2018年高考数学专题复习练习卷:独立性检验(无答案)

合集下载

高考数学一轮复习专题04 独立性检验(原卷版)

高考数学一轮复习专题04 独立性检验(原卷版)

概率与统计 专题四:独立性检验一、知识储备 1.22⨯列联表设X ,Y 为两个变量,它们的取值分别为12{}x x ,和12{}y y ,,其样本频数列联表(22⨯列联表)如下:2.独立性检验利用随机变量2K (也可表示为2χ)2()()()()()n ad bc a b c d a c b d -=++++(其中n a b c d =+++为样本容量)来判断“两个变量有关系”的方法称为独立性检验. 3.独立性检验的一般步骤(1)根据样本数据列出22⨯列联表;(2)计算随机变量2K 的观测值k ,查下表确定临界值k 0:(3)如果0k k ≥,就推断“X 与Y 有关系”,这种推断犯错误的概率不超过()20P K k ≥;否则,就认为在犯错误的概率不超过()20P K k ≥的前提下不能推断“X 与Y 有关系”.【注意】(1)通常认为 2.706k ≤时,样本数据就没有充分的证据显示“X 与Y 有关系”.(2)独立性检验得出的结论是带有概率性质的,只能说结论成立的概率有多大,而不能完全肯定一个结论,因此才出现了临界值表,在分析问题时一定要注意这点,不可对某个问题下确定性结论,否则就可能对统计计算的结果作出错误的解释.(3)独立性检验是对两个变量有关系的可信程度的判断,而不是对其是否有关系的判断.二、例题讲解1.(2022·榆林市第十中学高三月考(文))随着经济的发展,人们的生活水平显著提高,健康意识不断增强,健康管理理念深入人心,人们参加体育锻炼的次数与时间在逐渐增加.某校一个课外学习小组为研究居民参加体育锻炼的时长(时长不超过60分钟)是否与性别有关,对某小区居民进行调查,并随机抽取了100名居民的调查结果,其中男性有55人,根据调查结果绘制了居民日均锻炼时间的频率分布直方图如下:(1)求样本中居民日均锻炼时间的中位数;(2)将日均锻炼时间不低于40分钟的居民称为“健生达人”(健康生活达人),已知样本中“健生达人”中有10名女性,根据已知条件完成下面22⨯列联表,并据此资料判断是否有95%的把握认为“健生达人”与性别有关.附:()()()()()22n ad bcKa b c d a c b d-=++++,n a b c d=+++.2.(2022·江苏南京市·高三开学考试)科研小组为提高某种水果的果径,设计了一套实验方案,并在两片果园中进行对比实验.其中实验园采用实验方案,对照园未采用.实验周期结束后,分别在两片果园中各随机选取100个果实,按果径分成5组进行统计:[)21,26,[)26,31,[)31,36,[)36,41,[]41,46(单位:mm ).统计后分别制成如下的频率分布直方图,并规定果径达到36mm 及以上的为“大果”.(1)请根据题中信息完成下面的列联表,并判断是否有99.9%的把握认为“大果”与“采用实验方案”有关;(2)根据长期种植经验,可以认为对照园中的果径X 服从正态分布()2,N μσ,其中μ近似为样本平均数x ,5.5σ≈,请估计对照园中果径落在区间()39,50内的概率.(同一组中的数据以这组数据所在区间中点的值作代表)附:①()()()()()22n ad bc K a b c d a c b d -=++++;②若X 服从正态分布()2,N μσ,则()0.683P X μσμσ-<<+=,()220.954P X μσμσ-<<+=,()330.997P X μσμσ-<<+=.三、实战练习1.(2022·定远县育才学校高三开学考试(文))微信是腾讯公司推出的一种手机通信软件,它支持发送语音短信、视频、图片和文字,一经推出便风靡全国,甚至涌现出一批在微信的朋友圈内销售商品的人.为了调查微信用户每天使用微信的时间,某经销化妆品的店家在一广场随机采访男性、女性用户各50名,将男性、女性平均每天使用微信的时间(单位:h )分成5组:(0,2],(2,4],(4,6],(6,8],(8,10]分别加以统计,得到如图所示的频率分布直方图.(1)根据频率分布直方图估计女性平均每天使用微信的时间;(2)若每天玩微信超过4h的用户称为“微信控”,否则称为“非微信控”,判断是否有90%的把握认为“微信控”与性别有关.附表:(参考公式:22()()()()()n ad bcKa b c d a c b d-=++++,其中n a b c d=+++)2.(2022·河北唐山·高三开学考试)数字人民币是由央行发行的法定数字货币,它由指定运营机构参与运营并向公众兑换,与纸钞和硬币等价.截至2022年6月30日,数字人民币试点场景已超132万个,覆盖生活缴费、餐饮服务、交通出行、购物消费、政务服务等领域.为了进一步了解普通大众对数字人民币的感知以及接受情况,某机构进行了-次问卷调查,部分结果如下:(1)如果将高中及高中以下的学历称为“低学历”,大学专科及以上学历称为“高学历”,根据所给数据,完成下面的22⨯列联表;(2)若从低学历的被调查者中,按对数字人民币的了解程度用分层抽样的方法抽取8人,然后从这8人中抽取2人进行进一步调查,求被选中的2人中至少有1人对数字人民币不了解的概率;(3)根据列联表,判断是否有95%的把握认为“是否了解数字人民币”与“学历高低”有关?附:()()()()()22n ad bcKa b c d a c b d-=++++3.(2022·广东实验中学高三月考)在传染病学中,通常把从致病刺激物侵入机体或者对机体发生作用起,到机体出现反应或开始呈现该疾病对应的相关症状时止的这一阶段称为潜伏期.一研究团队统计了某地区1000名患者的相关信息,得到如下表格:(1)求这1000名患者的潜伏期的样本平均值x(同一组中的数据用该组区间的中点值作代表);(2)该传染病的潜伏期受诸多因素的影响,为研究潜伏期与患者年龄的关系,以潜伏期是否超过6天为标准进行分层抽样,从上述1000名患者中抽取200人,得到如下列联表请将列联表补充完整,并根据列联表判断是否有95%的把捏认为潜伏期与息者年龄有关;(3)以这1000名患者的潜伏期超过6天的频率,代替该地区1名患者潜伏期超过6天发生的概率,每名患者的潜伏期是否超过6天相互独立.为了深入研究,该研究团队随机调查了20名患者,其中潜伏期超过6天的人数最有可能(即概率最大)...........是多少?附:22()()()()()n ad bcKa b c d a c b d-=++++,其中n a b c d=+++.4.(2022·黑龙江高三其他模拟(文))据有关部门统计,2021年本科生的平均签约薪酬为每月4300元.2021年某高校毕业生就业指导中心为了分析本校本科毕业生的专业课成绩优秀与否与本科毕业生就业后获得薪酬的关系,随机调查了从学校毕业的200名本科毕业学进行研究.研究结果表明:在专业课成绩优秀的120名本科毕业生中有90人每月工资超过人民币4300元,另30人每月工资低于人民币4300元;在专业课成绩不优秀的80名本科毕业生中有20人每月工资超过人民币4300元,另60人每月工资低于人民币4300元. (1)试根据上述数据完成22⨯列联表;(2)能否在犯错误的概率不超过0.001的前提下认为“该高校本科毕业生的专业课成绩优秀”与“每月工资超过当年本科生的平均签约薪酬”有关系?参考公式:()()()()()22n ad bcKa b c d a c b d-=++++,其中n a b c d=+++.5.(2022·山东济宁一中高三开学考试)为提高教育教学质量,越来越多的高中学校采用寄宿制的封闭管理模式.某校对高一新生是否适应寄宿生活十分关注,从高一新生中随机抽取了100人,其中男生占总人数的40%,且只有20%的男生表示自己不适应寄宿生活,女生中不适应寄宿生活的人数占总人数的32%,学校为了考察学生对寄宿生活适应是否与性别有关,构建了如下2×2列联表:(1)请将2×2列联表补充完整,并依据小概率值0.01α=的独立性检验,分析“适应寄宿生活与否”是否与性别有关;(2)从男生中以“是否适应寄宿生活”为标准采用分层抽样的方法随机抽取10人,再从这10人中随机抽取2人,若所选2名学生中的“不适应寄宿生活”人数为X,求随机变量X的分布列及数学期望.附:()()()()()22n ad bca b c d a c b dχ-=++++,其中n a b c d=+++.6.(2022·全国高三月考)某企业计划招聘新员工,现对应聘者关于工作的首要考虑因素进行调查﹐所得统计结果如下表所示:(1)是否有95%的把握认为应聘者关于工作的首要考虑因素与性别有关;(2)若招聘考核共设置2个环节,应聘者需要参加全部环节的考核,每个环节设置两个项目,若应聘者每通过一个项目积10分,未通过积5-分.已知甲第1环节每个项目通过的概率均为34,第2环节每个项目通过的概率均为23,各环节、各项目间相互独立.求甲经过两个环节的考核后所得积分之和的分布列和数学期望()E ξ.参考公式:()()()()22()n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.参考数据:7.(2022·重庆垫江第五中学校高三月考)随着垫江五中教学质量的提升学生总人数达到了历史最高点即4700人左右,但学校发展的同时也对学校学生就餐带来前所未有的挑战.因此学校领导制定出学生分时就餐(第一轮11:40,第二轮12:30).经过一段时间的运行后,学校对就餐满意度进行调查,现从学校初、高中学生中随机抽取200人作为样本,得到下表(单位:人次)(1)(2)(1)通过上表完成下列22⨯列联表,并判断能否有97.5%的把握认为“是否满意”与初、高中学生有关?(2)现从调查的学生中按表(2)分层抽样的方法抽取8人,再从这8人中任选2人,记X为这2人中为满意的人数,求X的分布列和数学期望.参考公式及数据:()()()()()22n ad bcKa b c d a c b d-=++++,其中n a b c d=+++.8.(2022·全国高三月考(理))梨树绝大多数品种自花授粉,结实率很低,因此果农在栽培梨树的时候,必须在果园配置授粉树,并结合适当的辅助授粉方法,以便更顺利地完成梨树的授粉受精过程,以此达到果园丰产稳产、高品质的目的.某地区将梨树蜜蜂授粉和自然授粉的花朵坐果率进行比较,统计数据如下:(1)自然授粉和蜜蜂授粉的花朵坐果数的频率分别是多少?(2)根据数据完成下列22⨯列联表,并据此判断能否有99.9%的把握认为自然授粉与蜜蜂授粉的花朵坐果率有差异?附:22()()()()()n ad bcKa b c d a c b d-=++++,n a b c d=+++9.(2022·陕西西安中学高三月考(文))2019年2月4日20:00,2019年央视春晚在中央电视台综合频道等频道并机直播.人们通过手机、互联网、电视等方式,都在观看央视春晚.某调查网站从观看央视春晚的观众中随机选出200人,经统计这200人中通过传统的传媒方式电视端口观看的人数与通过新型的传媒PC 端口观看的人数之比为4:1.将这200人按年龄分组:第1组[)15,25,第2组[)25,35,第3组[)35,45,第4组[)45,55,第5组[)55,65,其中统计通过传统的传媒方式电视端口观看的观众得到的频率分布直方图如图所示.(1)求a 的值及通过传统的传媒方式电视端口观看的观众的平均年龄;(2)把年龄在第1,2,3组的观众称青少年组,年龄在第4,5组的观众称为中老年组,若选出的200人中通过新型的传媒方式PC 端口观看的中老年人有12人,请完成下面2×2列联表,则能否在犯错误的概率不超过0.1的前提下认为观看央视春晚的方式与年龄有关? 附:22()()()()()n ad bc K a b c d a c b d -=++++(其中n a b c d =+++为样本容量).10.(2022·合肥市第六中学高三开学考试(文))医学统计表明,X 疾病在老年人中发病率较高.已知某地区老年人的男女比例为3:2,为了解X疾病在该地区老年人中发病情况,按分层抽样抽取100名老人作为样本,对这100位老人是否患有X疾病进行统计,得条形图如下所示.(1)完成下列2×2列联表,并判断有没有90%的把握认为患X疾病与性别有关?(2)在这100个样本中,将未患X疾病老年人按年龄段[60,65),[65,70),[70,75),[75,80),[80,85]分成5组,得频率分布直方图如图二所示.求未患病老年人的中位数(精确到小数点后一位).附:22()()()()()n ad bcKa b c d a c b d-=++++,其中n a b c d=+++.11.(2022·武功县普集高级中学高三开学考试(理))某校组织了全体学生参加“建党100周年”知识竞赛,从高一、高二年级各随机抽取50名学生的竞赛成绩(满分100分),统计如下表:(1)分别估计高一、高二年级竞赛成绩的平均值1x与2x(同一组中的数据以该组数据所在区间中点的值作代表);(2)学校规定竞赛成绩不低于80分的为优秀,根据所给数据,完成下面的22⨯列联表,并判断是否有90%的把握认为竞赛成绩优秀与年级有关?附:22()()()()()n ad bcKa b c d a c b d-=++++,其中n a b c d=+++.。

2018年3月13日 独立性检验-试题君之每日一题君2018年高考数学理二轮复习 含解析 精品

2018年3月13日 独立性检验-试题君之每日一题君2018年高考数学理二轮复习 含解析 精品

3月13日 独立性检验高考频度:★★☆☆☆ 难易程度:★★★☆☆典例在线随着共享单车的成功运营,更多的共享产品逐步走入大家的世界,共享汽车、共享篮球、共享充电宝等各种共享产品层出不穷.某公司随机抽取1000人对共享产品是否对日常生活有益进行了问卷调查,并对参与调查的1000人中的性别以及意见进行了分类,得到的数据如下表所示:男 女 总计 认为共享产品增多对生活有益 400 300 700 认为共享产品增多对生活无益100 200 300 总计5005001000(1)根据表中的数据,能否在犯错误的概率不超过0.1%的前提下,认为对共享产品的态度与性别有关系? (2)现按照分层抽样从认为共享产品增多对生活无益的人员中随机抽取6人,再从6人中随机抽取2人赠送超市购物券作为答谢,求恰有1人是女性的概率. 参考公式:()()()()()22n ad bc K a b c d a c b d -=++++.临界值表:()20P K k ≥0.10 0.05 0.025 0.010 0.005 0.0010k2.7063.841 5.024 6.635 7.879 10.828【参考答案】(1)可以在犯错误的概率不超过0.1%的前提下,认为对共享产品的态度与性别有关系; (2)815P =. 【试题解析】(1)依题意,在本次的实验中,2K 的观测值为()2100040020030010047.61910.828700300500500k ⨯⨯-⨯=≈>⨯⨯⨯,故可以在犯错误的概率不超过0.1%的前提下,认为对共享产品的态度与性别有关系.【思路点拨】(1)根据题中数据,利用参考公式计算2K 的观测值k ,对应查表下结论即可;(2)从认为共享产品增多对生活无益的女性中抽取4人,记为,,,A B C D ,从认为共享产品增多对生活无益的男性中抽取2人,记为,a b ,写出所有的基本事件,由古典概型概率计算公式即可得到恰有1人是女性的概率.学霸推荐1.在吸烟与患肺病这两个分类变量的计算中,下列说法正确的是A .若从统计量中求出有95%的把握认为吸烟与患肺病有关系,是指有5%的可能性使得推断出现错误B .从独立性检验可知,有99%的把握认为吸烟与患肺病有关系时,我们说某人吸烟,那么他有99%的可能患有肺病C .若2K 的观测值为 6.635k =,我们有99%的把握认为吸烟与患肺病有关系,那么在100个吸烟的人中必有99人患有肺病 D .以上三种说法均不正确2.某市为迎接“国家义务教育均衡发展”综合评估,市教育行政部门在全市范围内随机抽取了n 所学校,并组织专家对两个必检指标进行考核评分.其中x y 、分别表示“学校的基础设施建设”和“学校的师资力量”两项指标,根据评分将每项指标划分为A (优秀)、B (良好)、C (及格)三个等级,调查结果如表所示.例如:表中“学校的基础设施建设”指标为B 等级的共有2021243++=所学校.已知两项指标均为B 等级的概率为0.21.(1)在该样本中,若“学校的基础设施建设”优秀率是0.4,请填写下面22⨯列联表,并根据列联表判断是否有90%的把握认为“学校的基础设施建设”和“学校的师资力量”有关;师资力量(优秀) 师资力量(非优秀) 合计基础设施建设(优秀) 基础设施建设(非优秀)合计(2)在该样本的“学校的师资力量”为C 等级的学校中,若18,1115a b ≥≤≤,记随机变量a b ξ=-,求ξ的分布列和数学期望.附:()()()()()22n ad bc K a b c d a c b d -=++++1.【答案】A【解析】要正确认识观测值的意义,观测值同临界值进行比较得到一个概率,这个概率是推断出错误的概率,若从统计量中求出有95%的把握认为吸烟与患肺病有关系,是指有5%的可能性使得推断出现错误,故选A.2.【答案】(1)答案见解析;(2)答案见解析. 【解析】(1)依题意得210.21n=,得100n =, 由20120.4100a++=,得8a =,由20201122112100a b ++++++++=,得15b =,22⨯列联表如下:师资力量(优秀) 师资力量(非优秀) 合计基础设施建设(优秀) 20 20 40 基础设施建设(非优秀)21 39 60 合计4159100()2210020392021 2.23240604159K ⨯-⨯=≈⨯⨯⨯,因为2.027 2.232 2.706<<,所以没有90%的把握认为“学校的基础设施建设”和“学校的师资力量”有关.。

[配套K12]2018年高考数学 命题角度3.3 独立性检验及回归分析大题狂练 文

[配套K12]2018年高考数学 命题角度3.3 独立性检验及回归分析大题狂练 文

命题角度3.3 独立性检验及回归分析1.已知随机抽查这100名学生中的一名学生,抽到善于使用学案的学生概率是0.6.(1)请将上表补充完整(不用写计算过程);(2)试运用独立性检验的思想方法分析:有多大的把握认为学生的学习成绩与对待学案的使用态度有关?(3)若从学习成绩优秀的同学中随机抽取10人继续调查,采用何种方法较为合理,试说明理由.【答案】(1)(2)故有的把握认为学生的学习成绩与对待学案的使用态度有关.(3)分别从善于使用学案和不善于使用学案的学生中抽取8人和2人,这样更能有效的继续调查.(1)2. 某种多面体玩具共有12个面,在其十二个面上分别标有数字1,2,3,…,12.若该玩具质地均匀,则抛掷该玩具后,任何一个数字所在的面朝上的概率均相等.为检验某批玩具是否合格,制定检验标准为:多次抛掷该玩具,并记录朝上的面上标记的数字,若各数字出现的频率的极差不超过0.05.则认为该玩具合格.(1)对某批玩具中随机抽取20件进行检验,将每个玩具各面数字出现频率的极差绘制成茎叶图(如图所示),试估计这批玩具的合格率;(2)现有该种类玩具一个,将其抛掷100次,并记录朝上的一面标记的数字,得到如下数据:1)试判定该玩具是否合格;2)将该玩具抛掷一次,记事件A :向上的面标记数字是完全平方数(能写成整数的平方形式的数,如293 ,9为完全平方数);事件B :向上的面标记的数字不超过4.试根据上表中的数据,完成以下列联表(其中A 表示A 的对立事件),并回答在犯错误的概率不超过0.01的前提下,能否认为事件A 与事件B 有关.(参考公式及数据: ()()()()()22n ad bc K a b c d a c b d -=++++, ()2 6.6350.01P K ≥=)【答案】(1)85%;(2)1)该玩具合格;2)见解析.试题解析:(1)由题意知,20个样本中,极差为0.052,0.071,0.073的三个玩具不合格,故合格率可估计为170.8520=,即这批玩具的合格率约为85%.(2)1)由数据可知,5点或9点对应最大频率0.10,4点对应最小频率0.06,故频率极差为0.040.05≤,故该玩具合格.2)根据统计数据,可得以下列联表:于是2K 的观测值()21001560151030702575k ⨯⨯-⨯=⨯⨯⨯ 010014.2857 6.6357k =≈>=, 故在犯错误的概率不超过0.01的前提下,能认为事件A 与事件B 有关.3.某城市随机抽取一年(365天)内100天的空气质量指数API 的检测数据,结果统计如下:记某企业每天由空气污染造成的经济损失(单位:元),空气质量指数为.在区间对企业没有造成经济损失;在区间对企业造成经济损失成直线模型(当为150时造成的经济损失为500元,当为200时,造成的经济损失为700元);当大于300时造成的经济损失为2000元.(1)试写出的表达式;(2)估计在本年内随机抽取一天,该天经济损失大于200元且不超过600元的概率;(3)若本次抽取的样本数据有30天是在供暖季,其中有8天为重度污染,完成下列列联表,并判断能否有的把握认为该市本年空气重度污染与供暖有关?【答案】(1);(2);(3)有95%的把握认为空气重度污染与供暖有关.试题解析:(1).(2)设“在本年内随机抽取一天,该天经济损失大于200元且不超过600元”为事件.由,得,频数为39,所以.(3)根据以上数据得到如下列联表:的观测值.所以有95%的把握认为空气重度污染与供暖有关.【方法点睛】本题主要考查分段函数的解析式图、古典概型概率公式以及独立性检验,属于难题.独立性检验的一般步骤:(1)根据样本数据制成列联表;(2)根据公式计算的值;(3) 查表比较与临界值的大小关系,作统计判断.(注意:在实际问题中,独立性检验的结论也仅仅是一种数学关系,得到的结论也可能犯错误.)4. 在中学生综合素质评价某个维度的测评中,分优秀、合格、尚待改进三个等级进行学生互评.某校高一年级有男生500人,女生400人,为了了解性别对该维度测评结果的影响,采用分层抽样方法从高一年级抽取了45名学生的测评结果,并作出频数统计表如下:表一:男生表二:女生(1)从表二的非优秀学生中随机抽取2人交谈,求所选2人中恰有1人测评等级为合格的概率;列联表,并判断是否有90%的把握认为“测评结果优秀与性别有关”.(2)由表中统计数据填写下面的22参考公式: ()()()()()22n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.参考数据:【答案】(1)5.(2)见解析.试题解析:(1)设从高一年级男生中抽出m 人,则45500500400m =+, 25m =,则从女生中抽取20人, 所以251555x =--=, 201532y =--=.表二中非优秀学生共5人,记测评等级为合格的3人为a , b , c ,尚待改进的2人为A , B ,则从这5人中任选2人的所有可能结果为(),a b , (),a c , (),b c , (),A B , (),a A , (),a B , (),b A , (),b B ,(),c A , (),c B ,共10种,设事件C 表示“从表二的非优秀学生中随机选取2人,恰有1人测评等级为合格”,则C 的结果为(),a A ,(),a B , (),b A , (),b B , (),c A , (),c B ,共6种,所以()63105P C ==,即所求概率为35. (2)22⨯列联表如下:点睛:首先要了解分层抽样的特点,按照抽取比例分层抽取即可,对于独立性检验则需熟悉列联表的写法明确公式中的每一个数值代入即可5.某医学院读书协会欲研究昼夜温差大小与患感冒人数多少之间的关系,该协会分别到气象局与某医院抄录了1至6月份每月10号的昼夜温差情况与因患感冒而就诊的人数,得到如下频数分布直方图:该协会确定的研究方案是:先从这六组数据中选取2组,用剩下的4组数据求线性回归方程,再用被选取的2组数据进行检验.(1)求选取的2组数据恰好是相邻两个月的频率;(2)已知选取的是1月与6月的两组数据.(i)请根据2至5月份的数据,求出就诊人数关于昼夜温差的线性回归方程;(ii)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2人,则认为得到的线性回归方程是理想的,试问该协会所得线性回归方程是否理想?(参考公式:,)【答案】(1);(2)(i);(ii)是理想的.(2)(i )由数据求得,由公式求得,所以,所以关于的线性回归方程为.(ii )当时,,;同样,当时,,.所以,该协会所得线性回归方程是理想的.6.某公司为评估两套促销活动方案(方案1运作费用为5元/件;方案2的运作费用为2元/件),在某地区部分营销网点进行试点(每个试点网点只采用一种促销活动方案),运作一年后,对比该地区上一年度的销售情况,制作相应的等高条形图如图所示.(1)请根据等高条形图提供的信息,为该公司今年选择一套较为有利的促销活动方案(不必说明理由); (2)已知该公司产品的成本为10元/件(未包括促销活动运作费用),为制定本年度该地区的产品销售价格,统计上一年度的8组售价i x (单位:元/件,整数)和销量i y (单位:件)(1,2,,8i )如下表所示:①请根据下列数据计算相应的相关指数2R ,并根据计算结果,选择合适的回归模型进行拟合; ②根据所选回归模型,分析售价x 定为多少时?利润z 可以达到最大.(附:相关指数()()22121ˆ1n i i i n ii y yR y y ==-=--∑∑)【答案】(1)年度平均销售额与方案1的运作相关性强于方案2.(2)①采用回归模型211003ˆ2yx =-+进行拟合最为合适. ②40x =试题解析:(1)由等高条形图可知,年度平均销售额与方案1的运作相关性强于方案2.(2)①由已知数据可知,回归模型1200l 500ˆn 0yx =-+对应的相关指数210.6035R =; 回归模型271700ˆyx =-+对应的相关指数220.9076R =; 回归模型211003ˆ2yx =-+对应的相关指数230.9986R =.因为222321R R R >>,所以采用回归模型211003ˆ2yx =-+进行拟合最为合适. ②由(1)可知,采用方案1的运作效果较方案2好, 故年利润()211200153z x x ⎛⎫=-+- ⎪⎝⎭, ()()3040z x x '=-+-, 当()0,40x ∈时, ()211200153z x x ⎛⎫=-+- ⎪⎝⎭单调递增; 当()40,x ∈+∞时, ()211200153z x x ⎛⎫=-+- ⎪⎝⎭单调递减, 故当售价40x =时,利润达到最大.7.在“一带一路”的建设中,中石化集团获得了某地深海油田区块的开采权,集团在该地区随机初步勘探了几口井,取得了地质资料.进入全面勘探时期后,集团按网络点来布置井位进行全面勘探.由于勘探一口井的费用很高,如果新设计的井位与原有井位重合或接近,便利用旧井的地质资料,不必打这口新井,以节约勘探费用.勘探初期数据资料下表:(1)在散点图中号旧井位置大致分布在一条直线附近,借助前5组数据求得回归线方程为,求,并估计的预报值; (2)现准备勘探新井,若通过1、3、5、7号井计算出的的值(精确到0.01)相比于(1)中的值之差(即:)不超过10%,则使用位置最接近的已有旧井,否则在新位置打井,请判断可否使用旧井?(参考公式和计算结果:,)(3)设出油量与钻探深度的比值不低于20的勘探井称为优质井,在原有井号的井中任意勘探3口井,求恰好2口是优质井的概率.【答案】(1),的预报值为24;(2) 可以使用位置最接近的已有旧井;(3).试题解析:(1)因为,回归直线必过样本中心点,则,故回归直线方程为,当时,,即的预报值为24;(2)因为,所以,,即,,均不超过10%,因此可以使用位置最接近的已有旧井;点睛:一是回归分析是对具有相关关系的两个变量进行统计分析的方法,只有在散点图大致呈线性时,求出的线性回归方程才有实际意义,否则,求出的线性回归方程毫无意义.二是根据回归方程进行预报,仅是一个预报值,而不是真实发生的值.8.参加衡水中学数学选修课的同学,对某公司的一种产品销量与价格进行统计,得到如下数据和散点图:(参考数据:)(I)根据散点图判断,与,与哪一对具有较强的线性相关性(给出判断即可,不必说明理由)?(II)根据(I)的判断结果有数据,建立关于的回归方程(方程中的系数均保留两位有效数字);(III)定价为多少元/时,年利润的预报值最大?附:对一组数据,其回归直线的斜率和截距的最小二乘估计分别为:.【答案】(I)由散点图可知,与具有较强的线性相关性; (II); (III)定值为元/时,年利润的预报值最大.试题解析:(I)由散点图可知,与具有较强的线性相关性.(II)由题得,,,,又,则,∴线性回归方程为,则关于的回归方程为.9.在“新零售”模式的背景下,某大型零售公司咪推广线下分店,计划在S市的A区开设分店,为了确定在该区开设分店的个数,该公司对该市已开设分店听其他区的数据作了初步处理后得到下列表格.记x表示在各区开设分店的个数,y表示这个x个分店的年收入之和.(1)该公司已经过初步判断,可用线性回归模型拟合y 与x 的关系,求y 关于x 的线性回归方程ˆy bx a =+;(2)假设该公司在A 区获得的总年利润z (单位:百万元)与,x y 之间的关系为20.05 1.4z y x =--,请结合(1)中的线性回归方程,估算该公司应在A 区开设多少个分店时,才能使A 区平均每个分店的年利润最大?(参考公式: ˆy bxa =+,其中()()()1122211ˆ,ˆnni i iii i nni ii i x y nxy x x y y b a y bxx nx x x ====---===---∑∑∑∑) 【答案】(1) 0.850.6y x =+;(2) 该公司应开设4个分店时,在该区的每个分店的平均利润最大. 【解析】试题分析:(1)根据所给数据,按照公式计算回归方程中的系数即可; (2)利用(1)得利润z 与分店数x 之间的估计值,计算zx,由基本不等式可得最大值. 试题解析:(1)由表中数据和参考数据得: 4,4x y ==,()()()5521110,8.5ii i i i x x x x y y ==-=--=∑∑,∴()()()1218.50.851ˆ0niii nii x x y y bx x ==--===-∑∑,∴440.850.6ˆˆa y bx=-=-⨯=, ∴0.850.6y x =+.10.在某次测试后,一位老师从本班48同学中随机抽取6位同学,他们的语文、历史成绩如表:(Ⅰ)若规定语文成绩不低于90分为优秀,历史成绩不低于80分为优秀,以频率作概率,分别估计该班语文、历史成绩优秀的人数;(Ⅱ)用表中数据画出散点图易发现历史成绩y 与语文成绩x 具有较强的线性相关关系,求y 与x 的线性回归方程(系数精确到0.1).参考公式:回归直线方程是ˆˆˆybx a =+,其中()()121()ˆniii niix x y y b x x ==--=-∑∑, ˆˆa y bx=- 【答案】(Ⅰ)24、16.(Ⅱ) 0.624.2y x =+ 【解析】试题分析:(1)将频率试作概率,按照表中所给数据计算优秀人数即可;(2)利用计算公式分别求得ˆˆ,ba 的值即可求得回归直线方程.点睛:回归分析是对具有相关关系的两个变量进行统计分析的方法,只有在散点图大致呈线性时,求出的线性回归方程才有实际意义,否则,求出的线性回归方程毫无意义. 根据回归方程进行预报,仅是一个预报值,而不是真实发生的值.。

历年高考数学真题精选49独立性检验

历年高考数学真题精选49独立性检验

6.635
8. (2012•辽宁)电视传媒公司为了了解某地区电视观众对某类体育节目的收视情况,随机 抽取了 100名观众进行调查,其中女性有55名.如图是根据调查结果绘制的观众日均收 看该体育节目时间的频率分布直方图;将日均收看该体育节目时间不低于40分钟的观众 称为“体育迷”,已知“体育迷”中有10名女性.
非体育迷
体育迷
合计


10
55
合计
(II)将上述调查所得到的频率视为概率.现在从该地区大量电视观众中,采用随机抽样方 法每次抽取1名观众,抽取3次,记被抽取的3名观众中的“体育迷”人数为X,若每 次抽取的结果是相互独立的,求X的分布列,期望矶X)和方差D(X)
P( K\.k)
0.05
0.01
k
3.841
不超过根的工人数填入下面的列联表:
超过根
不超过根
第一种生产方式
第二种生产方式
(3)根据(2)中的列联表,能否有99%的把握认为两种生产方式的效率有差异?
n(ad - be)2 (a + b)(c + d)(a + c)(b + d)
P{K\.k)
0.050
0.010
0.001
k
3.841
6.635
2. (2018•新课标III)某工厂为提高生产效率,开展技术创新活动,提出了完成某项生产任
务的两种新的生产方式.为比较两种生产方式的效率,选取40名工人,将他们随机分成
两组,每组20人.第一组工人用第一种生产方式,第二组工人用第二种生产方式.根据 工人完成生产任务的工作时间(单位:加几)绘制了如下茎叶图:
Cs
频率 组距
o 08 o 07 o ^6 o 05 o ^4 o 03 o 02 o 01

高中数学独立性检验精选题

高中数学独立性检验精选题

独立性检验精选题26道一.选择题(共18小题)1.通过随机询问110名性别不同的大学生是否爱好某项运动,得到如下的列联表:由22()()()()()n a d b cKa b c d a c b d-=++++算得,22110(40302020)7.860506050K⨯⨯-⨯=≈⨯⨯⨯.参照附表,得到的正确结论是()A.在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别有关”B.在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别无关”C.有99%以上的把握认为“爱好该项运动与性别有关”D.有99%以上的把握认为“爱好该项运动与性别无关”2.通过随机询问110名性别不同的大学生是否爱好某项运动,得到如下的列联表:由22()()()()()n a d b cKa d c d a cb d-=++++算得,22110(40302020)7.860506050K⨯⨯-⨯=≈⨯⨯⨯附表:参照附表,得到的正确结论是()A.有99%以上的把握认为“爱好该项运动与性别有关”B.有99%以上的把握认为“爱好该项运动与性别无关”C.在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别有关”D.在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别无关”3.某校为了研究学生的性别和对待某一活动的态度(支持与不支持)的关系,运用22⨯列联表进行独立性检验,经计算2 6.705K=,则所得到的统计学结论是:有()的把握认为“学生性别与支持该活动没有关系”.附:A.99.9%B.99%C.1%D.0.1%4.有甲、乙两个班级进行数学考试,按照大于等于85分为优秀,85分以下为非优秀统计成绩,得到如下所示的列联表:,则下列说法正确的是()已知在全部105人中随机抽取1人,成绩优秀的概率为27A.列联表中c的值为30,b的值为35B.列联表中c的值为15,b的值为50C.根据列联表中的数据,若按95%的可靠性要求,能认为“成绩与班级有关系”D.根据列联表中的数据,若按95%的可靠性要求,不能认为“成绩与班级有关系”5.有人认为在机动车驾驶技术上,男性优于女性.这是真的么?某社会调查机构与交警合作随机统计了经常开车的100名驾驶员最近三个月内是否有交通事故或交通违法事件发生,得到下面的列联表:附:22()()()()()n a d b cKa b c d a c b d-=++++据此表,可得()A.认为机动车驾驶技术与性别有关的可靠性不足50%B.认为机动车驾驶技术与性别有关的可靠性超过50%C.认为机动车驾驶技术与性别有关的可靠性不足60%D.认为机动车驾驶技术与性别有关的可靠性超过60%6.如表是一个22⨯列联表:则表中a,b的值分别为()A.94,72B.52,50C.52,74D.74,527.为了调查中学生近视情况,某校150名男生中有80名近视,140名女生中有70名近视,在检验这些中学生眼睛近视是否与性别有关时用什么方法最有说服力() A.平均数B.方差C.回归分析D.独立性检验8.针对时下的“抖音热”,某校团委对“学生性别和喜欢抖音是否有关”作了一次调查,其中被调查的男女生人数相同,男生喜欢抖音的人数占男生人数的45,女生喜欢抖音的人数占女生人数35,若有95%的把握认为是否喜欢抖音和性别有关则调查人数中男生可能有( )人附表:附:22()()()()()n a d b cKa b c d a c b d-=++++A.20B.40C.60D.309.2020年2月,全国掀起了“停课不停学”的热潮,各地教师通过网络直播、微课推送等多种方式来指导学生线上学习.为了调查学生对网络课程的热爱程度,研究人员随机调查了相同数量的男、女学生,发现有80%的男生喜欢网络课程,有40%的女生不喜欢网络课程,且有99%的把握但没有99.9%的把握认为是否喜欢网络课程与性别有关,则被调查的男、女学生总数量可能为()参考公式附:22()()()()()n a d b cKa b c d a c b d-=++++,其中n a b c d=+++.参考数据:A.130B.190C.240D.25010.针对“中学生追星问题”,某校团委对“学生性别和中学生追星是否有关”作了一次调查,其中女生人数是男生人数的12,男生追星的人数占男生人数的16,女生追星的人数占女生人数的23.若有95%的把握认为是否追星和性别有关,则男生至少有()人参考数据及公式如下:22()()()()()n a d b cKa b c d a c b d-=++++A.12B.11C.10D.1811.在研究吸烟与患肺癌的关系中,通过收集数据、整理分析数据得“吸烟与患肺癌有关”的结论,并且在犯错误的概率不超过0.01的前提下认为这个结论是成立的,下列说法中正确的是()A.100个吸烟者中至少有99人患有肺癌B.1个人吸烟,那么这个人有99%的概率患有肺癌C .在100个吸烟者中一定有患肺癌的人D .在100个吸烟者中可能一个患肺癌的人也没有12.某校团委对“学生性别与中学生追星是否有关”作了一次调查,利用22⨯列联表,由计算得27.218K ≈,参照如表:得到正确结论是( )A .有99%以上的把握认为“学生性别与中学生追星无关”B .有99%以上的把握认为“学生性别与中学生追星有关”C .在犯错误的概率不超过0.5%的前提下,认为“学生性别与中学生追星无关”D .在犯错误的概率不超过0.5%的前提下,认为“学生性别与中学生追星有关” 13.针对“中学生追星问题”,某校团委对“学生性别和中学生追星是否有关”作了一次调查,其中女生人数是男生人数的12,男生追星的人数占男生人数的16,女生追星的人数占女生人数的23.若有95%的把握认为是否追星和性别有关,则男生至少有()参考数据及公式如下:22()()()()()n a d b c Ka b c d a c b d -=++++A .12B .11C .10D .1814.有甲、乙两个班级进行数学考试,按照大于等于85分为优秀,85分以下为非优秀统计成绩,得到如表所示的列联表:已知在全部105人中随机抽取1人,成绩优秀的概率为27,则下列说法.正确的是()参考公式及数据:22()6.109()()()()n a d b c K a b c d a c b d -=≈++++附表:A .列联表中c 的值为30,b 的值为35B .列联表中c 的值为15,b 的值为50C .根据列联表中的数据,若按95%的可靠性要求,能认为“成绩与班级有关系”D .根据列联表中的数据,若按95%的可靠性要求,不能认为“成绩与班级有关系” 15.为考察某种药物对预防禽流感的效果,在四个不同的实验室取相同的个体进行动物试验,根据四个实验室得到的列联表画出如下四个等高条形图,最能体现该药物对预防禽流感有效果的图形是()A .B .C .D .16.千百年来,我国劳动人民在生产实践中根据云的形状、走向、速度、厚度、颜色等的变化,总结了丰富的“看云识天气”的经验,并将这些经验编成谚语,如“天上钩钩云,地上雨淋淋”“日落云里走,雨在半夜后”⋯⋯小波同学为了验证“日落云里走,雨在半夜后”,观察了所在地区A 的100天日落和夜晚天气,得到如下22⨯列联表:临界值表并计算得到219.05K ≈,下列小波对地区A 天气判断不正确的是()A .夜晚下雨的概率约为12B .未出现“日落云里走”夜晚下雨的概率约为514C .有99.9%的把握认为“‘日落云里走’是否出现”与“当晚是否下雨”有关D .出现“日落云里走”,有99.9%的把握认为夜晚会下雨 17.有关独立性检验的四个命题,其中不正确的是()A .两个变量的22⨯列联表中,对角线上数据的乘积相差越大,说明两个变量有关系成的可能性就越大B .对分类变量X 与Y 的随机变量2K 的观测值k 来说,k 越小,“X 与Y 有关系”的可信程度越小C .从独立性检验可知:有95%把握认为秃顶与患心脏病有关,我们说某人秃顶,那么他有95%可能患有心脏病D .从独立性检验可知:有99%把握认为吸烟与患肺癌有关,是指在犯错误的概率不超过1%前提下认为吸烟与患肺癌有关18.为了调查患胃病是否与生活不规律有关,在患胃病与生活不规律这两个分类变量的计算中,下列说法正确的是()A .k 越大,“患胃病与生活不规律没有关系”的可信程度越大.B .k 越大,“患胃病与生活不规律有关系”的可信程度越小.C .若计算得23.918K ≈,经查临界值表知2( 3.841)0.05P K ≈…,则在100个生活不规律的人中必有95人患胃病.D .从统计量中得知有95%的把握认为患胃病与生活不规律有关,是指有5%的可能性使得推断出现错误. 二.填空题(共3小题)19.2020年12月31日,国务院联防联控机制发布,国药集团中国生物的新冠病毒灭活疫苗已获国家药监局批准附条件上市.在新冠病毒疫苗研发过程中,需要利用基因编辑小鼠进行动物实验.现随机抽取100只基因编辑小鼠对某种新冠病毒疫苗进行实验,得到如下22⨯列联表(部分数据缺失):表中a的值为;计算可知,在犯错误的概率最多不超过的前提下,可认为“给基因编辑小鼠注射该种疫苗能起到预防新冠病毒感染的效果”.参考公式:22()()()()()n a d b cKa b c d a c b d-=++++,n a b c d=+++.参考数据:20.在西非“埃博拉病毒”的传播速度很快,这已经成为全球性的威胁,为了考察某种埃博拉病毒疫苗的效果,现随机抽取100只小鼠进行试验,得到如下列联表:附:22()()()()()n a d b cKa b c d a c b d-=++++根据上表,有的把握认为“小动物是否被感染与服用疫苗有关”21.某学生为了研究高二年级同学的体质健康成绩与学习成绩的关系,从高二年级同学中随机抽取30人,统计其体质健康成绩和学习成绩,得到22⨯列联表如表:有 的把握认为学生的体质健康成绩高低与学习成绩高低有关. 附:22()()()()()n a d b c Ka b c d a c b d -=++++.三.解答题(共5小题)22.某工厂为提高生产效率,开展技术创新活动,提出了完成某项生产任务的两种新的生产方式.为比较两种生产方式的效率,选取40名工人,将他们随机分成两组,每组20人.第一组工人用第一种生产方式,第二组工人用第二种生产方式.根据工人完成生产任务的工作时间(单位:)m in 绘制了如下茎叶图:(1)根据茎叶图判断哪种生产方式的效率更高?并说明理由;(2)求40名工人完成生产任务所需时间的中位数m ,并将完成生产任务所需时间超过m 和不超过m 的工人数填入下面的列联表:(3)根据(2)中的列联表,能否有99%的把握认为两种生产方式的效率有差异?附:22()()()()()n a d b c Ka b c d a c b d -=++++,23.海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100个网箱,测量各箱水产品的产量(单位:)k g ,其频率分布直方图如图:(1)设两种养殖方法的箱产量相互独立,记A 表示事件“旧养殖法的箱产量低于50kg ,新养殖法的箱产量不低于50kg ”,估计A 的概率;(2)填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关:(3)根据箱产量的频率分布直方图,求新养殖法箱产量的中位数的估计值(精确到0.01). 附:22()()()()()n a d b c K a b c d a c b d -=++++.24.某商场为提高服务质量,随机调查了50名男顾客和50名女顾客,每位顾客对该商场的服务给出满意或不满意的评价,得到下面列联表:(1)分别估计男、女顾客对该商场服务满意的概率;(2)能否有95%的把握认为男、女顾客对该商场服务的评价有差异?附:22()()()()()n a d b cKa b c d a c b d-=++++.25.某高校共有学生15000人,其中男生10500人,女生4500人.为调查该校学生每周平均体育运动时间的情况,采用分层抽样的方法,收集300位学生每周平均体育运动时间的样本数据(单位:小时).(1)应收集多少位女生的样本数据?(2)根据这300个样本数据,得到学生每周平均体育运动时间的频率分布直方图(如图所示),其中样本数据的分组区间为:[0,2],(2,4],(4,6],(6,8],(8,10],(10,12].估计该校学生每周平均体育运动时间超过4小时的概率.(3)在样本数据中,有60位女生的每周平均体育运动时间超过4小时,请完成每周平均体育运动时间与性别列联表,并判断是否有95%的把握认为“该校学生的每周平均体育运动时间与性别有关”.附:22()()()()()n a d b cKa b c d a c b d-=++++.26.某学生兴趣小组随机调查了某市100天中每天的空气质量等级和当天到某公园锻炼的人次,整理数据得到下表(单位:天):(1)分别估计该市一天的空气质量等级为1,2,3,4的概率;(2)求一天中到该公园锻炼的平均人次的估计值(同一组中的数据用该组区间的中点值为代表);(3)若某天的空气质量等级为1或2,则称这天“空气质量好”;若某天的空气质量等级为3或4,则称这天“空气质量不好”.根据所给数据,完成下面的22⨯列联表,并根据列联表,判断是否有95%的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关?附:22()()()()()n a d b c Ka b c d a c b d -=++++独立性检验精选题26道参考答案与试题解析一.选择题(共18小题)1.通过随机询问110名性别不同的大学生是否爱好某项运动,得到如下的列联表:由22()()()()()n a d b cKa b c d a c b d-=++++算得,22110(40302020)7.860506050K⨯⨯-⨯=≈⨯⨯⨯.参照附表,得到的正确结论是()A.在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别有关”B.在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别无关”C.有99%以上的把握认为“爱好该项运动与性别有关”D.有99%以上的把握认为“爱好该项运动与性别无关”【分析】题目的条件中已经给出这组数据的观测值,我们只要把所给的观测值同节选的观测值表进行比较,发现它大于6.635,得到有99%以上的把握认为“爱好这项运动与性别有关”.【解答】解:由题意算得,22110(40302020)7.860506050K⨯⨯-⨯=≈⨯⨯⨯.7.8 6.635>,∴有0.011%=的机会错误,即有99%以上的把握认为“爱好这项运动与性别有关”故选:C.【点评】本题考查独立性检验的应用,这种问题一般运算量比较大,通常是为考查运算能力设计的,本题有创新的地方就是给出了观测值,只要进行比较就可以,本题是一个基础题.2.通过随机询问110名性别不同的大学生是否爱好某项运动,得到如下的列联表:由22()()()()()n a d b cKa d c d a cb d-=++++算得,22110(40302020)7.860506050K⨯⨯-⨯=≈⨯⨯⨯附表:参照附表,得到的正确结论是()A.有99%以上的把握认为“爱好该项运动与性别有关”B.有99%以上的把握认为“爱好该项运动与性别无关”C.在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别有关”D.在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别无关”【分析】根据条件中所给的观测值,同题目中节选的观测值表进行检验,得到观测值对应的结果,得到结论有99%以上的把握认为“爱好该项运动与性别有关”.【解答】解:由题意知本题所给的观测值,2 2110(40302020)7.860506050K⨯⨯-⨯=≈⨯⨯⨯7.8 6.635>,∴这个结论有0.011%=的机会说错,即有99%以上的把握认为“爱好该项运动与性别有关”故选:A.【点评】本题考查独立性检验的应用,考查对于观测值表的认识,这种题目一般运算量比较大,主要考查运算能力,本题有所创新,只要我们看出观测值对应的意义就可以,是一个基础题.3.某校为了研究学生的性别和对待某一活动的态度(支持与不支持)的关系,运用22⨯列联表进行独立性检验,经计算2 6.705K=,则所得到的统计学结论是:有()的把握认为“学生性别与支持该活动没有关系”.附:A.99.9%B.99%C.1%D.0.1%【分析】把观测值同临界值进行比较.得到有99%的把握说学生性别与支持该活动有关系.【解答】解:2 6.705 6.635K=>,对照表格:∴有99%的把握说学生性别与支持该活动有关系,∴有1%的把握说学生性别与支持该活动没有关系,故选:C.【点评】本题考查独立性检验知识,难度不大,属于基础题.4.有甲、乙两个班级进行数学考试,按照大于等于85分为优秀,85分以下为非优秀统计成绩,得到如下所示的列联表:已知在全部105人中随机抽取1人,成绩优秀的概率为27,则下列说法正确的是() A.列联表中c的值为30,b的值为35B.列联表中c的值为15,b的值为50C.根据列联表中的数据,若按95%的可靠性要求,能认为“成绩与班级有关系”D.根据列联表中的数据,若按95%的可靠性要求,不能认为“成绩与班级有关系”【分析】根据成绩优秀的概率求出成绩优秀的学生数,从而求得c和b的值;再根据公式计算相关指数2K的值,比较与临界值的大小,判断“成绩与班级有关系”的可靠性程度.【解答】解:成绩优秀的概率为27,∴成绩优秀的学生数是2105307⨯=,成绩非优秀的学生数是75,20c∴=,45b=,选项A、B错误.又根据列联表中的数据,得到2105(10302045)26.109 3.84155503075K ⨯⨯-⨯=≈>⨯⨯⨯,因此有95%的把握认为“成绩与班级有关系”, 故选:C .【点评】本题考查了独立性检验思想方法,熟练掌握列联表个数据之间的关系及相关指数2K 的计算公式是解题的关键.5.有人认为在机动车驾驶技术上,男性优于女性.这是真的么?某社会调查机构与交警合作随机统计了经常开车的100名驾驶员最近三个月内是否有交通事故或交通违法事件发生,得到下面的列联表:附:22()()()()()n a d b c Ka b c d a c b d -=++++据此表,可得( )A .认为机动车驾驶技术与性别有关的可靠性不足50%B .认为机动车驾驶技术与性别有关的可靠性超过50%C .认为机动车驾驶技术与性别有关的可靠性不足60%D .认为机动车驾驶技术与性别有关的可靠性超过60% 【分析】由表中数据计算观测值,对照临界值得出结论. 【解答】解:由表中数据,计算22100(40103515)0.33670.45555457525K⨯⨯-⨯=≈<⨯⨯⨯,∴认为机动车驾驶技术与性别有关的可靠性不足50%;故选:A .【点评】本题考查独立性检验的应用,关键是理解独立性检验的思路.属中档题. 6.如表是一个22⨯列联表:则表中a ,b 的值分别为()A.94,72B.52,50C.52,74D.74,52【分析】由列联表中数据的关系求得.【解答】解:732152b a=+=+=.a=-=,22522274故选:C.【点评】本题考查了列联表的做法,属于基础题.7.为了调查中学生近视情况,某校150名男生中有80名近视,140名女生中有70名近视,在检验这些中学生眼睛近视是否与性别有关时用什么方法最有说服力() A.平均数B.方差C.回归分析D.独立性检验【分析】这是一个独立性检验应用题,处理本题时要注意根据已知构建方程计算出表格中男性近视与女性近视,近视的人数,并填入表格的相应位置.根据列联表,及2K的计算公式,计算出2K的值,并代入临界值表中进行比较,不难得到答案.【解答】解:分析已知条件,易得如下表格.根据列联表可得:2K,再根据与临界值比较,检验这些中学生眼睛近视是否与性别有关,故利用独立性检验的方法最有说服力.故选:D.【点评】独立性检验,就是要把采集样本的数据,利用公式计算2K的值,比较与临界值的大小关系,来判定事件A与B是否无关的问题.具体步骤:(1)采集样本数据.(2)由公式计算的2K值.(3)统计推断,当2 3.841K>时,有95%的把握说事件A与B有关;当2 6.635K>时,有99%的把握说事件A与B有关;当2 3.841K…时,认为事件A与B是无关的.8.针对时下的“抖音热”,某校团委对“学生性别和喜欢抖音是否有关”作了一次调查,其中被调查的男女生人数相同,男生喜欢抖音的人数占男生人数的45,女生喜欢抖音的人数占女生人数35,若有95%的把握认为是否喜欢抖音和性别有关则调查人数中男生可能有( )人附表:附:22()()()()()n a d b cKa b c d a c b d-=++++A.20B.40C.60D.30【分析】设男生可能有x人,依题意填写列联表,由2 3.841K>求出x的取值范围,从而得出正确的选项.【解答】解:设男生可能有x人,依题意可得列联表如下;若有95%的把握认为是否喜欢抖音和性别有关,则2 3.841K>,由2242312()255553.841732155x x x x xxKx x x x⋅-⋅==>⋅⋅⋅,解得40.335x>,由题意知0x>,且x是5的整数倍,60∴满足题意.故选:C.【点评】本题考查列联表与独立性检验的应用问题,考查运算求解能力,是基础题.9.2020年2月,全国掀起了“停课不停学”的热潮,各地教师通过网络直播、微课推送等多种方式来指导学生线上学习.为了调查学生对网络课程的热爱程度,研究人员随机调查了相同数量的男、女学生,发现有80%的男生喜欢网络课程,有40%的女生不喜欢网络课程,且有99%的把握但没有99.9%的把握认为是否喜欢网络课程与性别有关,则被调查的男、女学生总数量可能为( )参考公式附:22()()()()()n a d b c K a b c d a c b d -=++++,其中na b c d=+++.参考数据:A .130B .190C .240D .250【分析】根据题意设男、女生的人数各为5x ,建立22⨯列联表,计算2K ,列不等式组求出x 的取值范围,即可确定满足条件的选项.【解答】解:依题意,设男、女生的人数各为5x ,建立22⨯列联表如下所示:由表中数据,计算2210(423)10557321x x x x x x K x x x x⋅⋅-⋅==⋅⋅⋅,由题可知106.63510.82821x <<,所以139.33510227.388x <<.只有B 符合题意. 故选:B .【点评】本题考查了列联表与独立性检验应用问题,也考查了运算求解能力,是基础题. 10.针对“中学生追星问题”,某校团委对“学生性别和中学生追星是否有关”作了一次调查,其中女生人数是男生人数的12,男生追星的人数占男生人数的16,女生追星的人数占女生人数的23.若有95%的把握认为是否追星和性别有关,则男生至少有()人参考数据及公式如下:22()()()()()n a d b c Ka b c d a c b d -=++++A .12B .11C .10D .18【分析】设男生人数为x ,依题意填写列联表,计算观测值,列不等式求出x 的取值范围,再根据题意求出男生的人数.【解答】解:设男生人数为x ,依题意可得列联表如下:若在犯错误的概率不超过0.05的前提下认为是否喜欢追星和性别有关,则23.841K >,由2235()326636 3.841822x x x x x K x x x x x ⋅-⋅==>⋅⋅⋅,解得10.24x >,2x ,6x 都为整数,∴若在犯错误的概率不超过0.05的前提下认为是否喜欢追星和性别有关,则男生至少有12人. 故选:A .【点评】本题考查了列联表与独立性检验的应用问题,是基础题.11.在研究吸烟与患肺癌的关系中,通过收集数据、整理分析数据得“吸烟与患肺癌有关”的结论,并且在犯错误的概率不超过0.01的前提下认为这个结论是成立的,下列说法中正确的是()A .100个吸烟者中至少有99人患有肺癌B .1个人吸烟,那么这个人有99%的概率患有肺癌C .在100个吸烟者中一定有患肺癌的人D .在100个吸烟者中可能一个患肺癌的人也没有【分析】“吸烟与患肺癌有关”的结论,并且在犯错误的概率不超过0.01的前提下认为这个结论是成立的,表示有99%的把握认为这个结论成立,与多少个人患肺癌没有关系,得到结论.【解答】解: “吸烟与患肺癌有关”的结论,并且在犯错误的概率不超过0.01的前提下认为这个结论是成立的,表示有99%的把握认为这个结论成立, 与多少个人患肺癌没有关系, 只有D 选项正确, 故选:D .【点评】本题考查独立性检验的应用,是一个基础题,解题的关键是正确理解有多大把握认为这件事正确,实际上是对概率的理解.12.某校团委对“学生性别与中学生追星是否有关”作了一次调查,利用22⨯列联表,由计算得27.218K ≈,参照如表:得到正确结论是( )A .有99%以上的把握认为“学生性别与中学生追星无关”B .有99%以上的把握认为“学生性别与中学生追星有关”C .在犯错误的概率不超过0.5%的前提下,认为“学生性别与中学生追星无关”D .在犯错误的概率不超过0.5%的前提下,认为“学生性别与中学生追星有关” 【分析】利用已知概率对照表,在2K 大于对应值是认为相关,在小于对应值时不认为相关. 【解答】解:27.218 6.635K ≈>,对应的20()P K k …为0.010,可得有99%以上的把握认为“学生性别与中学生追星有关”, 故选:B .【点评】本题考查了独立性检验的应用问题,考查判断相关性,是基础题目.13.针对“中学生追星问题”,某校团委对“学生性别和中学生追星是否有关”作了一次调查,其中女生人数是男生人数的12,男生追星的人数占男生人数的16,女生追星的人数占女生人数的23.若有95%的把握认为是否追星和性别有关,则男生至少有( )参考数据及公式如下:22()()()()()n a d b c Ka b c d a c b d -=++++A .12B .11C .10D .18【分析】设男生人数为x ,依题意填写列联表,计算观测值,列不等式求出x 的取值范围,再根据题意求出男生的人数.【解答】解:设男生人数为x ,依题意可得列联表如下:若在犯错误的概率不超过0.05的前提下认为是否喜欢追星和性别有关,则23.841K >,由2235()326663 3.841822xx x x x x K x x x x⨯-⨯==>⨯⨯⨯,解得10.24x>,2x ,6x 都为整数,∴若在犯错误的概率不超过0.05的前提下认为是否喜欢追星和性别有关,则男生至少有12人. 故选:A .【点评】本题考查了列联表与独立性检验的应用问题,属于基础题.14.有甲、乙两个班级进行数学考试,按照大于等于85分为优秀,85分以下为非优秀统计成绩,得到如表所示的列联表:。

高中数学统计独立性检验练习题

高中数学统计独立性检验练习题

独立性检验1.某校为了研究学生的性别和对待某一活动的态度(支持与不支持)的关系,运用2×2列联表进行独立性检验,经计算K2=6.705,则所得到的统计学结论是:有()的把握认为“学生性别与支持该活动没有关系”.P(K2≥k)0.1000.0500.0250.0100.001k 2.7063.8415.0246.63510.828A. 99.9%B. 99%C. 1%D. 0.1%2.在研究吸烟与患肺癌的关系中,通过收集数据、整理分析数据得“吸烟与患肺癌有关”的结论,并且有99%以上的把握认为这个结论是成立的,则下列说法中正确的是()A. 100个吸烟者中至少有99人患有肺癌B. 1个人吸烟,那么这人有99%的概率患有肺癌C. 在100个吸烟者中一定有患肺癌的人D. 在100个吸烟者中可能一个患肺癌的人也没有3.某中学兴趣小组为调查该校学生对学校食堂的某种食品喜爱与否是否与性别有关,随机询问了100名性别不同的学生,得到如下的2×2列联表:男生女生总计喜爱 3020 50不喜爱 20 30 50总计 50 50 100附K2=n(ad−bc)2(a+b)(c+d)(a+c)(b+d)P(K2≥0.150.100.050.0250.010k0)k0 2.072 2.706 3.841 5.024 6.635根据以上数据,该数学兴趣小组有多大把握认为“喜爱该食品与性别有关”?()A. 99%以上B. 97.5%以上C. 95%以上D. 85%以上4.海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100个网箱,测量各箱水产品的产量(单位:kg),其频率分布直方图如下:(1)记A表示事件“旧养殖法的箱产量低于50kg”,估计A的概率;(2)填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关:箱产量<50kg箱产量≥50kg旧养殖法新养殖法(3)根据箱产量的频率分布直方图,对两种养殖方法的优劣进行比较.P(K2≥K)0.0500.0100.001K 3.841 6.63510.8285.国际奥委会将于2017年9月15日在秘鲁利马召开130次会议决定2024年第33届奥运会举办地,目前德国汉堡,美国波士顿等申办城市因市民担心赛事费用超支而相继退出,某机构为调查我国公民对申办奥运会的态度,选了某小区的100位居民调查结果统计如下:支持不支持合计年龄不大于50岁______ ______ 80年龄大于50岁10______ ______合计______ 70100(1)根据已知数据,把表格数据填写完整;(2)能否在犯错误的概率不超过5%的前提下认为不同年龄与支持申办奥运无关?(3)已知在被调查的年龄大于50岁的支持者中有5名女性,其中2位是女教师,现从这5名女性中随机抽取3人,求至多有1位教师的概率.附:K2=n(ad−bc)2,n=a+b+c+d,(a+b)(c+d)(a+c)(b+d)P(K2>k)0.1000.0500.0250.010k 2.706 3.841 5.024 6.6356.为了解某班学生喜好体育运动是否与性别有关,对本班50人进行了问卷调查得到了如下的列联表:喜好体育运动不喜好体育运动合计______男生______ 5女生10______ ______合计______ ______ 50已知按喜好体育运动与否,采用分层抽样法抽取容量为10的样本,则抽到喜好体育运动的人数为6.(1)请将上面的列联表补充完整;(2)能否在犯错概率不超过0.01的前提下认为喜好体育运动与性别有关?说明你的理由.独立性检验临界值表:P(K2≥k0)0.100.050.0250.010k0 2.7063.8415.0246.6357.某职称晋级评定机构对参加某次专业技术考试的100人的成绩进行了统计,绘制了频率分布直方图(如图所示),规定80分及以上者晋级成功,否则晋级失败.晋级成功晋级失败合计男16女50合计(Ⅰ)求图中a的值;(Ⅱ)根据已知条件完成下面2×2列联表,并判断能否有85%的把握认为“晋级成功”与性别有关?(Ⅲ)将频率视为概率,从本次考试的所有人员中,随机抽取4人进行约谈,记这4人中晋级失败的人数为X,求X的分布列与数学期望E(X).(参考公式:k2=n(ad−bc)2,其中n=a+b+c+d)(a+b)(c+d)(a+c)(b+d)P(K2≥k0)0.400.250.150.100.050.025k00.780 1.323 2.072 2.706 3.841 5.0248.某高校共有学生15000人,其中男生10500人,女生4500人,为调查该校学生每周平均体育运动时间的情况,采用分层抽样的方法,收集300名学生每周平均体育运动时间的样本数据(单位:小时).(Ⅰ)应收集多少位女生的样本数据?(Ⅱ)根据这300个样本数据,得到学生每周平均体育运动时间的频率分布直方图(如图所示),其中样本数据的分组区间为:[0,2],(2,4],(4,6],(6,8],(8,10],(10,12],估计该校学生每周平均体育运动时间超过4小时的概率;(Ⅲ)在样本数据中,有60位女生的每周平均体育运动时间超过4小时,请完成每周平均体育运动时间与性别列联表,并判断是否有95%的把握认为“该校学生的每周平均体育运动时间与性别有关”P(K2≥k0)0.100.050.0100.005k0 2.706 3.841 6.6357.879附:K2=n(ad−bc)2(a+b)(c+d)(a+c)(b+d)9.海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100个网箱,测量各箱水产品的产量(单位:kg),其频率分布直方图如图:(1)设两种养殖方法的箱产量相互独立,记A表示事件“旧养殖法的箱产量低于50kg,新养殖法的箱产量不低于50kg”,估计A的概率;(2)填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关:箱产量<50kg箱产量≥50kg旧养殖法新养殖法(3)根据箱产量的频率分布直方图,求新养殖法箱产量的中位数的估计值(精确到0.01).P(K2≥k)0.0500.0100.001K 3.841 6.63510.828K2=n(ad−bc)2.(a+b)(c+d)(a+c)(b+d)10.通过随机询问某地100名高中学生在选择座位时是否挑同桌,得到如下2×2列联表:男生女生合计挑同桌304070不挑同桌201030总计5050100(1)从这50名男生中按是否挑同桌采取分层抽样的方法抽取一个容量为5的样本,现从这5人中随机选取3人做深度采访,求这3名学生中至少有2名要挑同桌的概率;(2)根据以上2×2列联表,是否有95%以上的把握认为“性别与在选择座位时是否挑同桌”有关?P(K2≥k0)0.100.050.0250.0100.0050.001k0 2.706 3.841 5.024 6.6357.87910.828,其中n=a+b+c+d.参考公式:K2=n(ad−bc)2(a+b)(c+d)(a+c)(b+d)11.某中学拟在高一下学期开设游泳选修课,为了了解高一学生喜欢游泳是否与性别有关,该学校对100名高一新已知在这100人中随机抽取1人抽到喜欢游泳的学生的概率为35.(1)请将上述列联表补充完整;(2)并判断是否有99.9%的把握认为喜欢游泳与性别有关?并说明你的理由;(3)已知在被调查的学生中有5名来自甲班,其中3名喜欢游泳,现从这5名学生中随机抽取2人,求恰好有1人喜欢游泳的概率.下面的临界值表仅供参考:(参考公式:K2=n(ad−bc)2(a+b)(c+d)(a+c)(b+d),其中n=a+b+c+d)12.某校卫生所成立了调查小组,调查“按时刷牙与不患龋齿的关系”,对该校某年级800名学生进行检查,按患龋齿和不患龋齿分类,得汇总数据:按时刷牙且不患龋齿的学生有160 名,不按时刷牙但不患龋齿的学生有100 名,按时刷牙但患龋齿的学生有 240 名.(1)该校4名校卫生所工作人员甲、乙、丙、丁被随机分成两组,每组 2 人,一组负责数据收集,另一组负责数据处理,求工作人员甲乙分到同一组的概率.(2)是否有99.9%的把握认为该年级学生的按时刷牙与不患龋齿有关系?附:k2=n(ad−bc)2(a+b)(c+d)(a+c)(b+d)13.为使政府部门与群众的沟通日常化,某城市社区组织“网络在线问政”活动.2015年,该社区每月通过问卷形式进行一次网上问政;2016年初,社区随机抽取了60名居民,对居民上网参政议政意愿进行调查.已知上网参与问政次数与参与人数的频数分布如表:K2=n(ad−bc)2(a+b)(c+d)(a+c)(b+d)(1)若将参与调查问卷不少于4次的居民称为“积极上网参政居民”,请你根据频数分布表,完成2×2列联表,99%3人为2男1女的概率.14. 近年来,手机已经成为人们日常生活中不可缺少的产品,手机的功能也日趋完善,已延伸到了各个领域,如拍照,聊天,阅读,缴费,购物,理财,娱乐,办公等等,手机的价格差距也很大,为分析人们购买手机的消费情况,现对某小区随机抽取了200人进行手机价格的调查,统计如下:0.025的前提下,认为人们使用手机的价格和年龄有关?(Ⅱ)如果用分层抽样的方法从样本手机价格在5000元及以上的人群中选择5人调查他的收入状况,再从这5人中选3人,求3人的年龄都在45岁及以下的概率. 附K 2=n(ad−bc)2(a+b)(c+d)(a+c)(b+d)15. 高中生在被问及“家,朋友聚集的地方,个人空间”三个场所中“感到最幸福的场所在哪里?”这个问题时,从中国某城市的高中生中,随机抽取了55人,从美国某城市的高中生中随机抽取了45人进行答题.中国高中生答题情况是:选择家的占25、朋友聚集的地方占310、个人空间占310.美国高中生答题情况是:朋友聚集的地方占35、家占15、个人空间占15.(Ⅰ)请根据以上调查结果将下面2×2列联表补充完整;并判断能否有95%的把握认为“恋家(在家里感到最幸福)”与国别有关;4人中随机抽取2人到中国交流学习,求2人中含有在“个人空间”感到幸福的学生的概率. 附:k 2=n(ad−bc)2(a+b)(c+d)(a+c)(b+d),其中n =a +b +c +d .16.为调查了解某省属师范大学师范类毕业生参加工作后,从事的工作与教育是否有关的情况,该校随机调查了该校80位性别不同的2016年师范类毕业大学生,得到具体数据如表:(n=a+b+c+d).参考公式:k2=n(ad−bc)2(a+b)(c+d)(a+c)(b+d)(3)以(2)中的频率作为概率.该校近几年毕业的2000名师范类大学生中随机选取4名,记这4名毕业生从事与教育有关的人数为X,求X的数学期望E(X).17.为了解少年儿童的肥胖是否与常喝碳酸饮料有关,现对30名六年级学生进行了问卷调查,得到如下列联表(平均每天喝500ml以上为常喝,体重超过50kg为肥胖):.已知在全部30人中随机抽取1人,抽到肥胖的学生的概率为415(Ⅰ)请将上面的列联表补充完整;(Ⅱ)是否有99.5%的把握认为肥胖与常喝碳酸饮料有关?说明你的理由;(参考公式:K2=n(ad−bc)2,其中n=a+b+c+d)(a+b)(c+d)(a+c)(b+d)18.为了解某地区观众对大型综艺活动《中国好声音》的收视情况,随机抽取了100名观众进行调查,其中女性有55名.下面是根据调查结果绘制的观众收看该节目的场数与所对应的人数表:95%的把握认为“歌迷”与性别有关?2名女性,若从“超级歌迷”中任意选取2人,求至少有1名女性观众的概率..附:K2=n(ad−bc)2(a+b)(c+d)(a+c)(b+d)19.2017年3月27日,一则“清华大学要求从2017级学生开始,游泳达到一定标准才能毕业”的消息在体育界和教育界引起了巨大反响.游泳作为一项重要的求生技能和运动项目受到很多人的喜爱.其实,已有不少高校将游泳列为必修内容.某中学为了解2017届高三学生的性别和喜爱游泳是否有关,对100名高三学生进行了问卷调查,得到如下列联表:.已知在这100人中随机抽取1人,抽到喜欢游泳的学生的概率为35(Ⅰ)请将上述列联表补充完整;(Ⅱ)判断是否有99.9%的把握认为喜欢游泳与性别有关?附:K2=n(ad−bc)2(a+b)(c+d)(a+c)(b+d)。

专题3.4 二联表与独立性检验-2018年高考数学解答题专题训练

专题3.4 二联表与独立性检验-2018年高考数学解答题专题训练

1.近年来全国各一、二线城市打击投机购房,陆续出台了住房限购令.某市为了进一步了解已购房民众对市政府出台楼市限购令的认同情况,随机抽取了一小区住户进行调查,各户人均月收入(单位:千元)的频数分布及赞成楼市限购令的户数如下表:若将小区人均月收入不低于7.5千元的住户称为“高收入户”,人均月收入低于7.5千元的住户称为“非高收入户”(Ⅰ)求“非高收入户”在本次抽样调杳中的所占比例;(Ⅱ)现从月收入在[)1.5,3的住户中随机抽取两户,求所抽取的两户都赞成楼市限购令的概率;(Ⅲ)根据已知条件完成如图所给的22⨯列联表,并说明能否在犯错误的概率不超过0.005的前提下认为“收入的高低”与“赞成楼市限购令”有关.附:临界值表参考公式:()()()()()22n ad bcKa b c d a c b d-=++++,n a b c d=+++.【答案】(1)45(2)23P =(3)不能 【解析】试题分析:(1)根据频数与总数的比值得“非高收入户”本次抽样调查中的所占比例,(2)人均月收入在[)1.5,3中,有5户赞成楼市限购令, l 户不赞成楼市限购令,根据枚举法确定从中随机抽取两户所有的基木事件数,再确定所抽取的两户都赞成楼市限购令包含的基本事件数,最后根据古典概型概率公式求概率,(3)根据卡方公式求2K ,与参考数据比较,确定结论. 试题解析:(Ⅰ)因为6+10+13+114505=,所以“非高收入户”本次抽样调查中的所占比例为45.事件“所抽取的两户都赞成楼市限购令”包含的基本事件有: ()12,A A , ()13,A A , ()14,A A , ()15,A A ,()23,A A , ()23,A A , ()24,A A , ()34,A A , ()35,A A , ()45,A A ,共10个,∴所抽取的两户都赞成楼市限购令的概率为102153P ==. (Ⅲ)由题意,可得如下22⨯列联表:∵()()()()()22n ad bc K a b c d a c b d -=++++()250355557.0317.87940104010⨯⨯-⨯==<⨯⨯⨯,∴不能在犯错误的概率不超过0.005的前提下认为“收入的高低”与“赞成楼市限购令”有关.2.从某小区抽取50户居民进行月用电量调查,发现其用电量都在50到350度之间,频率分布直方图如下.(1)求频率分布直方图中x 的值并估计这50户用户的平均用电量;(2)若将用电量在区间[)50,150内的用户记为A 类用户,标记为低用电家庭,用电量在区间[)250,350内的用户记为B 类用户,标记为高用电家庭,现对这两类用户进行问卷调查,让其对供电服务进行打分,打分情况见茎叶图:①从B 类用户中任意抽取1户,求其打分超过85分的概率;②若打分超过85分视为满意,没超过85分视为不满意,请填写下面列联表,并根据列联表判断是否有95%的把握认为“满意度与用电量高低有关”?附表及公式:()()()()()22n ad bc K a b c d a c b d -=++++, n a b c d =+++.【答案】(1)0.0044x =,186(2)23,没有【解析】试题分析:(1)由矩形面积和为1,求得x ,再由每一个矩形的中点横坐标乘以矩形面积求和可得平均值;(2)①B 类用户共9人,打分超过85分的有6人,则216339C C C 即为所求; (2)根据数据完成列联表,利用()()()()()22n ad bc K a b c d a c b d -=++++,计算查表下结论即可.(2)①B 类用户共9人,打分超过85分的有6人,所以从B 类用户中任意抽取3户,恰好有2户打分超过85分的概率为2163391528C C C =. ②点睛:利用频率分布直方图求众数、中位数与平均数时,易出错,应注意区分这三者.在频率分布直方图中:(1)最高的小长方形底边中点的横坐标即是众数;(2)中位数左边和右边的小长方形的面积和是相等的;(3)平均数是频率分布直方图的“重心”,等于频率分布直方图中每个小长方形的面积乘以小长方形底边中点的横坐标之和.3.第23届冬季奥运会于2018年2月9日至2月25日在韩国平昌举行,期间正值我市学校放寒假,寒假结束后,某校工会对全校教职工在冬季奥运会期间每天收看比赛转播的时间作了一次调查,得到如下频数分布表:(1)若将每天收看比赛转播时间不低于3小时的教职工定义为“体育达人”,否则定义为“非体育达人”,请根据频数分布表补全列联表:并判断能否有的把握认为该校教职工是否为“体育达人”与“性别”有关;(2)在全校“体育达人”中按性别分层抽样抽取6名,再从这6名“体育达人”中选取2名作冬奥会知识讲座.记其中女职工的人数为,求的分布列与数学期望.附表及公式:.【答案】(1)见解析;(2)见解析.试题解析:(1)由题意得下表:的观测值为.所以有的把握认为该校教职工是“体育达人”与“性别”有关. (2)由题意知抽取的6名“体育达人”中有4名男职工,2名女职工,所以的可能取值为0,1,2.且,,,所以的分布列为.4.中央政府为了应对因人口老龄化而造成的劳动力短缺等问题,拟定出台“延迟退休年龄政策”.为了了解人们对“延迟退休年龄政策”的态度,责成人社部进行调研.人社部从网上年龄在15~65岁的人群中随机调查100人,调查数据的频率分布直方图和支持“延迟退休”的人数与年龄的统计结果如下:(1)由以上统计数据填2×2列联表,并判断能否在犯错误的概率不超过0.05的前提下认为以45岁为分界点的不同人群对“延迟退休年龄政策”的支持度有差异;(2)若以45岁为分界点,从不支持“延迟退休”的人中按分层抽样的方法抽取8人参加某项活动.现从这8人中随机抽2人.①抽到1人是45岁以下时,求抽到的另一人是45岁以上的概率.②记抽到45岁以上的人数为X,求随机变量X的分布列及数学期望.参考数据:,其中n=a+b+c+d.【答案】(1) 在犯错误的概率不超过0.05的前提下认为以45岁为分界点的不同人群对“延迟退休年龄政策”的支持度有差异,(2)①②见解析试题解析:(1)由统计数据填2×2列联表如下,计算观测值,所以在犯错误的概率不超过0.05的前提下认为以45岁为分界点的不同人群对“延迟退休年龄政策”的支持度有差异;(2)①抽到1人是45岁以下的概率为=,抽到1人是45岁以下且另一人是45岁以上的概率为=,故所求概率P==;②根据题意,X的可能取值是0,1,2;计算P(X=0)==,P(X=1)==,P(X=2)==,可得随机变量X的分布列为故数学期望为E(X)=0×+1×+2×=.5.为了探究某市高中理科生在高考志愿中报考“经济类”专业是否与性别有关,现从该市高三理科生中随机抽取50名学生进行调查,得到如下2×2列联表:(单位:人)(1)据此样本,判断能否在犯错误的概率不超过0.001的前提下认为理科生报考“经济类”专业与性别有关?(2)若以样本中各事件的频率作为概率估计全市总体考生的报考情况,现从该市的全体考生(人数众多)中随机抽取3人,设3人中报考“经济类”专业的人数为随机变量X,求随机变量X的概率分布列及数学期望.附:,其中n=a+b+c+d.【答案】(1) 有99%的把握认为理科生愿意报考“经济类”专业与性别有关(2)见解析【解析】试题分析:(I)计算K2,根据临界值表作出结论;(II)分别计算X=0,1,2,3时的概率得出分布列,根据分布列得出数学期望和方差.(Ⅱ)估计该市的全体考生中任一人报考“经济类”专业的概率为X的可能取值为0,1,2,3,由题意,得X~B(3,),∴随机变量X的分布列为∴随机变量X的数学期望6.某工厂有25周岁以上(含25周岁)工人300名,25周岁以下工人200名.为了研究工人的日平均生产量是否与年龄有关,现采用分层抽样的方法,从中抽取了100名工人,先统计了他们某月的日平均生产件数,然后按工人年龄在“25周岁以上(含25周岁)”和“25周岁以下”分为两组,再将两组工人的日平均50,60,60,70,70,80,80,90,90,100,分别加以统计,得到如图所示的频率生产件数分成5组:[)[)[)[)[]分布直方图.(1)根据“25周岁以上组”的频率分布直方图,求25周岁以上组工人日平均生产件数的中位数的估计值(四舍五入保留整数);(2)从样本中日平均生产件数不足60件的工人中随机抽取2人,求至少抽到一名“25周岁以下组”工人的概率;⨯列联表,并判断是否(3)规定日平均生产件数不少于80件者为“生产能手”,请你根据已知条件完成22900的把握认为“生产能手与工人所在年龄组有关”?有0附: ()()()()()22n ad bc a b c d a c b d χ-=++++【答案】(1)73;(2)710;(3)没有0900的把握认为“生产能手与工人所在的年龄组有关”.【解析】试题分析:(1)根据频率分布直方图可得中位数为0.50.050.3570100.35--+⨯;(2)根据频率分布直方图计算出25周岁以上3名,25周岁以下工人2名,利用列举法,根据古典概型的概率计算公式即可得结果;(3)根据题意完成列联表,计算出2χ的值即可得结果.(2)由频率分布直方图可知,日平均生产件数不足60件的工人中,25周岁以上共600.005103⨯⨯=名,设其分别为123,,m m m ;25周岁以下工人共400.005102⨯⨯=名,设其分别为12,n n .记“至少抽到一名25周岁以下工人”为事件A . 所有基本事件分别为()()()()()()()()()()12131112232122313212,,,,,,,,,,,,,,,,,,,m m m m m n m n m m m n m n m n m n n n ,共10个;事件A 包含的基本事件共7个.由于事件A 符合古典概型,则()710P A =; (3)由频率分布直方图可知,25周岁以上的“生产能手”共()600.020.051015⎡⎤⨯+⨯=⎣⎦名,25周岁以下的“生产能手”共()400.03250.0051015⎡⎤⨯+⨯=⎣⎦名,则22⨯列联表如图所示.所以()2210015251545251.7862.7066040307014χ⨯⨯-⨯==≈<⨯⨯⨯, 综上,没有90%的把握认为“生产能手与工人所在的年龄组有关”.。

2018高考数学真题 理科 10.4考点2 独立性检验

2018高考数学真题 理科 10.4考点2 独立性检验

第十章 算法初步、统计与统计案例第四节 变量间的相关关系与统计案例考点2 独立性检验(2018·全国卷Ⅲ(理))某工厂为提高生产效率,开展技术创新活动,提出了完成某项生产任务的两种新的生产方式.为比较两种生产方式的效率,选取40名工人,将他们随机分成两组,每组20人.第一组工人用第一种生产方式,第二组工人用第二种生产方式.根据工人完成生产任务的工作时间(单位:min )绘制了如下茎叶图:(1)根据茎叶图判断哪种生产方式的效率更高?并说明理由;(2)求40名工人完成生产任务所需时间的中位数m ,并将完成生产任务所需时间超过m 和不超过m 的工人数填入下面的列联表;(3)根据(2)中的列联表,能否有99%的把握认为两种生产方式的效率有差异?附:K 2=n(ad−bc)2(a+b)(c+d)(a+c)(b+d),.【解析】(1)第二种生产方式的效率更高.理由如下:(ⅰ)由茎叶图可知:用第一种生产方式的工人中,有75%的工人完成生产任务所需时间至少80 min ;用第二种生产方式的工人中,有75%的工人完成生产任务所需时间至多79 min.因此第二种生产方式的效率更高.(ⅱ)由茎叶图可知,用第一种生产方式的工人完成生产任务所需时间的中位数为85.5 min ;用第二种生产方式的工人完成生产任务所需时间的中位数为73.5 min.因此第二种生产方式的效率更高.(ⅲ)由茎叶图可知,用第一种生产方式的工人完成生产任务平均所需时间高于80 min ;用第二种生产方式的工人完成生产任务平均所需时间低于80 min.因此第二种生产方式的效率更高.(ⅳ)由茎叶图可知,用第一种生产方式的工人完成生产任务所需时间分布在茎8上的最多,关于茎8大致呈对称分布;用第二种生产方式的工人完成生产任务所需时间分布在茎7上的最多,关于茎7大致呈对称分布.又用两种生产方式的工人完成生产任务所需时间分布的区间相同,故可以认为用第二种生产方式完成生产任务所需的时间比用第一种生产方式完成生产任务所需的时间更少.因此第二种生产方式的效率更高.(2)由茎叶图知m =79+812=80.列联表如下:(3)因为K 2=40(15×15−5×5)520×20×20×20=10>6.635,所以有99%的把握认为两种生产方式的效率有差异.【答案】见解析。

2018年高中数学 课下能力提升(十八)独立性检验 苏教版选修2-3

2018年高中数学 课下能力提升(十八)独立性检验 苏教版选修2-3

课下能力提升(十八) 独立性检验一、填空题1.在一项打鼾与患心脏病的调查中,共调查了1 671人,经过计算χ2=27.63,根据这一数据分析,我们有理由认为打鼾与患心脏病是________的.(有关,无关) 2.若两个研究对象X和Y的列联表为:则X与Y之间有关系的概率约为________.3.在吸烟与患肺病这两个对象的独立性检验的计算中,下列说法正确的是________.(填序号)①若χ2=6.635,则我们认为有99%的把握认为吸烟与患肺病有关系.那么在100个吸烟的人中必有99人患肺病.②从独立性检验的计算中求有99%的把握认为吸烟与患肺病有关系时,我们认为如果某人吸烟,那么他有99%的可能患肺病.③若从统计量中求出有95%的把握认为吸烟与患肺病有关系,是指有5%的可能性使得推断出现错误.2×2列联.(填“有关”二、解答题6.为研究学生的数学成绩与对学习数学的兴趣是否有关,对某年级学生作调查,得到如下数据:学生的数学成绩好坏与对学习数学的兴趣是否有关?7.考察小麦种子经过灭菌与否跟发生黑穗病的关系,经试验观察,得到数据如下列联表.8.为了调查某生产线上质量监督员甲是否在生产现场对产品质量好坏有无影响,现统计数据如下:甲在生产现场时,990件产品中有合格品982件,次品8件;甲不在生产现场时,510件产品中有合格品493件,次品17件.试用独立性检验的方法分析监督员甲是否在生产现场对产品质量好坏有无影响.查表知P 答案:③4.解析:提出假设H 0:大学生的性别与看不看营养说明无关,由题目中的数据可计算χ2=72×(28×20-16×8)244×28×36×36≈8.42,因为当H 0成立时,P (χ2≥7.879)≈0.005,这里的χ2≈8.42>7.879,所以我们有99.5%的把握认为大学生的性别与看不看营养说明有关.答案:有关5.解析:由公式得χ2=168×(68×38-42×20)2110×58×88×80≈11.377>10.828,所以我们有99.9%的把握说,多看电视与人变冷漠有关.答案:99.9%6.解析:提出假设H 0:学生数学成绩的好坏与对学习数学的兴趣无关.由公式得χ2的值为χ2=189×(64×73-22×30)286×103×95×94≈38.459.∵当H 0成立时,χ2≥10.828的概率约为0.001,而这里χ2≈38.459>10.828,∴有99.9%的把握认为学生数学成绩的好坏与对学习数学的兴趣是有关的. 7.解:提出假设H 0:种子是否灭菌与有无黑穗病无关. 由公式得,χ2=460×(26×200-184×50)2210×250×76×384≈4.804.由于4.804>3.841,即当H 0成立时,χ2>3.841的概率约为0.05,所以我们有95%的把握认为种子是否灭菌与有无黑穗病是有关系的.8.解:2×2列联表如下提出假设H 0:质量监督员甲是否在生产现场与产品质量的好坏无明显关系.根据χ2公式得χ2=1 500(982×17-493×8)2990×510×1 475×25≈13.097.因为H 0成立时,χ2>10.828的概率约为0.001,而这里χ2≈13.097>10.828,所以有99.9%的把握认为质量监督员甲是否在生产现场与产品质量的好坏有关系.。

独立性检验(历年高考)练习题

独立性检验(历年高考)练习题

精选历年高考题:独立性检验练习题1. 为了解某班学生喜爱打篮球是否与性别有关,对本班60人进行了问卷调查得到了如下的2×2列联表:(I)用分层抽样的方法在喜爱打篮球的学生中抽6人,其中男生抽多少人?(II)在上述抽取的人中选2人,求恰有一名女生的概率;(III)你是否有95%的把握认为喜爱打篮球与性别有关?说明你的理由。

下面的临界值表供参考:2. 2014年山东省第二十三届运动会将在济宁召开,为调查我市某校高中生是否愿意提供志愿者服务,用简单随机抽样方法从该校调查了50人,结果如下:(I)用分层抽样的方法在愿意提供志愿者服务的学生中抽取6人,其中男生抽取多少人?(II)在(I)中抽取的6人中任选2人,求恰有一名女生的概率;(III)你能否有99%的把握认为该校高中生是否愿意提供志愿者服务与性别有关?下面的临界值表供参考:独立性检验统计量()()()()(),22dbcadcbabcadnK++++-=其中.dcban+++=3. 为调查某市学生百米运动成绩,从该市学生中按照男女比例随机抽取50名学生进行百米测试,学生成绩全部都介于13秒到18秒之间,将测试结果按如下方式分成五组,第一组[),14,13第二组[)15,14, 第五组[]18,17,如图是按上述分组方法得到的频率分布直方图.(1)设n m ,表示从第一组和第五组的所有学生中任意抽取的两名学生的百米测试成绩,即[)[]18,1714,13,⋃∈n m ,求事件“2>-n m ”的概率;(2)根据有关规定,成绩小于16秒为达标.如果男女生使用相同的达标标准,则男女生达标情况如下表:男 女 总计 达标a=24 b=_____ _____ 不达标c=_____ d=12 _____ 总计 _____ _____ n=50完成上表,并根据上表数据,能否有99﹪的把握认为“体育达标与性别有关”? 参考公式:()()()()().,22d c b a n d b c a d c b a bc ad n K +++=++++-=其中 参考数据:。

高考数学专题复习:独立性检验

高考数学专题复习:独立性检验

高考数学专题复习:独立性检验一、单选题1.某学校食堂对高三学生偏爱蔬菜还是肉类与性别的关系进行了一次调查,根据独立性检验原理,处理所得数据之后发现,有97.5%的把握但没有99%的把握认为偏爱蔬菜还是肉类与性别有关,则2K 的观测值可能为( ) k 2.706 A .2 3.206K =B .2 6.625K =C .27.869K =D .211.208K =2.某校为了解学生“玩手机游戏”和“学习成绩”是否有关,随机抽取了100名学生,运用2×2列联表进行独立性检验,经计算得到2 3.936K =,所以判定玩手机游戏与学习成绩有关系,那么这种判断出错的可能性为( )A .1%B .5%C .95%D .99%3.某校为了调查喜欢语文与性别的关系,随机调查了一些学生,数据如下表,由此判断喜欢语文与性别有关系,那么这种判断出错的可能性为( )()()()()()22n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.A .99.5%B .5%C .0.5%D .95%4.以下四个命题,其中正确的个数有( )①在独立性检验中,随机变量2K 的观测值越大,“认为两个分类变量有关”,这种判断犯错误的概率越小.②在线性回归方程ˆ0.80.35yx =-时,变量x 与y 具有负的线性相关关系; ③随机变量X 服从正态分布2(3,)N σ,若(4)0.64P X ≤=,则(23)0.07P X ≤≤=; ④两个随机变量相关性越强,则相关系数r 的值越接近于1. A .1个B .2个C .3个D .4个5.两个分类变量X 和Y ,它们的取值分别为{}12,x x 和{}12,y y ,其样本频数列联表如下表所示:则下列四组数据中,分类变量X 和Y 之间关系最强的是( ) A .4a =,2b =,3c =,6d = B .2a =,1b =,3c =,5d = C .4a =,5b =,6c =,8d =D .2a =,3b =,4c =,6d =6.为了丰富教职工业余文化生活,某校计划在假期组织70名老师外出旅游,并给出了两种方案(方案一和方案二),每位老师均选择且只选择一种方案,其中有50%的男老师选择方案一,有75%的女老师选择方案二,且选择方案一的老师中女老师占40%,则参照附表,得到的正确结论是( )附:()()()()()22n ad bc K a b c d a c b d -=++++,n a b c d =+++.A .在犯错误的概率不超过2.5%的前提下,认为“选择方案与性别有关”B .在犯错误的概率不超过2.5%的前提下,认为“选择方案与性别无关”C .有95%以上的把握认为“选择方案与性别有关”D .有95%以上的把握认为“选择方案与性别无关”7.利用独立性检验的方法调查高中生性别与爱好某项运动是否有关,通过随机调查200名高中生是否爱好某项运动,利用22⨯列联表,由计算可得27.236K =,参照下表:得到的正确结论是( )A .有99%以上的把握认为“爱好该项运动与性别无关”B .有99%以上的把握认为“爱好该项运动与性别有关”C .在犯错误的概率不超过0.5%的前提下,认为“爱好该项运动与性别有关"D .在犯错误的概率不超过0.5%的前提下,认为“爱好该项运动与性别无关”8.如果根据性别与是否爱好运动的列联表得到2 3.852 3.841x ≈>,所以判断性别与运动有关,那么这种判断犯错的可能性不超过( ) A .2.5%B .0.5%C .1%D .5%9.某校为了研究学生的性别和对待某一活动的态度(支持与不支持)的关系,运用22⨯列联表进行独立性检验.经计算2 6.058K =,则所得到的统计学结论是:有( )的把握认为“学生性别与支持该活动有关系”A .0.025%B .97.5%C .99%D .99.9%10.根据分类变量x 与y 的观测数据,计算得到2 2.974χ=.依据0.05α=的独立性检验,结论为( )A .变量x 与y 不独立B.变量x与y不独立,这个结论犯错误的概率不超过0.05C.变量x与y独立D.变量x与y独立,这个结论犯错误的概率不超过0.05二、填空题11.为了调查高中学生参加课外兴趣活动选篮球和舞蹈是否与性别有关,现随机调查了30名学生,得到如下22⨯列联表:根据表中的数据,及观测值2K(其中22()()()()()n ad bcKa b c d a c b d-=++++),参考数据:则在犯错误的概率不超过__________前提下,认为选择舞蹈与性别有关.12.某工厂为了调查工人文化程度与月收入的关系,随机抽取了部分工人,得到如下列联表:(单位:人)由上表中数据计算得2K的观测值22105(10302045)6.10955503075K⨯⨯-⨯=≈⨯⨯⨯,请估计在犯错误的概率不超过__________的前提下认为“文化程度与月收入有关系”.13.利用独立性检验的方法调查高中性别与爱好某项运动是否有关,通过随机调查200名高中生是否爱好某项运动,利用22⨯列联表,由计算可得27.245K≈,参照下表2.706 至少有__________以上的把握认为“爱好该项运动与性别有关”.14.为了判断高中三年级学生是否选修文科与性别的关系,现随机抽取50名学生,得到如下2×2列联表:已知P (K 2≥3.841)≈0.05,P (K 2≥5.024)≈0.025.根据表中数据,得到K 2的观测值k =250(1320107)23272030⨯⨯-⨯⨯⨯⨯≈4.844.则认为选修文科与性别有关系出错的可能性为__________.三、解答题15.为了解某市市民对政府出台楼市限购令的态度,在该市随机抽取了50名市民进行调查,他们月收入(单位:百元)的频率分布直方图如下:(1)求该市市民平均月收入的估计值(每组数据以区间中点值为代表).(2)将月收入不低于7500元称为“高收入”,否则称为“非高收入”,根据已知条件完成下面的22⨯列联表,并判断能否有99%的把握认为市民对楼市限购令的态度与收入有关.参考公式:()()()()()22n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.16.为了调查某大学学生在某天上网的时间,随机对100名男生和100名女生进行了不记名的问卷调查,得到了如下的统计结果: 表1:男生上网时间与频数分布表表2:女生上网时间与频数分布表(1)若该大学共有女生750人,试估计其中上网时间不少于60分钟的人数; (2)完成联表,并回答能否有90%的把握认为“大学生上网时间与性别有关”.附:()()()()22()n ad bc K a b c d a c b d -=++++,其中n a b c d =+++为样本容量.0.45517.某大学为鼓励学生进行体育锻炼,购买了一批健身器材供学生使用,并从该校大一学生中随机抽取了100名学生调查使用健身器材的情况,得到数据如表所示:(1)设每周使用健身器材的次数不低于3次为“爱好健身”,根据上表数据,填写22⨯列联表,并判断能否在犯错误的概率不超过0.10的前提下认为“男生和女生在使用健身器材的爱好方面有差异”;(2)从上述每周使用健身器材3次的学生中,利用分层抽样的方法抽取5名学生,再从抽取的5名学生中随机抽取3人,求3人中至多有一名女生的概率.18.在对人们休闲方式的一次调查中,仅就看电视与运动这两种休闲方式比较喜欢哪一种进行了调查.调查结果:接受调查总人数110人,其中男、女各55人;受调查者中,女性有30人比较喜欢看电视,男性有35人比较喜欢运动.(1)请根据题目所提供的调查结果填写下列22⨯列联表:(2)能否在犯错误的概率不超过0.05的前提下认为“性别与休闲方式有关系”?注:22()()()()()n ad bcKa b c d a c b d-=++++,(其中n a b c d=+++为样本容量)参考答案1.B【分析】根据把握率确定2K的观测值区间范围即可选择.【详解】∵有97.5%的把握但没有99%的把握,∴2K的观测值区间范围为[5.024,6.635),结合选项可知,2K的观测值可能为6.625.故选:B2.B【分析】根据2K的值,对照附表即可得解.【详解】由题得2 3.936 3.841K=>,所以判定玩手机游戏与学习成绩有关系,这种判断出错的可能性为5%. 故选:B3.C【分析】计算出2K的值可得答案.【详解】因为()22501520510258.33320307.89225753K⨯⨯-⨯==≈>⨯⨯⨯,所有这种判断出错的可能性0.5%.故选:C.4.A【分析】利用随机变量2K的观测值越大,说明两个变量有关系的可能性越大判断①;根据回归方程一次项系数的正负判断②;根据正态分布的性质判断③; 利用线性相关的概念判断④. 【详解】①:在独立性检验中,因为随机变量2K 的观测值越大,说明两个变量有关系的可能性越大,即犯错误的概率越大,故①错误;②:回归方程ˆ0.80.35yx =-的一次项系数为-0.35<0,故变量x 与y 具有负的线性相关关系,故②正确;③:随机变量X 服从正态分布2(3)N σ,,则(34)(4)(3)0.640.50.14P X P X P X <≤=≤-<=-=, 由对称性可知,(23)0.14P X ≤≤=,故③错误;④:两个随机变量的线性相关关系越强,则相关系数r 的绝对值越接近于1,故④错误. 正确的选项有1个. 故选:A 5.A 【分析】逐项求出ad bc -的值并加以对比,最大值对应的分类变量之间关系最强. 【详解】我们可以用ad bc -的大小近似的判断两个分类变量之间关系的强弱,ad bc -的值越小,关系越弱,越大,关系越强.这四组数据中ad bc -的值分别为18、7、2、0, 所以A 组数据的ad bc -的值最大,相比较而言这组数据反应的X 和Y 的关系最强. 故选:A. 6.C 【分析】设该校男老师的人数为x ,女老师的人数为y ,根据条件,得到22⨯列联表,求出x ,y 的值,利用公式计算2K 的值,再与表中临界值比较可得结果. 【详解】设该校男老师的人数为x ,女老师的人数为y ,则可得如下表格:由题意0.40.50.25x y =+,可得43y x =,可得30x =,40y =,则()227015301510 4.667 3.84125453040K ⨯-⨯=≈>⨯⨯⨯, 但4.667 5.024<,所以无97.5%以上有95%以上的把握认为“选择方案与性别有关”. 故选:C. 7.B 【分析】由已知的27.236K =,对比临界值表可得答案 【详解】解:因为27.236 6.635K =>,所以有99%以上的把握认为“爱好该项运动与性别有关”. 故选:B. 8.D 【分析】根据临界值附表比较,即得结论. 【详解】根据以下临界值附表可知这种判断犯错的可能性不超过5%. 故选:D 9.B【分析】将2K 的值与表中数据比较大小可知5.024 6.058 6.635<<,由此确定出相应的把握有多少.【详解】因为2 6.058K =,对照表格:5.024 6.058 6.635<<,所以有10.0250.97597.5%-==的把握认为“学生性别与是否支持该活动有关系”. 故选:B.10.C【分析】由表中数据以及独立性检验的思想即可得出结果.【详解】0.05α=时,2 3.841 2.974χ=>,所以在犯错概率不超过0.1时变量x 与y 有关.故选:C11.0.025【分析】由列联表中的数据,根据公式计算出2K 的值,再对照临界表即可得答案.【详解】 解:由列联表中的数据可得,2230(13827)27 5.4 5.024*********K ⨯⨯-⨯===>⨯⨯⨯, 所以在犯错误的概率不超过0.025的前提下,认为选择舞蹈与性别有关.故答案为:0.025.12.0.025【分析】根据2K ,对比临界值即可得出结论.【详解】∵6.109 5.024>,故能在犯错误的概率不超过0.025的前提下认为“文化程度与月收入有关系”.故答案为:0.025.13.99%【分析】根据卡方的值与参考数据比较即可判断;【详解】解:因为27.245K ≈,6.6357.2457.879<<,所以10.0199%-=故至少有99%以上的把握认为“爱好该项运动与性别有关”,故答案为:99%14.5%【分析】根据观测值k ≈4.844以及独立性检验的基本思想即可得出结果.【详解】K 2的观测值k ≈4.844,这表明小概率事件发生.根据假设检验的基本原理,应该断定“是否选修文科与性别之间有关系”成立,并且这种判断出错的可能性约为5%.故答案为:5%15.(1)63;(2)表格见解析,有.【分析】(1)每组数据区间中点值乘以该组的频率求和可得答案;(2)根据每组频率乘以50可得每组的人数可完成列联表,计算2K 可得答案.【详解】(1)该市市民平均月收入的估计值为400.1500.2600.3700.2800.1900.163⨯+⨯+⨯+⨯+⨯+⨯=.(2)根据频率分布直方图知每组的人数分别为5,10,15,10,5,5.可得22⨯列联表如下:所以()22502882128.33340103020K ⨯⨯-⨯=≈⨯⨯⨯,因为8.333 6.635>,所以有99%的把握认为市民对楼市限购令的态度与收入有关.16.(1)225;(2)列联表答案见解析,没有90%的把握认为“大学生上网时间与性别有关”.【分析】(1)设上网时间不少于60分钟的人数为x ,依题意有30750100x =,计算即可; (2)填写列联表,计算2K ,对照临界值得出结论.【详解】(1)设上网时间不少于60分钟的人数为x ,依题意有30750100x =,解得225x =,所以估计其中上网时间不少于60分钟的人数是225.(2)塻22⨯列联表如下:由表中数据可得到22200(60304070) 2.20 2.70610010013070K ⨯-⨯=≈<⨯⨯⨯, 故没有90%的把握认为“大学生上网时间与性别有关”.17.(1)表格见解析,不能;(2)710. 【分析】(1)根据已知数据统计列联表中的各项的人数,填写列联表,进而计算2K 并与0.1的临界值进行比较,得到论断;(2)利用分层抽样的等比例原则求得抽取的5人中男女生的人数,利用符号表示每个学生,利用列举法计数,得到所求概率.【详解】解:(1)填写的列联表如下所示:()2210222422320.506 2.70644565446K ⨯⨯-⨯=≈<⨯⨯⨯.所以不能在犯错误的概率不超过0.1的前提下认为“男生和女生在使用健身器材的爱好方面有差异”.(2)从每周使用健身器材3次的学生中,利用分层抽样的方法抽取5名学生,则抽取男生3名,抽取女生2名.将抽取的3名男生分别记为a ,b ,c ,2名女生分别记为m ,n ,则从5人中随机抽取3人的不同情况有abc ,abm ,abn ,acm ,acn ,amn ,bcm ,bcn ,bmn ,cmn ,共10种, 其中至多有一名女生的情况有abc ,abm ,abn ,acm ,acn ,bcm ,bcn ,共7种. 所以从抽取的5名学生中随机抽取3人,至多有一名女生的概率为710. 18.(1)答案见解析;(2)不能.【分析】(1)由题意填写列联表即可;(2)代入数据计算2K 的观测值,比较观测值与3.841的大小,判断能否在犯错误的概率不超过0.05的前提下认为“性别与休闲方式有关系” .【详解】解.(1)根据题目所提供的调查结果,可得下列22⨯列联表:(2)根据列联表中的数据,可计算()2211030352025 3.66750605555K ⨯⨯-⨯=≈⨯⨯⨯,因为03.667 3.841k k ≈<=,所以不能在犯错误的概率不超过0.05的前提下认为“性别与休闲方式有关系”.。

2018年高考数学(理)二轮重点强化复习课件第7讲 回归分析、独立性检验

2018年高考数学(理)二轮重点强化复习课件第7讲 回归分析、独立性检验

[类题通法]
求线性回归方程的步骤:
■对点即时训练………………………………………………………………………· 某品牌2017款汽车即将上市,为了对这款汽车进行合理定价,某公司在某市 五家4S店分别进行了两天试销售,得到如下数据: 4S店 单价x/万 元 销量y/辆 甲 乙 丙 丁 戊
18.0 18.6 18.2 18.8 18.4 19.0 18.3 18.5 18.5 18.7 88 78 85 75 82 66 82 78 80 76
附:对于一组数据(u1,v1),(u2,v2),„,(un,vn),其回归直线 v=α+βu 的 斜率和截距的最小二乘估计分别为 ^= v -β ^u. ,α
[解] (1)由散点图可以判断,y=c+d x适宜作为年销售量y关于年宣传费x的 回归方程类型. (2)令w= x,先建立y关于w的线性回归方程.
■典题试解寻法………………………………………………………………………· 【典题】 (2017· 郑州第一次质量预测)人机大战也引发全民对围棋的关注,某 学校社团为调查学生学习围棋的情况,随机抽取了 100 名学生进行调查.根 据调查结果绘制的学生日均学习围棋时间的频率分布直方图如图 72 所示, 将日均学习围棋时间不低于 40 分钟的学生称为“围棋迷”.
(1)分别以五家4S店的平均单价与平均销量为散点,求出单价与销量的回归 ^=b ^x+^ 直线方程y a; (2)在大量投入市场后,销量与单价仍服从(1)中的关系,且该款汽车的成本 为12万元/辆,为使该款汽车获得最大利润,则该款汽车的单价约为多少万 元(保留一位小数)? ∑ xi- x yi- y = i 1 ^= n ^ ^x. 附:b , a = y - b 2 ∑ x - x i i=1

2018版高中数学第三章统计案例课时训练17独立性检验新人教B版选修2-3

2018版高中数学第三章统计案例课时训练17独立性检验新人教B版选修2-3

课时训练17 独立性检验课/堂/检/测60 X 50 X 60 X 50则有 _____ 把握认为“爱好该项运动与性别有关”.解析:因为X 2~ 7.8 > 6.635,所以根据独立性检验的定义可知有 好该项运动与性别有关”.答案:99%2 .考察棉花种子经过处理与得病之间的关系得到如下表数据:种子处理种子未处理合计得病32| 101133不得病 61| 213274合计93「314407,利用 2X2列联表计算得 X 2注3.918,则下列表述中正确的是 ( 有95%的把握认为“这种血清能起到预防感冒的作用” 若有人未使用该血清,那么他一年中有 95%的可能性得感冒这种血清预防感冒的有效率为 95% 这种血清预防感冒的有效率为 5%解析:由题意可知根据 X 2~3.918 >3.841,因此说明了有 95%勺把握认为“这种血清 能起到预防感冒的作用”, B , C, D 不对.谍堂练课堂训练堂堂清根据以上数据,则(A. B. C. D.) 种子经过处理与是否生病有关种子经过处理与是否生病无关 种子是否经过处理决定是否生病 以上都是错误的— 101X61 解析:X 2133X 274X 93X 31 4故种子是否经过处理与生病无关.答案:B3.某医疗研究所为了检验某种血清预防感冒的作用,2疋 0.164 1 V 3.841,把500名使用血清的人与另外 500 99%的把握认为“爱 名未使用血清的人一年中的感冒记录进行比较, 提出假设f: “这种血清不能起到预防感冒 的作用”,利用 2X2列联表计算得 X 2〜3.918,则下列表述中正确的是( )A. B. C. D.2(限时:10分钟)1 •通过随机询问110名性别不同的大学生是否爱好某项运动,得到如下的列表:| KE TANG LIAN〜7.8.答案:A4.某小学对232名小学生调查发现:180名男生中有98名有多动症,另外82名没有多动症,52名女生中有2名有多动症,另外50名没有多动症,用独立性检验的方法判断多动症与性别___________________ (填“有关”或“无关”).解析:由题目数据列课时作业日日涪课时作业日日涪180X 52X 100X 132由表中数据可得到—皿 142.117 > 6.635.课时作业日日涪所以,有99%的把握认为多动症与性别有关系. 答案:有关KE HOU LIAN课/堂/反/馈(限时:30分钟)1. 给出下列实际问题:①一种药物对某种病的治愈率;②两种药物治疗同一种病是否 有区别;③吸烟者得肺病的概率; ④吸烟是否与性别有关系; 关系.其中用独立性检验可以解决的问题有 ( ) A.①②③ B .②④⑤ C.②③④⑤D .①②③④⑤解析:独立性检验是判断两个分类变量是否有关系的方法, 用独立性检验. 答案:B2. 变量X 和Y 的列联表如下,则下列说法中正确的是⑤网吧与青少年的犯罪是否有而①③都是概率问题,不能A. ad — be 越小,说明X 与Y 的相关性越弱B. ad — be 越大,说明X 与Y 的相关性越弱C. (ad — be )2越大,说明X 与Y 的相关性越强2D. (ad — be )越接近于0,说明X 与Y 的相关性越强 答案:C 3.在吸烟与患肺病这两个分类变量的计算中,下列说法正确的是()100个吸烟的人B.我们说某人吸烟, C. 若从X 2统计量中得出有 95%5%的可能性 使得推断出现错误D. 以上三种说法都不正确解析:A 、B 是对X 2的误解,99%的把握认为吸烟和患肺病有关,是指通过大量的观察 实验得出的一个数值,并不是 100个人中必有99个人患肺病,也可能这 100个人全健康.答案:C 4. 利用独立性检验来考虑两个分类变量定断言“ X 与Y 有关系”的可信度,如果 断犯错误的概率不超过( )A. 0.05 B . 0.95C. 0.01 D . 0.99 解析:通过查表确定临界值 X . X 和Y 是否有关系时, X 2>6.635 ,那么就推断“ 2X > X 0 = 6.635 时,推断通过查阅临界值表来确 X 和Y 有关系”,这种推与Y 有关系”,这种 推断犯错误的概率不超过 0.01.故选C.答案:C5. 下列说法正确的个数为 ( )①事件A 与B 独立,即两个事件互不影响;②事件 A 与B 关系越密切,则 X 2就越大; ()③X 2的大小是判定事件 A 与B 是否相关的唯一根据;④若判定两事件 A 与B 相关,则A 发生B 一定发生.A. 1 B . 2C. 3 D . 4答案:B6•在一项打鼾与患心脏病的调查中,共调查了 1 671人,经过计算X 2= 7.63,根据这 一数据分析,有 ________ 的把握说,打鼾与患心脏病是 ___________ 的.(有关、无关)解析:••• X 2= 7.63 ,••• X 2> 6.635 ,因此,有99%的把握说,打鼾与患心脏病是有关的. 答案:99%有关7•某高校“统计初步”课程的教师随机调查了选该课的一些学生的情况,具体数据如 下表:2 解析:根据X ~4.844>3.841 ,可判断有95%的把握认为主修统计专业与性别有关系. 故 有5%的可能性出错.答案:5%&若两个分类变量 X 与Y 的列联表为:y2总计X 1101525X 240 16 56总计503181则“ X 与Y 之间有关系”这个结论出错的概率为色盲不色盲合计 男 38 442480女J 6r 514520 合计449561 000386(2)从列联表来看,在男人中患色盲的比例为 480,要比女人中患色盲的比例 520大•其、 38 6差值为 480 — 520心0.068,差值较大.因而,我们可以认为“患色盲与性别是有关的”. 根据列联表所给的数据可以有nn = 38, n 12= 442, n 21= 6 322= 514, n 1+= 480, n 2+ = 520,非统计专业13 i 统计专业 10 20 男女为了判断主修统计专业是否与性别有关系,根据表中的数据,得到随机变量 -I0X X 2的值:2〜4.844.23X 27X 20X 302因为X >3.841 ,所以判定主修统计专业与性别有关系, 那么这种判断出错的可能性为 解析: 由列联表的数据,可求得随机变量K 2的观测值 k = 81X225 X 56 X 50 X 316.635.因为 RK 2》6.635)疋0.01,所以“ X 与Y 之间有关系”出错的概率仅为 〜7.227 > 0.01. 答案:9.在调0.01专业性别n+1 = 44, n+2 = 956, n= 1 000 ,2——,2n n nn 22— n^ n ?1由x = -------------------n 1 + n 2+n +1n + 2—[X 佬 272 480 X 520 X 44 X 956 由27.2 > 6.635,所以我们有99%巴握认为患色盲与性别有关系,这个结论只对所调查 的480名男人和520名女人有效. 10.现在大多数同学都有自己的电子邮箱, 我们经常使用它相互传递学习资料. 从中我 们发现了一个有趣的现象,中国人的邮箱名称里含有数字的比较多, 而外国人邮箱名称里含 有数字的比较少•为了研究国籍和邮箱名称里是否含有数字的关系,于是我们收集了 124 个邮箱名称,其中中国人的有 64个,外国人的有60个,中国人的邮箱中有 43个含数字, 外国人的邮箱中有 27个含数字. (1) 根据以上数据建立一个 2X2列联表; (2) 试问能以多大把握认为国籍与邮箱名称里含有数字有关? 解析:(1)根据题目中的数据,得到如下 2X2列联表: 中国人的 外国人的 总计有数字"T 「4327「70无数字 213354总计64 60「1242(2)假设“国籍和邮箱名称里含有数字无关”. -27X21由表中数据,得 x 270 X 54 X 64 X 60 6.201.因为x 2>3.841,所以有95%勺把握认为“国籍和邮箱名称里含有数字有关”.。

山东省胶州市2018届高考数学一轮复习 专题 独立性检验学案(无答案)文

山东省胶州市2018届高考数学一轮复习 专题 独立性检验学案(无答案)文

生成绩分为 6 组,得到如下所示频数分布表.
分数段 [40,50) [50,60) [60,70) [70,80) [80,90) [90,100]

3
9
18
15
6
9

6
4
5
10
13
2
(1)估计男、女生各自的平均分(同一组数据用该组区间中点值作代表),从计算结果看,数学成
绩与性别是否有关;
(2)规定 80 分以上为优分(含 80 分),请你根据已知条件作出 2×2 列联表,并判断是否有 90%
y1 a c a+c
y2 b d b+d
总计 a+b c+d a+b+c+d
儒家思想自有真理的闪光点和恒久魅力,但历代帝王看重是它所宣扬仁义道德等对封建专制统治合法性诠释倚“君、臣父子”秩序巩固从而形成天下以共识。因此都把继作为己中之不过基础新其极限一个朝替前会去否定
n(ad-bc)2 (2)K2 统计量 K2=(a+b)(c+d)(a+c)(b+d)(其中 n=a+b+c+d 为样本容量).
②有1- P(K 2 ≥ k0 ) 的把握认为两个分类变量有关. 上面这种利用随机变量 K 2 来判断“两个分类变量有关系”的方法称为独立性检验.
附:(1)2×2 列联表:假设有 两个分类变量 X 和 Y,它们的取值分别为{x1,x2}和{y1,y2},其样 本频数列联表(称 2×2 列联表)为:
x1 x2 总计
(a b)(c d)(a c)(b d)
3儒家思想自有真理的闪光点和恒久魅力,但历代帝王看重是它所宣扬仁义道德等对封建专制统治合法性诠释倚“君、臣父子”秩序巩固从而形成天下以共识。因此都把继作为己中之不过基础新其极限一个朝替前会去否定

高中数学独立性检验精选题目(附解析)

高中数学独立性检验精选题目(附解析)

高中数学独立性检验精选题目(附解析)(1)分类变量和列联表①分类变量变量的不同“值”表示个体所属的不同类别,像这样的变量称为分类变量.②列联表(ⅰ)定义:列出的两个分类变量的频数表,称为列联表.(ⅱ)2×2列联表.一般地,假设有两个分类变量X和Y,它们的取值分别为{x1,x2}和{y1,y2},其样本频数列联表(称为2×2列联表)为(2)等高条形图①等高条形图和表格相比,更能直观地反映出两个分类变量间是否相互影响,常用等高条形图展示列联表数据的频率特征.②观察等高条形图发现aa+b和cc+d相差很大,就判断两个分类变量之间有关系.(3)独立性检验一、用2×2列联表分析两分类变量间的关系1.在对人们饮食习惯的一次调查中,共调查了124人,其中六十岁以上的70人,六十岁以下的54人.六十岁以上的人中有43人的饮食以蔬菜为主,另外27人则以肉类为主;六十岁以下的人中有21人饮食以蔬菜为主,另外33人则以肉类为主.请根据以上数据作出饮食习惯与年龄的列联表,并利用aa+b与cc+d判断二者是否有关系.解:2×2列联表如下:a a+b =4364=0.671 875.cc+d=2760=0.45.显然二者数据具有较为明显的差距,据此可以在某种程度上认为饮食习惯与年龄有关系.注:(1)作2×2列联表时,关键是对涉及的变量分清类别.计算时要准确无误.(2)利用2×2列联表分析两个分类变量间的关系时,首先要根据题中数据获得2×2列联表,然后根据频率特征,即将aa+b与cc+d⎝⎛⎭⎪⎫ba+b与dc+d的值相比,直观地反映出两个分类变量间是否相互影响,但方法较粗劣.2.假设有两个分类变量X与Y,它们的可能取值分别为{x1,x2}和{y1,y2},其2×2列联表为:则当m取下面何值时,X)A.8B.9C.14D.19解析:选C由10×26≈18m,解得m≈14.4,所以当m=14时,X与Y的关系最弱.3.分类变量X和Y的列联表如下:则下列说法正确的是()A.ad-bc越小,说明X与Y关系越弱B.ad-bc越大,说明X与Y关系越强C.(ad-bc)2越大,说明X与Y关系越强D.(ad-bc)2越接近于0,说明X与Y关系越强解析:选C|ad-bc|越小,说明X与Y关系越弱,|ad-bc|越大,说明X与Y关系越强.4.假设有两个变量X与Y,它们的取值分别为x1,x2和y1,y2,其列联表为:为()A.a=50,b=40,c=30,d=20B.a=50,b=30,c=40,d=20C.a=20,b=30,c=40,d=50 D.a=20,b=30,c=50,d=40解析:选D当(ad-bc)2的值越大,随机变量K2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d)的值越大,可知X与Y有关系的可能性就越大.显然选项D中,(ad-bc)2的值最大.5.某电视台在一次对收看文艺节目和新闻节目观众的抽样调查中,随机抽取了100名电视观众,相关的数据如下表所示:________(填“是”或“否”).解析:因为在20至40岁的58名观众中有18名观众收看新闻节目,而大于40岁的42名观众中有27名观众收看新闻节目,即ba+b=1858,dc+d=2742,两者相差较大,所以经直观分析,收看新闻节目的观众与年龄是有关的.答案:是二、用等高条形图分析两分类变量间的关系1.某学校对高三学生作了一项调查发现:在平时的模拟考试中,性格内向的学生426人中有332人在考前心情紧张,性格外向的学生594人中有213人在考前心情紧张,作出等高条形图,利用图形判断考前心情紧张与性格类型是否有关系.解:作列联表如下:续表考前心情不紧94381475张总计426594 1 020相应的等高条形图如图所示:图中阴影部分表示考前心情紧张与考前心情不紧张中性格内向的人数的比例,从图中可以看出考前心情紧张的样本中性格内向的人数占的比例比考前心情不紧张样本中性格内向的人数占的比例高,可以认为考前紧张与性格类型有关.注:利用等高条形图判断两个分类变量是否相关的步骤:2.在调查的480名男人中有38人患色盲,520名女人中有6名患色盲,试利用图形来判断色盲与性别是否有关?解:根据题目给出的数据作出如下的列联表:色盲不色盲总计男38442480女6514520总计449561000根据列联表作出相应的等高条形图:从等高条形图来看,在男人中患色盲的比例要比在女人中患色盲的比例大得多,因此,我们认为患色盲与性别是有关系的.3.观察下列各图,其中两个分类变量x,y之间关系最强的是()解析:选D在四幅图中,D图中两个深色条的高相差最明显,说明两个分类变量之间关系最强.4.在独立性检验中,可以粗略地判断两个分类变量是否有关系的是() A.散点图B.等高条形图C.假设检验的思想D.以上都不对解析:选B用等高条形图可以粗略地判断两个分类变量是否有关系,体现了数形结合思想,但是无法给出结论的可信程度,故选B.5.为了研究子女吸烟与父母吸烟的关系,调查了一千多名青少年及其家长,数据如下:父母吸烟父母不吸烟总计子女吸烟23783320子女不吸烟678522 1 200总计915605 1 520利用等高条形图判断父母吸烟对子女吸烟是否有影响?解:等高条形图如图所示:由图形观察可以看出父母吸烟者中子女吸烟的比例要比父母不吸烟者中子女吸烟的比例高,因此可以在某种程度上认为“子女吸烟与父母吸烟有关系”.三、独立性检验1.研究人员选取170名青年男女大学生为样本,对他们进行一种心理测验.发现有60名女生对该心理测验中的最后一个题目的反应是:作肯定的有22名,否定的有38名;110名男生在相同的项目上作肯定的有22名,否定的有88名.问:性别与态度之间是否存在某种关系?用独立性检验的方法判断.(链接教材P95-例1)附:解:根据2×2k=170×(22×38-22×88)2110×60×44×126≈5.622>5.024.所以在犯错误的概率不超过0.025的前提下,认为“性别与态度有关系”.注:根据题意列出2×2列联表,计算K2的观测值,如果K2的观测值很大,说明两个分类变量有关系的可能性很大;如果K2的观测值比较小,则认为没有充分的证据显示两个分类变量有关系.2.“开门大吉”是某电视台推出的游戏节目.选手面对1~8号8扇大门,依次按响门上的门铃,门铃会播放一段音乐(将一首经典流行歌曲以单音色旋律的方式演绎),选手需正确回答出这首歌的名字,方可获得该扇门对应的家庭梦想基金.在一次场外调查中,发现参赛选手多数分为两个年龄段:20~30;30~40(单位:岁),其猜对歌曲名称与否的人数如图所示.(1)写出2×2列联表;判断能否在犯错误的概率不超过0.10的前提下认为猜对歌曲名称与年龄有关系;说明你的理由;(下面的临界值表供参考)P(K2≥k0)0.100.050.0100.005k0 2.706 3.841 6.6357.879(2)6名选手,并抽取3名幸运选手,求3名幸运选手中至少有一人在20~30岁之间的概率.解:(1)根据所给的二维条形图得到列联表:正确错误总计20~30岁10304030~40岁107080总计20100120k=120×(10×70-10×30)220×100×40×80=3.∵3>2.706,∴在犯错误的概率不超过0.10的前提下认为猜对歌曲名称与年龄有关系.(2)按照分层抽样方法可知,20~30(岁)抽取:6×40120=2(人);30~40(岁)抽取:6×80120=4(人).在上述抽取的6名选手中,年龄在20~30(岁)有2人,年龄在30~40(岁)有4人.记至少有一人年龄在20~30岁为事件A,则P(A)=1-C34C36=1-420=45.故至少有一人年龄在20~30岁之间的概率为4 5.3.在一项中学生近视情况的调查中,某校男生150名中有80名近视,女生140名中有70名近视,在检验这些中学生眼睛近视是否与性别有关时用什么方法最有说服力()A.平均数与方差B.回归分析C.独立性检验D.概率解析:选C判断两个分类变量是否有关的最有效方法是进行独立性检验.4.对于分类变量X与Y的随机变量K2的观测值k,下列说法正确的是() A.k越大,“X与Y有关系”的可信程度越小B.k越小,“X与Y有关系”的可信程度越小C.k越接近于0,“X与Y没有关系”的可信程度越小D.k越大,“X与Y没有关系”的可信程度越大解析:选B k越大,“X与Y没有关系”的可信程度越小,则“X与Y有关系”的可信程度越大,即k越小,“X与Y有关系”的可信程度越小.5.某班主任对全班50名学生进行了作业量的调查,数据如下表,则学生的性别与认为作业量的大小有关的把握大约为()A.99%C.90% D.无充分证据解析:选B由2×2列联表得K2的观测值k=50×(18×15-8×9)2 27×23×26×24≈5.059>5.024,故有97.5%的把握认为学生性别与认为作业量大小有关,故选B.6.为了解决高二年级统计案例入门难的问题,某校在高一年级的数学教学中设有试验班,着重加强统计思想的渗透,下面是高二年级统计案例的测验成绩统计表(单位:分)的一部分,试分析试验效果.附:解:k=n(ad-bc)2(a+b)(c+d)(a+c)(b+d)=100(32×38-18×12)250×50×44×56≈16.234.因为16.234>6.635,所以,在犯错误的概率不超过0.01的前提下认为高二年级统计案例的测试成绩与高一年级数学教学中增加统计思想的渗透有联系.巩固练习:1.下列关于K2的说法不正确的是()A.根据2×2列联表中的数据计算得出K2的观测值k≥6.635,而P(K2≥6.635)≈0,01,则有99%的把握认为两个分类变量有关系B.K2的观测值k越大,两个分类变量的相关性就越大C.K2是用来判断两个分类变量是否有关系的随机变量D.K2=n(ad-bc)(a+b)(c+d)(a+c)(b+d),其中n=a+b+c+d为样本容量解析:选D D选项的公式中分子应该是n(ad-bc)2.故选D.2.某人研究中学生的性别与成绩、视力、智商、阅读量这4个变量的关系,随机抽查了52名中学生,得到统计数据如表1至表4,则与性别有关联的可能性最大的变量是()表1表2A.成绩B.视力C.智商D.阅读量解析:选D因为K21=52×(6×22-14×10)2 16×36×32×20=52×8216×36×32×20,K22=52×(4×20-16×12)216×36×32×20=52×112216×36×32×20,K23=52×(8×24-12×8)216×36×32×20=52×96216×36×32×20,K24=52×(14×30-6×2)216×36×32×20=52×408216×36×32×20,则有K24>K22>K23>K21,所以阅读量与性别有关联的可能性最大.2.在某次独立性检验中,得到如下列联表:最后发现,两个分类变量没有任何关系,则a的值可能是() A.200 B.720C.100 D.180解析:选B由于A和B没有任何关系,根据列联表可知2001 000和180180+a基本相等,检验可知,B满足条件,故选B.3.两个分类变量X,Y,它们的取值分别为{x1,x2}和{y1,y2},其列联表为:若两个分类变量X,Y没有关系,则下列结论正确的是________(填序号).①ad≈bc;②aa+b≈cc+d;③c+da+b+c+d≈b+da+b+c+d;④c+aa+b+c+d≈b+da+b+c+d;⑤(a+b+c+d)(ad-bc)2(a+b)(b+d)(a+c)(c+d)≈0.解析:因为分类变量X,Y独立,所以aa+b ≈cc+d,化简得ad≈bc,所以①②⑤正确,③④显然不正确.答案:①②⑤4.随着生活水平的提高,人们患肝病的越来越多,为了解中年人患肝病与经常饮酒是否有关,现对30名中年人进行了问卷调查得到如下列联表:已知在全部30人中随机抽取1人,抽到肝病患者的概率为4 15.(1)请将上面的列联表补充完整,并判断是否有99.5%的把握认为患肝病与常饮酒有关?说明你的理由;(2)现从常饮酒且患肝病的中年人(恰有2名女性)中,抽取2人参加电视节目,则正好抽到一男一女的概率是多少?解:(1)设患肝病中常饮酒的人有x人,x+230=415,x=6.常饮酒不常饮酒总计患肝病628 不患肝病41822 总计102030由已知数据可求得K2=30×(6×18-2×4)210×20×8×22≈8.523>7.879,因此有99.5%的把握认为患肝病与常饮酒有关.(2)设常饮酒且患肝病的男性为A,B,C,D,女性为E,F,则任取两人有AB,AC,AD,AE,AF,BC,BD,BE,BF,CD,CE,CF,DE,DF,EF,共15种.其中一男一女有AE,AF,BE,BF,CE,CF,DE,DF,共8种.故抽出一男一女的概率是P=8 15.5.某食品厂为了检查甲乙两条自动包装流水线的生产情况,随机在这两条流水线上各抽取40件产品作为样本称出它们的质量(单位:克),质量值落在(495,510]的产品为合格品,否则为不合格品.表1是甲流水线样本频数分布表,图1是乙流水线样本频率分布直方图.表1甲流水线样本频数分布表产品质量/克频数(490,495] 6(495,500]8(500,505]14(505,510]8(510,515] 4(1)根据上表数据作出甲流水线样本频率分布直方图;(2)若以频率作为概率,试估计从两条流水线分别任取1件产品,该产品恰好是合格品的概率分别是多少;(3)由以上统计数据作出2×2列联表,并回答在犯错误的概率不超过多少的前提下认为“产品的包装质量与两条要自动包装流水线的选择有关”.解:(1)甲流水线样本频率分布直方图如下:(2)由表1知甲样本合格品数为8+14+8=30,由图1知乙样本中合格品数为(0.06+0.09+0.03)×5×40=36,故甲样本合格品的频率为3040=0.75,乙样本合格品的频率为3640=0.9,据此可估计从甲流水线任取1件产品,该产品恰好是合格品的概率为0.75. 从乙流水线任取1件产品,该产品恰好是合格品的概率为0.9. (3)2×2列联表如下:甲流水线 乙流水线 总计 合格品 a =30 b =36 66 不合格品 c =10 d =4 14 总计4040n =80因为K 2k =n (ad -bc )2(a +b )(c +d )(a +c )(b +d )=80×(120-360)266×14×40×40≈3.117>2.706, 所以在犯错误的概率不超过0.1的前提下认为产品的包装质量与两条自动包装流水线的选择有关.。

2018年高考数学 常见题型解法归纳反馈训练 第65讲 回归分析和独立性检验

2018年高考数学 常见题型解法归纳反馈训练 第65讲 回归分析和独立性检验

第65讲 回归分析和独立性检验【知识要点】(一)变量间的相关关系、回归分析的基本思想及初步运用 一、相关关系1、概念:自变量取值一定时,因变量的取值带有一定随机性的两个变量之间的关系叫相关关系.2、相关关系与函数关系的异同点. 相同点:两者均是指两个变量间的关系.不同点:函数关系是一种确定关系,是一种因果系.如正方形的面积s 和边长a 的关系2s a =就是一种函数关系.相关关系是一种非确定的关系,也不一定是因果关系.如产品的销售额与广告费的投入的关系. 二、散点图表示具有相关关系的两个变量的一组数据的图形叫做散点图.正相关:如果散点图中的点散布在从左小角到右上角的区域内,称为正相关. 负相关:如果散点图中的点散布在从左上角到右下角的区域内,称为负相关.注:如果关于两个变量统计数据的散点图呈现发散状,则这两个变量之间不具有相关关系. 三、回归分析1、对具有相关关系的两个变量进行统计分析的方法叫回归分析.回归分析的一般步骤为画散点图→求回归直线方程→用回归直线方程进行预报.2、回归直线方程回归直线:观察散点图的特征,如果各点大致分布在一条直线的附近,就称两个变量之间具有线性相关的关系,这条直线叫做回归直线.回归直线方程:设所求的直线方程为y bx a ∧=+,其中121()(),()niii nii x x y y b a y bx x x ==--==--∑∑,1111,,n ni i i i x x y y n n ====∑∑(,)x y 称为样本点的中心,回归直线过样本点的中心.回归方程的截距a 和斜率b 是用最小二乘法计算出来的. 3、相关系数两个变量之间线性相关关系的强弱用相关系数r 来衡量.2相关系数:()()niix x y y r --=∑ 0r >,表示两个变量正相关;0r <,表示两个变量负相关;r 的绝对值越接近1,表明两个变量的线性相关性越强.r 的绝对值越接近0,表明两个变量之间几乎不存在线性相关关系.通常,r 的绝对值大于0.75时,表明两个变量的线性相关性很强. 4、建立回归模型的基本步骤:①确定研究对象,明确哪个是解释变量,哪个是预报变量;②画出确定好的解释变量和预报变量的散点图,观察它们之间的关系(是否存在线性关系) ③由经验确定回归方程的类型(如我们观察到数据呈线性关系,则选用线性回归方程y bx a =+) ④按照公式计算回归方程中的参数(如最小二乘法) ⑤得出结果后检查数据模型是否合适检查数据模型拟合效果的好坏,一般有两种方法.方法一:通过残差分析,如果残差点比较均匀地落在水平的带状区域中,则说明选用的模型比较合适,反之,不合适)方法二:用相关指数2R 来刻画回归的效果,其计算公式是:22121()1()nii nii y y R y y ∧==-=--∑∑其中i y y ∧-=真实值-预报值=残差,2R 值越大,说明残差的平方和越小,也就是说模型的拟合效果越好.(二)独立性检验的基本思想及其初步运用一、用变量的不同“值”表示个体所属的不同类别,这种变量称为分类变量.例如:是否吸烟,是否患肺癌,国籍等二、独立性检验的方法1、列出两个分类变量的频数表(列联表),直观判断.2、画三维柱形图、二维条形图、等高条形图,直观判断.3、两个分类变量的独立性检验 一般步骤: (1)2*2列联表3(2)提出假设:设p 与q 没有关系 (3)根据列联表中的数据2K 计算的值22()()()()()()n ad bc K n a b c d a b c d a c b d -==+++++++其中为样本容量(4)根据计算得到的随机变量2K 的观测值作出判断如:2 4.232K =因为4.232介于临界值3.841和5.024之间,2( 3.841)p K ≥=0.05,所以两个分类变量没有关系的概率是5%,即两个分类变量有关系的概率为95%. 三、温馨提示(1)独立性检验的必要性:为什么不能只凭列联表和图形下结论?原因是列联表中的数据是样本数据,它只是总体的代表,具有随机性,因此需要用列联表检验这个方法来确认所得得结论在多大程度上适用于总体.(2)独立性检验的思想来自于统计上的假设性检验,它与反证法类似.假设检验和反证法都是先假设结论不成立,然后根据是否能够推出矛盾来确定结论是否成立.但是二者的矛盾的含义不同,反证法中的矛盾是指不符合逻辑的事情发生;而假设检验中的矛盾是指不符合逻辑的小概率事件发生,即在结论不成立的假设下推出有利于结论成立的小概率事件的发生.(3)2K 与k 的关系并不是2K k =,k 是2K 的观测值,或者说2K 是一个随机变量,它在dc b a ,,,取不同的值时,2K 可能不同,而k 是取定一组数d c b a ,,,后的一个确定值. 【方法讲评】4【例1】【2017课标1,文19】为了监控某种零件的一条生产线的生产过程,检验员每隔30 min 从该生产线上随机抽取一个零件,并测量其尺寸(单位:cm ).下面是检验员在一天内依次抽取的16个零件的尺寸:经计算得16119.9716i i x x ===∑,0.212s ==≈,18.439≈,161()(8.5) 2.78i i x x i =--=-∑,其中i x 为抽取的第i 个零件的尺寸,1,2,,16i =⋅⋅⋅.(1)求(,)i x i (1,2,,16)i =⋅⋅⋅的相关系数r ,并回答是否可以认为这一天生产的零件尺寸不随生产过程的进行而系统地变大或变小(若||0.25r <,则可以认为零件的尺寸不随生产过程的进行而系统地变大或变小).(2)一天内抽检零件中,如果出现了尺寸在(3,3)x s x s -+之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.(ⅰ)从这一天抽检的结果看,是否需对当天的生产过程进行检查?(ⅱ)在(3,3)x s x s -+之外的数据称为离群值,试剔除离群值,估计这条生产线当天生产的零件尺寸的均值与标准差.(精确到0.01)5附:样本(,)i i x y (1,2,,)i n =⋅⋅⋅的相关系数()()niix x y y r --=∑0.09≈.(2)(i )由于9.97,0.212x s =≈,由样本数据可以看出抽取的第13个零件的尺寸在(3,3)x s x s -+以外,因此需对当天的生产过程进行检查.(ii )剔除离群值,即第13个数据,剩下数据的平均数为1(169.979.22)10.0215⨯-=,这条生产线当天生产的零件尺寸的均值的估计值为10.02.因为0.212≈,所以162211(16)16i i x x =-∑=20.212,所以162221160.21216i i x x ==⋅+∑ 22160.212169.971591.134=⋅+⋅≈剩下数据的样本方差为2222211611611611[()()][()152()]1515x x x x x x x x x x -++-=+++-++2222222211611315161622222111[()15215][(+x )15]151511[9.221510.02][1591.1349.221510.02]0.0081515i i x x x x x x x x x x ==+++-⋅=++++-=--⋅=--⋅≈∑0.09≈.【点评】(1)统计概率的解答题一般阅读量信息量比较大,并且数据比较多,对考生的心理素质要求较高,如果学生急躁冒进,对解题的影响就大了. 遇到这样的题目,建议先绕过拦路虎,杀个回马枪.先把其它题目完成再回过头来解答. 不要硬碰硬. (2)前几年的高考,数据直接代进去就可以了,运算量比较小,最近几年的高考,有的数据不能直接代进去,还要把目标数据变形后才能代进去. 故近几年的高考统计概6率题的数据分析处理能力要求更高了.0.212≈,本题中要求剩下的15个数的平均数,但是已知告诉的却是16119.9716i i x x ===∑,所以要利用平均数的定义和16119.9716i i x x ===∑求出剩下的15个数的平均数. 本题要求剩下的15个数的方差,但是已知告诉的却是160.212≈,所以要利0.212≈求出剩下的15个数的方差. 这是本题的三个难点. 【反馈检测1】下图是我国2008年至2014年生活垃圾无害化处理量(单位:亿吨)的折线图(Ⅰ)由折线图看出,可用线性回归模型拟合y 与t 的关系,请用相关系数加以说明; (Ⅱ)建立y 关于t 的回归方程(系数精确到0.01),预测2016年我国生活垃圾无害化处理量. 附注: 参考数据:719.32ii y==∑,7140.17i i i t y ==∑0.55=2.646≈.参考公式:相关系数()()niit t y y r --=∑ 回归方程y a bt =+ 中斜率和截距的最小二乘估计公式分别为:121()()()nii i nii tt y y b tt ==--=-∑∑,=.a y bt -7【反馈检测2】经销商小王对其所经营的某一型号二手汽车的使用年数x (0<x ≤10)与销售价格y (单位:万元/辆)进行整理,得到如下的对应数据:(Ⅰ)试求y 关于x 的回归直线方程;(附:回归方程y b x a ∧∧∧=+中,1221,ni ii nii x y nx yb a y bx xnx ---==--∑∑(Ⅱ)已知每辆该型号汽车的收购价格为20.05 1.7517.2w x x =-+万元,根据(Ⅰ)中所求的回归方程,预测x 为何值时,小王销售一辆该型号汽车所获得的利润z 最大.【例2】全国人大常委会会议于 2015年12月27日通过了关于修改人口与计划生育法的决定, “全面二孩”从2016年元旦起开始实施,A 市妇联为了解该市市民对“全面二孩”政策的态度,随机抽取了男性市民30人、女性市民70人进行调查, 得到以下的22⨯列联表:(1)根椐以上数据,能否有0090的把握认为A 市市民“支持全面二孩”与“性别”有关?(2)现从持“支持”态度的市民中再按分层抽样的方法选出15名发放礼品,分别求所抽取的15人中男性市民和女性市民的人数;(3) 将上述调查所得到的频率视为概率,.现在从A 市所有市民中,采用随机抽样的方法抽取3位市民8进行长期跟踪调查, 记被抽取的3位市民中持“支持”态度人数为X .①求X 的分布列;②求X 的数学期望()E X 和方差()D X . 参考公式:()()()()()22n ad bc K a b a d a c b d -=++++,其中n a b c d =+++ 参考数据:(3)(i )由22⨯列联表可知,抽到持“支持”态度的市民的频率为6031005=,将频率视为概率,即从A 市市民中任意抽取到一名持“支持”态度的市民的概率为35. 由于总体容量很大,故X 可视作服从二项分布,即3(3,)5X B :,所以3332()()()(0,1,2,3)55k k k P X k C k -===.从而X 的分布列为:(ii )39()355E X np ==⨯=;()(1)D X np p =-=321835525⨯⨯=. 【点评】第三小问中,由于总体容量很大,故X 可视作服从二项分布.9【反馈检测3】【2017课标II ,理18】海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100 个网箱,测量各箱水产品的产量(单位:kg )某频率分布直方图如下: (1)设两种养殖方法的箱产量相互独立,记A 表示事件:“旧养殖法的箱产量低于50kg, 新养殖法的箱产量不低于50kg”,估计A 的概率;(2)填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关:(3)根据箱产量的频率分布直方图,求新养殖法箱产量的中位数的估计值(精确到0.01)附:22()()()()()n ad bc K a b c d a c b d -=++++高中数学常见题型解法归纳及反馈检测第65讲:回归分析和独立性检验参考答案【反馈检测1答案】(Ⅰ)0.99r ≈,说明y 与t 的线性相关程度相当高,从而可以用线性回归模型拟合y 与t 的关系;(Ⅱ)1.82亿吨1(Ⅱ)由331.1732.9≈=y 及(Ⅰ)得103.02889.2)())((ˆ71271≈=---=∑∑==i ii i it ty y t tb , 92.04103.0331.1ˆˆ≈⨯-≈-=t b y a所以,y 关于t 的回归方程为:t y10.092.0ˆ+=. 将2016年对应的9=t 代入回归方程得:82.1910.092.0ˆ=⨯+=y. 所以预测2016年我国生活垃圾无害化处理量将约1.82亿吨.【反馈检测2答案】(I )ˆ 1.4518.7y x =-+;(II )预测当3x =时,销售利润z 取得最大值.【反馈检测2详细解析】(Ⅰ)由已知得6,10x y ==由552111242,220,i ii i x yx --==∑∑解得12211.45ni ii nii x y nx yb xnx---==--∑∑,18.7a y bx =-=所以回归直线的方程为14.518.7y x =-+(Ⅱ)221.4518.7(0.05 1.7517.2)0.050.3 1.5z x x x x x =-+--+=-++20.05(3) 1.95x =--+11 所以预测当3x =时,销售利润z 取得最大值.【反馈检测3答案】(1)0.4092;(2) 有99%的把握认为箱产量与养殖方法有关;(3)52.35kg.(2)根据箱产量的频率分布直方图得列联表()222006266343815.70510010096104K ⨯⨯-⨯=≈⨯⨯⨯由于15.705 6.635>故有99%的把握认为箱产量与养殖方法有关.(3)因为新养殖法的箱产量频率分布直方图中,箱产量低于50kg 的直方图面积为()0.0040.0200.04450.340.5++⨯=<,箱产量低于55kg 的直方图面积为()0.0040.0200.044+0.06850.680.5++⨯=>故新养殖法箱产量的中位数的估计值为0.5-0.3450+ 2.35kg 0.068()≈5.。

【高三数学试题精选】2018高考数学变量间的相关关系与独立性检验一轮专练

【高三数学试题精选】2018高考数学变量间的相关关系与独立性检验一轮专练

2018高考数学变量间的相关关系与独立性检验一轮专练
5 94×35=91,
所以回归方程是 =94x+91,
把x=6代入得 =655
故选B
3(10x-5x,当x增加一个单位时,平均减少5个单位,②错误;由线性回归方程的定义知,线性回归方程 = x+ 必过点( , ),③正确;因为2=13079 6635,故有99%的把握确认这两个变量间有关系,④正确故选B
6(2
利用线性回归方程的式与已知表格中的数据,可求得
= = = ,
= - = - × =- ,
所以b′, a′故选c
二、填空题
7(1;③= x- ;④= x则根据最小二乘法的思想求得拟合程度最好的直线是 (填序号)
解析由题意知 =4, =6,
∴ = = ,
∴ = - =- ,
∴ = x- ,
∴填③
答案③
11某工厂经过技术改造后,降低了能消耗,经统计该厂某种产品的产量x(单位吨)与相应的生产能耗(单位吨)有如下几组样本数据x3456
253445。

2018年高中数学课下能力提升十八独立性检验苏教版选修2-3

2018年高中数学课下能力提升十八独立性检验苏教版选修2-3

课下能力提升(十八) 独立性检验一、填空题1.在一项打鼾与患心脏病的调查中,共调查了1 671人,经过计算χ2=27.63,根据这一数据分析,我们有理由认为打鼾与患心脏病是________的.(有关,无关)2.若两个研究对象X和Y则X与Y之间有关系的概率约为________.3.在吸烟与患肺病这两个对象的独立性检验的计算中,下列说法正确的是________.(填序号)①若χ2=6.635,则我们认为有99%的把握认为吸烟与患肺病有关系.那么在100个吸烟的人中必有99人患肺病.②从独立性检验的计算中求有99%的把握认为吸烟与患肺病有关系时,我们认为如果某人吸烟,那么他有99%的可能患肺病.③若从统计量中求出有95%的把握认为吸烟与患肺病有关系,是指有5%的可能性使得推断出现错误.④以上三种说法都不正确.4.调查者询问了72列联表:从表中数据分析大学生的性别与看不看营养说明之间的关系是________.(填“有关”或“无关”) 5.有人发现,多看电视容易使人变冷漠,下表是一个调查机构对此现象的调查结果:则由表可知大约有________的把握认为多看电视与人变冷漠有关系.二、解答题6学生的数学成绩好坏与对学习数学的兴趣是否有关?7.8.为了调查某生产线上质量监督员甲是否在生产现场对产品质量好坏有无影响,现统计数据如下:甲在生产现场时,990件产品中有合格品982件,次品8件;甲不在生产现场时,510件产品中有合格品493件,次品17件.试用独立性检验的方法分析监督员甲是否在生产现场对产品质量好坏有无影响.答案1.解析:由χ2值可判断有关. 答案:有关2.解析:因为χ2=(5+15+40+10)×(5×10-40×15)2(5+15)×(40+10)×(5+40)×(15+10)≈18.8,查表知P (χ2≥10.828)≈0.001.答案:99.9%3.解析:由独立性检验的意义可知,③正确. 答案:③4.解析:提出假设H 0:大学生的性别与看不看营养说明无关,由题目中的数据可计算χ2=72×(28×20-16×8)244×28×36×36≈8.42,因为当H 0成立时,P (χ2≥7.879)≈0.005,这里的χ2≈8.42>7.879,所以我们有99.5%的把握认为大学生的性别与看不看营养说明有关.答案:有关5.解析:由公式得χ2=168×(68×38-42×20)2110×58×88×80≈11.377>10.828,所以我们有99.9%的把握说,多看电视与人变冷漠有关.答案:99.9%6.解析:提出假设H 0:学生数学成绩的好坏与对学习数学的兴趣无关.由公式得χ2的值为χ2=189×(64×73-22×30)286×103×95×94≈38.459.∵当H 0成立时,χ2≥10.828的概率约为0.001,而这里χ2≈38.459>10.828,∴有99.9%的把握认为学生数学成绩的好坏与对学习数学的兴趣是有关的. 7.解:提出假设H 0:种子是否灭菌与有无黑穗病无关. 由公式得,χ2=460×(26×200-184×50)2210×250×76×384≈4.804.由于4.804>3.841,即当H 0成立时,χ2>3.841的概率约为0.05,所以我们有95%的把握认为种子是否灭菌与有无黑穗病是有关系的.8.解:2×2列联表如下提出假设H 0:质量监督员甲是否在生产现场与产品质量的好坏无明显关系.根据χ2公式得χ2=1 500(982×17-493×8)2990×510×1 475×25≈13.097.因为H 0成立时,χ2>10.828的概率约为0.001,而这里χ2≈13.097>10.828,所以有99.9%的把握认为质量监督员甲是否在生产现场与产品质量的好坏有关系.。

高中数学 精选练习18 独立性检验的基本思想及其初步应用 新人教A版选修2-3

高中数学 精选练习18 独立性检验的基本思想及其初步应用 新人教A版选修2-3

课时分层作业(十八)独立性检验的基本思想及其初步应用(建议用时:40分钟)[基础达标练]一、选择题1.分类变量X和Y的列联表如下:A.ab-bc越小,说明X与Y关系越弱B.ad-bc越大,说明X与Y关系越强C.(ad-bc)2越大,说明X与Y关系越强D.(ad-bc)2越接近于0,说明X与Y关系越强C[|ad-bc|越小,说明X与Y关系越弱,|ad-bc|越大,说明X与Y关系越强.] 2.下列关于等高条形图的叙述正确的是( )【导学号:95032247】A.从等高条形图中可以精确地判断两个分类变量是否有关系B.从等高条形图中可以看出两个变量频数的相对大小C.从等高条形图中可以粗略地看出两个分类变量是否有关系D.以上说法都不对C[在等高条形图中仅能粗略判断两个分类变量的关系,故A错.在等高条形图中仅能够找出频率,无法找出频数,故B错.]3.通过对K2的统计量的研究得到了若干个临界值,当K2≤2.706时,我们认为( ) A.在犯错误的概率不超过0.05的前提下认为X与Y有关系B.在犯错误的概率不超过0.01的前提下认为X与Y有关系C.没有充分理由认为X与Y有关系D.不能确定C[∵K2≤2.706,∴没有充分理由认为X与Y有关系.]4.下面是调查某地区男女学生喜欢理科的等高条形图,阴影部分表示喜欢理科的百分比,从图3­2­4中可以看出( )图3­2­4A.性别与喜欢理科无关B.女生中喜欢理科的比为80%C.男生比女生喜欢理科的可能性大些D.男生不喜欢理科的比为60%C[由题图知女生中喜欢理科的比为20%,男生不喜欢理科的比为40%,故A,B,D错误,C正确.男生比女生喜欢理科的可能性大些.]5.假设有两个变量X与Y,它们的取值分别为x1,x2和y1,y2,其列联表为:( ) A.a=50,b=40,c=30,d=20B.a=50,b=30,c=40,d=20C.a=20,b=30,c=40,d=50D.a=20,b=30,c=50,d=40D[当(ad-bc)2的值越大,随机变量K2=n ad-bc2a +b c+d a+c b+d的值越大,可知X与Y有关系的可能性就越大.显然选项D中,(ad-bc)2的值最大.]二、填空题6.在对某小学的学生进行吃零食的调查中,得到如下表数据:【导学号:95032248】2.334[由公式可计算得k=-239×63×61×41≈2.334.]7.在独立性检验中,统计量K2有两个临界值:3.841和6.635.当K2>3.841时,有95%的把握说明两个事件有关,当K2>6.635时,有99%的把握说明两个事件有关,当K2≤3.841时,认为两个事件无关.在一项打鼾与患心脏病的调查中,共调查了2 000人,经计算K2=20.87.根据这一数据分析,我们有理由认为打鼾与患心脏病之间是________的(有关、无关).有关[K2=20.87>6.635,我们有99%的把握认为两者有关.]8.下列关于K2的说法中,正确的有________.①K2的值越大,两个分类变量的相关性越大;②K2的计算公式是K2=n ad-bca +b c+d a+c b+d;③若求出K2=4>3.841,则有95%的把握认为两个分类变量有关系,即有5%的可能性使得“两个分类变量有关系”的推断出现错误;④独立性检验就是选取一个假设H0条件下的小概率事件,若在一次试验中该事件发生了,这是与实际推断相抵触的“不合理”现象,则作出拒绝H0的推断.③④[对于①,K2的值越大,只能说明我们有更大的把握认为二者有关系,却不能判断相关性大小,故①错误;对于②,(ad-bc)应为(ad-bc)2,故②错;根据独立性检验的概念和临界值表知③,④正确.]三、解答题9.为了研究子女吸烟与父母吸烟的关系,调查了一千多名青少年及其家长,数据如下:[解]等高条形图如图所示:由图形观察可以看出父母吸烟者中子女吸烟的比例要比父母不吸烟者中子女吸烟的比例高,因此可以在某种程度上认为“子女吸烟与父母吸烟有关系”.10.有人发现一个有趣的现象,中国人的邮箱里含有数字比较多,而外国人邮箱名称里含有数字比较少,为了研究国籍和邮箱名称里含有数字的关系,他收集了124个邮箱名称,其中中国人的64个,外国人的60个,中国人的邮箱中有43个含数字,外国人的邮箱中有27个含数字.(1)根据以上数据建立2×2列联表;(2)他发现在这组数据中,外国人邮箱里含数字的也不少,他不能断定国籍和邮箱名称里含有数字是否有关,你能帮他判断一下吗?【导学号:95032249】[解](1)2×2的列联表:(2)由表中数据得k=-270×54×64×60≈6.201.因为k>5.024,所以有理由认为假设“国籍和邮箱名称里与是否含有数字无关”是不合理的,即在犯错误的概率不超过0.025的前提下认为“国籍和邮箱名称里与是否含有数字有关”.[能力提升练]一、选择题1.观察下列各图,其中两个分类变量x,y之间关系最强的是( )A BC DD[在四幅图中,D图中两个深色条的高相差最明显,说明两个分类变量之间关系最强.]2.某研究所为了检验某血清预防感冒的作用,把500名使用了该血清的志愿者与另外500名未使用该血清的志愿者一年中的感冒记录作比较,提出假设H:“这种血清不能起到预防感冒的作用”,利用2×2列联表计算得K2≈3.918,经查临界值表知P(K2≥3.841)≈0.05.则下列叙述中正确的是( )【导学号:95032250】A.有95%的把握认为“这种血清能起到预防感冒的作用”B.若有人未使用该血清,那么他一年中有95%的可能性得感冒C.这种血清预防感冒的有效率为95%D.这种血清预防感冒的有效率为5%A[K2≈3.918>3.841,因此有95%的把握认为“这种血清能起到预防感冒的作用”,故选A.]二、填空题3.某班主任对全班50名学生作了一次调查,所得数据如表:错误的概率不超过0.01的前提下认为喜欢玩电脑游戏与认为作业多有关.不能[查表知若要在犯错误的概率不超过0.01的前提下认为喜欢玩电脑游戏与认为作业多有关,则临界值k0=6.635,本题中,k≈5.059<6.635,所以不能在犯错误的概率不超过0.01的前提下认为喜欢玩电脑游戏与认为作业多有关.]4.为研究某新药的疗效,给100名患者服用此药,跟踪调查后得下表中的数据:设H一位有效数字),从而得出结论:服用此药的效果与患者的性别有关,这种判断出错的可能性为________.4.9 5%[由公式计算得K2的观测值k≈4.9.∵k>3.841,∴我们有95%的把握认为服用此药的效果与患者的性别有关,从而有5%的可能性出错.]三、解答题5.随着生活水平的提高,人们患肝病的越来越多,为了解中年人患肝病与经常饮酒是否有关,现对30名中年人进行了问卷调查得到如下列联表:已知在全部30人中随机抽取1人,抽到肝病患者的概率为15.(1)请将上面的列联表补充完整,并判断是否有99.5%的把握认为患肝病与常饮酒有关?说明你的理由;(2)现从常饮酒且患肝病的中年人(恰有2名女性)中,抽取2人参加电视节目,则正好抽到一男一女的概率是多少?参考数据:[解] (1)设患肝病中常饮酒的人有x 人,x +230=415,x =6.K 2=-210×20×8×22≈8.523>7.879,因此有99.5%的把握认为患肝病与常饮酒有关.(2)设常饮酒且患肝病的男性为A ,B ,C ,D ,女性为E ,F ,则任取两人有AB ,AC ,AD ,AE ,AF ,BC ,BD ,BE ,BF ,CD ,CE ,CF ,DE ,DF ,EF ,共15种.其中一男一女有AE ,AF ,BE ,BF ,CE ,CF ,DE ,DF ,共8种.故抽出一男一女的概率是P =815.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

独立性检验
1.在吸烟与患肺病这两个分类变量的计算中,下列说法正确的是
k=,我们有99%的把握认为吸烟与患肺病有关系,那么在100个吸烟的人中必有99 A.若2
K的观测值为 6.635
人患有肺病
B.从独立性检验可知有99%的把握认为吸烟与患肺病有关系时,我们说某人吸烟,那么他有99%的可能患有肺病
C.若从统计量中求出有95%的把握认为吸烟与患肺病有关系,是指有5%的可能性使得推断出现错误D.以上三种说法都不正确
2.已知两个统计案例如下:
①为了探究患肺炎与吸烟的关系,调查了339名50岁以上的人,调查结果如下表:
②为了解某地母亲与女儿身高的关系,随机测得10对母女的身高如下表:
则对这些数据的处理所应用的统计方法是
A.①回归分析,②取平均值B.①独立性检验,②回归分析
C.①回归分析,②独立性检验D.①独立性检验,②取平均值
⨯列联表:
3.下面是一个22
其中a b 、处应填的值分别为[来源:学。

科。

网Z 。

X 。

X 。

K] A .5254、 B .5452、 C .94146、
D .14694、
4.为了解某班学生喜爱打篮球是否与性别有关,对本班50人进行了问卷调查得到了下表:
参考公式:
2
2
()()()()()
n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.
临界值表:
根据表中的数据你认为喜爱打篮球与性别之间有关系的把握是 A .97.5% B .99% C .99.5%
D .99.9%
5.为了普及环保知识,增强环保意识,某大学从理工类专业的A 班和文史类专业的B 班各抽取20名同学参加环保知识测试.统计得到成绩与专业的列联表:
附:参考公式及数据: (1)统计量:
2
2
()()()()()
n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.
(2)独立性检验的临界值表:
则下列说法正确的是
A .有99%的把握认为环保知识测试成绩与专业有关
B .有99%的把握认为环保知识测试成绩与专业无关
C .有95%的把握认为环保知识测试成绩与专业有关
D .有95%的把握认为环保知识测试成绩与专业无关 6.假设有两个分类变量X 和Y 的22⨯列联表为:
对同一样本,以下数据能说明X 与Y 有关系的可能性最大的一组为 A .5,35b d == B .15,25b d == C .20,20b d ==
D .30,10b d ==
参考公式:2
2
()()()()()
n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.
7.某学校为判断高三学生选修文科是否与性别有关,现随机抽取50名学生,得到如下22⨯列联表:
,已知()2 3.8410.05P K ≥≈,
()
2 5.0240.025P K ≥≈.现作出结论“选修文科与性别相关”,估计这种判断出错的可能性约为
A .97.5%
B .95%
C .2.5%
D .5%
8.利用独立性检验来判断两个分类变量X 和Y 是否有关系,通过查阅下表来确定“X 和Y 有关系”的可信度.为了调查使用电脑时间与视力下降是否有关系,现从某地网民中抽取100位居民进行调查.经过计算得2 3.855K ≈,
那么就有________%的把握认为使用电脑时间与视力下降有关系.学#科¥网
9.某校数学课外兴趣小组为研究数学成绩是否与性别有关,先统计本校2015—2016学年高二年级每个学生一学期数学成绩平均分(采用百分制),剔除平均分在40分以下的学生后,共有男生300名,女生200名,现采用分层抽样的方法,从中抽取了100名学生,按性别分为两组,并将两组学生成绩分为6组,得到如下所示频数分布表.
(1)估计男、女生各自的平均分(同一组数据用该组区间中点值作代表),从计算结果看,数学成绩与性别是否有关;
(2)规定80分以上者为优分(含80分),请你根据已知条件作出2×2列联表,并判断是否有90%以上的把握认为“数学成绩与性别有关”.
参考公式:2
2
()()()()()
n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.
10.随着资本市场的强势进入,互联网共享单车“忽如一夜春风来”,遍布了一二线城市的大街小巷.为了解共享单车在A市的使用情况,某调查机构借助网络进行了问卷调查,并从参与调查的网友中抽取了200人进行抽样分析,得到表格:(单位:人)
(1)根据以上数据,能否在犯错误的概率不超过0.15的前提下认为A市使用共享单车情况与年龄有关?
(2)现从所抽取的30岁以上的网友中利用分层抽样的方法再抽取5人.
(i)分别求这5人中经常使用、偶尔或不用共享单车的人数;
(ii)从这5人中,再随机选出2人赠送一件礼品,求选出的2人中至少有1人经常使用共享单车的概率.
参考公式:
()
()()()()
2
2
n ad bc
K
a b c d a c b d
-
=
++++
,其中n a b c d
=+++.
参考数据:
11.为调查某社区居民的业余生活状况,研究这一社区居民在20:00~22:00时间段的休闲方式与性别的关系,随机调查了该社区80人,得到下面的数据表:
(1)根据以上数据,能否有99%的把握认为“在20:00~22:00时间段居民的休闲方式与性别有关系”?
(2)将此样本的频率估计为总体的概率,在该社区的所有男性中随机调查3人,设调查的3人在这一时间段以看书为休闲方式的人数为随机变量X,求X的数学期望和方差.
附:
2
2
()
()()()()
n ad bc
K
a b c d a c b d
-
=
++++
12.某省高考改革实施方案指出:该省高考考生总成绩将由语文、数学、外语3门统一高考成绩和学生自主选择的学业水平等级性考试科目共同构成,该省教育厅为了解正在读高中的学生家长对高考改革方案所持的赞成态度,随机从中抽取了100名城乡家长作为样本进行调查,调查结果显示样本中有25人持不赞成意见,如图是根据样本的调查结果绘制的等高条形图.学&科%网
(1)根据已知条件与等高条形图完成下面的列联表,并判断我们能否有95%的把握认为“赞成高考改革方案与城乡户口有关”?
注:
()
()()()()
2
2
n ad bc
K
a b c d a c b d
-
=
++++
,其中.
(2)用样本的频率估计概率,若随机在全省不赞成高考改革的家长中抽取3个,记这3个家长中是城镇户口的人数为X,试求X的分布列及数学期望()
E X.
13.(2017年高考新课标Ⅱ卷) 海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100 个网箱,测量各箱水产品的产量(单位:kg).其频率分布直方图如下:
(1)设两种养殖方法的箱产量相互独立,记A 表示事件:“旧养殖法的箱产量低于50kg ,新养殖法的箱产量不低于50kg”,估计A 的概率;学@科网
(2)填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关;
(3)根据箱产量的频率分布直方图,求新养殖法箱产量的中位数的估计值(精确到0.01).
附:,
2
2
()()()()()
n ad bc K a b c d a c b d -=
++++
14.电视传媒公司为了解某地区电视观众对某类体育节目的收视情况,随机抽取了100名观众进行调查.下面是根据调查结果绘制的观众日均收看该体育节目时间的频率分布直方图:
将日均收看该体育节目时间不低于40分钟的观众称为“体育迷”.
(1)根据已知条件完成下面的2×2列联表,并据此资料你是否认为“体育迷”与性别有关?
(2)将上述调查所得到的频率视为概率.现在从该地区大量电视观众中,采用随机抽样方法每次抽取1名观众,抽取3次,记被抽取的3名观众中的“体育迷”人数为X.若每次抽取的结果是相互独立的,求X的分布列,期望E(X)和方差D(X).。

相关文档
最新文档