小学思维数学讲义:幻方(一)-带详解
幻方解法归纳
在一个由若干个排列整齐的数组成的正方形中,图中任意一横行、一纵行及的几个数之和都相等,具有这种性质的图表,称为“幻方”。
我国古代称为“”、“”,又叫“”。
1、奇数阶幻方——罗伯特法(也有人称之为楼梯法)(如图一:以五阶幻方为例)奇数阶幻方n 为奇数 (n=3,5,7,9,11……) (n=2×k+1,k=1,2,3,4,5……)奇数阶幻方最经典的填法是罗伯特法(也有人称之为楼梯法)。
填写方法是这样: 把1(或最小的数)放在第一行正中; 按以下规律排列剩下的n×n-1个数: (1)每一个数放在前一个数的右上一格;(2)如果这个数所要放的格已经超出了顶行那么就把它放在底行,仍然要放在右一列; (3)如果这个数所要放的格已经超出了最右列那么就把它放在最左列,仍然要放在上一行;(4)如果这个数所要放的格已经超出了顶行且超出了最右列,那么就把它放在前一个数的下一行同一列的格内; (5)如果这个数所要放的格已经有数填入,处理方法同(4)。
这种写法总是先向“右上”的方向,象是在爬楼梯。
口诀:1居首行正中央, 依次右上莫相忘 上出格时往下放, 右出格时往左放. 排重便往自下放, 右上出格一个样图一2、单偶数阶幻方()122+=m n ——分区调换法(如图二:以六阶幻方为例)① 把()122+=m n 阶的幻方均分成4个同样的小幻方A 、B 、C 、D(如图二)图二(注意A 、B 、C 、D 的相对位置不能改变,因为12+m 为奇数,所以A 、B 、C 、D 均为奇数阶幻方) ② 用连续摆数法在A 中填入21a ——构成幻方,同理,在B 中填入()2221a a ——+、在C 中填入()22312aa ——+、在D 中填入()22413a a ——+均构成幻方(2na =)(如图三)图三(因为12+m 为奇数,所以A 、B 、C 、D 均为奇数阶幻方,必然可以用连续摆数法构造幻方) ③ 在A 的中间一行上从左侧的第二列起取m 个方格,在其它行上则从左侧第一列起取m 个方格,把这些方格中的数与D 中相应方格中的数字对调(如图四):图四不管是几阶幻方,在A 中取数时都要从中间一行的左侧第二列开始;因为当6=n 时,1=m ,所以本例中只取了一个数)④ 在A 中从最右一列起在各行中取1-m 个方格,把这些方格中的数与D 中相应方格中的数字对调。
幻方知识点总结
幻方知识点总结幻方的起源可以追溯到公元前2200年的古代中国,最早的幻方出现在中国的《周髀算经》中。
这本书中记载了3阶和4阶的幻方,展示了当时中国对幻方的早期研究和应用。
随后,幻方传入了印度、中东和欧洲等地区,在这些地区的文化和数学传统中都留下了深远的影响。
著名的数学家如拉马努金、欧拉、高斯等都曾对幻方进行了深入的研究,为幻方的发展和应用做出了重要贡献。
要理解幻方,首先需要了解几个基本概念:阶数、和数、构造方法和性质。
阶数是指幻方数组的边长,比如3阶幻方就是一个3x3的数组。
和数是指每一行、每一列和每一条对角线上的数字之和,也叫做幻方的魔数。
构造方法是指幻方的排列规则和建立过程,包括奇阶幻方和偶阶幻方两种不同的构造方法。
而幻方的性质则是指它特有的数学特点和规律,如对称性、旋转性、等价性等。
在构造幻方的过程中,最常用的方法是奇阶幻方和偶阶幻方的构造方法。
对于奇阶幻方来说,它的构造方法相对简单,常用的有“Siamese method”、“Loubere method”等,它们都是通过一定的规则和步骤将数字逐个填入方格中,最终形成一个满足要求的幻方。
而对于偶阶幻方来说,则需要更复杂的构造方法,常用的有“method of de la Loubere”、“methodof de la Hire”等,它们需要通过巧妙的排列和替换来构造出一个满足要求的幻方。
在构造的过程中,对数字的排列、替换和对称性的利用都是十分重要的技巧。
除此之外,幻方还具有一些特殊的性质和规律。
比如,幻方的逆幻方、旋转幻方和反转幻方都是与原幻方有一定联系的新幻方,它们之间的对应关系和巧妙的变换方法都是幻方研究的重要内容。
幻方还具有对称性和等价性,这使得幻方可以在不同的方向上进行旋转、翻转和变换,从而获得新的幻方和新的挑战。
在实际生活中,幻方还有许多有趣的应用,比如在数学教育、艺术设计、密码学等领域都可以看到幻方的身影。
幻方的研究和探索不仅仅是一种数学游戏,它还蕴含着丰富的数学知识和有趣的推理技巧。
小学四年级逻辑思维学习—数阵图与幻方
小学四年级逻辑思维学习—数阵图与幻方”知识定位一、什么是数阵图?在神奇的数学王国中,有一类非常有趣的数学问题,它变化多端,引人入胜,奇妙无穷。
它就是数阵,一座真正的数字迷宫,它对喜欢探究数字规律的人有着极大的吸引力,以至有些人留连其中,用毕生的精力来研究它的变化,就连大数学家欧拉对它都有着浓厚的兴趣。
那么,到底什么是数阵呢?我们先观察上面两个图:右图(1)中有3个大圆,每个圆周上都有四个数字,有意思的是,每个圆周上的四个数字之和都等于13。
右图(2)就更有意思了,1~9九个数字被排成三行三列,每行的三个数字之和与每列的三个数字之和,以及每条对角线上的三个数字之和都等于15,不信你就算算。
上面两个图就是数阵图。
准确地说,数阵图是将一些数按照一定要求排列而成的某种图形,有时简称数阵。
要排出这样巧妙的数阵图,可不是一件容易的事情。
我们还是先从如何来填好数阵图开始。
如何填好数阵图?数阵图问题千变万化,这一类问题要求数阵中填入了一些数以后,能保证数阵中特定关系线(或关系区域)上的数的和相等,解决这一类问题可以按以下步骤解决问题:第一步:区分数阵图中的普通点(或方格),和交叉点(方格)第二步:在数阵图的少数关键点(一般是交叉点)上设置未知数,计算各个点与该点被重复计算次数之积的和的代数式,即数阵图关系线(关系区域)上和的总和,这个和是关系线(关系区域)的个数的整数倍.第三步:判断少数关键点上可以填入的数的余数性质,并得出相应的数阵图关系线(关系区域)和.第四步:运用已经得到的信息进行尝试:数阵图还有一类题型比较少见,解决这一类问题需要理清数阵中数与数之间的相关关系,找出问题关键.【授课批注】数阵图问题千变万化,一般没有特定的解法,往往需要综合运用掌握的各种数学知识来解决问题. 本讲出了要讲授填数阵图的主要技巧,还有以下注意点:1.引导学生从整体到局部对问题进行观察和判断;2.教授巧妙利用容斥原理、余数的性质、整除性质的数学方法;3.锻炼学生利用已知信息枚举,尝试的能力;4.培养学生综合运用各种数学知识,分析问题,找问题关键,解决问题的能力.二、什么是幻方?同学们是否知道我国古代有关“洛书”的神话传说?传说在大禹治水的年代,陕西的洛水经常大肆泛滥,无论怎样祭祀河神都无济于事,每年人们摆好祭品之后,河中都会爬出一只大乌龟,乌龟壳有九大块,横着数是3行,竖着数是3列,每块乌龟壳上都有几个点点,正好凑成1至9的数字,可是谁也弄不清这些小点点是什么意思.一次,大乌龟又从河里爬上来,一个看热闹的小孩惊叫起来:“瞧多有趣啊,这些点点不论横着加、竖着加还是斜着加,结果都等于十五!”于是人们赶紧把十五份祭品献给河神,说来也怪,河水果然从此不再泛滥了.这个神奇的图案叫做“幻方”,由于它有3行3列,所以叫做“三阶幻方”,这个相等的和叫做“幻和”.“洛书”就是幻和为15的三阶幻方.如下图:三、如何解决幻方问题?幻方是指横行、竖列、对角线上数的和都相等的数的方阵,具有这一性质的3×3的数阵称作三阶幻方,4×4的数阵称作四阶幻方,5×5的称作五阶幻方……如图为三阶幻方、四阶幻方的标准式样,三阶幻方的中心位置上的数等于所有所填数的平均数,也等于横行、竖列、对角线上数和的三分之一.解决数表类问题中,首先要找出数填写的规律,再从规律中找到数表的数量关系,从而找出解决问题的关键.知识梳理987653421987654321(一)封闭型数阵问题(二)辐射型数阵(三)其它类型的数阵图(四)幻方例题精讲【试题来源】【题目】将1~6填入左下图的六个○中,使三角形每条边上的三个数之和都等于k,请指出k的取值范围.k=9 k=10 k=11 k=12【题目】小猴聪聪有一天捡到像左下图的模具,它试着将1~10分别填入图中,使得每个小三角形3个顶点上的数字之和为图中所表示的数值,你能做到吗?【题目】图中的6条线分别连接着9个圆圈,其中一个圆圈里的数是6.请你选9个连续自然数(包括6在内)填人圆圈内,使每条线上各数的和都等于23.6543216543216543216543216【题目】小兔子在森林玩耍,遇到一个画着奇怪图形的树桩,上面写着:把10至20这11个数分别填入下图的各圆圈内,使每条线段上3个圆内所填数的和都相等.如果中心圆内填的数相等,那么就视为同一种填法,请写出所有可能的填法,小兔子发了愁,你能帮它吗?【题目】海豚是很聪明的动物,它能将1~9填入右下图的九个○内,并且使得每个圆周和每条直线上的三数之和都相等,并且7,8,9依次位于小、中、大圆周上,你能做到吗?【题目】在下图中的10个○内填入0~9这10个数字,使得循环式成立:【题目】请在图中的每个圆圈内填入不同的自然数,使得图中每个圆圈中所填的数都是上一行与它相邻的两个圆圈中所填数的和,最下面的数是20.+=====----20【题目】请你将2~10这九个自然数填入图中的空格内每行、每列、每条对角线上的三数之和相等.【题目】请你将1~25这二十五个自然数填入图中的空格内每行、每列、每条对角线上的五数之和相等.【题目】将九个数填入左下图的九个空格中,使得任一行、任一列以及两条对角线上的三个数之和都等于定数k,则中心方格中的数必为k÷3【题目】在下图的九个方格中填入不大于12且互不相同的九个自然数(其中已填好一个数),使得任一行、任一列及两条对角线上的三个数之和都等于21.【题目】将前9个自然数填入右图的9个方格中,使得任一行、任一列以及两条对角线上的三个数之和互不相同,并且相邻的两个自然数在图中的位置也相邻.【题目】将1、2、3、4、5、6、7、8、9这九个数字,分别填入3×3阵列中的九个方格,使第二行组成的三位数是第一行组成的三位数的2倍,第三行组成的三位数是第一行组成的三位数的3倍.【题目】在一个3×3的网格中填入9个数使得每一横行、竖行、对角线上三个数的乘积相等.习题演练【题目】将1~7这七个数分别填入图中的○里,使每条直线上的三个数之和都等于12。
(完整版)趣味数学-幻方
13 14 15 16 第四行和=58 多了24
第 第第 第 一 二三 四 对角线和=34 列 列 列 列 和 和和 和
对角线和=34
=40 =36 =32 =28
少6 少2 多2 多6
根据刚才的情况我们发现对角线上的 4个数和就是幻和,那么就让它们位置都不变。
1 2 34 56 78 9 10 11 12 13 14 15 16
数4个的请让数4它个的们分数4别个的交数换4个的吧!
和 和 和和
=
=
==
34 34 34 34
4个数和= 34
4个数和= 34 1.我先我变是个魔中师心, 点 4个我数可和是= 3有4 魔法的
现在我们来指引 24.个数每数字中你列和2心们的和=点去数334与相字把谁对每和关行相于等
3.数字5和9谁关于 中心点相对
把1,2,3…9这9个数填入3×3的方格里,变成三阶幻方
1 42 7 53 86
9
换位
9 42
三阶幻方有技巧,
3 5 7 3数斜着先排好,
86 1
上下左右要交换, 然后各自归位了!
归位
5:如何填幻方(幻方的构成) 2)三阶幻方构成方法之二 画格辅助 九子斜排 送子回家 清除辅助
1
4
2
7
5
3
8
6
三、四阶幻方
五阶幻方
六阶幻方
3、探究幻方的规律(1):
49 2 35 7 8 16
1、所有行、列、对角线上的数 之和均为15;
2、偶数位于角上,奇数在中间;
3、5位于中心点,相对的两个端 点数和为10。因为9个数之和是45, 所以中间的数的5。
3、探究幻方的规律(2):
小学奥数三阶幻方讲解归纳(1)
返回
三阶幻方中的规律:
规律3:与中间数对应的上下Hale Waihona Puke 左 右、对角两个数字的和=中间 数×2
4 92
三
阶 3 57
幻
方 81 6
规律4:角上的数字=对角相 邻的两数字和的一半
492 3 57 816
提高:
?2
2a-1 2
a
a
?
1
2a-2 1
练一练:
完成下列三阶幻方:
3 4 -1
① -2 2 6
小学奥数三阶幻方讲 解归纳(1)
三阶幻方中的规律:
1、每行、每列、每条对角线上三个数 的和都相等,都等于幻和。 2、9个数的中位数在幻方的最中心。 3、幻和等于中间数的3倍。 4、每“对”数的连线都过“中心” 。
( 9个数从小到大排列,1,9位为“一对”,2,8位为“一对”, 3,7位
为“一对”,4,6 位为“一对”,)
生活中的幻方
谢谢!
5 01
10
②4 8
③
7
12 11 18
大数学家杨辉的构造方法:
早在公元1275年,宋朝的杨辉就对幻方 进行了系统的研究。他称这种图为“纵 横图”,他提出了一个构造三阶幻方的 秘诀:
九子斜排,上下对易,
左右相更,四维挺出
杨辉构造法
试一试
• 把2、3、4、5、6、7、8、9、10 分别填入三阶方格中,每个数只用 一次,使每一横行、竖列、对角线 上三个数的和都相等.
幻方的规律和求法
幻方的规律和求法幻方的规律和求法:幻方可是个神奇的存在呀!简单来说,就是在一个正方形格子里,填上一些数字,让每行、每列以及对角线上的数字之和都相等。
我们可以把幻方想象成一个数字的大舞台,每个数字都像是一位演员,它们要在这个舞台上找到自己的位置,共同演绎出神奇的规律。
那些格子就像是演员们的站位,必须恰到好处,才能呈现出完美的表演。
比如说三阶幻方,就像是一个小型的数字音乐会,九个数字要在九个位置上完美配合,奏响和谐的数字乐章。
那幻方是怎么做到让每行、每列和对角线的数字和都相等的呢?这就像是一场精心编排的舞蹈,每个数字都要准确无误地迈出自己的舞步。
以三阶幻方为例,中间的数字就像是领舞的主角,它的位置至关重要。
其他数字则像是伴舞,围绕着中间数字旋转跳跃。
它们之间有着一种微妙的平衡和协调,就像一个默契十足的舞蹈团队。
我们来看看具体的规律。
首先,幻方中每行、每列和对角线上的数字之和是一个固定值,这个值是所有数字总和的三分之一。
比如三阶幻方,1 到9 这九个数字的总和是 45,那么每行、每列和对角线的和就是 15。
这就好像是一场比赛,每个队伍的目标总分是确定的,数字们要努力去达到这个目标。
其次,中间位置的数字有着特殊的地位,它往往是一个关键的平衡点。
而且,相对的两个数字之和通常等于另外两个相对数字之和,就像两队选手在进行拔河比赛,力量要保持平衡。
为了让大家更好地理解,我们来看一个具体的三阶幻方例子:4 9 23 5 78 1 6在这里,每行、每列和对角线的和都是 15。
4 和 6、9 和 1、2 和 8 等相对数字之和都是 10,是不是很神奇呢?幻方在生活中也有不少应用呢!比如在建筑设计中,一些古老的建筑可能会运用幻方的原理来布局,以求达到某种平衡和和谐。
在数学研究中,幻方更是一个重要的领域,数学家们不断探索着更复杂、更奇妙的幻方。
总之,幻方就像是一个隐藏在数字世界里的神秘宝藏,等待着我们去探索和发现。
它的规律既神奇又有趣,让我们感受到了数字的魅力和魔力。
小学数学幻方课件
幻方_??????
幻方1.概念简析:幻方:是指横行、竖列、对角线上数的和都相等的数的方阵,具有这一性质的3×3的数阵称作三阶幻方,4×4的数阵称作四阶幻方,5×5的称作五阶幻方……如图为三阶幻方、四阶幻方的标准式样.2.构造幻方常用的方法:(1)适用于所有奇数阶幻方的填法—罗伯法.口诀是:一居上行正中央,后数依次右上连.上出框时往下填,右出框时往左填.排重便在下格填,右上排重一个样.(2)仅适用于三阶幻方—九宫格口诀.口诀是:九宫者,二四为肩,六八为足,左七右三,戴九履一,五居中央。
(3)适用于所有偶数阶幻方的填法—对称交换的方法1.将数依次填入方格中,对角线满足要求。
2.调整行,对角线数不动,对称行的其它数对调;调整列,对角线数不动,对称列的其它数对调。
3.三阶幻方的性质:1.幻和相等,幻和等于9个数的和除以3.2.中间数必位于幻方中心,中间数等于幻和除以3.3.黄金三角: 黄金三角顶点的数为两腰之和除以2.视频描述把0、2、4、6、8、10、12、14、16这9个数填在下面图中的方格内,使每行、每列和每条对角线上的三个数的和都相等。
1.1.请用11、13、15、17、19、21、23、25、27编制一个三阶幻方。
注:此题答案默认为0,正确答案见解析!2.2.把7—15这九个数构成一个三阶幻方。
注:此题答案默认为0,正确答案见解析!3.3.请用1、4、7、10、13、16、19、22、25编制一个三阶幻方。
注:此题答案默认为0,正确答案见解析!视频描述将下面左边方格中的9个数填入右边方格中,使每一行、每一列、每条对角线中的三个数相加的和都相等。
1.1.将图中的数重新排列,使横行、竖行、对角线上的三个数的和都相等。
注:此题答案默认为0,正确答案见解析!2.2.把3、4、5、8、9、10、13、14、15编成一个三阶幻方,并求出幻和是多少?3.3.将图中的数重新排列,使横行、竖行、对角线上的三个数的和都相等。
数学 幻方知识点
数学幻方知识点一、知识概述《幻方知识点》①基本定义:幻方就是一个正方形的数阵。
在这个数阵里,横着每行数字加起来的和、竖着每列数字加起来的和以及两条对角线上数字加起来的和,都相等。
比如一个3×3的幻方,就像一个九宫格,给每个格子里填上不同的数,满足刚刚说的这些和相等的条件。
②重要程度:幻方在数学里算是比较有趣又有挑战性的一部分。
它能锻炼咱们对数字的感觉和计算能力,还能加深对数字规律的理解。
而且它和一些更高级的数学知识也有点联系,算入门数学里比较独特的一块。
③前置知识:首先要对基本的加法运算特别熟练,得能快速准确地算出一些数字的和。
另外,对数字顺序得很熟悉,比如说1到9这些自然数的顺序。
还有就是对数阵这个概念得有点概念,知道行列是怎么回事。
④应用价值:幻方可不光是在纸上玩玩数字游戏。
在编程里,特别是设计算法的时候能涉及到幻方的原理,像是怎么让程序快速找到满足幻方规则的数字组合。
而且从研究数字规律的角度看,幻方里藏着不少数学奥秘,可能对密码学之类的可以提供一些思路。
二、知识体系①知识图谱:幻方在数学里属于数字规律探索这个分支里的。
算是一种特殊的数字组合现象,不是像四则运算那样基础,但在探索数字多种组合奥秘这一块是很有代表性的。
②关联知识:和加法运算有着直接联系,因为都是靠加法来确定幻方的和是否相等的。
和数列也有点关系,幻方里每行每列的数字可以看成是一个特殊的数列。
③重难点分析:难点就是找到那一套满足幻方条件的数字组合,特别是幻方规格大一些的时候,像5×5,7×7的幻方就更难了。
重点是要清楚幻方的定义和确定幻方和的计算方法。
④考点分析:在考试里,如果是数学竞赛可能会碰到幻方的题目。
一般会考查你能不能找到幻方的缺失数字,或者判断一组数字能否组成幻方,考查方式就是给你个残缺的幻方或者一组数字,让你按幻方的规则去处理。
三、详细讲解【理论概念类】①概念辨析:幻方核心就是它的数字组合满足特定的和相等的条件。
小学思维数学讲义:幻方(一)-带详解
⼩学思维数学讲义:幻⽅(⼀)-带详解幻⽅(⼀)1. 会⽤罗伯法填奇数阶幻⽅2. 了解偶数阶幻⽅相关知识点3. 深⼊学习三阶幻⽅⼀、幻⽅起源也叫纵横图,也就是把数字纵横排列成正⽅形,因此纵横图⼜叫幻⽅.幻⽅起源于我国,古⼈还为它编撰了⼀些神话.传说在⼤禹治⽔的年代,陕西的洛⽔经常⼤肆泛滥,⽆论怎样祭祀河神都⽆济于事,每年⼈们摆好祭品之后,河中都会爬出⼀只⼤乌龟,乌龟壳有九⼤块,横着数是3⾏,竖着数是3列,每块乌龟壳上都有⼏个点点,正好凑成1⾄9的数字,可是谁也弄不清这些⼩点点是什么意思.⼀次,⼤乌龟⼜从河⾥爬上来,⼀个看热闹的⼩孩惊叫起来:“瞧多有趣啊,这些点点不论横着加、竖着加还是斜着加,结果都等于⼗五!”于是⼈们赶紧把⼗五份祭品献给河神,说来也怪,河⽔果然从此不再泛滥了.这个神奇的图案叫做“幻⽅”,由于它有3⾏3列,所以叫做“三阶幻⽅”,这个相等的和叫做“幻和”.“洛书”就是幻和为15的三阶幻⽅.如下图:987654321我国北周时期的数学家甄鸾在《算数记遗》⾥有⼀段注解:“九宫者,⼆四为肩,六⼋为⾜,左三右七,戴九履⼀,五居中央.”这段⽂字说明了九个数字的排列情况,可见幻⽅在我国历史悠久.三阶幻⽅⼜叫做九宫图,九宫图的幻⽅民间歌谣是这样的:“四海三⼭⼋仙洞,九龙五⼦⼀枝连;⼆七六郎赏⽉半,周围⼗五⽉团圆.”幻⽅的种类还很多,这节课我们将学习认识了解它们.⼆、幻⽅定义幻⽅是指横⾏、竖列、对⾓线上数的和都相等的数的⽅阵,具有这⼀性质的33?的数阵称作三阶幻⽅,44?的数阵称作四阶幻⽅,55?的称作五阶幻⽅……如图为三阶幻⽅、四阶幻⽅的标准式样,98765432113414151612978105113216三、解决这幻⽅常⽤的⽅法⑴适⽤于所有奇数阶幻⽅的填法有罗伯法.⼝诀是:⼀居上⾏正中央,后数依次右上连.上出框时往下填,右出框时往左填.排重便在下格填,右上排重⼀个样.⑵适⽤于三阶幻⽅的三⼤法则有:①求幻和:所有数的和÷⾏数(或列数)②求中⼼数:我们把幻⽅中对⾓线交点的数叫“中⼼数”,中⼼数=幻和÷3.③⾓上的数=与它不同⾏、不同列、不同对⾓线的两数和÷2.四、数独知识点拨教学⽬标数独简介:(⽇语:数独すうどく)是⼀种源⾃18世纪末的瑞⼠,后在美国发展、并在⽇本得以发扬光⼤的数学智⼒拼图游戏。
幻方解法整理归纳
在一个由若干个排列整齐的数组成的正方形中,图中任意一横行、一纵行及的几个数之和都相等,具有这种性质的图表,称为“幻方”。
我国古代称为“”、“”,又叫“”。
1、奇数阶幻方——罗伯特法(也有人称之为楼梯法)(如图一:以五阶幻方为例)奇数阶幻方n 为奇数 (n=3,5,7,9,11……) (n=2×k+1,k=1,2,3,4,5……)奇数阶幻方最经典的填法是罗伯特法(也有人称之为楼梯法)。
填写方法是这样:把1(或最小的数)放在第一行正中; 按以下规律排列剩下的n×n-1个数:(1)每一个数放在前一个数的右上一格;(2)如果这个数所要放的格已经超出了顶行那么就把它放在底行,仍然要放在右一列;(3)如果这个数所要放的格已经超出了最右列那么就把它放在最左列,仍然要放在上一行;(4)如果这个数所要放的格已经超出了顶行且超出了最右列,那么就把它放在前一个数的下一行同一列的格内;(5)如果这个数所要放的格已经有数填入,处理方法同(4)。
这种写法总是先向“右上”的方向,象是在爬楼梯。
口诀:1居首行正中央,依次右上莫相忘上出格时往下放,右出格时往左放.排重便往自下放,右上出格一个样图一2、单偶数阶幻方()122+=m n ——分区调换法(如图二:以六阶幻方为例) ① 把()122+=m n 阶的幻方均分成4个同样的小幻方A 、B 、C 、D(如图二)图二(注意A 、B 、C 、D 的相对位置不能改变,因为12+m 为奇数,所以A 、B 、C 、D 均为奇数阶幻方) ② 用连续摆数法在A 中填入21a ——构成幻方,同理,在B 中填入()2221a a ——+、在C 中填入()22312a a ——+、在D 中填入()22413a a ——+均构成幻方(2na =)(如图三)图三(因为12+m 为奇数,所以A 、B 、C 、D 均为奇数阶幻方,必然可以用连续摆数法构造幻方)③ 在A 的中间一行上从左侧的第二列起取m 个方格,在其它行上则从左侧第一列起取m 个方格,把这些方格中的数与D 中相应方格中的数字对调(如图四):图四不管是几阶幻方,在A 中取数时都要从中间一行的左侧第二列开始;因为当6=n 时,1=m ,所以本例中只取了一个数)④ 在A 中从最右一列起在各行中取1-m 个方格,把这些方格中的数与D 中相应方格中的数字对调。
四年级上册思维 第1讲 幻方 讲义
第1讲 幻方(三阶幻方)知识要点有关幻方问题的研究在我国已流传了2000多年,它是具有独特形式的填数字问题。
宋朝的杨辉将幻方命名为纵横图,并探索出一些解答幻方问题的方法,随着历史的进展,许多人对幻方做了进一步的研究,创造了许多绚丽多彩的幻方。
据传说,在夏禹时代洛水中出现过一只神龟,背上有图有文,后人称他为“洛书”或“河图”,洛书所表示的幻方是在3×3的方格子里(即三行三列),按一定的要求填上1~9这九个数,使每行、每列、及两条对角线上各自三数之和均相等,这样的3×3的数阵称为三阶幻方。
一般地说在n ×n (n 行n 列)的方格里,既不重复又不遗漏的填上n ²个连续的自然数(一般从1开始,也可不从1开始),每个数占一格,并使排在任一行、任一列和两条对角线上的n 个自然数都相等,这样的数表叫做n 阶幻方,这个和叫幻和,n 叫做阶。
南宋数学家杨辉,在他著的《续古斋奇算法》里介绍了这种方法:只要将九个自然数按照从小到大的递增次序斜排,然后把上、下两数对调,左、右两数也对调,最后再把中部四数向外面挺出,幻方就出现了。
例1:把1~9这九个自然数填在如右图内九个空格里,每格填一个数字,使每一行、每一纵行和两条对角线上三个数的和都相等。
练习1:(1):把3、4、5、6、7、8、9、10、11九个数填入下图九个空格里,每格填一个数字,使每一行、每一纵行和两条对角线上三个数的和都相等。
(2)把5、10、15、20、25、30、35、40、45填入方格,组成一个三阶幻方。
例2:已知下面幻方的和是18,请将幻方填写完整。
练习2:(1)已知下面幻方的和是24,请将幻方填写完整。
(2)请将下面的三阶幻方填写完整。
(3)请将下面的三阶幻方填写完整。
例3:在下面的空格中填入不大于15且互不相同的自然数使每一横行、竖行和对角线上的三个数之和等于30。
练习3:(1)在下面两个图的空格中填入不大于15且互不相同的自然数(其中已填好一个数),使每一横行、竖行和对角线上的三个数之和等于30。
趣味数学幻方课件
所以 幻和=42
同学们
你们真的好棒哦!不要骄傲, 继续加油哦!
请你们把1,3,5,7,…..29,31这16个数字编成一个四阶幻方.
数字依次先排好, 上下中间两两换, 左右中间两两换, 其他地方不要变!
1 3 5 7 64
9 11 13 15
64
17 19 21 23
64
25 27 29 31
64
•
奇阶幻方
•偶阶幻方ຫໍສະໝຸດ 三、四阶幻方五阶幻方
六阶幻方
3.探究幻方的规律(1):
49 2 35 7 8 16
1.所有行、列、对角线上的数 之和均为15;
2.偶数位于角上,奇数在中间;
3.5位于中心点,相对的两个端点 数和为10。因为9个数之和是45, 所以中间的数的5。
3.探究幻方的规律(2):
1、初步认识1〜9的幻方。 2、通过尝试、调整数据,探究幻
方的关系。 3.培养学生对中国古代数学文化的
兴趣。
故事引入:
公元前三千多年, 有条洛河经常发大水, 皇帝夏禹带领百 姓去治理洛河, 这时, 从水中浮起一只大乌龟, 背上有奇特的 图案。
龟背上的图案是 什么意思呢?
龟背上的图案代表了几个不同的数, 人们称它为“书”。
1 83
1、利用每一行,每一列,每一条对角线上的 三个数的和相等的特点。
3,如果幻方的和全是15,看谁填得又对又快:
81 6 57 2
83 5
67 2
2.幻方的分类
• 按照纵横各有数字的个数,可以分为:
•
三阶幻方、
•
四阶幻方、
•
五阶幻方、
•
六阶幻方… …
• 按照纵横数字数量奇偶的不同,可以分 为:
小学数学教案幻方
小学数学教案幻方教学目标:1. 了解幻方的概念和特点;2. 学会制作3阶和4阶幻方;3. 发展学生的逻辑推理和数学思维能力。
教学重点:1. 幻方的定义和性质;2. 制作3阶和4阶幻方的方法。
教学难点:1. 列幻方的规则掌握;2. 制作4阶幻方的挑战。
教学准备:1. 幻方的相关知识资料;2. 黑板、白板和彩色粉笔或马克笔。
教学过程:一、导入(5分钟)教师简单介绍幻方的概念和特点,引导学生思考幻方的玄妙之处。
二、讲解幻方的规则(10分钟)1. 幻方是由一组数字组成的方阵,使得每一行、每一列和对角线上的数字相加都相等;2. 以3阶幻方为例,让学生理解幻方数字的排列规律。
三、制作3阶幻方(10分钟)1. 请学生依次填写1至9这样的9个数字,按照规则组成3阶幻方;2. 让学生交流并比较各自的解法。
四、继续讲解幻方的规则(5分钟)1. 介绍4阶幻方的特点和制作方法;2. 引导学生思考如何填写16个数字,使得每行、每列和对角线上的数字相加都相等。
五、制作4阶幻方(15分钟)1. 让学生根据所学的规则和方法,尝试填写16个数字,组成4阶幻方;2. 鼓励学生合作,互相交流和讨论。
六、总结(5分钟)1. 教师带领学生回顾今天的学习内容,强调幻方的规则和制作方法;2. 鼓励学生在课后继续练习,并尝试制作更高阶的幻方。
教学反思:通过本节课的教学,学生了解了幻方的定义和性质,学会了制作3阶和4阶幻方。
在制作过程中,学生需要运用数学知识和逻辑推理能力,培养了他们的数学思维和解决问题的能力。
在以后的教学中,可以继续引导学生探索更高阶的幻方,拓展他们的数学学习和思维发展。
四年级数学奥数培优讲义-专题16幻方(含解析)
专题16幻方1.在如图的方格中,每行、每列都有1~4这四个数,并且每个数在每行、每列都只出现一次。
A 是 、B 是 。
C 是 。
2.在如方格中,每行每列都有1﹣4这四个数,并且每个数在每行每列都只出现一次 。
13B 4A13.在如图方格中,每行、每列都有1~4这四个数,并且每个数在每行、每列都只出现一次 ,B 应该是 。
4.在图中的方格中,每行、每列都有1一4这四个数,并且每个数在每行、每列都只出现一次 B 是 。
5.在如图所示的方格中,每行、每列都有1~4这四个数,并且每个数在每行、每列都只出现一次。
23B4A2A应该是 ,B应该是 。
6.小游戏:如图,九宫格中左上角为“开”,其余8格分别写着下一步的移动方法,就按照这格上的指示要求移动(如“左2”,即左移2格;“下1”,即下移1格);如果要把每一格都跳一遍(不重复),则第一次要放在第 列第 行的那一格。
7.如图的方格中,每行、每列都有1~4这四个数,且每个数在每行、每列都只出现一次.A是 ,B 是 .A.1B.2C.38.如图,在5×5的正方形方格中,排列着数字1、2、3、4、5,在每列中也恰好出现一次。
则写着X的空格中的数应当是 。
9.如表方格中每行、每列都有1~4这4个数,并且每个数在每行、每列都只出现一次。
想一想,A应该是 B应该是 。
322A13B10.在如图的方格里,每行、每列都有1~4这四个数,并且每个数在每行、每列都只能出现一次 。
11.在如图的方格中,每行、每列都有1﹣4这四个数,并且每个数在每行每列都只出现一次 ,C 是 .12.在如图的方格中,每行每列都有1~4这四个数,并且每个数在每行每列都只出现一次 ,B 是 .13.如图是一种精简版的“数独”游戏,每行每列都只有1~4这四个自然数,并且每个数在每行、每列都只出现一次 。
14.在右面的方格中,每行、每列都有1~4这4个数,并且每个数在每行、每列都出现一次。
B应该是 ,A应该是 。
小学四年级奥数幻方教程
小学四年级数学提高教程——幻方与数阵图【知识点解析】一、幻方的概念:所谓幻方是指在正方形方格表的每个方格内填入数,使得每行、每列和两条对角线上的各数之和相等;而阶数是指每行、每列所包含的方格数。
幻方题可以粗略的分为两种,一种是限制了所填入的数字,或者给出了需要填入的各个数字,或者已经填入一个或几个数字;另一种是对填入的数字没有任何限制,填对即可。
幻方又称为魔方,方阵等,它最早起源于我国。
宋代数学家杨辉称之为纵横图。
关于幻方的起源,我国有“河图”和“洛书”之说。
相传在远古时期,伏羲氏取得天下,把国家治理得井井有条,感动了上苍,于是黄河中跃出一匹龙马,背上驮着一张图,作为礼物献给他,这就是“河图”了,是最早的幻方。
伏羲氏凭借着“河图”而演绎出了八卦。
后来大禹治洪水时,洛水中浮出一只大乌龟,它的背上有图有字,人们称之为“洛书”。
“洛书”所画的图中共有黑、白圆圈45个。
把这些连在一起的小圆和数目表示出来,得到1至9这九个数,恰组成一个三阶幻方。
二、幻方问题主要方法1、累加法利用累加的方法可以求出“幻和”和关键位置上的数字。
通常将若干个“幻和”累加在一起,再计算每一个位置上的重数,从而求出“幻和”和关键位置上的数字。
2、求出“幻和”和关键位置上的数字后,结合枚举法完成数阵图的填写,在填写数阵图的过程中注意从特殊的数字和位置入手。
3、比较法利用比较的方法可以直接填出某些位置的数字。
注意观察数阵图中相关联的“幻和”之间的关系,注意它们之间共同的部分,去比较不同的部分。
4、掌握好3阶幻方中的规律。
【例题】1、如下图,将1—9填入3×3的方格表中,使得每行每列以及两条对角线上的三个数字之和都相等,你一共可以得到多少种填法?「分析」首先,我们思考要填出一个三阶幻方,什么量的求出是最重要的?立刻我们就知道,那个所谓的“幻和”,即每行、每列、每条对角线三个数的和是最重要的量。
它是多少呢?哦,如果我们按照行(按照列也一样)把幻方中的九个数加起来,那么它们的总和不就是3倍的“幻和”吗?而另一方面,我们也知道,由于1到9 这九个数字都只各用了一次,所以3倍的的“幻和”就等于1+2+3+4+5+6+7+8+9=45(请复习学过的等差数列知识)。
幻方ppt课件
偶数阶幻方的构造方法
偶数阶幻方中最常用的是四阶和八阶幻方。四阶幻方的构 造方法是将1放在第一行中间,然后按顺序将其它数字填入 ,每行从左到右填入数字,每列也从左到右填入数字,保 证每个数字都不重复。
单人幻方游戏
九宫格幻方
将1至9的数字填入3x3的九宫格中,使得每行、每 列以及对角线的数字之和都相等。
16格幻方
将数字1至16填入4x4的方格中,使得每行、每列 、两条对角线以及四个角落的数字之和都相等。
25格幻方
将数字1至25填入5x5的方格中,使得每行、每列 、两条对角线以及四个角落的数字之和都相等。
奇数阶幻方
由奇数个数字组成的幻方,通常为3×3、5×5等。这类幻 方构造相对简单,但也有一定的难度。
偶数阶幻方
由偶数个数字组成的幻方,如4×4、6×6等。这类幻方构 造较为复杂,需要遵循一定的规律和技巧。
广义幻方
不仅限于数字,还可以用字母、符号等代替数字,甚至可 以是非线性的矩阵。这类幻方更加灵活多变,具有更广泛 的用途。数学中的规律美 Nhomakorabea规律之美
幻方中的数字按照一定的规律排 列,这种规律美是数学中非常重
要的美学特征之一。
逻辑之美
幻方的构造过程需要遵循一定的 逻辑,这种逻辑美也是数学中非
常重要的美学特征之一。
统一之美
幻方中的数字虽然千变万化,但 都遵循着统一的规律和逻辑,这 种统一美也是数学中非常重要的
美学特征之一。
数学中的逻辑美
多人幻方挑战赛
团队赛
01
多个团队同时进行幻方挑战,以最快完成且符合规则的团队为
幻方解法整理归纳
在一个由若干个排列整齐的数组成的正方形中,图中任意一横行、一纵行及的几个数之和都相等,具有这种性质的图表,称为“幻方”。
我国古代称为“”、“”,又叫“”。
1、奇数阶幻方——罗伯特法(也有人称之为楼梯法)(如图一:以五阶幻方为例)奇数阶幻方n 为奇数 (n=3,5,7,9,11……) (n=2×k+1,k=1,2,3,4,5……)奇数阶幻方最经典的填法是罗伯特法(也有人称之为楼梯法)。
填写方法是这样:把1(或最小的数)放在第一行正中; 按以下规律排列剩下的n×n-1个数:(1)每一个数放在前一个数的右上一格;(2)如果这个数所要放的格已经超出了顶行那么就把它放在底行,仍然要放在右一列;(3)如果这个数所要放的格已经超出了最右列那么就把它放在最左列,仍然要放在上一行;(4)如果这个数所要放的格已经超出了顶行且超出了最右列,那么就把它放在前一个数的下一行同一列的格内;(5)如果这个数所要放的格已经有数填入,处理方法同(4)。
这种写法总是先向“右上”的方向,象是在爬楼梯。
口诀:1居首行正中央,依次右上莫相忘上出格时往下放,右出格时往左放.排重便往自下放,右上出格一个样图一2、单偶数阶幻方()122+=m n ——分区调换法(如图二:以六阶幻方为例) ① 把()122+=m n 阶的幻方均分成4个同样的小幻方A 、B 、C 、D(如图二)图二(注意A 、B 、C 、D 的相对位置不能改变,因为12+m 为奇数,所以A 、B 、C 、D 均为奇数阶幻方) ② 用连续摆数法在A 中填入21a ——构成幻方,同理,在B 中填入()2221a a ——+、在C 中填入()22312a a ——+、在D 中填入()22413a a ——+均构成幻方(2na =)(如图三)图三(因为12+m 为奇数,所以A 、B 、C 、D 均为奇数阶幻方,必然可以用连续摆数法构造幻方)③ 在A 的中间一行上从左侧的第二列起取m 个方格,在其它行上则从左侧第一列起取m 个方格,把这些方格中的数与D 中相应方格中的数字对调(如图四):图四不管是几阶幻方,在A 中取数时都要从中间一行的左侧第二列开始;因为当6=n 时,1=m ,所以本例中只取了一个数)④ 在A 中从最右一列起在各行中取1-m 个方格,把这些方格中的数与D 中相应方格中的数字对调。
幻方解法整理归纳
在一个由若干个排列整齐的数组成的正方形中,图中任意一横行、一纵行及对角线的几个数之和都相等,具有这种性质的图表,称为“幻方”。
我国古代称为“河图”、“洛书”,又叫“纵横图”。
1、奇数阶幻方——罗伯特法(也有人称之为楼梯法)(如图一:以五阶幻方为例)奇数阶幻方n 为奇数 (n=3,5,7,9,11……) (n=2×k+1,k=1,2,3,4,5……)奇数阶幻方最经典的填法是罗伯特法(也有人称之为楼梯法)。
填写方法是这样: 把1(或最小的数)放在第一行正中; 按以下规律排列剩下的n×n-1个数: (1)每一个数放在前一个数的右上一格;(2)如果这个数所要放的格已经超出了顶行那么就把它放在底行,仍然要放在右一列; (3)如果这个数所要放的格已经超出了最右列那么就把它放在最左列,仍然要放在上一行;(4)如果这个数所要放的格已经超出了顶行且超出了最右列,那么就把它放在前一个数的下一行同一列的格内; (5)如果这个数所要放的格已经有数填入,处理方法同(4)。
这种写法总是先向“右上”的方向,象是在爬楼梯。
口诀:1居首行正中央, 依次右上莫相忘 上出格时往下放, 右出格时往左放. 排重便往自下放, 右上出格一个样图一2、单偶数阶幻方()122+=m n ——分区调换法(如图二:以六阶幻方为例)① 把()122+=m n 阶的幻方均分成4个同样的小幻方A 、B 、C 、D(如图二)图二(注意A 、B 、C 、D 的相对位置不能改变,因为12+m 为奇数,所以A 、B 、C 、D 均为奇数阶幻方) ② 用连续摆数法在A 中填入21a ——构成幻方,同理,在B 中填入()2221a a ——+、在C 中填入()22312aa ——+、在D 中填入()22413a a ——+均构成幻方(2na =)(如图三)图三(因为12+m 为奇数,所以A 、B 、C 、D 均为奇数阶幻方,必然可以用连续摆数法构造幻方) ③ 在A 的中间一行上从左侧的第二列起取m 个方格,在其它行上则从左侧第一列起取m 个方格,把这些方格中的数与D 中相应方格中的数字对调(如图四):图四不管是几阶幻方,在A 中取数时都要从中间一行的左侧第二列开始;因为当6=n 时,1=m ,所以本例中只取了一个数)④ 在A 中从最右一列起在各行中取1-m 个方格,把这些方格中的数与D 中相应方格中的数字对调。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
幻方(一)1. 会用罗伯法填奇数阶幻方2. 了解偶数阶幻方相关知识点3. 深入学习三阶幻方一、幻方起源也叫纵横图,也就是把数字纵横排列成正方形,因此纵横图又叫幻方.幻方起源于我国,古人还为它编撰了一些神话.传说在大禹治水的年代,陕西的洛水经常大肆泛滥,无论怎样祭祀河神都无济于事,每年人们摆好祭品之后,河中都会爬出一只大乌龟,乌龟壳有九大块,横着数是3行,竖着数是3列,每块乌龟壳上都有几个点点,正好凑成1至9的数字,可是谁也弄不清这些小点点是什么意思.一次,大乌龟又从河里爬上来,一个看热闹的小孩惊叫起来:“瞧多有趣啊,这些点点不论横着加、竖着加还是斜着加,结果都等于十五!”于是人们赶紧把十五份祭品献给河神,说来也怪,河水果然从此不再泛滥了.这个神奇的图案叫做“幻方”,由于它有3行3列,所以叫做“三阶幻方”,这个相等的和叫做“幻和”.“洛书”就是幻和为15的三阶幻方.如下图:987654321我国北周时期的数学家甄鸾在《算数记遗》里有一段注解:“九宫者,二四为肩,六八为足,左三右七,戴九履一,五居中央.”这段文字说明了九个数字的排列情况,可见幻方在我国历史悠久.三阶幻方又叫做九宫图,九宫图的幻方民间歌谣是这样的:“四海三山八仙洞,九龙五子一枝连;二七六郎赏月半,周围十五月团圆.”幻方的种类还很多,这节课我们将学习认识了解它们.二、幻方定义幻方是指横行、竖列、对角线上数的和都相等的数的方阵,具有这一性质的33⨯的数阵称作三阶幻方,44⨯的数阵称作四阶幻方,55⨯的称作五阶幻方……如图为三阶幻方、四阶幻方的标准式样,98765432113414151612978105113216三、解决这幻方常用的方法⑴适用于所有奇数阶幻方的填法有罗伯法.口诀是:一居上行正中央,后数依次右上连.上出框时往下填,右出框时往左填.排重便在下格填,右上排重一个样.⑵适用于三阶幻方的三大法则有: ①求幻和: 所有数的和÷行数(或列数)②求中心数:我们把幻方中对角线交点的数叫“中心数”,中心数=幻和÷3. ③角上的数=与它不同行、不同列、不同对角线的两数和÷2.四、数独知识点拨教学目标数独简介:(日语:数独すうどく)是一种源自18世纪末的瑞士,后在美国发展、并在日本得以发扬光大的数学智力拼图游戏。
如今数独的雏型首先于1970年代由美国的一家数学逻辑游戏杂志发表,当时名为Number Place。
现今流行的数独于1984年由日本游戏杂志《パズル通信ニコリ》发表并得了现时的名称。
数独本是“独立的数字”的省略,因为每一个方格都填上一个个位数。
数独可以简单的数为:让行与列及单元格的数字成规律性变换的一类数字谜问题解题技巧:数独游戏中最常规的办法就是利用每一个空格所在的三个单元中已经出现的数字(大小数独一个空格只位于两个单元之内,但是同时多了一个大小关系作为限制条件)来缩小可选数字的范围。
总结4个小技巧:1、巧选突破口:数独中未知的空格数目很多,如何寻找突破口呢?首先我们要通过规则的限制来分析每一个空格的可选数字的个数,然后选择可选数字最少的方格开始,一般来说,我们会选择所在行、所在列和所在九宫格中已知数字比较多的方格开始,尽可能确定方格中的数字;而大小数独中已知的数字往往非常少,这个时候大小关系更加重要,我们除了利用已知数字之外更加需要考虑大小关系的限制。
2、相对不确定法:有的时候我们不能确定2个方格中的数字,却可以确定同一单元其他方格中肯定不会出现什么数字,这个就是我们说的相对不确定法。
举例说明,A1可以填入1或者2,A2也可以填入1或者2,那么我们可以确定,1和2必定出现在A1和A2两者之中,A行其他位置不可能出现1或者2.3、相对排除法:某一单元中出现好几个空格无法确定,但是我们可以通过比较这几个空格的可选数字进行对比分析来确定它们中的某一个或者几个空格。
举例说明,A行中已经确定5个数字,还有4个数字(我们假设是1、2、3、4)没有填入,通过这4个空格所在的其他单元我们知道A1可以填入1、2、3、4,A2可以填入1、3,A3可以填入1、2、3,A4可以填入1、3,这个时候我们可以分析,数字4只能填入A1中,所以A1可以确定填入4,我们就可以不用考虑A1,这样就可以发现2只能填入A3中,所以A3也能确定,A2和A4可以通过其他办法进行确定。
4、假设法:如果找不到能够确定的空格,我们不妨进行假设,当然,假设也是原则的,我们不能进行无意义的假设,假设的原则是:如果通过假设一个空格的数字,可以确定和这个空格处在同一个单元内的其它某一个或者某几个空格的数字,那么我们就以选择这样的空格来假设为佳。
举例说明,B3可以填入1或者2,A3可以填入2或者3,B4可以填入1或者2,这个时候我们就应该假设B3填入2,这样就可以确定A3填入3,B4填入1,然后以这个为基础进行推理,如果推出违反规则的情况出现,那么这个假设就是错误的,我们回到假设点重新开始。
例题精讲模块一、构造幻方【例1】33⨯的正方形中,在每个格子里分别填入1~9的9个数字,要求每行每列及对角线上的三个数的和相等(请给出至少一种填法).【考点】构造幻方【难度】1星【题型】填空【解析】方法一:第一步:求幻和:1239315++++÷=()第二步:求中心数:我们把幻方中对角线交点的数叫“中心数”,仔细观察可以发现:除了对角线外,第二行、第二列也分别经过中心数,那么,经过中心数的四条线段上的数字总和是幻和的4倍,即15460⨯=,显然,在这个总和中,中心数用了四次,其余各数正好各用一次,所以中心数应是:604535-÷=()第三步:确定四个角上的数.由于在同一条直线上的三个数的和是15,所以如果某格中的数是奇数,那么与这个数在同一条直线上的另两个数的奇偶性相同,所以四个角上的数必为偶数.第四步:用尝试法填一个基本解,以基本解为基础,可绕中心旋转与对调得到其它各解,共8解,下图为其中一解,其余解均可由其翻转或旋转得到:987654321方法二(对易法):南宋数学家杨辉概括为:“九子斜排,上下对易,左右相更,四维挺出”.即:先把1到9九个数字按顺序斜着排列,再把上下的数字1和9对调,左右的数字7和3对调,最后把4个不在边上也不在最中心的数字拉到角上,一个三阶幻方就形成了.789456123729654183381456927方法三(阶梯法):阶梯法也叫楼梯法,是法国数学家巴赫特创造的.这个方法看起来有点像对易法,但又完全不一样,十分简单而巧妙,适用于所有奇数阶幻方.这个方法把n 阶方阵从四周向外扩展成阶梯状,然后把2n 个自然数顺阶梯方向先码放好,再把方阵以外部分平移到方阵以内其对边部分去,即构成幻方.下图表示了如何用阶梯法构成3阶幻方.276951438方法二和方法三中将1~9按8个不同的方位排列就可以得到本题8个不同的解. 方法四(罗伯法):把1(或最小的数)放在第一行正中,按以下规律排列剩下的数: ⑴ 每一个数放在前一个数的右上一格;⑵ 如果这个数所要放的格已经超出了最顶行,那么就把它放在最底行,仍然要放在右一列. ⑶ 如果这个数所要放的格已经超出了最右列,那么就把它放在最左列,仍然要放在上一行. ⑷ 如果这个数所要放的格已经填好了其它的数,或者同时超出了最顶行和最右列,那么就把它放在前一个数的下面,具体如下图:1121231234123456123456712345678123456789这是法国人罗伯特总结出的方法,所以叫“罗伯法”.罗伯法的口诀:一居上行正中央,后数依次右上连.上出框时往下填,右出框时往左填.排重便在下格填,右上排重一个样.它对于构造连续自然数(以及能构成等差数列的数)幻方是最简单易行的,适用于所有奇数阶幻方.【答案】123456789【例 2】 33⨯的正方形格子中,在每个格子里分别填入2~10的9个数字,要求每行每列及对角线上的三个数的和相等(请给出至少一种填法).【考点】构造幻方 【难度】2星 【题型】填空 【解析】 第一步:求幻和:234910318+++++÷=().第二步:求中心数:我们把幻方中对角线交点的数叫“中心数”,仔细观察可以发现:除了对角线外,第二行、第二列也分别经过中心数,那么,经过中心数的四条线段上的数字总和是幻和的4倍,即18472⨯=,显然,在这个总和中,中心数用了四次,其余各数正好各用一次,所以中心数应是:725436-÷=().第三步:确定四个角上的数:用尝试法,不难推知,四个角只能是奇数.第四步:用尝试法填一个基本解,以基本解为基础,可绕中心旋转与对调得到其它各解,共8解.下图为其中一解,其余解均可由其翻转或旋转得到:8910567234其他方法这里不再做介绍,同学们可以自己尝试练习.【答案】8910567234【例 3】 用11,13,15,17,19,21,23,25,27编制成一个三阶幻方。
【考点】构造幻方 【难度】2星 【题型】填空 【解析】 方法一:给出的九个数形成一个等差数列,1~9也是一个等差数列.不难发现:中间方格里的数字应填等差数列的中间数,也就是第五个数,即应填19;填在四个角上方格中的数是位 于偶数项的数,即13,17,21,25,而且对角两数的和相等,即13251721+=+;余下 各数就不难填写了(见下图).111723131925152127与幻方相反的问题是反幻方.将九个数填入33⨯(三行三列)的九个方格中,使得任一行、任一列以及两条对角线上的三个数之和互不相同,这样填好后的图称为三阶反幻方.方法二:用阶梯法,在三阶幻方的上下左右的中间添加一格,先将数字按从小到大的顺序,以斜行方向从左下向右上依次填写,再把添加格内的数填到本行(或本列)中相隔两行(或两列)的方格中.212313111927251517方法三:对易法:九子斜排,上下对易,左右相更,四维挺出.112727172713171317131713151923231915231915151923251121252125212521271111→→→ 方法四:用罗伯法的口诀:一居上行正中央,后数依次右上连.上出框时往下填,右出框时往左填.排重便在下格填,右上排重一个样.【答案】111723131925152127【例 4】 如下图的33⨯的阵列中填入了1~9的自然数,构成大家熟知的3阶幻方.现在另有一个33⨯ 的阵列,请选择9个不同自然数填入9个方格中,使得其中最大者为20,最小者大于5,且要求横加、竖加、对角线方式相加的3个数之和都相等.987654321【考点】构造幻方 【难度】3星 【题型】填空 【解析】 观察原表中的各数是从1~9不同的九个自然数,其中最大的数是9,最小的数是1,且横加、竖加、对角线方式相加结果相等.根据题意,要求新制的幻方最大数为20,而91120+=,因此,如果原表中的各数都增加11,就能符合新表中的条件了.如下图.201918171615141312【答案】201918171615141312【例 5】 从1、2、3…20这20个数中选出9个不同的数放入3×3的方格表中,使得每行、每列、每条对角线上的三个数的和都相等。