指数与指数函数A

合集下载

指数与指数函数知识点

指数与指数函数知识点

指数与指数函数知识点数学中的指数与指数函数是非常重要且常见的概念。

在我们的日常生活中,指数和指数函数可以用来描述各种自然现象、科学问题以及经济趋势等。

本文将详细介绍指数与指数函数的定义、性质以及一些常见应用,以加深读者对这一概念的理解。

一、指数的定义和性质在数学中,指数是一种表示幂次方的数学运算。

指数是由两个数构成,其中一个为底数,另一个为指数。

底数表示要进行幂运算的数字,指数表示底数要乘以自身多少次。

例如,2的3次方即为2的指数为3的结果,即2x2x2=8。

指数函数是指数的一种特殊形式,即以常数为底数的幂函数。

指数函数的一般形式为y=a^x,其中a是底数,x是指数,y是指数函数的值。

指数函数的图像通常具有特定的特征,例如,当底数大于1时,指数函数呈现递增趋势;当底数在0和1之间时,指数函数呈现递减趋势。

指数有一些基本的性质。

首先,任何数的0次方都等于1,即a^0=1。

其次,任何非零数的负指数都是倒数,即a^(-n)=1/(a^n)。

此外,指数相乘等于底数不变指数相加,即a^m * a^n = a^(m+n)。

二、指数函数的应用指数函数在各个领域都有广泛的应用。

以下是指数函数在生活和科学中的一些常见应用:1. 经济增长:经济学家常常使用指数函数来描述一个国家或地区的经济增长趋势。

经济增长往往呈现指数增长的形式,即以固定的增长率逐渐增加。

指数函数可以帮助经济学家预测未来的经济趋势和制定相应的政策。

2. 生物衰变:在生物学的研究中,指数函数可以用来描述物种的衰变过程。

例如,放射性物质的衰变速度可以用指数函数进行建模。

指数函数的形式可以提供准确地描述和计算物种在特定时间内的衰减情况。

3. 自然增长:人口学家使用指数函数来研究人口的自然增长过程。

指数函数可以帮助人口学家了解一个地区的人口趋势和人口变化的因素,为政府提供人口规划和政策制定方面的参考。

4. 电子电路:在电子学中,指数函数可以用来描述电路中的电流和电压变化。

指数与指数函数知识点

指数与指数函数知识点

资料范本本资料为word版本,可以直接编辑和打印,感谢您的下载指数与指数函数知识点地点:__________________时间:__________________说明:本资料适用于约定双方经过谈判,协商而共同承认,共同遵守的责任与义务,仅供参考,文档可直接下载或修改,不需要的部分可直接删除,使用时请详细阅读内容指数函数(一)整数指数幂1.整数指数幂概念:2.整数指数幂的运算性质:(1)(2)(3)其中,.3.的次方根的概念一般地,如果一个数的次方等于,那么这个数叫做的次方根,即:若,则叫做的次方根,例如:27的3次方根,的3次方根,32的5次方根,的5次方根.说明:①若是奇数,则的次方根记作;若则,若则;②若是偶数,且则的正的次方根记作,的负的次方根,记作:;(例如:8的平方根 16的4次方根)③若是偶数,且则没意义,即负数没有偶次方根;④ ∴;⑤式子叫根式,叫根指数,叫被开方数。

∴..4.的次方根的性质一般地,若是奇数,则;若是偶数,则.(二)分数指数幂1.分数指数幂:即当根式的被开方数能被根指数整除时,根式可以写成分数指数幂的形式;如果幂的运算性质(2)对分数指数幂也适用,例如:若,则,,∴ .即当根式的被开方数不能被根指数整除时,根式也可以写成分数指数幂的形式。

规定:(1)正数的正分数指数幂的意义是;(2)正数的负分数指数幂的意义是.2.分数指数幂的运算性质:整数指数幂的运算性质对于分数指数幂也同样适用即说明:(1)有理数指数幂的运算性质对无理数指数幂同样适用;(2)0的正分数指数幂等于0,0的负分数指数幂没意义。

二、指数函数1.指数函数定义:一般地,函数(且)叫做指数函数,其中是自变量,函数定义域是.2.指数函数在底数及这两种情况下的图象和性质:1.1 实数指数幂及其运算(一)(一)选择题1.下列正确的是( )A.a0=1 B. C.10-1=0.1 D.2.的值为( )A.±2B.2 C.-2 D.43.的值为( )A.B.C.D.4.化简的结果是( )A.a B.C.a2 D.a35.把下列根式化成分数指数幂的形式(其中a,b>0)(1)______;(2)=______;6.______.7.化简______.8.=______(三)解答题9.计算10.计算1.2 实数指数幂及其运算(二)(一)选择题(每道题的四个选择答案中有且只有一个答案是正确的) 1.下列说法正确的是(n∈N*)( )A.正数的n次方根是正数B.负数的n次方根是负数C.0的n次方根是0 D.是无理数2.函数的定义域为( )A.R B.[0,+∞)C.(0,+∞)D.(-∞,1] 3.可以简化为( )A.B.C.D.4.化简的结果是( )A.B.x2 C.x3 D.x4(二)填空题5.________,________________________.6.________.7.计算________.8.若a+a-1=3,则a2+a-2=______.10.若求的值.1.3 指数函数(一)(一)选择题(每道题的四个选择答案中有且只有一个答案是正确的)1.一种细胞在分裂时由一个分裂成两个,两个分裂成四个,四个分裂成八个……每天分裂一次.现在将一个该细胞放入一个容器,发现经过10天就可充满整个容器,则当细胞分裂到充满容器一半时需要的天数是( ) A.5 B.9 C.6 D.82.下列函数中为指数函数的是( )A.y=2·3x B.y=-3x C.y=3-x D.y=1x3.若0.2m=3,则( )A.m>0 B.m<0 C.m=0 D.以上答案都不对4.函数f(x)=ax+1(其中a>0且a≠1)的图象一定经过点( )A.(0,1) B.(0,2) C.(0,3) D.(1,3)(二)填空题5.若函数f(x)是指数函数且f(3)=8,则f(x)=______.6.函数的定义域为______,值域为______.7.函数y=2x-1的图象一定不经过第______象限;若函数的图象不经过第一象限,则实数b的取值范围是______.8.若2m>4,则m的取值范围是______;若(0.1)t>1,则t的取值范围是______.9.指数函数y=(a2-1)x在R上是减函数,则实数a的取值范围是______.(三)解答题10.根据函数f(x)=2x的图象,画出下列函数的草图.(1)y=-2x (2)y=-2x+1 (3)y=2|x|11.求函数的定义域和值域.12.已知a>0且a≠1,函数f1(x)=,f2(x)=,若f1(x)<f2(x),求x 的取值范围.1.4 指数函数(二)(一)选择题(每道题的四个选择答案中有且只有一个答案是正确的)1.若,则x的取值范围是( )A.(-∞,-3] B.(-∞,-3) C.[-3,+∞)D.R2.已知三个数M=0.32-0.32,P=0.32-3.2,Q=3.2-0.32,则它们的大小顺序是( )A.M<P<Q B.Q<M<P C.P<Q<M D.P<M<Q3.如图是指数函数①y=ax,②y=bx,③y=cx,④y=dx的图象,则a,b,c,d与0和1的大小关系是( )A.0<a<b<1<c<d B.0<b<a<1<d<cC.1<a<b<c<d D.0<a<b<1<d<c4.函数y=2x-2-x( )A.在R上减函数B.在R上是增函数C.在(-∞,0)上是减函数,在(0,+∞)上是增函数D.无法判断其单调性(二)填空题5.函数y=3x+1-2的图象是由函数y=3x的图象沿x轴向______平移______个单位,再沿y轴向______平移______个单位得到的.6.函数f(x)=3x+5的值域是______.7.函数y=ax-1+1(其中a>0且a≠1)的图象必经过点______.8.若指数函数y=ax在区间[0,1]上的最大值和最小值的差为,则底数a =______.9.函数g(x)=x2-x的单调增区间是______,函数y=的单调增区间是______.(三)解答题10.函数f(x)是R上的奇函数,且当x≥0时,f(x)=2x-1,求x<0时函数的解析式.11.若关于x的方程|2x-1|=a有两个解,借助图象求a的取值范围.12.已知函数f(x)=22x-2x+1-3,其中x∈[0,1],求f(x)的值域.您好,欢迎您阅读我的文章,本WORD文档可编辑修改,也可以直接打印。

指数与指数函数知识点

指数与指数函数知识点

指数与指数函数知识点一、指数运算的基本性质1.任何数的0次方等于12.非零数的负指数等于该数的倒数。

3.相同底数的指数之间的乘方运算,底数保持不变,指数相加。

4.相同指数的指数之间的乘方运算,指数保持不变,底数相乘。

二、指数运算的规律1.法则1:a的m次方乘以a的n次方,等于a的m加n次方。

2.法则2:a的m次方除以a的n次方,等于a的m减n次方。

3.法则3:(a的m次方)的n次方,等于a的m乘n次方。

4.法则4:a的m次方的p次方,等于a的m乘p次方。

5.法则5:零的任何正次方都是0,零的0次方没有意义,规定为1三、指数函数的定义与性质指数函数的定义为:y=a^x,其中a>0且a≠1,a为底数,x为指数。

指数函数可以看作是以底数为底,自变量为指数的函数。

指数函数的性质如下:1.底数a大于1时,指数函数是递增的,即自变量x的增大,函数值y也增大。

2.底数a介于0和1之间时,指数函数是递减的,即自变量x的增大,函数值y也减小。

3.指数函数的图象都经过点(0,1),即当x=0时,y=14.指数函数的图象在直线x=0和y=0上均没有交点。

5.指数函数的图象没有水平渐近线,但有一条过点(0,0)的铅直渐近线。

指数函数常见的应用有:1.在金融领域中,指数函数可以用来描述货币的增长规律,例如复利计算。

2.在自然科学领域中,指数函数可以用来描述人口增长、病原体传播等现象。

3.在电路中,指数函数可以用来描述电容、电感等元件的充放电过程。

4.在计算机领域中,指数函数可以用来描述算法的时间复杂度、空间复杂度等特性。

总结:。

指数与指数函数

指数与指数函数
∴ a 2+ a -2=47.
47 .

方法总结
指数幂运算的一般原则
1.有括号的先算括号里的,无括号的先进行指数运算.
2.先乘除后加减,负指数幂化成正指数幂的倒数.
3.底数是负数的,先确定符号;底数是小数的,先化成分数.底数是带分数
的,先化成假分数.
4.若是根式,则化为分数指数幂,尽可能用幂的形式表示,运用指数幂的运
为选项C.
考点三
指数函数的性质及应用
◉角度(一) 比较指数式的大小或解不等式
例3
(1)(2024·吉林白山模拟)已知 a =0.310.1, b =0.310.2, c =
0.320.1,则(
D )
A. a > b > c
B. b > a > c
C. c > b > a
D. c > a > b
由 y =0.31 x 单调递减可知0.310.1>0.310.2,即 a > b ;
即b<a<c.
C )
6.
2 −4
1

不等式 3
> 的解集为
27
−∞,1 ∪ 3,+∞
2 −4
1

由3
> =3-3,所以 x 2-4 x >-3,即
27
<1或 x >3.
.
− 1 − 3 >0,解得 x
7. 函数 y =
1
1

+1在区间[-3,2]上的值域是
4
2
因为 x ∈[-3,2],所以若令 t =
关键能力
重点探究
课时作业
巩固提升
必备知识 自主梳理
[知识梳理]
知识点一 幂的运算
1. 指数与指数运算

指数函数、对数函数、幂函数的图像与性质

指数函数、对数函数、幂函数的图像与性质

指数函数、对数函数、幂函数的图像与性质(一)指数与指数函数1.根式(1)根式的概念(2).两个重要公式①⎪⎩⎪⎨⎧⎩⎨⎧<-≥==)0()0(||a a a a a aa nn ;②a a n n =)((注意a 必须使n a 有意义)。

2.有理数指数幂 (1)幂的有关概念 ①正数的正分数指数幂:0,,1)m na a m n N n *=>∈>、且; ②正数的负分数指数幂: 10,,1)mnm naa m n N n a-*==>∈>、且③0的正分数指数幂等于0,0的负分数指数幂没有意义.注:分数指数幂与根式可以互化,通常利用分数指数幂进行根式的运算。

(2)有理数指数幂的性质 ①a r a s =a r+s (a>0,r 、s ∈Q ); ②(a r )s =a rs (a>0,r 、s ∈Q ); ③(ab)r =a r b s (a>0,b>0,r ∈Q );. 3.指数函数的图象与性质n 为奇数 n 为偶数注:如图所示,是指数函数(1)y=a x ,(2)y=b x,(3),y=c x (4),y=d x 的图象,如何确定底数a,b,c,d 与1之间的大小关系?提示:在图中作直线x=1,与它们图象交点的纵坐标即为它们各自底数的值,即c 1>d 1>1>a 1>b 1,∴c>d>1>a>b 。

即无论在轴的左侧还是右侧,底数按逆时针方向变大。

(二)对数与对数函数 1、对数的概念 (1)对数的定义如果(01)x a N a a =>≠且,那么数x 叫做以a 为底,N 的对数,记作log N a x =,其中a 叫做对数的底数,N 叫做真数。

(2)几种常见对数2、对数的性质与运算法则(1)对数的性质(0,1a a >≠且):①1log 0a =,②lo g 1aa =,③lo g Na a N =,④lo g N a aN =。

指数与指数函数图像及性质(学生版)

指数与指数函数图像及性质(学生版)

指数与指数函数图像及性质【知识要点】 1.根式(1)如果a x n =,那么x 叫做a 的n 次方根.其中1>n ,且*∈N n 。

(2)如果a x n=,当n 为奇数时,n a x =;当n 为偶数时,n a x ±=()0>a .其中n a 叫做根式,n 叫做根指数,a 叫做被开方数. 其中1>n ,且*∈N n 。

(3)()()*∈>==N n n a a nnn ,1,00。

,||,a n a n ⎧=⎨⎩为奇数为偶数其中1>n ,且*∈N n 。

2.分数指数幂(1)正分数指数幂的定义: n m n m a a =()1,,,0>∈>*n N n m a (2)负分数指数幂的定义: nm nm aa1=-()1,,,0>∈>*n Nn m a(3) 要注意四点:①分数指数幂是根式的另一种表示形式; ②根式与分数指数幂可以进行互化; ③0的正分数指数幂等于0; ④0的负分数指数幂无意义。

(4)有理数指数幂的运算性质:①sr sra a a +=⋅()Q s r a ∈>,,0;② ()rs sra a =()Q s r a ∈>,,0;③()r r rb a ab =()Q r b a ∈>>,,0,0.3.无理数指数幂(1)无理数指数幂的值可以用有理数指数幂的值去逼近; (2)有理数指数幂的运算性质同样适用于无理数指数幂。

4.指数函数的概念:一般地,函数()0,1xy a a a =>≠且叫做指数函数,其中x 是自变量,函数的定义域是R 。

5.指数函数的图像与性质第一课时【典例精讲】题型一 根式、指数幂的化简与求值1.n a 叫做a 的n 次幂,a 叫做幂的底数,n 叫做幂的指数,规定:1a a =;2. (1,)n a n n N +=>∈,||,a n a n ⎧=⎨⎩为奇数为偶数;3. 1(0,,,)n mnmn a a m n N ma-+=>∈且为既约分数,=a a αβαβ(). 【例1】计算下列各式的值.(1(2(3;(4)a b >.【变式1】 求下列各式的值:(1*1,n n N >∈且);(2【例2】计算)21313410.027256317--⎛⎫--+-+⎪⎝⎭【变式2】化简34的结果为( )A .5B .C .﹣D .﹣5【变式3】1332-⎛⎫ ⎪⎝⎭×76⎛⎫- ⎪⎝⎭0+148=________.题型二 根式、指数幂的条件求值 1. 0a >时,0;b a > 2. 0a ≠时, 01a =; 3. 若,r s a a =则r s =;4. 1111222222()(0,0)a a b b a b a b ±+=±>>; 5. 11112222()()(0,0)a b a b a b a b +-=->>. 【例3】已知11223a a-+=,求下列各式的值.(1)11a a -+;(2)22a a -+;(3)22111a a a a --++++【变式1】已知,a b 是方程2640x x -+=的两根,且0,a b >>的值.【变式2】已知12,9,x y xy +==且x y <,求11221122x y x y-+的值.【变式3】已知11223a a -+=,求33221122a aa a----的值.【变式4】(1)已知122+=xa,求xx xx a a a a --++33;(2)已知a x=+-13,求6322--+-x ax a .【例4】计算下列各式的值:(1)246347625---+-;(2)()2x 3442<--+-x x x ;(3)12121751531311++-+++++++n n ;(4)()54 2222233=++--xxxx x 其中.【变式5】化简或计算出下列各式:(1)121316324(1243)27162(8)--+-+-;(2)化简65312121132ab b a b a ---⎪⎪⎭⎫ ⎝⎛;(3【课堂练习】1. 若()0442-+-a a 有意义,则a 的取值范围是()A.2≥aB.42<≤a 或4>aC. 2≠aD. 4≠a 2. 下列表述中正确的是() A.()()()273336263=-=-=- B.32213421313a a a a a a =⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛⋅=⋅ C.无理数指数幂na (n 是无理数)不是一个确定的实数 D.()()()⎩⎨⎧≤-≥=00a a a a a nn3. 已知0>a ,则的值2313123131⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛+--a a a a 为 ()A.3232-+aa B.4 C. 3232--aa D. 4-4. 计算:()=-+-0430625.0833416π ______.【思维拓展】1.化简⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫⎝⎛+⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛+-----2141811613212121212121的结果是 ( )A.13212121--⎪⎪⎭⎫ ⎝⎛-B.132121--⎪⎪⎭⎫ ⎝⎛- C.32121-- D.⎪⎪⎭⎫ ⎝⎛--3212121第二课时题型三 指数函数的概念【例1】已知函数()2()33x f x a a a =-+是指数函数,求实数a 的值。

指数与指数函数

指数与指数函数

指数与指数函数指数与指数函数1.1 指数与指数幂的运算1) 根式的概念如果$x=a$,$a\in R$,$x\in R$,$n>1$,且$n\in N^+$,那么$x$叫做$a$的$n$次方根。

当$n$是奇数时,$a$的正的$n$次方根用符号$n\sqrt{a}$表示,负的$n$次方根用符号$-n\sqrt{a}$表示。

当$n$是偶数时,正数$a$的正的$n$次方根用符号$n\sqrt{a}$表示,负的$n$次方根用符号$-n\sqrt{a}$表示。

负数$a$没有$n$次方根。

式子$n\sqrt{a}$叫做根式,这里$n$叫做根指数,$a$叫做被开方数。

当$n$为奇数时,$a$为任意实数;当$n$为偶数时,$a\geq0$。

根式的性质:$(n\sqrt{a})^n=a$;当$n$为奇数时,$n\sqrt{a^n}=a$;当$n$为偶数时,$n\sqrt{a^2}=|a|$,即$\begin{cases}a&(a\geq0)\\-a&(a<0)\end{cases}$。

2) 分数指数幂的概念正数的正分数指数幂的意义是:$a^{m/n}=\sqrt[n]{a^m}$。

正数的负分数指数幂的意义是:$a^{-m/n}=\dfrac{1}{\sqrt[n]{a^m}}$。

正分数$a^{1/m}=\sqrt[m]{a}$,负分数指数幂没有意义。

注意口诀:底数取倒数,指数取相反数。

3) 分数指数幂的运算性质a^r\cdot a^s=a^{r+s}$($a>0,r,s\in R$)。

a^r)^s=a^{rs}$($a>0,r,s\in R$)。

ab)^r=a^rb^r$($a>0,b>0,r\in R$)。

例题精讲例1】求下列各式的值:1) $n(3-\pi)$($n>1$,且$n\in N^+$);2) $(x-y)^2$。

1) 当$n$为奇数时,$n\sqrt{3-\pi}=|\sqrt{3-\pi}|=\sqrt{3-\pi}$。

指数与指数函数ppt课件

指数与指数函数ppt课件

2.已知函数 f (x)=ax-2+2(a>0 且 a≠1)的图象恒过定点 A,则点 A 的坐标为( B )
A.(0,1)
B.(2,3)
C.(3,2)
D.(2,2)
【解析】 ∵a0=1,∴当 x=2 时,y=3,∴图象过点(2,3).故选 B.
3.化简4 16x4y8(x<0,y<0)=__-__2_x_y_2 _. 【解析】 4 16x4y8=|2xy2|,又 x<0,y<0,∴原式=-2xy2.
第二章 函数
第五节 指数与指数函数
课前双基巩固
——整合知识 夯实基础
『知识聚焦』 1.根式的概念及性质 (1)如果xn=a,那么____x___叫做a的n次方根. (2)式子n a叫做根式,这里n叫做根指数,a叫做被开方数. (3)根式的性质 ①(n a)n=a(a使n a有意义.负数没有偶次方根). ②当n为奇数时,n an=___a____; 当n为偶数时,n an=____|_a_| __=a-,aa,≥a0<,0.
(2)令 g(x)=ax2-4x+3,则 f (x)=13g(x),由于 f (x)有最大值 3,所以 g(x)应有最小值 a>0,
-1,因此必有3a- a 4=-1, 解得 a=1,即当 f (x)有最大值 3 时,a 的值等于 1. (3)由指数函数的性质知,要使 f (x)的值域为(0,+∞), 应使 y=ax2-4x+3 的值域为 R, 因此只能 a=0(因为若 a≠0,则 y=ax2-4x+3 为二次函数,其值域不可能为 R).
C.(1+a)a>(1+b)b
D.(1-a)a>(1-b)b
【解析】
(1)把
b
化简为

指数与指数函数

指数与指数函数
思维启迪 换元令 t=ax,利用二次函数和指数函数的单
调性来研究函数的单调性,构建方程获解. 解 令 t=ax (a>0 且 a≠1),
则原函数化为 y=(t+1)2-2 (t>0). ①当 0<a<1 时,x∈[-1,1],t=ax∈a,1a, 此时 f(t)在a,1a上为增函数. 所以 f(t)max=f1a=1a+12-2=14. 所以1a+12=16,所以 a=-15或 a=13. 又因为 a>0,所以 a=13.
3.指数函数的图象与性质
y=ax
a>1
0<a<1
图象
定义域
(1) R
值域 性质
(2) (0,+∞)
(3)过定点 (0,1) (4)当 x>0 时, y>1 ; (5)当 x>0 时, 0<y<1 ;
x<0 时, 0<y<1
x<0 时, y>1
(6)在 R 上是 增函数 (7)在 R 上是 减函数
[难点正本 疑点清源] 1.根式与分数指数幂的实质是相同的,通常利用分数
∴y2=4a,y2= 2x2 =4a.
∴x2=2a,即 B(2a,4a). 又∵点 O、A、B 共线,∴2aa=24aa, ∴2a=2,即 a=1.∴A 的坐标为(1,2).
题型三 指数函数的性质
例3 设 a>0 且 a≠1,函数 y=a2x+2ax-1 在[-1,1]上
的最大值是 14,求 a 的值.
由上式推得 t2-2t>-2t2+k.
[12 分]
即对一切 t∈R 有 3t2-2t-k>0, 而 Δ=4+12k<0,解得 k<-13.

高考数学(理)一轮复习文档 第二章 基本初等函数、导数及其应用 第5讲 指数与指数函数 Word版含答案

高考数学(理)一轮复习文档 第二章 基本初等函数、导数及其应用 第5讲 指数与指数函数 Word版含答案

第5讲 指数与指数函数1.根式 (1)根式的概念①若x n=a ,则x 叫做a 的n 次方根,其中n >1且n ∈N *.这里n 叫做根指数,a 叫做被开方数.②a 的n 次方根的表示:x n=a ⇒⎩⎨⎧x =n a ,当n 为奇数且n ∈N *,n >1时,xn 为偶数且n ∈N *时.(2)根式的性质①(na )n =a (n ∈N *,且n >1).②n a n=⎩⎪⎨⎪⎧a ,n 为奇数,|a |=⎩⎪⎨⎪⎧a ,a ≥0,-a ,a <0,n 为偶数. 2.有理数指数幂 (1)幂的有关概念①正分数指数幂:a mna >0,m ,n ∈N *,且n >1);②负分数指数幂:a -m n=1a m n=1(a >0,m ,n ∈N *,且n >1);③0的正分数指数幂等于0,0的负分数指数幂无意义. (2)有理数指数幂的运算性质 ①a r a s=ar +s(a >0,r ,s ∈Q );②(a r )s =a rs(a >0,r ,s ∈Q ); ③(ab )r=a r b r(a >0,b >0,r ∈Q ). 3.指数函数的图象及性质1.辨明三个易误点(1)指数幂的运算容易出现的问题是误用指数幂的运算法则,或在运算变换中方法不当,不注意运算的先后顺序等.(2)指数函数y =a x(a >0,a ≠1)的图象和性质与a 的取值有关,要特别注意区分a >1或0<a <1.(3)在解形如a 2x+b ·a x +c =0或a 2x +b ·a x+c ≥0(≤0)的指数方程或不等式时,常借助换元法解决,但应注意换元后“新元”的范围.2.指数函数图象画法的三个关键点画指数函数y =a x(a >0,且a ≠1)的图象,应抓住三个关键点:(1,a ),(0,1),⎝⎛⎭⎪⎫-1,1a .1.教材习题改编有下列四个式子:①3(-8)3=-8;② (-10)2=-10;③4(3-π)4=3-π;④2 017(a -b )2 017=a -b . 其中正确的个数是( )A .1B .2C .3D .4B ①④正确,(-10)2=|-10|=10,②错误; 4(3-π)4=|3-π|=-(3-π)=π-3,③错误,故选B.2.下列函数中,满足“f (x +y )=f (x )f (y )”的单调递增函数是( ) A .f (x )=x 12B .f (x )=x 3C .f (x )=⎝ ⎛⎭⎪⎫12xD .f (x )=3xD 根据各选项知,选项C 、D 中的指数函数满足f (x +y )=f (x )·f (y ).又f (x )=3x是增函数,所以D 正确.3.(2017·东北三校联考)函数f (x )=a x -1(a >0,a ≠1)的图象恒过点A ,下列函数中图象不经过点A 的是( )A .y =1-xB .y =|x -2|C .y =2x-1 D .y =log 2(2x )A 由f (x )=ax -1(a >0,a ≠1)的图象恒过点(1,1),又0=1-1,知(1,1)不在y=1-x 的图象上.4.(2017·皖北协作区联考)函数f (x )=1-e x的值域为________. 由1-e x ≥0,e x≤1,故函数f (x )的定义域为{x |x ≤0}. 所以0<e x ≤1,-1≤-e x <0,0≤1-e x<1,函数f (x )的值域为 由题意知0<a 2-1<1,即1<a 2<2, 得-2<a <-1或1<a < 2. (-2,-1)∪(1,2)指数幂的运算化简下列各式:(1)0.027-13-⎝ ⎛⎭⎪⎫17-2+⎝ ⎛⎭⎪⎫27912-(2-1)0;(2)⎝ ⎛⎭⎪⎫56a 13b -2·(-3a -12b -1)÷(4a 23b -3)12·ab .【解】 (1)原式=⎝ ⎛⎭⎪⎫271 000-13-72+⎝ ⎛⎭⎪⎫25912-1=103-49+53-1=-45. (2)原式=⎝ ⎛⎭⎪⎫-52a -16b -3÷(2a 13b -32)·a 12b 12=-54a -12b -32·a 12b 12=-54b -1=-54b.化简下列各式:(1)(0.027)23+⎝ ⎛⎭⎪⎫27125-13-⎝ ⎛⎭⎪⎫2790.5; (2)⎝ ⎛⎭⎪⎫14-12·(4ab -1)3(0.1)-1·(a 3·b -3)12.(1)原式=0.32+⎝ ⎛⎭⎪⎫1252713- 259=9100+53-53=9100.(2)原式=2(4ab -1)3210a 32b -32=16a 32b -3210a 32b-32=85.指数函数的图象及应用(1)函数f (x )=21-x的大致图象为()(2)若方程|3x-1|=k 有一解,则k 的取值范围为________.【解析】 (1)函数f (x )=21-x=2×⎝ ⎛⎭⎪⎫12x,单调递减且过点(0,2),选项A 中的图象符合要求.(2)函数y =|3x-1|的图象是由函数y =3x的图象向下平移一个单位后,再把位于x 轴下方的图象沿x 轴翻折到x 轴上方得到的,函数图象如图所示.当k =0或k ≥1时,直线y =k 与函数y =|3x-1|的图象有唯一的交点,所以方程有一解.【答案】 (1)A (2){0}∪上单调递减,则k 的取值范围如何?由本例(2)作出的函数y =|3x-1|的图象知,其在(-∞,0]上单调递减,所以k ∈(-∞,0].指数函数的图象及应用(1)与指数函数有关的函数图象的研究,往往利用相应指数函数的图象,通过平移、对称、翻折变换得到其图象.(2)一些指数型方程、不等式问题的求解,往往利用相应的指数型函数图象数形结合求解.)1.函数f (x )=a x -b的图象如图所示,其中a ,b 为常数,则下列结论正确的是( )A .a >1,b <0B .a >1,b >0C .0<a <1,b >0D .0<a <1,b <0 D 由f (x )=a x -b 的图象可以观察出函数f (x )=ax -b在定义域上单调递减,所以0<a <1.函数f (x )=a x -b 的图象是在f (x )=a x 的基础上向左平移得到的,所以b <0.2.若函数y =21-x+m 的图象不经过第一象限,求m 的取值范围.y =⎝ ⎛⎭⎪⎫12x -1+m ,函数y =⎝ ⎛⎭⎪⎫12x -1的图象如图所示,则要使其图象不经过第一象限,则m ≤-2.指数函数的性质及应用(高频考点)指数函数的性质主要是其单调性,特别受到高考命题专家的青睐,常以选择题、填空题的形式出现.高考对指数函数的性质的考查主要有以下三个命题角度: (1)比较指数幂的大小; (2)解简单的指数方程或不等式; (3)研究指数型函数的性质.(1)已知a =⎝ ⎛⎭⎪⎫1223,b =2-43,c =⎝ ⎛⎭⎪⎫1213,则下列关系式中正确的是( )A .c <a <bB .b <a <cC .a <c <bD .a <b <c(2)已知函数f (x )=⎝ ⎛⎭⎪⎫13ax 2-4x +3. ①若a =-1,求f (x )的单调区间; ②若f (x )有最大值3,求a 的值; ③若f (x )的值域是(0,+∞),求a 的值.【解】 (1)选B.把b 化简为b =⎝ ⎛⎭⎪⎫1243,而函数y =⎝ ⎛⎭⎪⎫12x在R 上为减函数,43>23>13,所以⎝ ⎛⎭⎪⎫1243<⎝ ⎛⎭⎪⎫1223<⎝ ⎛⎭⎪⎫1213,即b <a <c . (2)①当a =-1时,f (x )=⎝ ⎛⎭⎪⎫13-x 2-4x +3, 令g (x )=-x 2-4x +3,由于g (x )在(-∞,-2)上单调递增,在(-2,+∞)上单调递减,而y =⎝ ⎛⎭⎪⎫13t在R 上单调递减,所以f (x )在(-∞,-2)上单调递减,在(-2,+∞)上单调递增,即函数f (x )的单调递增区间是(-2,+∞),单调递减区间是(-∞,-2).②令g (x )=ax 2-4x +3,f (x )=⎝ ⎛⎭⎪⎫13g (x ),由于f (x )有最大值3,所以g (x )应有最小值-1,因此必有⎩⎪⎨⎪⎧a >0,3a -4a=-1,解得a =1,即当f (x )有最大值3时,a 的值等于1.③令g (x )=ax 2-4x +3,f (x )=⎝ ⎛⎭⎪⎫13g (x ),由指数函数的性质知,要使y =⎝ ⎛⎭⎪⎫13g (x )的值域为(0,+∞).应使g (x )=ax 2-4x +3的值域为R ,因此只能a =0.(因为若a ≠0,则g (x )为二次函数,其值域不可能为R ) 故f (x )的值域为(0,+∞)时,a 的值为0.有关指数函数性质的问题类型及解题策略(1)比较指数幂大小问题,常利用指数函数的单调性及中间值(0或1).(2)求解简单的指数不等式问题,应利用指数函数的单调性,要特别注意底数a 的取值范围,并在必要时进行分类讨论.(3)求解与指数函数有关的复合函数问题,首先要熟知指数函数的定义域、值域、单调性等相关性质,其次要明确复合函数的构成,涉及值域、单调区间、最值等问题时,都要借助“同增异减”这一性质分析判断,最终将问题归结为内层函数相关的问题加以解决.在研究指数型函数单调性时,当底数与“1”的大小关系不明确时,要分类讨论.角度一 比较指数幂的大小 1.下列各式比较大小正确的是( ) A .1.72.5>1.73B .0.6-1>0.62C .0.8-0.1>1.250.2D .1.70.3<0.93.1BA 中,因为函数y =1.7x在R 上是增函数,2.5<3,所以1.72.5<1.73. B 中,因为y =0.6x在R 上是减函数,-1<2, 所以0.6-1>0.62. C 中,因为0.8-1=1.25,所以问题转化为比较1.250.1与1.250.2的大小. 因为y =1.25x在R 上是增函数,0.1<0.2, 所以1.250.1<1.250.2,即0.8-0.1<1.250.2.D 中,因为1.70.3>1,0<0.93.1<1,所以1.70.3>0.93.1.角度二 解简单的指数方程或不等式2.(2015·高考江苏卷)不等式2x 2-x <4的解集为________. 因为2x 2-x <4,所以2x 2-x <22,所以x 2-x <2,即x 2-x -2<0,所以-1<x <2. {x |-1<x <2}(或(-1,2))角度三 研究指数型函数的性质 3.若函数f (x )=2|x -a |(a ∈R )满足f (1+x )=f (1-x ),且f (x )在 因为f (x )=2|x -a |,所以f (x )的图象关于x =a 对称.又由f (1+x )=f (1-x ),知f (x )的图象关于直线x =1对称,故a =1,且f (x )的增区间是 1——换元法解决指数型函数的值域问题函数f (x )=⎝ ⎛⎭⎪⎫14x -⎝ ⎛⎭⎪⎫12x+1在x ∈上的值域是________. 【解析】 因为x ∈,若令t =⎝ ⎛⎭⎪⎫12x ,则t ∈⎣⎢⎡⎦⎥⎤14,8.y =t 2-t +1=⎝ ⎛⎭⎪⎫t -122+34.当t =12时,y min =34;当t =8时,y max =57.所以函数f (x )的值域为⎣⎢⎡⎦⎥⎤34,57.【答案】 ⎣⎢⎡⎦⎥⎤34,57(1)此题利用了换元法,把函数f (x )转化为y =t 2-t +1,其中t ∈⎣⎢⎡⎦⎥⎤14,8,将问题转化为求二次函数在闭区间上的最值(值域)问题,从而减少了运算量.(2)对于同时含有a x与a 2x(log a x 与log 2a x )(a >0且a ≠1)的函数、方程、不等式问题,通常令t =a x(t =log a x )进行换元巧解,但一定要注意新元的范围.已知函数y =9x+m ·3x-3在区间上单调递减,则m 的取值范围为________.设t =3x ,则y =9x +m ·3x -3=t 2+mt -3.因为x ∈,所以t ∈⎣⎢⎡⎦⎥⎤19,9.又函数y =9x+m ·3x -3在区间上单调递减,即y =t 2+mt -3在区间⎣⎢⎡⎦⎥⎤19,9上单调递减, 故有-m2≥9,解得m ≤-18.所以m 的取值范围为(-∞,-18]. (-∞,-18]1.下列函数中值域为正实数的是( )A .y =-5xB .y =⎝ ⎛⎭⎪⎫131-xC .y =⎝ ⎛⎭⎪⎫12x-1 D .y =1-2xBA 中,y =-5x<0,B 中,因为1-x ∈R ,y =⎝ ⎛⎭⎪⎫13x的值域是正实数,所以y =⎝ ⎛⎭⎪⎫131-x的值域是正实数,C 中,y =⎝ ⎛⎭⎪⎫12x-1≥0,D 中,y =1-2x ,由于2x >0,故1-2x <1,又1-2x≥0,故0≤y <1,故符合条件的只有B.2.化简4a 23·b -13÷⎝ ⎛⎭⎪⎪⎫-23a -13b 23的结果为( ) A .-2a3bB .-8a bC .-6a bD .-6abC 原式=4÷⎝ ⎛⎭⎪⎫-23a 23-(-13)b -13-23=-6ab -1=-6a b,故选C.3.函数y =a x-1a(a >0,a ≠1)的图象可能是( )D 函数y =a x -1a 的图象由函数y =a x的图象向下平移1a个单位长度得到,A 项显然错误;当a >1时,0<1a <1,平移距离小于1,所以B 项错误;当0<a <1时,1a>1,平移距离大于1,所以C 项错误.4.已知a =20.2,b =0.40.2,c =0.40.6,则( ) A .a >b >cB .a >c >bC .c >a >bD .b >c >aA 由0.2<0.6,0.4<1,并结合指数函数的图象可知0.40.2>0.40.6,即b >c ;因为a =20.2>1,b =0.40.2<1,所以a >b .综上,a >b >c .5.(2017·莱芜模拟)若函数f (x )=a |2x -4|(a >0,a ≠1)满足f (1)=19,则f (x )的单调递减区间是( )A .(-∞,2]B .B 由f (1)=19得a 2=19.又a >0,所以a =13,因此f (x )=⎝ ⎛⎭⎪⎫13|2x -4|. 因为g (x )=|2x -4|在 当a <0时,不等式f (a )<1可化为⎝ ⎛⎭⎪⎫12a -7<1,即⎝ ⎛⎭⎪⎫12a <8,即⎝ ⎛⎭⎪⎫12a<⎝ ⎛⎭⎪⎫12-3,因为0<12<1,所以a >-3,此时-3<a <0;当a ≥0时,不等式f (a )<1可化为a <1, 所以0≤a <1.故a 的取值范围是(-3,1).7.指数函数y =f (x )的图象经过点(m ,3),则f (0)+f (-m )=________. 设f (x )=a x(a >0且a ≠1),所以f (0)=a 0=1. 且f (m )=a m =3.所以f (0)+f (-m )=1+a -m=1+1a m =43.438.614-(π-1)0-⎝ ⎛⎭⎪⎫33813+⎝ ⎛⎭⎪⎫164-23=________. 原式=52-1-⎝ ⎛⎭⎪⎫27813+(4-3)-23=32-32+42=16. 169.(2015·高考山东卷)已知函数f (x )=a x+b (a >0,a ≠1)的定义域和值域都是,则a +b =________.①当a >1时,函数f (x )=a x+b 在上为增函数,由题意得⎩⎪⎨⎪⎧a -1+b =-1,a 0+b =0,无解.②当0<a <1时,函数f (x )=a x+b 在上为减函数,由题意得⎩⎪⎨⎪⎧a -1+b =0,a 0+b =-1,解得⎩⎪⎨⎪⎧a =12,b =-2,所以a +b =-32.-3210.当x ∈(-∞,-1]时,不等式(m 2-m )·4x -2x<0恒成立,则实数m 的取值范围是________.原不等式变形为m 2-m <⎝ ⎛⎭⎪⎫12x, 因为函数y =⎝ ⎛⎭⎪⎫12x在(-∞,-1]上是减函数, 所以⎝ ⎛⎭⎪⎫12x≥⎝ ⎛⎭⎪⎫12-1=2,当x ∈(-∞,-1]时,m 2-m <⎝ ⎛⎭⎪⎫12x恒成立等价于m 2-m <2,解得-1<m <2.(-1,2)11.求下列函数的定义域和值域. (1)y =⎝ ⎛⎭⎪⎫122x -x 2;(2)y = 32x -1-19. (1)显然定义域为R .因为2x -x 2=-(x -1)2+1≤1,且y =⎝ ⎛⎭⎪⎫12x 为减函数.所以⎝ ⎛⎭⎪⎫122x -x 2≥⎝ ⎛⎭⎪⎫121=12. 故函数y =⎝ ⎛⎭⎪⎫122x -x 2的值域为⎣⎢⎡⎭⎪⎫12,+∞.(2)由32x -1-19≥0,得32x -1≥19=3-2, 因为y =3x为增函数,所以2x -1≥-2,即x ≥-12,此函数的定义域为⎣⎢⎡⎭⎪⎫-12,+∞, 由上可知32x -1-19≥0,所以y ≥0. 即函数的值域为 (1)因为f (x )为偶函数, 所以对任意的x ∈R ,都有f (-x )=f (x ), 即a|x +b |=a|-x +b |,|x +b |=|-x +b |,解得b =0.(2)记h (x )=|x +b |=⎩⎪⎨⎪⎧x +b ,x ≥-b ,-x -b ,x <-b .①当a >1时,f (x )在区间 因为函数f (x )=⎝ ⎛⎭⎪⎫13x+a 的图象经过第二、三、四象限,所以a <-1.则g (a )=f (a )-f (a +1)=⎝ ⎛⎭⎪⎫13a+a -⎝ ⎛⎭⎪⎫13a +1-a =⎝ ⎛⎭⎪⎫13a ⎝ ⎛⎭⎪⎫1-13=23·⎝ ⎛⎭⎪⎫13a.因为a <-1,所以⎝ ⎛⎭⎪⎫13a>3,则23·⎝ ⎛⎭⎪⎫13a>2,故g (a )的取值范围是(2,+∞). 14.(2017·济南模拟)已知函数f (x )=⎩⎪⎨⎪⎧x +1,0≤x <1,2x -12,x ≥1,设a >b ≥0,若f (a )=f (b ),则b ·f (a )的取值范围是________.画出函数图象如图所示,由图象可知要使a >b ≥0,f (a )=f (b )同时成立,则12≤b <1. b ·f (a )=b ·f (b )=b (b +1)=b 2+b =⎝ ⎛⎭⎪⎫b +122-14,所以34≤b ·f (a )<2.⎣⎢⎡⎭⎪⎫34,215.已知函数y =2-x 2+ax +1在区间(-∞,3)内递增,求a 的取值范围. 函数y =2-x 2+ax +1是由函数y =2t 和t =-x 2+ax +1复合而成.因为函数t =-x 2+ax +1在区间 (-∞,a 2]上单调递增,在区间[a2,+∞)上单调递减,且函数y =2t在R 上单调递增,所以函数y =2-x 2+ax +1在区间(-∞,a 2]上单调递增,在区间[a2,+∞)上单调递减. 又因为函数y =2-x 2+ax +1在区间(-∞,3)上单调递增,所以3≤a2,即a ≥6.16.已知函数f (x )=1-42a x+a(a >0且a ≠1)是定义在(-∞,+∞)上的奇函数. (1)求a 的值; (2)求函数的值域;(3)当x ∈(0,1]时,tf (x )≥2x-2恒成立,求实数t 的取值范围. (1)因为f (x )是定义在(-∞,+∞)上的奇函数, 所以f (0)=0,即1-42a 0+a =0.解得a =2.(2)因为y =f (x )=2x-12x +1,所以2x=1+y 1-y .由2x>0知1+y 1-y >0,所以-1<y <1.即f (x )的值域为(-1,1). (3)不等式tf (x )≥2x -2等价于t (2x -1)2x+1≥2x -2,即(2x )2-(t +1)2x+t -2≤0.令2x =u ,因为x ∈(0,1],所以u ∈(1,2]. 又u ∈(1,2]时,u 2-(t +1)u +t -2≤0恒成立.所以⎩⎪⎨⎪⎧12-(t +1)+t -2≤0,22-2(t +1)+t -2≤0,解得t ≥0.故所求t 的取值范围为[0,+∞).。

高考数学专题:指数与指数函数

高考数学专题:指数与指数函数

高考数学专题:指数与指数函数最新考纲 1.了解指数函数模型的实际背景;2.理解有理指数幂的含义,了解实数指数幂的意义,掌握幂的运算;3.理解指数函数的概念及其单调性,掌握指数函数图象通过的特殊点,会画底数为2,3,10,12,13的指数函数的图象;4.体会指数函数是一类重要的函数模型.知 识 梳 理1.根式(1)概念:式子na 叫做根式,其中n 叫做根指数,a 叫做被开方数.(2)性质:(na )n=a (a 使na 有意义);当n 为奇数时,n a n =a ,当n 为偶数时,n a n=|a |=⎩⎨⎧a ,a ≥0,-a ,a <0.2.分数指数幂(1)规定:正数的正分数指数幂的意义是a mn a >0,m ,n ∈N *,且n >1);正数的负分数指数幂的意义是a -mn =1(a >0,m ,n ∈N *,且n >1);0的正分数指数幂等于0;0的负分数指数幂没有意义.(2)有理指数幂的运算性质:a r a s =a r +s ;(a r )s =a rs ;(ab )r =a r b r ,其中a >0,b >0,r ,s ∈Q . 3.指数函数及其性质(1)概念:函数y =a x (a >0且a ≠1)叫做指数函数,其中指数x 是变量,函数的定义域是R ,a 是底数.(2)指数函数的图象与性质R1.判断正误(在括号内打“√”或“×”) 精彩PPT 展示(1)4(-4)4=-4.( ) (2)(-1)24=(-1)12=-1.( ) (3)函数y =2x -1是指数函数.( ) (4)函数y =a x2+1(a >1)的值域是(0,+∞).( )解析 (1)由于4(-4)4=444=4,故(1)错. (2)(-1)24=4(-1)2=1,故(2)错.(3)由于指数函数解析式为y =a x (a >0,且a ≠1),故y =2x -1不是指数函数,故(3)错. (4)由于x 2+1≥1,又a >1,∴a x2+1≥a .故y =a x2+1(a >1)的值域是[a ,+∞),(4)错.答案 (1)× (2)× (3)× (4)×2.(必修1P52例5改编)化简[(-2)6]12-(-1)0的结果为( ) A.-9B.7C.-10D.9解析 原式=(26)12-1=8-1=7. 答案 B3.函数y =a x -a -1(a >0,且a ≠1)的图象可能是( )解析 函数y =a x -1a 是由函数y =a x 的图象向下平移1a 个单位长度得到,A 项显然错误;当a >1时,0<1a <1,平移距离小于1,所以B 项错误;当0<a <1时,1a >1,平移距离大于1,所以C 项错误,故选D.答案 D4.(·山东卷)设a =0.60.6,b =0.61.5,c =1.50.6,则a ,b ,c 的大小关系是( ) A.a <b <c B.a <c <b C.b <a <cD.b <c <a解析 根据指数函数y =0.6x 在R 上单调递减可得0.61.5<0.60.6<0.60=1,而c =1.50.6>1,∴b <a <c . 答案 C5.指数函数y =(2-a )x 在定义域内是减函数,则a 的取值范围是________. 解析 由题意知0<2-a <1,解得1<a <2. 答案 (1,2)考点一 指数幂的运算【例1】 化简:(1)a 3b 23ab 2(a 14b 12)4a -13b 13(a >0,b >0);(2)⎝ ⎛⎭⎪⎫-278-23+(0.002)-12-10(5-2)-1+(2-3)0. 解 (1)原式=(a 3b 2a 13b 23)12ab 2a -13b 13=a 32+16-1+13b 1+13-2-13=ab -1.(2)原式=⎝ ⎛⎭⎪⎫-278-23+⎝ ⎛⎭⎪⎫1500-12-105-2+1=⎝ ⎛⎭⎪⎫-82723+50012-10(5+2)+1 =49+105-105-20+1=-1679. 规律方法 (1)指数幂的运算首先将根式、分数指数幂统一为分数指数幂,以便利用法则计算,但应注意:①必须同底数幂相乘,指数才能相加;②运算的先后顺序. (2)当底数是负数时,先确定符号,再把底数化为正数.(3)运算结果不能同时含有根号和分数指数,也不能既有分母又含有负指数. 【训练1】 化简求值:(1)⎝ ⎛⎭⎪⎫2350+2-2·⎝ ⎛⎭⎪⎫214-12-(0.01)0.5; (2)(a 23·b -1)-12·a -12·b 136a ·b 5.解 (1)原式=1+14×⎝ ⎛⎭⎪⎫4912-⎝ ⎛⎭⎪⎫110012=1+14×23-110=1+16-110=1615.(2)原式=a -13b 12·a -12b 13a 16b 56=a -13-12-16·b 12+13-56=1a . 考点二 指数函数的图象及应用【例2】 (1)函数f (x )=1-e |x |的图象大致是( )(2)若曲线|y |=2x +1与直线y =b 没有公共点,则b 的取值范围是________. 解析 (1)f (x )=1-e |x |是偶函数,图象关于y 轴对称, 又e |x |≥1,∴f (x )的值域为(-∞,0], 因此排除B 、C 、D ,只有A 满足.(2)曲线|y |=2x +1与直线y =b 的图象如图所示,由图象可知:如果|y |=2x +1与直线y =b 没有公共点,则b 应满足的条件是b ∈[-1,1].答案 (1)A (2)[-1,1]规律方法 (1)对于有关指数型函数的图象问题,一般是从最基本的指数函数的图象入手,通过平移、伸缩、对称变换而得到.特别地,当底数a 与1的大小关系不确定时应注意分类讨论.(2)有关指数方程、不等式问题的求解,往往利用相应的指数型函数图象,数形结合求解. 【训练2】 (1)(·福建五校联考)定义运算a ⊕b =⎩⎨⎧a ,a ≤b ,b ,a >b ,则函数f (x )=1⊕2x 的图象是( )(2)方程2x =2-x 的解的个数是________.解析 (1)因为当x ≤0时,2x ≤1;当x >0时,2x >1. 则f (x )=1⊕2x =⎩⎨⎧2x ,x ≤0,1,x >0,图象A 满足.(2)方程的解可看作函数y =2x 和y =2-x 的图象交点的横坐标,分别作出这两个函数图象(如图).由图象得只有一个交点,因此该方程只有一个解. 答案 (1)A (2)1考点三 指数函数的性质及应用(易错警示) 【例3】 (1)下列各式比较大小正确的是( ) A.1.72.5>1.73 B.0.6-1>0.62 C.0.8-0.1>1.250.2D.1.70.3<0.93.1(2)已知函数f (x )=⎝ ⎛⎭⎪⎫13ax 2-4x +3.①若a =-1,求f (x )的单调区间; ②若f (x )有最大值3,求a 的值; ③若f (x )的值域是(0,+∞),求a 的值. (1)解析 A 中,∵函数y =1.7x 在R 上是增函数,2.5<3, ∴1.72.5<1.73,错误;B 中,∵y =0.6x 在R 上是减函数,-1<2,∴0.6-1>0.62,正确; C 中,∵(0.8)-1=1.25,∴问题转化为比较1.250.1与1.250.2的大小. ∵y =1.25x 在R 上是增函数,0.1<0.2, ∴1.250.1<1.250.2,即0.8-0.1<1.250.2,错误; D 中,∵1.70.3>1, 0<0.93.1<1, ∴1.70.3>0.93.1,错误.故选B. 答案 B(2)解 ①当a =-1时,f (x )=⎝ ⎛⎭⎪⎫13-x 2-4x +3,令u =-x 2-4x +3=-(x +2)2+7.在(-∞,-2)上单调递增,在(-2,+∞)上单调递减,而y =⎝ ⎛⎭⎪⎫13u在R 上单调递减,所以f (x )在(-∞,-2)上单调递减,在(-2,+∞)上单调递增,即函数f (x )的递增区间是(-2,+∞),递减区间是(-∞,-2).②令h (x )=ax 2-4x +3,y =⎝ ⎛⎭⎪⎫13h (x ),由于f (x )有最大值3,所以h (x )应有最小值-1,因此必有⎩⎪⎨⎪⎧a >0,12a -164a =-1,解得a =1,即当f (x )有最大值3时,a 的值等于1.③由f (x )的值域是(0,+∞)知,ax 2-4x +3的值域为R ,则必有a =0.规律方法 (1)比较指数式的大小的方法是:①能化成同底数的先化成同底数幂,再利用单调性比较大小;②不能化成同底数的,一般引入“1”等中间量比较大小.(2)求解与指数函数有关的复合函数问题,首先要熟知指数函数的定义域、值域、单调性等相关性质,其次要明确复合函数的构成,涉及值域、单调区间、最值等问题时,都要借助“同增异减”这一性质分析判断.易错警示 在研究指数型函数的单调性时,当底数a 与“1”的大小关系不确定时,要分类讨论. 【训练3】 (1)(·天津卷)已知定义在R 上的函数f (x )=2|x -m |-1(m 为实数)为偶函数,记a =f (log 0.53),b =f (log 25),c =f (2m ),则a ,b ,c 的大小关系为( ) A.a <b <cB.c <a <bC.a <c <bD.c <b <a(2)设函数f (x )=⎩⎪⎨⎪⎧x 13,x ≥8,2e x -8,x <8,则使得f (x )≤3成立的x 的取值范围是________.解析 (1)由函数f (x )=2|x -m |-1为偶函数,得m =0,所以f (x )=2|x |-1,当x >0时,f (x )为增函数,log 0.53=-log 23,所以log 25>|-log 23|>0, 所以b =f (log 25)>a =f (log 0.53)>c =f (2m )=f (0), 故b >a >c ,选B.(2)当x ≥8时,f (x )=x 13≤3,∴x ≤27,即8≤x ≤27; 当x <8时,f (x )=2e x -8≤3恒成立,故x <8. 综上,x ∈(-∞,27]. 答案 (1)B (2)(-∞,27][思想方法]1.根式与分数指数幂的实质是相同的,分数指数幂与根式可以互化,通常利用分数指数幂进行根式的化简运算.2.判断指数函数图象上底数大小的问题,可以先通过令x =1得到底数的值再进行比较.3.指数函数的单调性取决于底数a 的大小,当底数a 与1的大小关系不确定时应分0<a <1和a >1两种情况分类讨论. [易错防范]1.对与复合函数有关的问题,要弄清楚复合函数由哪些基本初等函数复合而成,并且一定要注意函数的定义域.2.对可化为a 2x +b ·a x +c =0或a 2x +b ·a x +c ≥0(≤0)形式的方程或不等式,常借助换元法解题,但应注意换元后“新元”的范围.基础巩固题组 (建议用时:40分钟)一、选择题1.(·衡水中学模拟)若a =⎝ ⎛⎭⎪⎫23x,b =x 2,c =log 23x ,则当x >1时,a ,b ,c 的大小关系是( )A.c <a <bB.c <b <aC.a <b <cD.a <c <b解析 当x >1时,0<a =⎝ ⎛⎭⎪⎫23x <23,b =x 2>1,c =log 23x <0,所以c <a <b .答案 A2.函数f (x )=a x -b 的图象如图所示,其中a ,b 为常数,则下列结论正确的是( ) A.a >1,b <0 B.a >1,b >0 C.0<a <1,b >0D.0<a <1,b <0解析 由f (x )=a x -b 的图象可以观察出,函数f (x )=a x -b 在定义域上单调递减,所以0<a <1. 函数f (x )=a x -b 的图象是在f (x )=a x 的基础上向左平移得到的,所以b <0. 答案 D3.(·德州一模)已知a =⎝ ⎛⎭⎪⎫3525,b =⎝ ⎛⎭⎪⎫2535,c =⎝ ⎛⎭⎪⎫2525,则( )A.a <b <cB.c <b <aC.c <a <bD.b <c <a解析 ∵y =⎝ ⎛⎭⎪⎫25x在R 上为减函数,35>25,∴b <c .又∵y =x 25在(0,+∞)上为增函数,35>25,∴a >c ,∴b <c <a . 答案 D4.(·安阳模拟)已知函数f (x )=a x (a >0,且a ≠1),如果以P (x 1,f (x 1)),Q (x 2,f (x 2))为端点的线段的中点在y 轴上,那么f (x 1)·f (x 2)等于( ) A.1 B.a C.2D.a 2解析 ∵以P (x 1,f (x 1)),Q (x 2,f (x 2))为端点的线段的中点在y 轴上, ∴x 1+x 2=0.又∵f (x )=a x ,∴f (x 1)·f (x 2)=a x 1·a x 2=a x 1+x 2=a 0=1. 答案 A5.(·西安调研)若函数f (x )=a |2x -4|(a >0,且a ≠1),满足f (1)=19,则f (x )的单调递减区间是( ) A.(-∞,2] B.[2,+∞) C.[-2,+∞)D.(-∞,-2]解析 由f (1)=19,得a 2=19,解得a =13或a =-13(舍去),即f (x )=⎝ ⎛⎭⎪⎫13|2x -4|.由于y =|2x -4|在(-∞,2]上递减,在[2,+∞)上递增,所以f (x )在(-∞,2]上递增,在[2,+∞)上递减. 答案 B 二、填空题6.⎝ ⎛⎭⎪⎫32-13×⎝ ⎛⎭⎪⎫-760+814×42-⎝ ⎛⎭⎪⎫-2323=________. 解析 原式=⎝ ⎛⎭⎪⎫2313×1+234×214-⎝ ⎛⎭⎪⎫2313=2.答案 27.(·江苏卷)不等式2x 2-x<4的解集为________. 解析 ∵2x2-x<4,∴2x2-x<22,∴x 2-x <2,即x 2-x -2<0,解得-1<x <2. 答案 {x |-1<x <2}8.(·安徽江淮十校联考)已知max(a ,b )表示a ,b 两数中的最大值.若f (x )=max{e |x |,e |x -2|},则f (x )的最小值为________. 解析 f (x )=⎩⎨⎧e x ,x ≥1,e |x -2|,x <1.当x ≥1时,f (x )=e x ≥e(x =1时,取等号), 当x <1时,f (x )=e |x -2|=e 2-x >e , 因此x =1时,f (x )有最小值f (1)=e. 答案 e 三、解答题9.已知f (x )=⎝ ⎛⎭⎪⎫1a x -1+12x 3(a >0,且a ≠1). (1)讨论f (x )的奇偶性;(2)求a 的取值范围,使f (x )>0在定义域上恒成立.解 (1)由于a x -1≠0,则a x ≠1,得x ≠0, 所以函数f (x )的定义域为{x |x ≠0}. 对于定义域内任意x ,有 f (-x )=⎝ ⎛⎭⎪⎫1a -x -1+12(-x )3=⎝ ⎛⎭⎪⎫ax1-a x +12(-x )3 =⎝ ⎛⎭⎪⎫-1-1a x -1+12(-x )3 =⎝ ⎛⎭⎪⎫1a x -1+12x 3=f (x ). ∴f (x )是偶函数.(2)由(1)知f (x )为偶函数,∴只需讨论x >0时的情况,当x >0时,要使f (x )>0,即⎝ ⎛⎭⎪⎫1a x -1+12x 3>0,即1a x -1+12>0,即a x +12(a x -1)>0,则a x >1. 又∵x >0,∴a >1. 因此a >1时,f (x )>0.10.已知定义域为R 的函数f (x )=-2x +b 2x +1+a 是奇函数.(1)求a ,b 的值;(2)解关于t 的不等式f (t 2-2t )+f (2t 2-1)<0. 解 (1)因为f (x )是定义在R 上的奇函数, 所以f (0)=0, 即-1+b2+a=0,解得b =1, 所以f (x )=-2x +12x +1+a.又由f (1)=-f (-1)知-2+14+a =--12+11+a ,解得a =2.(2)由(1)知f (x )=-2x +12x +1+2=-12+12x +1.由上式易知f (x )在(-∞,+∞)上为减函数(此处可用定义或导数法证明函数f (x )在R 上是减函数).又因为f (x )是奇函数,所以不等式f (t 2-2t )+f (2t 2-1)<0等价于f (t 2-2t )<-f (2t 2-1)=f (-2t 2+1).因为f (x )是减函数,由上式推得t 2-2t >-2t 2+1,即3t 2-2t -1>0,解不等式可得t >1或t <-13, 故原不等式的解集为⎩⎨⎧⎭⎬⎫t |t >1或t <-13. 能力提升题组(建议用时:20分钟)11.若存在正数x 使2x (x -a )<1成立,则a 的取值范围是( )A.(-∞,+∞)B.(-2,+∞)C.(0,+∞)D.(-1,+∞) 解析 因为2x >0,所以由2x (x -a )<1得a >x -⎝ ⎛⎭⎪⎫12x , 令f (x )=x -⎝ ⎛⎭⎪⎫12x ,则函数f (x )在(0,+∞)上是增函数, 所以f (x )>f (0)=0-⎝ ⎛⎭⎪⎫120=-1, 所以a >-1.答案 D12.(·宜宾诊断检测)已知函数f (x )=x -4+9x +1,x ∈(0,4),当x =a 时,f (x )取得最小值b ,则函数g (x )=a |x +b |的图象为( )解析 ∵x ∈(0,4),∴x +1>1,∴f (x )=x +1+9x +1-5≥29-5=1,当且仅当x +1=9x +1,即x =2时,取等号.∴a =2,b =1.因此g (x )=2|x +1|,该函数图象由y =2|x |向左平移一个单位得到,结合图象知A 正确.答案 A13.(·北京丰台一模)已知奇函数y =⎩⎨⎧f (x ),x >0,g (x ),x <0.如果f (x )=a x (a >0,且a ≠1)对应的图象如图所示,那么g (x )=________.解析 依题意,f (1)=12,∴a =12,∴f (x )=⎝ ⎛⎭⎪⎫12x ,x >0.当x <0时,-x >0. ∴g (x )=-f (-x )=-⎝ ⎛⎭⎪⎫12-x=-2x . 答案 -2x (x <0)14.(·天津期末)已知函数f (x )=e x -e -x (x ∈R ,且e 为自然对数的底数).(1)判断函数f (x )的单调性与奇偶性;(2)是否存在实数t ,使不等式f (x -t )+f (x 2-t 2)≥0对一切x ∈R 都成立?若存在,求出t ;若不存在,请说明理由.解 (1)∵f (x )=e x-⎝ ⎛⎭⎪⎫1e x , ∴f ′(x )=e x+⎝ ⎛⎭⎪⎫1e x , ∴f ′(x )>0对任意x ∈R 都成立,∴f (x )在R 上是增函数.又∵f (x )的定义域为R ,且f (-x )=e -x -e x =-f (x ),∴f (x )是奇函数.(2)存在.由(1)知f (x )在R 上是增函数和奇函数,则f (x -t )+f (x 2-t 2)≥0对一切x ∈R 都成立, ⇔f (x 2-t 2)≥f (t -x )对一切x ∈R 都成立,⇔x 2-t 2≥t -x 对一切x ∈R 都成立,⇔t 2+t ≤x 2+x =⎝ ⎛⎭⎪⎫x +122-14对一切x ∈R 都成立,⇔t 2+t ≤(x 2+x )min =-14⇔t 2+t +14=⎝ ⎛⎭⎪⎫t +122≤0, 又⎝ ⎛⎭⎪⎫t +122≥0, ∴⎝ ⎛⎭⎪⎫t +122=0,∴t =-12. ∴存在t =-12,使不等式f (x -t )+f (x 2-t 2)≥0对一切x ∈R 都成立.。

高一函数(5):指数与指数函数

高一函数(5):指数与指数函数

专题一 指数与指数函数题型一 指数幂的化简与求值指数幂运算的一般原则(1)有括号的先算括号里的,无括号的先算指数运算. (2)先乘除后加减,负指数幂化成正指数幂的倒数.(3)底数是小数,先化成分数;底数是带分数的,先化成假分数.(4)若是根式,应化为分数指数幂,尽可能用幂的形式表示,运用指数幂的运算性质来解答. 运算结果不能同时含有根号和分数指数幂,也不能既有分母又含有负指数,形式力求统一. 【例1】化简:(a 2·5a 3)÷(a ·10a 9)=________(用分数指数幂表示). 【解析(a 2·5a 3)÷(a ·10a 9)=(a 2·a 35)÷(a 12·a 910)=a 135÷a 75=a 135-75=a 65.【例2】614+0.002-12-10×(5-2)-1-295-⎪⎭⎫ ⎝⎛+[(-2)3]-23的值为________. 【解析】原式=225⎪⎭⎫⎝⎛+50012-10×(5+2)-1+(23)-23=52+105-105-20-1+2-2=2.5-21+0.25=-18.25.【例3】.若x 12+x -12=3,则x 32+x -32+2x 2+x -2+3的值为________.【解析】由x 12+x -12=3,得x +x -1+2=9,所以x +x -1=7,所以x 2+x -2+2=49,所以x 2+x -2=47. 因为x 32+x -32=(x 12+x -12)3-3(x 12+x -12)=27-9=18,所以原式=18+247+3=25.题型二 指数函数的图象及应用1.准确把握指数函数图象的特征(1)画指数函数y =a x (a >0,且a ≠1)的图象,应抓住三个关键点:(1,a ),(0,1),⎪⎭⎫ ⎝⎛a 11-,. (2)指数函数在同一坐标系中的图象的相对位置与底数大小关系,如图所示其中0<c <d <1<a <b ,在y 轴右侧,图象从上到下相应的底数由大变小,在y 轴左侧,图象从下到上相应的底数由大变小,即无论在y 轴的左侧还是右侧,底数按逆时针方向变大.如举例说明3.2.关注含参指数型函数图象恒过定点问题 (1)依据:恒等式a 0=1(a ≠0).(2)方法:求形如f (x )=M ·a kx +b +N 的图象恒过的定点,首先由kx +b =0求定点的横坐标,计算定点纵坐标.3.有关指数函数图象问题的解题思路(1)已知函数解析式判断其图象,一般是取特殊点,判断选项中的图象是否过这些点,若不满足则排除.(2)对于有关指数型函数的图象问题,一般是从最基本的指数函数的图象入手,通过平移、伸缩、对称变换而得到.特别地,当底数a 与1的大小关系不确定时应注意分类讨论. (3)有关指数方程、不等式问题的求解,往往是利用相应的指数型函数图象,数形结合求解. 【例1】已知函数f (x )=4+2a x-1的图象恒过定点P ,则点P 的坐标是( )A .(1,6)B .(1,5)C .(0,5)D .(5,0) 【解析】由x -1=0得x =1,f (1)=4+2a 0=6.所以函数f (x )=4+2a x -1的图象恒过定点(1,6).【例2】函数f (x )=2|x -1|的大致图象为( )【解析】因为f (x )=2|x -1|=⎩⎪⎨⎪⎧21-x ,x ≤1,2x -1,x >1,所以f (x )在(-∞,1]上单调递减,在(1,+∞)上单调递增,故排除A ,C ,D.【例3】若关于x 的方程|a x -1|=2a (a >0,且a ≠1)有两个不等实根,则a 的取值范围是________.【解析】方程|a x -1|=2a (a >0,且a ≠1)有两个不等实根转化为函数y =|a x -1|与y =2a 有两个交点.(1)当0<a <1时,如图①,所以0<2a <1,即0<a <12;(2)当a >1时,如图②,而y =2a >1不符合要求.所以0<a <12.题型三 指数函数的性质及应用考查视角一 比较指数幂的大小 比较幂值大小的常见类型及解决方法【例1】(2020·许昌四校联考)设a ,b 满足0<a <b <1,则下列不等式中正确的是( ) A .a a <a b B .b a <b b C .a a <b a D .b b <a b 【解析】指数函数y =a x (0<a <1)为减函数,因为a <b ,所以a a >a b ,A 错误; 指数函数y =b x (0<b <1)为减函数,因为a <b ,所以b a >b b ,B 错误; 幂函数y =x a (0<a <1)在(0,+∞)上为增函数,又a <b ,所以a a <b a ,C 正确; 由幂函数y =x b (0<b <1)在(0,+∞)上为增函数,又a <b ,所以b b >a b ,D 错误.【例2】(2020·闽粤赣三省十校联考)已知a =243,b =425,c =2513,则( ) A .b <a <c B .a <b <c C .b <c <a D .c <a <b 【解析】因为a =243,b =425=245,由函数y =2x 在R 上为增函数知,b <a ; 又因为a =243=423,c =2513=523由函数y =x 23在(0,+∞)上为增函数知,a <c . 综上得b <a <c .故选A.考查视角二 解指数不等式利用指数函数的性质解简单的指数方程或不等式的方法先利用幂的运算性质化为同底数幂,再利用单调性转化为一般不等式求解【例3】若偶函数f (x )满足f (x )=2x -4(x ≥0),则不等式f (x -2)>0的解集为________.【解析】因为f (x )为偶函数,当x <0时,-x >0,则f (x )=f (-x )=2-x-4,所以f (x )=⎩⎪⎨⎪⎧2x -4,x ≥0,2-x -4,x <0当f (x -2)>0时,有⎩⎪⎨⎪⎧x -2≥0,2x -2-4>0或⎩⎪⎨⎪⎧x -2<0,2-x +2-4>0,,解得x >4或x <0,所以不等式的解集为{x |x >4或x <0}.考查视角三 指数型复合函数的单调性 1.两类复合函数的最值(或值域)问题(1)形如y =a 2x +b ·a x +c (a >0,且a ≠1)型函数最值问题多用换元法,即令t =a x 转化为y =t 2+bt +c 的最值问题,注意根据指数函数求t 的范围.(2)形如y =a f (x )(a >0,且a ≠1)型函数最值问题,可令t =f (x ),则y =a t ,先由x 的取值范围求t 的取值范围,再求y =a t 的最值. 2.对于形如y =a f (x )的函数的单调性(1)若a >1,函数f (x )的单调增(减)区间即函数y =a f (x )的单调增(减)区间; (2)若0<a <1,函数f (x )的单调增(减)区间即函数y =a f (x )的单调减(增)区间. 【例4】已知函数f (x )=2|2x -m |(m 为常数),若f (x )在区间[2,+∞)上是增函数,则m 的取值范围是________.【解析】令t =|2x -m |,则t =|2x -m |在区间⎪⎭⎫⎢⎣⎡+∞,2m 上单调递增,在区间⎥⎦⎤ ⎝⎛∞2-m ,上单调递减.而y =2t 为R 上的增函数,所以要使函数f (x )=2|2x -m |在[2,+∞)上单调递增,则有m2≤2,即m ≤4【例5】已知函数f (x )=34231+-⎪⎭⎫ ⎝⎛x ax .(1)若a =-1,求f (x )的单调区间; (2)若f (x )有最大值3,求a 的值; (3)若f (x )的值域是(0,+∞),求a 的值.【解析】(1)当a =-1时,f (x )=34-231+-⎪⎭⎫⎝⎛x x ,令u =-x 2-4x +3=-(x +2)2+7.则u 在(-∞,-2)上单调递增,在(-2,+∞)上单调递减,而y =u⎪⎭⎫⎝⎛31在R 上单调递减,所以f (x )在(-∞,-2)上单调递减,在(-2,+∞)上单调递增, 即函数f (x )的单调递增区间是(-2,+∞),单调递减区间是(-∞,-2).(2)令h (x )=ax 2-4x +3,f (x )=)(31x h ⎪⎭⎫⎝⎛,由于f (x )有最大值3,所以h (x )应有最小值-1, 因此必有⎩⎪⎨⎪⎧a >0,12a -164a=-1,解得a =1,即当f(x)有最大值3时,a的值为1.(3)由f(x)的值域是(0,+∞)知,ax2-4x+3的值域为R,则必有a=0. 巩固提升1.(2020·上饶摸底)已知a=20.4,b=90.2,c=(43)3,则( )A.a<b<c B.a<c<b C.c<a<b D.c<b<a【解析】因为c=(43)3=334=30.75>30.4,b=90.2=30.4,所以b<c,又20.4<30.4,即a<b,所以a<b<c.2.(2020·宜宾模拟)若函数f(x)=2·a x+m-n(a>0且a≠1)的图象恒过定点(-1,4),则m+n=( )A.3 B.1C.-1 D.-2【解析】因为函数f(x)=2·a x+m-n(a>0且a≠1)的图象恒过定点(-1,4),所以-1+m=0,且2·a0-n=4.解得m=1,n=-2,所以m+n=-1.3.已知a=log20.2,b=20.2,c=0.20.3,则( )A.a<b<c B.a<c<bC.c<a<b D.b<c<a【解析】因为a=log20.2<0,b=20.2>1,c=0.20.3∈(0,1),所以a<c<b.故选B.4.(2020·安徽皖江名校模拟)若e a+πb≥e-b+π-a,则有( )A.a+b≤0B.a-b≥0C.a-b≤0D.a+b≥0【解析】令f(x)=e x-π-x,则f(x)在R上单调递增,因为e a+πb≥e-b+π-a,所以e a-π-a≥e-b-πb,则f(a)≥f(-b),所以a≥-b,即a+b≥0.故选D.5.已知函数f(x)=a x,其中a>0,且a≠1,如果以P(x1,f(x1)),Q(x2,f(x2))为端点的线段的中点在y轴上,那么f(x1)·f(x2)等于( )A .1B .aC .2D .a 2【解析】∵以P (x 1,f (x 1)),Q (x 2,f (x 2))为端点的线段的中点在y 轴上,∴x 1+x 2=0.又f (x )=a x ,∴f (x 1)·f (x 2)=ax 1·ax 2=ax 1+x 2=a 0=1,故选A. 6.(2019·凌源模拟)设a =7375⎪⎭⎫⎝⎛,b =7573⎪⎭⎫ ⎝⎛,c =7373⎪⎭⎫⎝⎛,则a ,b ,c 的大小关系为( ) A .b <c <a B .a <b <c C .a <c <b D .c <a <b【解析】因为函数y =x73⎪⎭⎫⎝⎛在R 上单调递减.所以7573⎪⎭⎫ ⎝⎛<7373⎪⎭⎫ ⎝⎛,即b <c .又函数y =x 37在(0,+∞)上单调递增,所以7373⎪⎭⎫ ⎝⎛<7375⎪⎭⎫⎝⎛,即c <a .综上,b <c <a .7.若函数f (x )=2x +12x -a是奇函数,则使f (x )>3成立的x 的取值范围为( )A .(-∞,-1)B .(-1,0)C .(0,1)D .(1,+∞) 【解析】∵f (x )为奇函数,∴f (-x )=-f (x ),即2-x +12-x -a =-2x +12x -a ,整理得(a -1)(2x +2-x +2)=0,∴a =1,∴f (x )>3,即为2x +12x -1>3,当x >0时,2x -1>0,∴2x +1>3·2x -3,解得0<x <1;当x <0时,2x -1<0,∴2x +1<3·2x -3,无解.∴x 的取值范围为(0,1).8.设y =f (x )在(-∞,1]上有定义,对于给定的实数K ,定义f K (x )=⎩⎪⎨⎪⎧f (x ),f (x )≤K ,K ,f (x )>K .给出函数f (x )=2x +1-4x ,若对于任意x ∈(-∞,1],恒有f K (x )=f (x ),则( )A .K 的最大值为0B .K 的最小值为0C .K 的最大值为1D .K 的最小值为1【解析】对于任意x ∈(-∞,1],若恒有f K (x )=f (x ),则f (x )≤K 在x ≤1上恒成立,即f (x )最大值小于或等于K 令2x =t ,则t ∈(0,2],f (t )=-t 2+2t =-(t -1)2+1,可得f (t )的最大值为1,所以K ≥1,故选D.9.(2020·湖南株洲月考)如图,四边形OABC 是面积为8的平行四边形,AC ⊥CO ,AC 与BO 交于点E ,某指数函数y =a x (a >0且a ≠1)的图象经过点E ,B ,则a =( )A. 2B. 3 C .2 D .3【解析】设C (0,y C ),因为AC ⊥CO ,则设A (x A ,y C ),于是B (x A ,2y C ),E ⎪⎭⎫⎝⎛C A y x ,21 因为平行四边形OABC 的面积为8,所以y C ·x A =8,因为点E ,B 在y =a x 的图象上,则axA =2y C ,a xA2=y C ,所以y 2C =2y C ,解得y C =2或y C =0(舍去),则x A =4,于是a 4=4,因为a >0,所以a = 2.10.已知函数f (x )=|2x -1|,a <b <c 且f (a )>f (c )>f (b ),则下列结论中,一定成立的是( ) A .a <0,b <0,c <0 B .a <0,b ≥0,c >0 C .2-a <2c D .2a +2c <2 【解析】作出函数f (x )=|2x -1|的图象,如图,因为a <b <c 且f (a )>f (c )>f (b ), 结合图象知,0<f (a )<1,a <0,c >0, 所以0<2a <1,所以f (a )=|2a -1|=1-2a <1, 所以f (c )<1,所以0<c <1.所以1<2c <2,所以f (c )=|2c -1|=2c -1, 又因为f (a )>f (c ),所以1-2a >2c -1, 所以2a +2c <2,故选D.11.函数y =a x -b (a >0,且a ≠1)的图象经过第二、三、四象限,则a b 的取值范围是________. 【解析】因为函数y =a x -b 的图象经过第二、三、四象限,所以函数y =a x -b 单调递减且其图象与y 轴的交点在y 轴的负半轴上. 令x =0,则y =a 0-b =1-b ,由题意得⎩⎪⎨⎪⎧0<a <1,1-b <0,解得⎩⎪⎨⎪⎧0<a <1,b >1.故a b ∈(0,1).12.定义区间[x 1,x 2]的长度为x 2-x 1,已知函数f (x )=3|x |的定义域为[a ,b ],值域为[1,9],则区间[a ,b ]长度的最小值为________.【解析】∵函数f (x )=3|x |的定义域为[a ,b ],值域为[1,9], ∴0∈[a ,b ].2和-2至少有一个属于区间[a ,b ],故区间[a ,b ]的长度最小时为[-2,0]或[0,2].即区间[a ,b ]长度的最小值为2. 13.(2020·中山一中摸底)化简:(23a 2·b )(-6a ·3b )÷(-36a ·6b 5)=________. 【解析】原式=(2a 23·b 12)(-6a 12b 13)÷(-3a 16b 56)=[2×(-6)÷(-3)]a 23+12-16b 12+13-56=4a .14.已知函数f (x )=(a -2)a x (a >0,且a ≠1),若对任意x 1,x 2∈R ,f (x 1)-f (x 2)x 1-x 2>0,则a 的取值范围是________.【解析】由题意知f (x )在R 上是单调递增函数,当0<a <1时,a -2<0,y =a x 单调递减,所以f (x )单调递增; 当1<a <2时,a -2<0,y =a x 单调递增,所以f (x )单调递减; 当a =2时,f (x )=0;当a >2时,a -2>0,y =a x 单调递增,所以f (x )单调递增. 故a 的取值范围是(0,1)∪(2,+∞).15.若不等式(m 2-m )2x -x⎪⎭⎫⎝⎛21<1对一切x ∈(-∞,-1]恒成立,则实数m 的取值范围是___.【解析】(m 2-m )2x -x⎪⎭⎫ ⎝⎛21<1可变形为m 2-m <x⎪⎭⎫⎝⎛21+221⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛x.设t =x⎪⎭⎫⎝⎛21(t ≥2),则原条件等价于不等式m 2-m <t +t 2在t ≥2时恒成立.显然t +t 2在t ≥2时的最小值为6,所以m 2-m <6,解得-2<m <3.16.不等式2221212-++⎪⎭⎫ ⎝⎛<⎪⎭⎫⎝⎛a x axx 恒成立,则a 的取值范围是________.【解析】由题意,y =x⎪⎭⎫⎝⎛21是减函数,因为2221212-++⎪⎭⎫ ⎝⎛<⎪⎭⎫ ⎝⎛a x axx 恒成立,所以x 2+ax >2x +a -2恒成立,所以x 2+(a -2)x -a +2>0恒成立,所以Δ=(a -2)2-4(-a +2)<0,即(a -2)(a -2+4)<0,即(a -2)(a +2)<0, 故有-2<a <2,即a 的取值范围是(-2,2).17.已知实数a ,b 满足等式a ⎪⎭⎫ ⎝⎛21=b⎪⎭⎫⎝⎛31,下列五个关系式:①0<b <a ;②a <b <0;③0<a <b ;④b <a <0;⑤a =b ,其中可能成立的关系式有________.(填序号) 【解析】函数y 1=x ⎪⎭⎫ ⎝⎛21与y 2=x ⎪⎭⎫ ⎝⎛31的图象如图所示.由a ⎪⎭⎫ ⎝⎛21=b⎪⎭⎫⎝⎛31得,a <b <0或0<b <a 或a=b =0.故①②⑤可能成立,③④不可能成立.18.设a >0,且a ≠1,函数y =a 2x +2a x -1在[-1,1]上的最大值是14,则实数a 的值为________. 【解析】令t =a x (a >0,且a ≠1), 则原函数化为y =f (t )=(t +1)2-2(t >0).①当0<a <1,x ∈[-1,1]时,t =a x ∈⎥⎦⎤⎢⎣⎡a a 1,,此时f (t )在⎥⎦⎤⎢⎣⎡aa 1,上为增函数.所以f (t )max =⎪⎭⎫ ⎝⎛a f 1=211⎪⎭⎫⎝⎛+a -2=14.所以211⎪⎭⎫⎝⎛+a =16,解得a =-15(舍去)或a =13.②当a >1时,x ∈[-1,1],t =a x ∈⎥⎦⎤⎢⎣⎡a a,1, 此时f (t )在⎥⎦⎤⎢⎣⎡a a,1上是增函数.所以f (t )max =f (a )=(a +1)2-2=14,解得a =3或a =-5(舍去).综上得a =13或3. 19.已知函数f (x )=2a ·4x -2x -1.(1)当a =1时,求函数f (x )在x ∈[-3,0]上的值域;(2)若关于x 的方程f (x )=0有解,求a 的取值范围.【解析】(1)当a =1时,f (x )=2·4x -2x -1=2(2x )2-2x -1,令t =2x ,x ∈[-3,0],则t ∈⎥⎦⎤⎢⎣⎡181,. 故y =2t 2-t -1=2241⎪⎭⎫ ⎝⎛-t -98,t ∈⎥⎦⎤⎢⎣⎡181,,故值域为⎥⎦⎤⎢⎣⎡089-, (2)关于x 的方程2a (2x )2-2x -1=0有解,设2x =m >0,等价于方程2am 2-m -1=0在(0,+∞)上有解,记g (m )=2am 2-m -1,当a =0时,解为m =-1<0,不成立.当a <0时,开口向下,对称轴m =14a<0, 过点(0,-1),不成立.当a >0时,开口向上,对称轴m =14a>0,过点(0,-1),必有一个根为正, 综上得a >0.20.已知定义域为R 的函数f (x )=-2x +b 2x +1+a是奇函数. (1)求a ,b 的值;(2)若对任意的t ∈R ,不等式f (t 2-2t )+f (2t 2-k )<0恒成立,求k 的取值范围.【解析】(1)因为f (x )是定义在R 上的奇函数,所以f (0)=0,即-1+b 2+a=0,解得b =1,所以f (x )=-2x +12x +1+a .又由f (1)=-f (-1)知-2+14+a =--12+11+a,解得a =2. (2)由(1)知f (x )=-2x +12x +1+2=-12+12x +1,由上式易知f (x )在R 上为减函数, 又因为f (x )是奇函数,从而不等式f (t 2-2t )+f (2t 2-k )<0等价于f (t 2-2t )<-f (2t 2-k )=f (-2t 2+k ).因为f (x )是R 上的减函数,由上式推得t 2-2t >-2t 2+k ,即对一切t ∈R 有3t 2-2t -k >0, 从而Δ=4+12k <0,解得k <-13,故k 的取值范围为⎪⎭⎫⎝⎛∞31--,.。

指数与指数函数

指数与指数函数
4
(1) (-4)4 =π-4.( × )


(2) 与( )n 都等于 a(n∈N*).( × )
2
1
(3)(-1)4 =(-1)2
=
-1.( × )
(4)函数 y=3·2x 与 y=2x+1 都不是指数函数.(
(5)若 am>an,则 m>n.( × )
)
考向一
指数幂的运算
例 1 化简下列各式(其中各字母均为正数).
2

1
27 3
(1)- 8 +0.002-2-10( 5-2)-1+π0
a3b2 3 ab2
(2)
1 1(a>0,b>0)
1 1
(a4b2)4a-3b3
1
5
2
3
(3) [(0.064 ) 2.5]

1
2
1
1

23 1
3
2
a
b
a
b


(4)


6
a b5
3
3
38-π0;
成假分数.
(4)若是根式,则化为分数指数幂,尽可能用幂的形式表示,运用指数幂的运
算性质来解答.
(5)运算结果不能同时含有根号和分数指数幂,也不能既有分母又含有负指
数幂.
(Ⅰ)

【解析】
(Ⅰ)原式=


对点训练1
求值与化简:
1
若 2
+
1
2 +-2 −2
2 =3,求 3 3 的值.
-
2 + 2 −3
(3)(2019·福建泉州五中模拟)设 a>0,且 a≠1,函数 y=a2x+2ax-1 在[-1,1]上的最大值是 14,则实数 a 的值为________.

高中 指数与指数函数知识点+例题+练习 含答案

高中 指数与指数函数知识点+例题+练习 含答案

教学过程④负分数指数幂:a n m-=a n m1=1na m(a>0,m,n∈N,且n>1);⑤0的正分数指数幂等于0,0的负分数指数幂无意义.(2)有理数指数幂的性质①a r a s=a r+s(a>0,r,s∈Q);②(a r)s=a rs(a>0,r,s∈Q);③(ab)r=a r b r(a>0,b>0,r∈Q).3.指数函数的图象与性质y=a x a>10<a<1图象定义域R值域(0,+∞)性质过定点(0,1)当x>0时,y>1;x<0时,0<y<1当x>0时,0<y<1;x<0时,y>1在(-∞,+∞)上是增函数在(-∞,+∞)上是减函数辨析感悟1.指数幂的应用辨析(1)(4-2)4=-2.( )(2)(教材探究改编)(na n)=a.( )2.对指数函数的理解(3)函数y=3·2x是指数函数.( )(4)y=⎝⎛⎭⎪⎫1ax是R上的减函数.( )教学效果分析教学过程(5)指数函数在同一直角坐标系中的图象的相对位置与底数的大小关系如图,无论在y轴的左侧还是右侧图象从上到下相应的底数由大变小.( )(6)(2013·金华调研)已知函数f(x)=4+a x-1(a>0且a≠1)的图象恒过定点P,则点P的坐标是(1,5).( )[感悟·提升]1.“na n”与“⎝⎛⎭⎫na n”的区别当n为奇数时,或当n为偶数且a≥0时,na n=a,当n为偶数,且a<0时,na n=-a,而(na)n=a恒成立.如(1)中4-2不成立,(2)中6-22=32≠3-2. 2.两点注意一是指数函数的单调性是底数a的大小决定的,因此解题时通常对底数a按0<a<1和a>1进行分类讨论,如(4);二是指数函数在同一直角坐标系中的图象与底数的大小关系,在y轴右侧,图象从上到下相应的底数由大变小,在y轴左侧,图象从上到下相应的底数由小变大.如(5).考点一指数幂的运算【例1】(1)计算:+(-2)2;(2)若=3,求的值.规律方法进行指数幂运算时,一般化负指数为正指数,化根式为分数指数幂,化小数为分数,同时兼顾运算的顺序.需注意下列问题:(1)对于含有字母的化简求值的结果,一般用分数指数幂的形式表示;(2)应用平方差、完全平方公式及a p a-p=1(a≠0)简化运算.(2)教学效果分析教学过程考点二指数函数的图象及其应用【例2】(1)(2014·泰安一模)函数f(x)=a x-b的图象如图,其中a,b为常数,则下列结论正确的是________.①a>1,b<0;②a>1,b>0;③0<a<1,b>0;④0<a<1,b<0.(2)比较下列各式大小.①1.72.5______1.73;②0.6-1______0.62;③0.8-0.1______1.250.2;④1.70.3______0.93.1.规律方法(1)对指数型函数的图象与性质(单调性、最值、大小比较、零点等)的求解往往利用相应指数函数的图象,通过平移、对称变换得到其图象,然后数形结合使问题得解.(2)一些指数方程、不等式问题的求解,往往利用相应指数型函数图象数形结合求解.【训练2】已知实数a,b满足等式2 011a=2 012b,下列五个关系式:①0<b<a;②a<b<0;③0<a<b;④b<a<0;⑤a=b.其中不可能成立的关系式有________.教学效果分析教学过程1.判断指数函数图象的底数大小的问题,可以先通过令x=1得到底数的值再进行比较.2.对和复合函数有关的问题,要弄清复合函数由哪些基本初等函数复合而成.3.画指数函数y=a x(a>0,且a≠1)的图象,应抓住三个关键点:(1,a),(0,1),⎝⎛⎭⎪⎫-1,1a.4.熟记指数函数y=10x,y=2x,y=⎝⎛⎭⎪⎫110x,y=⎝⎛⎭⎪⎫12x在同一坐标系中图象的相对位置,由此掌握指数函数图象的位置与底数大小的关系.易错辨析2——忽略讨论及验证致误【典例】(2012·山东卷)若函数f(x)=a x(a>0,a≠1)在[-1,2]上的最大值为4,最小值为m,且函数g(x)=(1-4m)x在[0,+∞)上是增函数,则a=________.[防范错施] (1)指数函数的底数不确定时,单调性不明确,从而无法确定其最值,故应分a>1和0<a<1两种情况讨论.(2)根据函数的单调性求最值是求函数最值的常用方法之一,熟练掌握基本初等函数的单调性及复合函数的单调性是求解的基础.【自主体验】当x∈[-2,2]时,a x<2(a>0,且a≠1),则实数a的范围是________.教学效果分析课堂巩固一、填空题1.(2014·郑州模拟)在函数①f (x )=1x ;②f (x )=x 2-4x +4;③f (x )=2x ;④f (x )=中,满足“对任意的x 1,x 2∈(0,+∞),当x 1<x 2时,都有f (x 1)<f (x 2)”的是________.2.函数y =a x -1a (a >0,a ≠1)的图象可能是________.3.a 3a ·5a 4(a >0)的值是________.4.设2a =5b =m ,且1a +1b =2,则m 等于________.5.函数y =a x -b (a >0且a ≠1)的图象经过第二、三、四象限,则a b 的取值范围为________.6.(2014·济南一模)若a =30.6,b =log 30.2,c =0.63,则a 、b 、c 的大小关系为________.7.(2014·盐城模拟)已知函数f (x )=a -x (a >0,且a ≠1),且f (-2)>f (-3),则a 的取值范围是________.8.函数f (x )=a x (a >0,a ≠1)在[1,2]中的最大值比最小值大a2,则a 的值为________.9.函数f (x )=a x -3+m (a >1)恒过点(3,10),则m =________. 10.(2014·杭州质检)已知函数f (x )=⎩⎨⎧(1-3a )x +10a ,x ≤7,a x -7,x >7是定义域上的递减函数,则实数a 的取值范围是________. 11.(2014·惠州质检)设f (x )=|3x -1|,c <b <a 且f (c )>f (a )>f (b ),则关系式3c +3a ________2(比较大小).二、解答题12.设a >0且a ≠1,函数y =a 2x +2a x -1在[-1,1]上的最大值是14,求a 的值.。

指数与指数函数知识点及题型归纳总结

指数与指数函数知识点及题型归纳总结

指数与指数函数知识点及题型归纳总结知识点精讲一、指数的运算性质 当a >0,b >0时,有 (1)a m a n=am +n(m ,n ∈R );(2)mm n n a a a-=( m ,n ∈R) (3)(a m )n =a mn (m ,n ∈R );(4)(ab )m =a m b m (m ∈R );(5)pp a a-=1(p ∈Q ) (6)mm n n a a =(m ,n ∈N +)二、指数函数(1)一般地,形如y =a x (a >0且a ≠1)的函数叫做指数函数; (2)指数函数y =a x (a >0y =a x a >1 0<a <1图象(1)定义域:R (1)定义域:R 值域(2)值域:(0,+∞) (2)值域:(0,+∞) (3)过定点(0,1)(3)过定点(0,1) (4)在R 上是增函数. (4)在R 上是减函数. (5)0<y <1⇔x >0y =1⇔x =0 y >1⇔x <0(5)0<y <1⇔x <0y =1⇔x =0 y >1⇔x >0题型归纳及思路提示题型1指数运算及指数方程、指数不等式 思路提示利用指数的运算性质解题.对于形如()f x a b =,()f x a b >,()f x a b <的形式常用“化同底”转化,再利用指数函数单调性解决;或用“取对数”的方法求解.形如a 2x +B a x +C =0或a 2x +Ba x +C ≥0(≤0)的形式,可借助换元法转化二次方程或二次不等式求解. 一、指数运算例2.48化简并求值.(1)若a =2,b =4()()a a b b ab a b b+÷+--223333311的值; (2)若x x -+=11223,x x x x --+-+-33222232的值; (3)设nna --=11201420142(n ∈N +),求()n a a +21的值.分析:利用指数运算性质解题.===.当a=2,b=4,原式===12.(2)先对所给条件作等价变形:()x x x x--+=+-=-=11122222327,()()x x x x x x---+=++-=⨯=33111222213618,x2+x-2=(x+x-1)2-2=72-2=47.故x xx x--+--==+--3322223183124723.(3)因为n na--=11201420142,所以()n na-++=11222014201412,n n n nna---+--=-=111112014201420142014201422.所以)na-=12014.变式1 设2a=5b=m,且a b+=112,则m=( ).A. B. 10 C. 20 D. 100二、指数方程例2.49 解下列方程(1)9x-4⋅3x+3=0;(2)()()x x⋅=29643827;分析:对于(1)方程,将其化简为统一的底数,9x=(3x)2;对于()()x x⋅2938,对其底进行化简运算. 解析:(1)9x-4⋅3x+3=0⇒(3x)2-4⋅3x+3=0,令t=3x(t>0),则原方程变形为t2-4t+3=0,得t1=1,t2=3,即x=131或x=233,故x1=0,x2=1.故原方程的解为x1=0,x2=1.(2)由()()x x⋅=29643827,可得()x⨯=33294383即()()x=33443,所以()()x-=33344,得x=-3.故原方程的解为x=-3.变式1方程9x-6⋅3x-7=0的解是________.变式2 关于x 的方程()x aa+=-32325有负实数根,则a 的取值范围是__________. 三、指数不等式例2.50若对x ∈[1,2],不等式x m +>22恒成立,求实数m 的取值范围. 分析:利用指数函数的单调性转化不等式.解析:因为函数y =2x 是R 上的增函数,又因为x ∈[1,2],不等式x m +>22恒成立,即对∀x ∈[1,2],不等式x +m >1恒成立⇔函数y =x +m 在[1,2]上的最小值大于1,而y =x +m 在[1,2]上是增函数,其最小值是1+m ,所以1+m >1,即m >0.所以实数m 的取值范围是{m |m >0}.变式1 已知对任意x ∈R ,不等式()x mx m x x -+++>22241122恒成立,求m 的取值范围.变式2 函数()xf x x -=-21的定义域为集合A ,关于x 的不等式ax a x +<222(x ∈R)的解集为B ,求使A ∩B =A 的实数a 的取值范围.题型2 指数函数的图像及性质 思路提示解决指数函数有关问题,思路是从它们的图像与性质考虑,按照数形结合的思路分析,从图像与性质找到解题的突破口,但要注意底数对问题的影响. 一、指数函数的图像 例2.51 函数()x bf x a-=的图象如图2-14所示,其中a ,b 为常数,则下列结论中正确的是( ).A. a >1,b <0B. a >1,b >0C. 0<a <1,0<b <1D. 0<a <1,b <0 分析:考查指数函数的图象及其变换.解析:由图2-14可知0<a <1,当x =0时,b a -∈(0,1),故-b >0,得b <0,故选D. 评注:若本题中的函数变为()xf x a b =-,则答案又应是什么?由图2-14可知ƒ(x )单调递减,即0<a <1,函数y =a x 的图像向下平移得到xy a b =-的图像,故0<b <1,故选C. 变式1 若函数y =a x +b -1(a >0且a ≠1)的图像经过第二、三、四象限,则一定有( ). A. 0<a <1且b >0 B. a >1且b >0 C. 0<a <1且b <0 D. a >1且b <0 变式2 (2012四川理5)函数x y a a=-1(a >0,a ≠1)的图象可能是( ).变式3 已知实数a ,b 满足()()a b =1123,下列5个关系式:①0<b <a ,②a <b <0,③0<a <b ,④b <a <0,⑤a =b =0.其中不可能...成立的有( ). A. 1个B. 2个C. 3个D. 4个例2.52 函数ƒ(x )=x a +1(a >0且a ≠1)的图像过定点_________. 分析:指数函数的图像恒过定点(0,1),即a 0=1.解析:因为函数ƒ(x )=a x (a >0且a ≠1)的图像过定点(0,1),又函数ƒ(x )=x a +1(a >0且a ≠1)的图像是由函数ƒ(x )=a x (a >0且a ≠1)的图像向左平移一个单位得到的,故函数ƒ(x )=x a +1(a >0且a ≠1)的图像过定点(-1,1). 变式1 函数ƒ(x )=a x +1(a >0且a ≠1)的图像过定点________. 变式2 函数ƒ(x)=ax+x-2的图像过定点________.变式3 ƒ(x )=x a -1(a >0且a ≠1)的图像恒过定点A ,若点A 在直线mx +ny -1=0(m ,n >0)上,则m n+11的最小值为________.二、指数函数的性质(单调性、最值(值域))例2.53 函数ƒ(x )=a x (a >0且a ≠1)在[1,2]上的最大值比最小值大a2,则a 的值是_______. 分析:本题考查指数函数的单调性.解析:当0<a <1时,函数ƒ(x )=a x 在[1,2]上单调递减,故在[1,2]上最大值为a ,最小值为a 2,则a a a -=22,得a a =22,又0<a <1,所以a =12; 当a >1时,函数ƒ(x )=a x 在[1,2]上单调递增,故在[1,2]上最大值为a 2,最小值为a ,那么a a a -=22,得aa =232,又a >1,所以a =32. 综上所述,a 的值是12或32.评注:函数ƒ(x )=a x (a >0且a ≠1),不论0<a <1还是a >1都是单调的,故最大值和最小值在端点处取得. 所以||a a a -=22,解得a =12或a =32. 变式1 函数ƒ(x )=a x (a >0且a ≠1)在区间[a ,a +2]上的最大值是最小值的3倍,则a =_____.变式2 定义区间[x 1,x 2](x 1<x 2)的长度为x 2-x 1,已知函数y =2|x |的定义域为[a ,b ],值域为[1,2],则区间[a ,b ]的长度的最大值与最小值的差为________.变式3 若y =3|x |(x ∈([a ,b ])的值域为[1,9],则a 2+b 2-2a 的取值范围是( ).A. [2.4]B. [4,16]D. [4,12]例2.54 函数xx y a --+=+248145(0<a <1)的单调增区间是________.分析:复合函数xx y a --+=+248145内层为二次函数,外层为指数型函数,根据复合函数单调性判定法求解.解析:因为u =-4x 2-8x +1=-4(x +1)2+5在[-1,+∞)上单调递减,在(-∞,-1]上单调递增,且y =a x (0<a <1)是减函数,所以xx y a --+=+248145(0<a <1)的单调增区间是[-1,+∞).变式1 函数()f x 1________.变式2 求函数()()()x x f x =-+11142(x ∈[-3,2])的单调区间及值域.变式3 已知0≤x ≤2,求函数x xa y a -=-⋅++1224212的最大值和最小值.变式4 设函数y =ƒ(x )在(-∞,+∞)内有定义,对于给定的正数k ,定义函数(),(),k f x f x k ⎧=⎨⎩()()f x kf x k ≤>,取函数ƒ(x )=2-|x |,当k =12时,函数ƒk (x )的单调增区间为( ). A. (-∞,0] B. [0,+∞) C. (-∞,-1] D. [1,+∞)变式5 若函数||()x y m -=+112的图像与x 轴有公共点,则m 的取值范围是________.变式6 已知函数()||x f x -=-21,x ∈R ,若方程ƒ(x )=a 有两个不同实根,则a 的取值范围是__________. 题型3 指数函数中的恒成立问题 思路提示(1)利用数形结合思想,结合指数函数图像求解.(2)分离自变量与参变量,利用等价转化思想,转化为函数的最值问题求解.例2.55 设()x x f x a =++⋅124(x ∈R),当x ∈(-∞,-1]时,ƒ(x )的图象在x 轴上方,求实数a 的取值范围. 分析:本题等价于当x ≤1时,x x a ++⋅124>0恒成立.分离自变量x 与参变量a ,转化为求解函数的最值. 解析:因为当x ∈(-∞,1]时,ƒ(x )的图像在x 轴上方,所以对于任意x ≤1,x x a ++⋅124>0恒成立,即x x a +>-214(x ≤1)恒成立.令()()()x x x x u x +=-=--2111424(x ≤1),a >u (x )max ,x ∈(-∞,1].因为()x y =12,()x y =14均是减函数,所以u (x )在(-∞,1]上单调递增,故当x =1时,max ()()u x u ==-314,故a >-34.故实数a 的取值范围为(-34,+∞).变式1 已知函数()()x x af x a a a -=--21(a >0且a ≠1). (1)判断函数ƒ(x )的奇偶性; (2)讨论函数ƒ(x )的单调性;(3)当x ∈[-1,1]时,ƒ(x )≥b 恒成立,求实数b 的取值范围. 变式2定义域为R 的函数12()2x x bf x a+-+=+是奇函数.(1) 求a,b 的值.(2) 若对任意的t R ∈,不等式22(2)(2)0f t t f t k -+-<恒成立,求k 的取值范围. 变式3 已知函数1()22x xf x =-,若2(2)()0tf t mf t +≥对于[1,2]t ∈恒成立,求实数m 的取值范围.最有效训练题1.函数2(33)xy a a a =-+是指数函数,则有( )A a=1或a=2B a=1C a=2D 0a >且1a ≠ 2.设0.90.48 1.512314,8,()2y y y -===,则( )A 312y y y >>B 213y y y >>C 123y y y >>D 132y y y >>3.设函数()f x 定义在实数集上,其图像关于直线x=1对称,且当1x ≥时,()31xf x =-,则有( )A 132()()()323f f f <<B 231()()()323f f f <<C 213()()()332f f f <<D 321()()()233f f f <<4. 函数()22xxf x -=-是( ) A 奇函数,在区间(0,)+∞上单调递增 B 奇函数,在区间(0,)+∞上单调递减 C 偶函数,在区间(,0)-∞上单调递增 D 偶函数,在区间(,0)-∞上单调递减.5.若关于x 的方程9(4)340xxa ++•+=有解,则实数a 的取值范围是( ) A (,8)[0,)-∞-+∞ B (,4)-∞- C [8,4)- D (,8]-∞-6.函数221(0)(1)(0)(){ax ax x a e x f x +≥-<=在R 上单调,则a 的取值范围是( )A (,(1,2]-∞B [1)[2,)-+∞C (1)D )+∞7.不等式2223330x x a a •-+-->,当01x ≤≤时,恒成立,则实数a 的取值范围为 .8. 函数1(2y =的单调递增区间是 .9.已知关于x 的方程923310x x k -⨯+-=有两个不同实数根,则实数k 的取值范围为 .10. 偶函数()f x 满足 (1)(1)f x f x -=+,且在[0,1]x ∈时,()f x x =,则关于x 的方程1()()10xf x =,在[0,2014]x ∈上的解的个数是 .11.已知函数()xf x b a =⋅(其中a,b 为常数且0,1)a a >≠的图像经过点A (1,6),B (3,24). (1)确定()f x .(2)若不等式11()()0x x m a b+-≥在(,1]x ∈-∞时恒成立,求实数m 的取值范围.12.已知函数1()(),[1,1]3x f x x =∈-,函数2()[()]2()3g x f x af x =-+的最小值为h(a). (1)求h(a);(2)是否存在实数m,n 同时满足下列条件:①3m n >>;②当h(a)的定义域为[n,m]时,值域为22[,]n m .若存在,求出m,n 的值;若不存在,说明理由.。

指数与指数函数讲义

指数与指数函数讲义

指数与指数函数课前双击巩固1.根式n 次方根概念如果x n=a,那么x叫作a的,其中n>1,n∈N*性质当n是时,a的n次方根为x= √a n 当n是时,正数a的n次方根为x=±√a n,负数的偶次方根0的任何次方根都是0,记作√0n=0根式概念式子√an叫作,其中n叫作,a叫作性质当n为奇数时,√a nn=当n为偶数时,√a nn=|a|=2.有理数指数幂(1)幂的有关概念①正数的正分数指数幂:a mn=√a mn(a>0,m,n∈N*且n>1).②正数的负分数指数幂:a-mn=1amn=√a mn(a>0,m,n∈N*且n>1).③0的正分数指数幂等于,0的负分数指数幂.(2)有理数指数幂的性质① a r a s=(a>0,r,s∈Q);②(a r)s=(a>0,r,s∈Q);③ (ab )r = (a>0,b>0,r ∈Q ). 3.指数函数的图像与性质y=a x(a>0且 a ≠1)a>10<a<1图像定义域 R 值域性质过定点当x>0时, ;当x<0时, 当x>0时, ;当x<0时, 在R 上是在R 上是常用结论1.指数函数y=a x+b(a>0且a ≠1)的图像恒过定点(0,1+b). 2. 指数函数y=a x (a>0且a ≠1)的图像以x 轴为渐近线. 题组一 常识题1. 若x+x -1=3,则x 2-x -2= .2. 已知2x-1<23-x,则x 的取值范围是 .3. 函数y=a x-1+2(a>0且a ≠1)的图像恒过定点 . 4.下列所给函数中值域为(0,+∞)的是 .(填序号) ①y=-5x,②y=(13)1−x,③y=√(12)x-1,④y=√1−2x .题组二 常错题◆索引:忽略n 的范围导致式子√a n n(a ∈R)化简出错;不能正确理解指数函数的概念致错;指数函数问题时刻注意底数的两种情况;复合函数问题隐含指数函数值域大于零的情况.5.计算√(1+√2)33+√(1-√2)44= .6.若函数f (x )=(a 2-3)·a x为指数函数,则a= .7.若函数f (x )=a x在[-1,1]上的最大值为2,则a= .8.设函数f (x )=ax 2+bx+c (a>0)满足f (1-x )=f (1+x ),则f (2x)与f (3x)的大小关系是 .课堂考点探究探究点一 指数幂的化简与求值例题1 (1) 已知a-1a =3(a>0),则a 2+a+a -2+a -1的值为 ( )A.13-√11B.11-√13C.13+√11D.11+√13(2)计算0.02713+2560.75-(41727)-13-72916= .[总结反思] 指数幂运算的一般原则:(1)指数幂的运算首先将根式、分数指数幂统一为分数指数幂,以便利用法则计算. (2)先乘除后加减,负指数幂化成正指数幂的倒数.(3)底数是负数,先确定符号;底数是小数,先化成分数;底数是带分数的,先化成假分数. (4)运算结果不能同时含有根号和分数指数,也不能既有分母又含有负指数. 变式题 (1)计算:(19)-3×27-23+3π0= .(2)已知a ,b 是方程x 2-6x+4=0的两根,且a>b>0,则√a -√b√a+√b= .探究点二 指数函数的图像及应用 例题2 (1)函数y=1-e |x|的图像大致是 ( )图2-8-1(2)已知f(x)=|2x-1|,当a<b<c时,有f(a)>f(c)>f(b),则必有( )A.a<0,b<0,c<0B.a<0,b>0,c>0C.2-a<2cD.1<2a+2c<2[总结反思](1)研究指数函数y=a x(a>0,a≠1)的图像要抓住三个特殊点:(1,a),(0,1),-1,1a.(2)与指数函数有关的函数图像问题的研究,往往利用相应指数函数的图像,通过平移、对称变换得到其图像.(3)一些指数方程、不等式问题的求解,往往结合相应的指数型函数图像,利用数形结合求解. 变式题(1)在同一平面直角坐标系中,函数y=a x(a>0且a≠1)与y=(1-a)x的图像可能是( )图2-8-2(2)已知函数y=(12a-4)x的图像与指数函数y=a x的图像关于y轴对称,则实数a的值为( )A.1B.2C.4D.8探究点三指数函数的性质及应用考向1比较指数式的大小例题3 (1)已知a=243,b=425,c=2513,则( )A.b<a<cB.a<b<cC.b<c<aD.c<a<b(2)若-1<a<0,则3a,a 13,a 3的大小关系是 (用“>”连接).[总结反思] 指数式的大小比较,靠的就是指数函数的单调性,当所比较的指数式的底数小于0时,要先根据指数式的运算法则把底数化为正数,再根据指数函数的性质比较其大小. 考向2 解简单的指数方程或不等式例题4 (1)已知函数f (x )={2x -1,x >1,1,x ≤1,则不等式f (x )<f (2x )的解集是 .(2)方程4x+|1-2x|=11的解为 .[总结反思] (1)a f (x)=a g (x)⇔f (x )=g (x ).(2)a f (x)>a g (x),当a>1时,等价于f (x )>g (x );当0<a<1时,等价于f (x )<g (x ).考向3 指数函数性质的综合问题 例题5 (1)函数f (x )=a+be x +1(a ,b ∈R )是奇函数,且图像经过点ln 3,12,则函数f (x )的值域为( )A.(-1,1)B.(-2,2)C.(-3,3)D.(-4,4)(2)若不等式1+2x+4x·a>0在x ∈(-∞,1]时恒成立,则实数a 的取值范围是 .[总结反思] 指数函数性质的重点是其单调性,解题中注意利用单调性实现问题的转化. 强化演练1.【考向1】已知a=(35)25,b=(25)35,c=(25)25,则( )A.a<b<cB.c<b<aC.c<a<bD.b<c<a2.【考向2】若存在正数x 使2x(x-a )<1成立,则a 的取值范围是 ( )A.(-∞,+∞)B.(-2,+∞)C.(0,+∞) D .(-1,+∞)3.【考向2】已知实数a ≠1,函数f (x )={4x ,x ≥0,2a -x ,x <0, 若f (1-a )=f (a-1),则a 的值为 .4.【考向2】若偶函数f (x )满足f (x )=2x-4(x ≥0),则不等式f (x-2)>0的解集为 .5.【考向3】已知函数f (x )=b ·a x(其中a ,b 为常数且a>0,a ≠1)的图像经过点A (1,6),B (3,24).若不等式(1a )x +(1b)x-m ≥0在x ∈(-∞,1]时恒成立,则实数m 的取值范围为 .参考答案1.n 次方根 奇数 偶数 没有意义 根式 根指数 被开方数 a {a(a ≥0),-a(a <0)2.(1)0 没有意义 (2)a r+sa rsa rb r3.(0,+∞) (0,1) y>1 0<y<1 0<y<1 y>1 增函数 减函数1.±3√5 [解析] 把x+x -1=3两边平方,可得x 2+x -2=7,则(x-x -1)2=x 2-2+x -2=5,所以x-x -1=±√5,所以x 2-x -2=(x+x -1)(x-x -1)=±3√5.2.(-∞,2) [解析] 根据指数函数性质,得x-1<3-x ,解得x<2,所以x 的取值范围是(-∞,2).3.(1,3) [解析] 令x-1=0,得x=1,此时y=a 0+2=3,所以函数图像恒过定点(1,3). 4.② [解析] 对于②,∵1-x ∈R ,∴y=(13)1−x的值域是(0,+∞);①的值域为(-∞,0);③的值域为[0,+∞);④的值域为[0,1).5.2√2 [解析] √(1+√2)33+√(1-√2)44=1+√2+|1-√2|=2√2. 6.2 [解析] 由指数函数的定义可得{a 2-3=1,a >0,a ≠1,解得a=2.7.2或12[解析] 若a>1,则f (x )max =f (1)=a=2;若0<a<1,则f (x )max =f (-1)=a -1=2,得a=12.8.f (3x)≥f (2x) [解析] ∵f (x )满足f (1-x )=f (1+x ),∴f (x )的图像关于直线x=1对称.由a>0知,f (x )图像的开口向上.当x<0时,2x <1,3x <1,2x >3x ,且f (x )为减函数,故f (2x )<f (3x);当x>0时,2x >1,3x >1,3x >2x ,且f (x )为增函数,故f (3x )>f (2x );当x=0时,f (3x )=f (2x ).故f (3x )≥f (2x).【课堂考点探究】例1 [思路点拨] (1)利用完全平方公式找到a-1a,a 2+1a2,a+1a之间的关系即可求解;(2)根据分数指数幂的运算法则进行计算.(1)D (2)60.7 [解析] (1)由a-1a =3,得a-1a 2=9,即a 2+1a 2-2=9,故a 2+a -2=11.又(a+a -1)2=a 2+a -2+2=11+2=13,且a>0,所以a+a -1=√13.于是a 2+a+a -2+a -1=11+√13,故选D.(2)原式=0.3+(44)34-(12527)-13-(36)16=0.3+43-35-3=60.7.变式题 (1)84 (2)√55 [解析] (1) 原式=(3-2)-3×(33)-23+3=3-2×(-3)×33×(−23)+3=36×3-2+3=36-2+3=34+3=84.(2)由已知得,a+b=6,ab=4,所以(√a -√b√a+√b)2=2√ab a+b+2√ab =√46+24=15. 因为a>b>0,所以√a >√b ,所以√a -√b a+√b =√55. 例2 [思路点拨] (1)结合解析式和图像,分析奇偶性和值域可得结论;(2)作出函数f (x )的图像,再重点分析a 与c 的情况.(1)A (2)D [解析] (1)将函数解析式与图像对比分析,函数y=1-e |x|是偶函数,且值域是(-∞,0],只有A 选项满足上述两个性质,故选A.(2)作出函数f (x )=|2x-1|的图像,如图所示,因为a<b<c ,且有f (a )>f (c )>f (b ),所以必有a<0,0<c<1,且|2a -1|>|2c -1|,所以1-2a >2c -1,则2a +2c <2,且2a +2c>1.故选D.变式题 (1)C (2)C [解析] (1)若a>1,则1-a<0,函数y=a x单调递增,y=(1-a )x 单调递减;若0<a<1,则1-a>0,函数y=a x 单调递减,y=(1-a )x 单调递增.所以y=a x与y=(1-a )x 单调性相反,排除A ,D ;又y=a x的图像过定点(0,1),所以排除B.故选C.(2)由两函数的图像关于y 轴对称,可知12a -4与a 互为倒数,即a2a -4=1,解得a=4.例3 [思路点拨] (1)化为同底指数式,结合指数函数的单调性比较;(2)先将底数在a>0且a ≠1范围内进行转化,再结合指数函数的单调性比较.(1)A (2)3a>a 3>a 13 [解析] (1)由a 15=(243)15=220,b 15=(245)15=212,c 15=255>220,可知b 15<a 15<c 15,所以b<a<c.(2)易知3a>0,a 13<0,a 3<0,又由-1<a<0得0<-a<1,所以(-a )3<(-a )13,即-a 3<-a 13,所以a 3>a 13,因此3a >a 3>a 13.例4 [思路点拨] (1)结合函数的单调性,分x ≥2,1<x<2,0<x ≤1,x<0四种情况求解;(2)分情况讨论去掉绝对值,解相应的指数方程.(1)(0,√2) (2) x=log 23 [解析] (1)当x ≥2时,2x ≤1,不等式无解;当1<x<2时,1<2x <2,结合函数的单调性,由不等式f (x )<f (2x )得x<2x ,得1<x<√2;当0<x ≤1时,2x ≥2,不等式恒成立;当x<0时,2x <0,不等式无解.综上可得,不等式f (x )<f (2x )的解集是(0,√2).(2)当x ≤0时,1-2x≥0,原方程即为4x-2x-10=0,可得2x=12+√412,此时x>0,故舍去.当x>0时,1-2x<0,原方程即为4x+2x-12=0,可得2x=3,则x=log 23.故原方程的解为x=log 23.例5 [思路点拨] (1)根据条件先确定a ,b 的值,再依据指数函数的值域确定函数f (x )的值域;(2)分离参数,根据指数函数单调性和不等式恒成立得出关于a 的不等式,解之即可. (1)A (2)(-34,+∞) [解析] (1)函数f (x )为奇函数,则f (0)=a+b2=0,①函数图像过点ln 3,12,则f (ln 3)=a+b 4=12.②结合①②可得a=1,b=-2,则f (x )=1-2e x +1.因为e x>0,所以e x+1>1,所以0<2e x +1<2,所以-1<1-2e x +1<1,即函数f (x )的值域为(-1,1).(2)从已知不等式中分离出实数a ,得a>-[(14)x+(12)x].∵函数y=(14)x 和y=(12)x在R 上都是减函数,∴当x ∈(-∞,1]时,(14)x≥14,(12)x≥12,∴(14)x +(12)x≥14+12=34,从而得-(14)x +(12)x≤-34.故实数a 的取值范围为a>-34. 强化演练1.D [解析] ∵y=(25)x在R 上为减函数,35>25,∴b<c.又∵y=x 25在(0,+∞)上为增函数,35>25,∴a>c ,∴b<c<a.2.D [解析] 因为2x>0,所以由2x(x-a )<1得a>x-(12)x .令f (x )=x-(12)x,则函数f (x )在(0,+∞)上是增函数,所以f (x )>f (0)=0-(12)0=-1,所以a>-1.3.12 [解析] 当a<1时,41-a=21,所以a=12;当a>1时,代入可知不成立.所以a 的值为12.4.{x|x>4或x<0} [解析] f (x )为偶函数,当x<0时,-x>0,f (x )=f (-x )=2-x-4,所以f (x )={2x -4,x ≥0,2-x -4,x <0. 当f (x-2)>0时,有{x -2≥0,2x -2-4>0或{x -2<0,2-x+2-4>0, 解得x>4或x<0.所以不等式的解集为{x|x>4或x<0}.5.(-∞,56] [解析] 把(1,6),(3,24)代入f (x )=b ·a x,得{6=ab,24=b·a 3, 结合a>0且a ≠1,解得{a =2,b =3,所以f (x )=3·2x.要使(12)x +(13)x ≥m 在x ∈(-∞,1]时恒成立,只需函数y=(12)x +(13)x在(-∞,1]上的最小值不小于m 即可.因为函数y=(12)x +(13)x在(-∞,1]上为减函数,所以当x=1时,y=(12)x+(13)x取得最小值56,所以只需m ≤56即可,即m 的取值范围为-∞,56.。

指数运算与指数函数

指数运算与指数函数

指数运算与指数函数
指数运算是数学中一种常见的运算方式,它可以帮助我们简化复杂的计算过程。

在指数运算中,我们使用指数来表示一个数的乘方。

指数函数则是以指数为变量的函数,它在数学和科学领域中有着广泛的应用。

指数运算可以表示为a的n次幂,其中a被称为底数,n被称为指数。

例如,2的3次幂可以写成2³,它的值为8。

指数运算还具有一些特殊的性质,比如指数为0时,任何数的0次幂都等于1;指数为1时,任何数的1次幂都等于它本身。

指数函数是指以指数为变量的函数,通常表示为f(x) = aˣ,其中a 是常数。

指数函数在数学和科学中有着重要的应用,例如在复利计算、放射性衰变等领域。

指数函数的图像通常具有特殊的形状,当指数大于1时,函数图像上升得很快;当指数小于1时,函数图像下降得很快;当指数为0时,函数图像经过点(0, 1);当指数为负数时,函数图像在x轴的正半轴上。

指数运算与指数函数在实际生活中有着广泛的应用。

在金融领域中,我们可以利用指数运算来计算复利,帮助我们更好地理解财务问题。

在自然科学中,指数函数可以用来描述物质的衰变过程,帮助我们预测放射性元素的衰变速率。

在生物学中,指数函数可以用来描述生物种群的增长规律,帮助我们研究生物的进化和生态系统的平衡。

指数运算与指数函数在数学和科学中扮演着重要的角色。

它们不仅可以帮助我们简化复杂的计算,还可以帮助我们更好地理解和解决实际问题。

通过学习和应用指数运算与指数函数,我们可以提升我们的数学和科学能力,为更广阔的领域做出贡献。

指数函数的指数

指数函数的指数

指数函数的指数指数函数表达形式为f(某)=a^某,其中a为底数,某为指数。

指数函数是一种特殊的幂函数,其特点是指数以不同的速度增长或减少。

根据指数函数的定义,我们可以得出以下几个性质:1.当底数a大于1时,指数函数呈现出递增的特点。

随着指数某增大,函数值也会随之增大。

而且函数值的增长速度越来越快,即指数函数呈现出增长迅速的特点。

2.当底数a在0和1之间时,指数函数呈现出递减的特点。

随着指数某的增大,函数值会逐渐减小。

而且函数值的减小速度越来越慢,即指数函数呈现出递减缓慢的特点。

3.当底数a等于1时,指数函数表达式变为f(某)=1^某=1,即函数值始终为1,不随指数某的变化而变化。

因此,指数函数的底数等于1时函数图像是一条水平直线。

4.当底数a小于0时,指数函数不再有实数域内的定义。

因为底数小于0时,指数函数的结果会出现复数,超出了实数域的范围。

在指数函数中,指数某可以为实数或复数。

当指数为实数时,指数函数在定义域内具有一一对应的关系,即每一个某值对应一个y值。

而当指数为复数时,指数函数可以有多个解。

指数函数在数学中有广泛的应用。

在金融领域,指数函数可以用来模拟利息的计算和复利的增长。

在物理学中,指数函数可以描述衰变过程或者增长过程。

在生物学中,指数函数可以用来描述生物种群的增长过程。

在统计学中,指数函数可以用来拟合数据和进行预测分析。

总结来说,指数函数的指数可以是实数或复数,可以用来描述递增、递减、水平直线等不同的增长特点。

指数函数在数学和其他学科中都有广泛的应用,是一类重要的数学函数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

指数与指数函数学完本节你可以:1、了解指函数模型的实际背景.2、理解有理数指数幂的含义,了解实数指数幂的意义,掌握幂的运算.3、理解指数函数的概念,理解指数函数的单调性,并运用指数函数的性质解题. 知识点总结: 根与幂的运算 1.根式(1)n 次方根的定义:若x n=a ,则x 叫做a 的n 次方根,其中n >1,且n ∈N +,式子na 叫做根式,这里n 叫做根指数,a 叫做被开方数. (2)n 次方根的性质:①一个数a 的奇次方根只有一个,即na (n 为奇数,a ∈R).②一个正数a 的偶次方根有两个,即±na (n 为非零偶数),0的偶次方根为0,负数没有偶次方根. (3)两个重要公式①n a n = (n 为偶数);②(na )n= a (n >1,且n ∈N +)(注意a 必须使na 有意义). (4)有理指数幂的运算性质①a r a s= (a >0,r ,s ∈Q); ②(a r )s = (a >0,r ,s ∈Q); ③(ab )r = (a >0,b >0,r ∈Q). ④pa-= (0a ≠)= (0,0m n >>) ⑥nma = (0,0m n >>) (5)无理指数幂一般地,无理指数幂a α(a >0,α是无理数)是一个确定的实数,有理指数幂的运算法则同(),0,,0a a a n a a a ⎧⎪⎪≥⎧⎨⎪=⎨⎪-<⎪⎪⎩⎩为奇数样适用于无理指数幂.指数函数的图象和性质注:1.指数函数图象的三个关键点画指数函数图象时应抓住图象上的三个关键点:(1,a ),(0,1),(-1,1a).2.不同底指数函数的比较. 在第一象限图象从下至上底数依次变大. 考点分析:考点一 指数式的化简与求值例1. 计算下列各式(式中字母都是正数)211511336622(1)(2)(6)(3);a b a b a b -÷- 31884(2)().m n解析:2115211115110336632623622(1)(2)(6)(3)[2(6)(3)]44a b a b a b a bab a ++++-÷-=⨯-÷-==331128833388443(2)()()()m m n m n m n n--==•=【答案】(1)4a (2)23m n变式训练1(1)计算下列各式:⑴⑵111344213243(,0)6a a b a b a b ---⎛⎫- ⎪⎝⎭>-. 解析:⑴ 5=;⑵ 111344111121442333213243226a a b a b ab a b -⎛⎫⎛⎫+----- ⎪ ⎪⎝⎭⎝⎭--⎛⎫- ⎪⎝⎭==-. (2)写出使下列等式成立的x 的取值范围5)5()25)(5(2+-=--x x x x解析: ∵22(5)(25)(5)(5)55x x x x x x --=-+=-+∴55(5)5x x x x -+=-+成立的充要条件是 50x +=或5055x x x +>⎧⎨-=-⎩,即5x =-或550x x >-⎧⎨-≤⎩ ∴x 的取值范围是[]55-,【答案】 []55-,考点二 指数函数的图像性质例2. 如图的曲线C 1、C 2、C 3、C 4是指数函数xy a =的图象,而12,,3,2a π⎧⎫⎪⎪∈⎨⎬⎪⎪⎩⎭,则图象C 1、C 2、C 3、C 4对应的函数的底数依次是________、________、________、________. 【答案】22 12π 3 【解析】由底数变化引起指数函数图象的变化规律可知,C 2的底数<C 1的底数<C 4的底数<C 3的底数. 变式训练2(1)设()|31|xf x =-,c <b <a 且()()()f c f a f b >>,则下列关系式中一定成立的是( )A .33c b <B .33c b >C .332c a +>D .332c a+< 【答案】D(2)为了得到函数935xy =⨯+的图象,可以把函数3xy =的图象( )A .向左平移9个单位长度,再向上平移5个单位长度B .向右平移9个单位长度,再向下平移5个单位长度C .向左平移2个单位长度,再向上平移5个单位长度D .向右平移2个单位长度,再向下平移5个单位长度 【答案】C【解析】注意先将函数935xy =⨯+转化为235x y +=+,再利用图象的平移规律进行判断.∵293535xx y +=⨯+=+,∴把函数3x y =的图象向左平移2个单位长度,再向上平移5个单位长度,可得到函数935xy =⨯+的图象,故选C . 考点三 利用指数函数解不等式及比较大小 例3(1)判断下列各数的大小关系:(1)1.8a与1.8a+1; (2)24-231(),3,()331(3)22.5,(2.5)0, 2.51()2(4)23(0,1)a a a a >≠与 【思路点拨】利用指数函数的性质去比较大小。

【答案】(1)1.8a<1.8a+1(2)2-24311()<()<333 (3) 2.50 2.51()<(2.5)<22(4)当a>1时,23a a <,当0<a<1时,23a a >【解析】(1)因为底数1.8>1,所以函数y=1.8x为单调增函数,又因为a<a+1,所以1.8a <1.8a+1.(2)因为44133-⎛⎫= ⎪⎝⎭,又13x y ⎛⎫= ⎪⎝⎭是减函数,所以-42-23111()<()<333⎛⎫ ⎪⎝⎭,即2-24311()<()<333. (3)因为 2.521>, 2.5112⎛⎫< ⎪⎝⎭,所以 2.50 2.51()<(2.5)<22(4)当a>1时,23a a <,当0<a<1时,23a a >.例3(2)如果215x x aa +-≤(0a >,且1a ≠),求x 的取值范围.【答案】当01a <<时,6x ≥-;当1a >时,6x ≤- 【解析】(1)当01a <<时,由于215x x aa +-≤,215x x ∴+≥-,解得6x ≥-.(2)当1a >时,由于215x x aa +-≤,215x x ∴+≤-,解得6x ≤-.综上所述,x 的取值范围是:当01a <<时,6x ≥-;当1a >时,6x ≤-.变式训练3(1)利用函数的性质比较122,133,166【答案】133>122>166 【解析】122=31136662(2)8== 12112366633(3)9=== 作出8,9,6xxxy y y ===的图象知 986xxxy y y =>=>=所以133>122>166(2)比较1.5-0.2, 1.30.7, 132()3的大小.【答案】7.02.0313.15.1)32(<<- 【解析】先比较31512.02.0)32()32()23(5.1与==--的大小.由于底数32∈(0,1), ∴ x y )32(=在R 上是减函数,∵ 05131>>, ∴ 1)32()32()32(005131=<<<,再考虑指数函数y=1.3x, 由于 1.3>1, 所以y=1.3x在R 上为增函数 1.30.7>1.30=1, ∴7.02.0313.15.1)32(<<-. 考点四 指数函数的综合应用 例4(1)求函数2323x x y -+-=的单调区间及值域.【答案】3(,]2x ∈-∞上单增,在3[,)2x ∈+∞上单减. 14(0,3]【解析】[1]复合函数——分解为:u=-x 2+3x-2, y=3u;[2]利用复合函数单调性判断方法求单调区间; [3]求值域.设u=-x 2+3x-2, y=3u,其中y=3u为R 上的单调增函数,u=-x 2+3x-2在3(,]2x ∈-∞上单增,u=-x 2+3x-2在3[,)2x ∈+∞上单减,则2323xx y -+-=在3(,]2x ∈-∞上单增,在3[,)2x ∈+∞上单减.又u=-x 2+3x-22311()244x =--+≤, 2323x x y -+-=的值域为14(0,3].例4(2)设a 是实数,()221x f x a =-+ (x ∈R) (1)试证明对于任意()af x 为增函数; (2)试确定a 值,使()f x 为奇函数.解析:(1)设1212x x R x x ∈<,,且 则()()1212222121x x f x f x a a ⎛⎫⎛⎫-=--- ⎪ ⎪++⎝⎭⎝⎭ =12212212+-+x x=)12)(12()22(22121++-x x x x 由于指数函数2x y =在R 上是增函数,且12x x <,所以2122x x <即12220x x -<又由20x >得1210x +>,2210x +> 所以()()120f x f x -< 即()()12f x f x <因为此结论与a 取值无关,所以对于a 取任意实数,f (x )为增函数. (2)若f (x )为奇函数,则()()f x f x -=-即22()2121x x a a --=--++ 变形得:2222(21)221x x x x a -⋅=++⋅+=12)12(2++xx 解得1a =所以当1a =时,()f x 为奇函数.变式训练4(1) 已知函数2()()1x x af x a a a -=--,其中0a >,1a ≠. ⑴判断函数()f x 的奇偶性;⑵判断函数()f x 的单调性,并证明.解析:2()()()1x x af x a a f x a --=-=--,∴()f x 为奇函数 ⑵法一:若1a >,则210a ->,有201aa >-,又101a <<,且1()x x a a -=,∴x a -单调递减 ,∴x a --单调递增 ∵x a 单调递增,∴x x a a --单调递增,由201a a >-可知2()1x x aa a a ---单调递增若01a <<,则210a -<,有201aa <-,又11a>,且1()x x a a -=,∴x a -单调递增,∴x a --单调递减 ∴x a 单调递减,∴x x a a --单调递减,由201a a <-可知2()1x x aa a a ---单调递增综上,不论01a << 还是1a >,()f x 在R 上为增函数. 法二:设12x x <,则2211212()()()1x x x x af x f x a a a a a ---=--+-若1a >,有210x x a a ->,120x x a a --->,且210a ->, ∴21()()f x f x >,∴()f x 为增函数若01a <<,有210x x a a -<,120x x a a ---<,且210a -<, ∴21()()f x f x >,∴()f x 为增函数【答案】增函数(2) 已知函数()x f x b a =(其中a ,b 为常量,且a >0,a ≠1)的图象经过点A (1,6),B(3,24).(1)求()f x ;(2)若不等式1123xxm ⎛⎫⎛⎫+≥ ⎪ ⎪⎝⎭⎝⎭在()1x ∈-∞,时恒成立,求实数m 的取值范围.解析:把A (1,6),B(3,24)代入()x f x b a =,得3624.abb a =⎧⎨=⋅⎩ 结合2003a a a b =⎧>≠⎨=⎩且,解得: ∴()32x f x =.(2)要使1123xxm ⎛⎫⎛⎫+≥ ⎪ ⎪⎝⎭⎝⎭在(-∞,1]上恒成立,只需保证函数1123xxy ⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭在(-∞,1]上的最小值不小于m 即可.∵函数1123xx y ⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭在(-∞,1]上为减函数,∴当1x =时,1123x xy ⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭有最小值56.∴只需56m ≤即可. 【答案】56m ≤家庭作业1.下列个函数中,是指数函数的是( )A.(3)x y =-B.3x y =-C. 13x y -= D. 3xy =解析: D 根据指数函数的概念判断。

相关文档
最新文档