-t )=-12t 2+3t (0≤t ≤6) (2)∵y=-12t 2+3t ,∴当y 有最大值时,t=3, ∴OQ=3,OP=3,即△POQ 是等腰三角形.•把△POQ 沿PQ 翻折后,可得四边形OPCQ 是正方形, ∴点C 的坐标是(3,3),∵A (12,0),B (0,6), ∴直线AB 的解析式为y=-12x+6, 当x=3时,y=92≠3,∴点C不落在直线AB上.(3)△POQ∽△AOB时,①若OQ OPOB OA=,即6612t t-=,12-2t=t,∴t=4.②若OQ OPOA OB=,即6126t t-=,6-t=2t,∴t=2,•∴当t=4或t=2时,△POQ与△AOB相似.考前热身训练1.(1)开口向上,P(2,-m2).(2)设对称轴与x轴交于点C,令(x-2)2-m2=0,得x1=-m+2,x2=m+2,∴A(-m+2,0),B(•m+2,0),∴AC=│2-(-m+2)│=m,(∵m>0)由抛物线对称性得PA2=AC2+PC2=m2+(-m2)2.∵∠APB=90°,∴易证AC=PC,即│m│=│-m2│,∴m1=0,m2=±1.∵m>0,∴m=1,∴△ABC的周长为.2.(1)m=-2,,(2)L1:y2L2:y=3(3)过B作BP1⊥AC于P1,则P1(32,2),过B作BP2⊥AB于P2,则P2(-2,2).3.(1)y=1x().(2)(3)若△AEP∽△BEC,则AE APBE BC=,易知Rt△BAP≌Rt△CBE,BE=AP.BCAyxPO设AP=t (0<t<1),则AE=AB-EB=1-t ,∴11t t t -=,∴,又∵0<t<1,∴t=12,即P 点存在,且AP=12.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

G (第23题图(1))
∴CD=20-x …………………………………5 分
A
∵ tan ACD AD ,即 tan 30 x
…6 分
M
DC
20 x
B
D
C

x
20 1
tan tan
30 30
20 10 3 1
3 1 7.3 (米) …7 分
N G
(第23题图(2))
答:路灯 A 离地面的高度 AD 约是 7.3 米.
∴∠OCD=90° ………………………3 分
∴∠OCB+∠DCF=90°
∵∠D+∠DCF=90°
∴∠OCB=∠D ………………………4 分
∵OB=OC
D
∴∠OCB=∠B
∵∠B=∠AEC
∴∠D=∠AEC ………………………5 分
(3)在 Rt△OCF 中,OC=5,CF=4
A C
O F E
B (第25题图 )
…………………………2 分
所以,抛物线的关系式为 y=(x-2)2-1=x2-4 x+3 ……3 分
(2)∵点 M(x,y1),N(x+1,y2)都在该抛物线上 ∴y1-y2=(x2-4 x+3)-[(x+1)2-4(x+1)+3]=3-2 x …………4 分

3-2
x>0,即
x
3 2
时,y1>y2
F
E (第22题图 )
C B
23.解:(1)见参考图 ……………………………3 分
A
(不用尺规作图,一律不给分。对图(1)画出弧 EF 给 1 分,
画出交点 G 给 1 分,连 AG 给 1 分;对图(2),画出弧 AMG
D
给 1 分,画出弧 ANG 给 1 分,连 AG 给 1 分)
BE
F
C
(2)设 AD=x,在 Rt△ABD 中,∠ABD=45° ∴BD=AD=x …………………………………4 分
……………………5 分
20.解:设该镇这两年中财政净收入的平均年增长率为 x, ……………………1 分
依题意可得:5000(1+x)2=2×5000
………………………………4 分
解得 x 1 2 ,或 x 1 2 0 (舍去) ……………………5 分
∴ x 2 1 0.414 41.4% ……………………………………6 分
二、选择题:本大题共 8 小题,每小题 3 分,共 24 分. 题号 11 12 13 14 15 16 17 18 答案 D B C D A C C B
三、解答题:本大题共 8 小题,满分 66 分.
19.解:原式= 9 1 9 2 2 2
…………4 分(每对一个值给 1 分)

=1+1=2
2009 年来宾市初中毕业升学统一考试试题
数学参考答案及评分标准
一、填空题:本大题共 10 小题,每小题 3 分,共 30 分.
1.-237; 2.10; 3.(x+2)(x-2); 4. 5
2
; 5.
x
y
1
; 6.
1
y
2 x

7.1.30×105; 8.65; 9.2; 10.答案不唯一,只要符合题意均给分.
………………………………5 分

3-2
x=0,即
x
3 2
时,y1=y2
………………………………6 分

3-2
x<0,即
x
3 2
时,y1<y2
………………………………7 分
33
(3)令 y=0,即 x2-4 x+3=0,得点 A(3,0),B(1,0),线段 AC 的中点为 D( , )
22
直线 AC 的函数关系式为 y=-x+3 ………………………………8 分
答:该镇这两年中财政净收入的平均年增长率约为 41.4﹪. …………7 分
21.解:(1)502;(2)23.71;(3)图略,值为 150(图、值各 1 分);(4)80—99. (每小题各 2 分)
22.证明:∵四边形 ABCD 是平行四边形 ∴CD=AB,AD=CB,∠DAB=∠BCD……2 分
2
2
5
55
2 x 62 72
5
5
72
故当 x=6 时,S 取得最大值
5
………………………………7 分
此时,y=12-6=6,即 AE=AD.因此,△ADE 是等腰三角形. ……8 分
25.解:(1)∵BC 是⊙O 的弦,半径 OE⊥BC
∴BE=CE
…………………2 分
(2)连结 OC
∵CD 与⊙O 相切于点 C
D
∴△ABC 是直角三角形,∠ACB=90° ………………4 分
∴ sin A
BC
DF
,即
8
DF
AB AD 10 12 x
∴ DF 48 4x
………………………………5 分
CE F
A
5
(第24题图 )
∴ S 1 AE DF 1 x 48 4x 2 x2 24 x …………6 分
∴ OF OC 2 CF 2 52 42 3
…………6 分
∵∠COF=∠DOC,∠OFC=∠OCD ∴Rt△OCF∽Rt△ODC ………………………………8 分
OD

OC
,即 OD
OC 2
52
25
…………9 分
OC OF
OF 3 3
∴ DE OD OE 25 5 10
3
3
∴ S CDE
又∵△ADE 和△CBF 都是等边三角形 ∴DE=BF,AE=CF
∠DAE=∠BCF=60°
………………4 分
∵∠DCF=∠BCD-∠BCF
D
∠BAE=∠DAB-∠DAE
∴∠DCF=∠BAE
……………………6 分 A
∴△DCF≌△BAE(SAS) ………………7 分
∴DF=BE
∴四边形 BEDF 是平行四边形. …………8 分
因为△OAC 是等腰直角三角形,所以,要使△DEF 与△OAC 相似,△DEF 也必须是等
腰直角三角形.由于 EF∥OC,因此∠DEF=45°,所以,在△DEF 中只可能以点 D、F 为直
…8 分
24.解:(1)∵DE 平分△ABC 的周长
∴ AD AE 6 8 10 12 ,即 y+x=12 2
……1 分
∴y 关于 x 的函数关系式为:y=12-x(2≤x≤6)……3 分(取值范围占 1 分)
(2)过点 D 作 DF⊥AC,垂足为 F
B
∵ 62 82 102 ,即 AC 2 BC 2 AB 2
1 DE CF 2
1 10 4 23
20 3
…………10 分
注:本小题也可利用 Rt△OCD∽Rt△ACB 等,以及 S△CDE=S△OCD-S△OCE 求解.
26.解:(1)由题意可设抛物线的关系式为 y=a(x-2)2-1
…………1 分
因为点 C(0,3)在抛物线上
所以 3=a(0-2)2-1,即 a=1
相关文档
最新文档