时变电磁场
第六章 时变电磁场
因此
D1n D2n
可见,两种理想介质形成的边界上,电通密度的法向分量是连续的。
对于各向同性的线性介质,上式又可写为 1E1n 2E2n 第四,磁场强度的切向分量边界条件也与媒质特性有关。
在一般情况下,由于边界上不可能存在表面电流,根据全电流定律, 只要电通密度的时间变化率是有限的,可得
l
S2
结论:恒定磁场中推导得到的安培环路定律不再适用
于时变场问题
❖ 二、位移电流假说
在电容器极板间,不存在自由电流,但存在随时间变 化的电场;
为了克服安培环路定律的局限性,麦克斯韦提出了 位移电流假说。他认为:在电容器之间,存在着因变化 的电场而形成的电流,其性质与传导电流完全不同,量 值与回路中自由电流相等。
E dl C
C
( Ein
Ec ) dl
S
B dS t
E
(Ein
Ec )
Ein
B t
(6-6) (6-7)
♠
当导体回路C 以速度运动 v
时,利用关系式
d dt
t
v
和 B 0 ,可以得到
d
B
dt S B dS S t dS C (B v) dl
(6-8)
等式右边的两个积分分别对应着磁场变化和导体运
S
Jc
Jv
t
dS
全电流定律 积分形式
H dS S
S
Jc
Jv
D t
dS
H
Jc
Jv
D t
对上式取散度知 Jc Jv Jd 0
全电流定律 微分形式
S
Jc Jv Jd
dS Leabharlann VJc Jv Jd
dV 0
电磁场第五章 时变电磁场
H2
同理得
en
(E1
E2
)
0
或
E1t E2t
5.4.2 两种常见的情况 1. 两种理想介质分界面
上的边界条件
在两种理想介质分界 面上,通常没有电荷和 电流分布,即JS=0、ρS =0,故
en
媒质 1 媒质 2
Er、Hr 的切向分量连续
en
媒质 1 媒质 2
Dr、Br的法向分量连续
en
dt
BgdS
S
即
Ñ 若空间同时存在由电荷产生的电场
rr r 。E由 于Ein Ec
,故有
C
rr Ec gdl
0
Er c,则总电场
应Er为
与Erin 之E和rc ,
rr d r r
ÑC Egdl
dt
S BgdS
这就是推广的法拉第电磁感应定律。
2. 引起回路中磁通变化的几种情况:
(1) 回路不变,磁场随时间变化
2.6.2 麦克斯韦方程组的微分形式
H
J
D
E
t B
t
B 0
D
麦克斯韦第一方程,表明传导电 流和变化的电场都能产生磁场
麦克斯韦第二方程,表 明变化的磁场产生电场
麦克斯韦第三方程表明磁场是 无源场,磁力线总是闭合曲线
麦克斯韦第四方程, 表明电荷产生电场
5.3.2 媒质的本构关系
在时变的情况下不适用
解决办法: 对安培环路定理进行修正
由
D
J
(
D)
将
H
J
修正为:
H
t J
D
t
时变电场会激发磁场
(J
D )
工程电磁场导论时变电磁场
边界元法
01
边界元法是一种将偏微分方程的求解域离散化为边界离散点的 方法,通过在边界上应用离散化的方程来求解问题。
02
在时变电磁场中,边界元法可以用来求解电磁波散射和辐射等
问题。
边界元法的优点在于精度高,适用于处理复杂的几何形状和边
介电常数
描述电场中物质电容特性的物理量,单位 为法拉/米(F/m)。介电常数的大小与物 质的极化程度有关。
VS
磁导率
如前所述,描述材料对磁场响应能力的物 理量。在时变电磁场中,磁导率是复数, 其实部表示物质的磁性,虚部表示物质的 损耗。
铁电材料与铁磁材料
铁电材料
具有自发极化且在一定温度范围内铁电体从 顺电相转变为铁电相的材料。其特点是具有 较高的介电常数和较弱的磁导率。
包括四个基本方程,其中三个描述了电场和磁场的变化,一个描述了电荷 与电流的关系。
适用于所有频率和波长的电磁波,包括无线电波、可见光、X射线等。
波动方程
是描述波动现象的基 本方程,包括声波、 光波、电磁波等。
波动方程是偏微分方 程,需要求解以获得 电场和磁场的分布和 变化。
在时变电磁场中,波 动方程描述了电场和 磁场在空间中的传播 和变化。
铁磁材料
具有显著磁性的材料,其特点是具有较高的 磁导率和较弱的介电常数。在时变电磁场中, 铁磁材料的磁导率可能表现出强烈的非线性。
06
时变电磁场中的数值计算 方法
有限元法
01
有限元法是一种将连续的求解 域离散化为有限个小的、相互 连接但不重叠的单元,然后对 每个单元进行求解的方法。
02
在时变电磁场中,有限元法可 以用来求解复杂的电磁问题, 如电磁波传播、电磁散射和辐 射等。
时变电磁场和平面电磁波
振幅衰减
02
随着传播距离的增加,平面电磁波的振幅会按指数规律衰减。
相位和偏振
03
平面电磁波具有确定的相位和偏振状态。
平面电磁波的应用
无线通信
无线电波是典型的平面电 磁波,广泛应用于广播、 电视、移动通信等领域。
雷达探测
雷达通过发射平面电磁波 并接收反射回来的信号, 实现对目标物体的探测和 定位。
射电天文学
实验结果与分析
结果
实验结果显示,时变电磁场和平面电 磁波在传播过程中存在明显的波动和 散射现象,幅度和相位均发生改变, 极化状态也会发生变化。
分析
通过对实验结果的分析,可以深入了 解时变电磁场和平面电磁波的传播特 性,探究不同介质和环境因素对电磁 波传播的影响。
实验结论与展望
结论
实验结果表明,时变电磁场和平面电磁 波在传播过程中受到多种因素的影响, 表现出复杂的传播特性。这为电磁波传 播和应用提供了重要的理论依据和实践 指导。
边界元法的优点在于适用于求解具有复杂边界条件的问题,且精度较高。然而,边界元法需要处理高维度的边界积分方程, 计算量较大,且在处理非均匀介质和时变问题时可能较为困难。
05
时变电磁场和平面电磁 波的实验研究
实验设备与实验方法
实验设备
包括电磁波发射器、接收器、测量仪 表和数据处理系统等。
实验方法
采用时域和频域测量相结合的方法, 通过测量电磁波的传播特性、幅度、 相位和极化状态等参数,分析时变电 磁场和平面电磁波的传播规律。
VS
展望
未来研究可以进一步探究时变电磁场和平 面电磁波在复杂环境和介质中的传播特性 ,发展更加精确的测量技术和数据处理方 法,推动电磁波传播和应用领域的不断发 展。
电磁场与电磁波第四章时变电磁场
第 4 章 时变电磁场
电磁场与电磁波第四章时变电磁 场..
电磁场与电磁波
第 4 章 时变电磁场
2
4.1 电磁场波动方程
麦克斯韦方程 —— 一阶矢量微分方程组,描述电场与磁场 间的相互作用关系。
波动方程 —— 二阶矢量微分方程,揭示电磁场的波动性。
麦克斯韦方程组
波动方程。
无源区域中电磁场波动方程
时变电磁场唯一性定理
在以闭曲面S为边界的有界区域V 中,
V
如果给定t=0 时刻的电场强度和磁场强度 S
的初始值,并且当t 0 时,给定边界面S
上的电场强度或者磁场强度的切向分量已知,那么,在 t > 0 的
任何时刻,区域V 中的电磁场都由麦克斯韦方程组唯一确定。
唯一性定理指出了获得唯一解所必须给定的边界条件。
第 4 章 时变电磁场
17
4.5.1 简谐电磁场的复数表示
简谐场量的复数表示形式
设 A(r,t)是一个以角频率 随时间t 作余弦变化的场量,它
可以是电场或磁场的任意一个分量,也可以是电荷或电流等变量,
它与时间的变化关系可以表示为:
A ( r ,t) A 0 c o s [t ( r ) ]
实数表示法 或称瞬时表示法
只要把微分算子 用 j 代替,就可把麦克斯韦方程转换为
t
简谐电磁场复矢量之间的关系,而得到简谐场的麦克斯韦方程。
H
J D t
E
B t
B 0
D
Hm
Jm
j D m
Em
j B m
Bm 0
D m m
H J j D
E j B
D
式中A0代表振幅、 ( r )为与坐标有关的相位因子。
第5章 时变电磁场 (全)
? 2E
2 抖 r E J + me 2 = m e ¶t ¶t
? 2H
¶ 2H me = - 汛 J 2 ¶t
需要求解 6 个坐标分量。 位函数满足一个矢量微分方程和一个标量微分方程
? 2A
¶ 2A me 2 = - mJ ¶t
? 2F
¶ 2F r me 2 = e ¶t
仅需求解 4 个坐标分量,直角坐标系中实际上等于求解 1 个标量方程。
炎 B = 0
磁通连续性定理 高斯定理
炎 D = r
¶r ¶t
Ò J ?ds 蝌
S
-
d dt
蝌
V
r dv
炎 J = -
电荷守恒定律 本构关系
ì ï Jc = sE ï J =J + í ï J = rv ï î v
i
D = eE
B = mH
时 变 电 磁 场
时变电场是有旋有散的,时变磁场是有旋无散的。但, 时变电磁场中的电场与磁场是不可分割的,因此,时变 电磁场是有旋有散场。 在无源区中,时变电磁场是有旋无散的。 电场线与磁场线相互交链,自行闭合,从而在空间形成 电磁波。 静态场和恒定场是时变场的两种特殊形式。
dr dq i= = S s dt dt
J = dr s dt
极板间电通量随时间的变化率为
d Ye dt = d (SD ) dt = S drs dt = i
电位移矢量的大小随时间的变化率为
drs dD dD = = = J dt dt dt
方向上,充电时 相反。显然,
dD dt
dD dt
? E
2 2 r 抖 E J me 2 = m + ¶t e ¶t
第4章 时变电磁场
(2)
对方程(2)两边取旋度有 E H t 2 2 E H E E ( E ) E
E t
2
对于各向同性的介质,得
2 E 2 E 2 0 t (5)
E 0 t
t
同理可得
2 H 2 H 2 0 t (6)
第四章 时 变 电 磁 场
从上方程可以看出:时变电磁场的电场场量和磁场场量在 空间中是以波动形式变化的,因此称时变电磁场为电磁波。 上两式为关于场量 E、H 的矢量波动方程,表示时变电磁场 以波的形式在空间存在和传播,其波速为
A E ex Am cos(t kz ) t
第四章 时 变 电 磁 场
§4.3 电磁能量守恒定律
能量守恒定律是一切物质运动过程遵守的普遍规律,作为特殊形态的物 质,电磁场及其运动过程也遵守这一规律。 下面讨论电磁场的能量和能量守恒定律,引入重要的坡印廷矢量和坡印廷 定理,分析讨论电磁场能量、电荷电流运动及电磁场做功之间的相互联系。
其中Am、k是常数,求电场强度、磁场强度。
解:
Ax B A ey ey kAm cos(t kz ) z k H ey Am cos(t kz )
A 0 t
C
如果假设过去某一时刻,场还没有建立,则C=0。
量位只决定于ρ,这对求解方程特别有利。只需解出A,无需
解出 就可得到待求的电场和磁场。 电磁位函数只是简化时变电磁场分析求解的一种辅助函数,应 用不同的规范条件,矢量位A和标量位 的解也不相同,但最终 得到的电磁场矢量是相同的。
电磁场与电磁波 第五章时变电磁场
D H J t 位移电流是电流概念的扩充,它不是带电粒子的定向运动 形成的,而是人为定义的,不能直接由实验测出。
l
H dl (J Jd ) dS
S
D J dS dS S S t
年中发生的美国内战 (1861-1865)将会降低为一个地区性琐事而
黯然失色”。
陕西科技大学编写
电磁场与电磁波
第5章 时变电磁场
14
评价
处于信息时代的今天,从婴儿监控器到各种遥控设备、从雷达到
微波炉、从地面广播电视到太空卫星广播电视、从地面移动通信到 宇宙星际通信、从室外无线局域网到室内蓝牙技术、以及全球卫星 定位导航系统等,无不利用电磁波作为传播媒体。 无线信息高速公路更使人们能在任何地点、任何时间同任何人取 得联系,发送所需的文本、声音或图象信息。电磁波的传播还能制 造一种身在远方的感觉,形成无线虚拟现实。 电磁波获得如此广泛的应用,更使我们深刻地体会到19世纪的麦 克斯韦和赫兹对于人类文明和进步的伟大贡献。
D (J )0 t
全电流连续 位移电流
D Jd 陕西科技大学编写 t
电磁场与电磁波
第5章 时变电磁场
7
流进曲面S1的传导电流 S1 S2 等于流出S2的位移电流 ② 位移电流与传导电流、运流电流一样具有磁的效应;
J dS Jd dS
令 l2 0
H 2t H1t J s
磁场: ( H - H ) J 即 en 1 2 S
B1n B2n 电场:H 2t H1t J s
陕西科技大学编写
电磁场与电磁波
第5章 时变电磁场
时变电磁场
y, y,
z, z,
t) t)
Exm E ym
(x, (x,
y, y,
z) z)
cos[t cos[t
x (x, y (x,
y, y,
z)] z)]
Ez
(x,
y,
z,
t)
Ezm
(x,
y,
z)
cos[t
z
(
x,
y,
z)]
式中:Exm , Eym , Ezm 为电场在x,y,z方向分量的幅度
x, y,z 为电场x,y,z分量的初始相位
电磁场与电磁波
第4章 时变电磁场
第四章 时变电磁场
时变情况下,电场和磁场相互关联,构成统一的电磁场 时变电场和磁场能量在空间中不断相互转换,并以电磁波动的 形式从一个地方传递到另外一个地方
本章主要内容: ➢ 时变电场和磁场满足的方程——波动方程 ➢ 时变电磁场的辅助函数——标量电位和矢量磁位 ➢ 时变电磁场的能量守恒定律 ➢ 正弦规律变化的时变场——时谐电磁场
对于时变场来说,动态位函数常用的规范条件为洛伦兹规范条件
A
t
洛伦兹规范条件
思考:库仑规范条件和洛伦兹规范条件有何联系?
15:54
电磁场与电磁波
第4章 时变电磁场
4.2.2 达朗贝尔方程
E (
H H
J
1
E
t A
A) 2
t
t
1 A J E
t
(
A)
Σ
J EdV
V
15:54
E, H
V
电磁场与电磁波
第4章 时变电磁场
坡印廷定理物理意义:单位时间内流入体积V内的电磁能量等于 体积V内增加的电磁能量与体积V内损耗的电磁能量之和。
电磁场理论-时变电磁场
J
,即得:
H
J
D
t
上式就是修正后的适用于时变场的安培环路定律,它
与时变场的电流连续性方程是相容的。
第5章 时变电磁场
Maxwell 从物理概念上解释了这一结果:在没有传导
电流的极板之间,由于两个极板上的正负电荷是随着外加
交变电压而改变,效果上相当于通过两个极板之间发生了
电荷相互转移(实际上电荷的转移是通过连接极板的外电
t
CU m
sin
t
ic
第5章 时变电磁场
可见引入位移电流之后,一开始的例中的矛盾也就不
复存在,因为:
H
dl
l
S
J
D t
dS
J
dS
S1
ic
S2
D t
dS
id
在两极板之间,电流以位移电流的形式存在,从而保
持了电流的连续性。
第5章 时变电磁场
5.3 麦克斯韦方程组
麦克斯韦推广了法拉弟电磁感应定律,得出交变的磁 场产生电场的结论;又于 1862 年提出了位移电流的假说, 说明交变的电场也能产生磁场。这表明了电场与磁场之间 的紧密联系,二者相互依存、相互制约,成为统一的电磁 场的两个方面。
上述各方程不能反映媒质对场的影响,需要补充各场
量之间的关系,在各向同性的线性媒质中:
D
E
BJ
H E
— 媒质的本构方程 或 电磁场的辅助方程
第5章 时变电磁场
从以上方程不难看出,前面讨论过的静电场,恒定电
场和恒定磁场的基本方程都不过是 Maxwell 方程组在
d dt
0
时的特例。
Maxwell 方程组的正确性已为实验所证实,它适用于
时变电磁场专题教育课件
已知在任何边界上,电场强度旳切向分量及磁感应强度 旳法向分量是连续旳,所以理想导体表面上不可能存在电 场切向分量及磁场法向分量,即时变电场必须垂直于理想 导电体旳表面,而时变磁场必须与其表面相切。
en et ,
E
H
H2t JS
②
①
H1t
因 D1n ,0 由前式得
D2n S
或
en D S
因为理想导电体表面存在表面电流 Js ,设表面电流密度
J S e y (H x H z ) ez H x ex H z
在 y = b 旳内壁上
S e y ( E y ) E y J S e y (H x H z ) ez H x ex H z
在 x = 0 旳侧壁上,H x 0
J S ex ez H z0 sin( t k z z) e y H z0 sin( t k z z)
主要内容
位移电流,麦克斯韦方程,边界条件,正弦电 磁场。
6.1 法拉第电磁感应定律
由物理学知,穿过闭合线圈中旳磁通发生变化时,线 圈中产生旳感应电动势 e 为
e d
dt
式中电动势 e 旳正方向要求为与磁通方向构成右旋关系。 所以,当磁通增长时,感应电动势旳实际方向与磁通
方向构成左旋关系;反之,当磁通降低时,电动势旳实 际方向与磁通方向构成右旋关系。
例题 计算感应电动势 书P149
6.2 位移电流
位移电流不是电荷旳运动,而是一种人为定义旳概念。
电荷守恒原理表白
SJ
dS
q t
J
t
对于静态场,因为电荷分布与时间无关,所以取得电流连续性原理, 即
SJ dS 0
J 0
对于时变电磁场,因电荷随时间变化,不可能根据电荷守恒原理推出 电流连续性原理。但是电流连续是客观存在旳物理现象,为此必须扩充 前述旳电流概念。
第4章 时变电磁场1
2、坡印亭矢量
− ∫
S
v v v 表流入闭合面S的电磁功率, ( E × H )dS 表流入闭合面S的电磁功率,因此
v v 为一与通过单位面积的功率相关的矢量。 与通过单位面积的功率相关的矢量 E × H 为一与通过单位面积的功率相关的矢量。
v 定义:坡印廷矢量( 表示)- 定义:坡印廷矢量(用符号 S 表示)-能流密度矢量
v v 讨论:1 :1、 为与时间相关的函数(瞬时形式), ),则 讨论:1、若 E , H 为与时间相关的函数(瞬时形式),则 v v v S (t ) = E (t ) × H (t )
称为坡印廷矢量的瞬时形式。 称为坡印廷矢量的瞬时形式。 瞬时形式
v v 对某些时变场, 2、对某些时变场, , H 呈周期性变化。则将瞬 E 呈周期性变化。
v v v d v v ⇒ − ( E × H )dS = (We + Wm ) + ∫ E JdV ∫S V dt
坡印廷定理积分形式 说明: 说明:
− ∫
S
坡印廷定理物理意义: 坡印廷定理物理意义: 物理意义 流入体积V 流入体积V内的电磁功率 等于体积V 等于体积V内电磁能量的 增加率与体积V 增加率与体积V内损耗的 电磁功率之和。 电磁功率之和。
坡印廷定理描述了空间中电磁能量守恒关系。 坡印廷定理描述了空间中电磁能量守恒关系。
第4章 时变电磁场
13
1、坡印亭定理
在时变场中, 在时变场中,电、磁能量 相互依存, 相互依存,总能量密度为
1r r 1r r w = we + wm = D ⋅ E + B ⋅ H 2 2 W = ∫V 1 r r r r w dV = ∫V (D ⋅ E + B ⋅ H) V d 2
第四篇时变电磁场
电磁场理论
第 4 章 时变电磁场
26
4. 5 时谐电磁场
时谐电磁场的复数表示 复矢量的麦克斯韦方程 复电容率和复磁导率 亥姆霍兹方程 时谐场的位函数 平均能流密度矢量
电磁场理论
第 4 章 时变电磁场
27
4.5.1 时谐电磁场的复数表示
时谐电磁场的概念
如果场源以一定的角频率随时间呈时谐(正弦或余弦)变化, 则所产生电磁场也以同样的角频率随时间呈时谐变化。这种以一 定角频率作时谐变化的电磁场,称为时谐电磁场或正弦电磁场。
A
0
t
除了利用洛仑兹条件外,另一种常用的是库仑条件,即
A 0
电磁场理论
第 4 章 时变电磁场
位函数的微分方程
D E
H
B
8
H
J
D
B
J
E
t
B A
E
A
t
t
A
J
(
A
)
t t
A ( A) 2 A
2 A
2A t 2
J
(
A
t
)
A
0
t
2
A
2 t
H
(
E )
t
(
H)
2H
2H t 2
2H
2H t 2
0
若为导电媒质,结果如何?
电磁场理论
第 4 章 时变电磁场
4
4.2 电磁场的位函数
讨论内容
位函数的定义 位函数的性质 位函数的规范条件 位函数的微分方程
电磁场理论
第 4 章 时变电磁场
5
引入位函数的意义 引入位函数来描述时变电磁场,使一些问题的分析得到简化。
第四章 时变电磁场
∂ϕ µε = −∇ ⋅ A = 0, ϕ = C ∂t
如果假设过去某一时刻,场还没有建立,则C=0。
µ
∂A E = −∇ϕ − = −exωAm cos(ωt − kz ) ∂t
23
坡印廷矢量的瞬时值为:
S (t ) = E (t ) × H (t ) k = [−exωAm cos(ωt − kz )] × − e y Am cos(ωt − kz ) µ ωk 2 = ez Am cos(ωt − kz )
20
单位W/m2 单位
波的传播方向
21
22
例题 已知时变电磁场中矢量位
A = ex Am sin(ωt − kz ) , 其中
Am、k是常数,求电场强度、磁场强度和坡印廷矢量。 是常数, 是常数 求电场强度、磁场强度和坡印廷矢量。 解:
∂Ax B = ∇ × A = ey = −e y kAm cos(ωt − kz ) ∂t k H = −e y Am cos(ωt − kz )
∂A E+ = −∇ϕ ∂t
∂ (∇ × A) ∇× E = − ∂t ∂A ∇× E + = 0 ∂t ∇ × (∇M ) = 0
{
8
注意: 注意: 这里的矢量位及标量位均是时间 空间函数 时间、 函数。 这里的矢量位及标量位均是时间、空间函数。当它 们与时间无关时,矢量位、 们与时间无关时,矢量位、标量位和场量之间的关系与 静态场完全相同,因此矢量位又称为矢量磁位 矢量磁位, 静态场完全相同,因此矢量位又称为矢量磁位,标量位 又称为标量电位 标量电位。 又称为标量电位。
ab =| a | | b | e a | a | j (α − β ) = e b |b|
第五章 时变电磁场
解:1、 I J dS 2 10r 1.5 r 2 sin d d
S
00
40 r0.5
3.9738A
r 1mm
2、因为
J
1 r2
d dr
r 2 10r 1.5
dS
H dS
S
上式右边应用散度定理可以写为
S H dS V H dV 0
左边为
D
S
J
c
t
dS
Ic
Id
I
0
证毕
例5-3 坐标原点附近区域内传导电流为 J er 10r 1.5( A / m2 ) 试求:1、通过半径 r = 1mm的球面的电流值;
B
E
l
dl
S
t
dS
B
S
dS
0
D
S
dS
q
微分形式 H J D
t E B
t B 0
D
可见,时变电场是有旋有散的,时变磁场是有旋无散的。但是, 时变电磁场中的电场与磁场是不可分割的,因此,时变电磁场是有旋 有散场。
四、麦克斯韦方程组的辅助方程—本构关系 》一般媒质本构关系 》各向同性线性媒质本构关系
D B
0E 0 ( H
P M
)
J
E
D E
时变电磁场
时变电磁场1 什么是时变电磁场:场源(电荷、电流或时变场量)和场量(电场、磁场)随时间变化的电磁场。
由于时变的电场和磁场相互转换,也可以说时变电磁场就是电磁波。
2 时变电磁场的特点:1)电场和磁场互为对方的涡旋(旋度)源。
2)电场和磁场共存,不可分割。
3)电力线和磁力线相互环绕。
3 本教科书自第五章以后内容全是关于电磁波的,第五章主要是基础,引入波动方程去掉电场与磁场的耦合,引入复矢量,简化时间变量的分析。
第六章以平面波为例,首先研究无限大区域内的电磁波的传播特点,引入用于描述电磁波特性的参量。
然后介绍半无限大区域内的电磁波的传播特点-电磁波的反射和折射。
第七章首先介绍一个坐标方向无限、其余坐标方向有限的区域内的电磁波传播特性—导行电磁波特性,然后介绍了有限区域内的电磁波谐振特性。
第八章介绍了电磁波的产生-天线。
4 本章内容线索:1)理论方面:基本场方程,位函数(引入矢量位),边界条件,波动方程。
2)基本方法:复矢量§5.1时变电磁场方程及边界条件1 1)因为t∂∂不为零,电场和磁场相互耦合,不能分开研究。
其基本方程就是Maxwell 方程。
微分形式:⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎨⎧∂∂-=⋅∇=⋅∇=⋅∇∂∂-=⨯∇∂∂+=⨯∇t J B D t BE t DJ H ρρ0 积分形式⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎨⎧∂∂-=⋅=⋅=⋅⋅∂∂-=⋅⋅∂∂+=⋅⎰⎰⎰⎰⎰⎰⎰⎰⎰sV ss Vc s c sdV t s d J s d B dV s d D sd t B l d E s d t D J l d H ρρ)(2)物质(本构)方程: 在线性、各向同性媒质中HB E D με== 其它媒质有:非线性,各向异性,双各向异性,负相对电导率、负相对磁导率媒质等人工媒质。
这些媒质在微波、光学、隐身、伪装方面有很多应用。
3)上面的电流J 包括传导电流E J c σ=和运移电流v J vρ= 2 边界条件:§5.2 时变电磁场的唯一性定理1 如果1)一个区域内0=t 时,每一点的电场强度和磁场强度的初始值已知,2)区域边界面上电场强度的切向分量或磁场强度的切向分量已知,则该区域内每一点0>t 时Maxwell 方程组有唯一的确定解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第五章 时变电磁场1 什么是时变电磁场:场源(电荷、电流或时变场量)和场量(电场、磁场)随时间变化的电磁场。
由于时变的电场和磁场相互转换,也可以说时变电磁场就是电磁波。
2 时变电磁场的特点:1)电场和磁场互为对方的涡旋(旋度)源。
2)电场和磁场共存,不可分割。
3)电力线和磁力线相互垂直环绕。
3 本教科书自第五章以后内容全是关于电磁波的,第五章主要是基础,引入波动方程去掉电场与磁场的耦合,引入复矢量,简化时间变量的分析。
第六章以平面波为例,首先研究无限大区域内的电磁波的传播特点,引入用于描述电磁波特性的参量。
然后介绍半无限大区域内的电磁波的传播特点-电磁波的反射和折射。
第七章首先介绍一个坐标方向无限、其余坐标方向有限的区域内的电磁波传播特性—导行电磁波特性,然后介绍了有限区域内的电磁波谐振特性。
第八章介绍了电磁波的产生-天线。
4 本章内容线索:1)理论方面:基本场方程,位函数(引入矢量位),边界条件,波动方程。
2)基本方法:复矢量§时变电磁场方程及边界条件1 1)因为t∂∂不为零,电场和磁场相互耦合,不能分开研究。
其基本方程就是Maxwell 方程。
微分形式:⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎨⎧∂∂-=⋅∇=⋅∇=⋅∇∂∂-=⨯∇∂∂+=⨯∇t J B D t BE t DJ H ρρρρρρρρρρ0 积分形式⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎨⎧∂∂-=⋅=⋅=⋅⋅∂∂-=⋅⋅∂∂+=⋅⎰⎰⎰⎰⎰⎰⎰⎰⎰s V s s V c s c s dV t s d J s d B dV s d D s d t B l d E s d t D J l d H ρρρρρρρρρρρρρρρρρ0)(2)物质(本构)方程:在线性、各向同性媒质中HB E D ρρρρμε== 其它媒质有:非线性,各向异性,双各向异性,负相对电导率、负相对磁导率媒质等人工媒质。
这些媒质在微波、光学、隐身、伪装方面有很多应用。
3)上面的电流J ρ包括传导电流E J c ρρσ=和运移电流v J v ρρρ=2 边界条件:§ 时变电磁场的唯一性定理1 如果1)一个区域内0=t 时,每一点的电场强度和磁场强度的初始值已知,2)区域边界面上电场强度的切向分量或磁场强度的切向分量已知,则该区域内每一点0>t 时Maxwell 方程组有唯一的确定解。
§ 时变电磁场的位函数 1 关于电场的波动方程:由t B E ∂∂-=⨯∇ρρ得tBE ∂∂⨯-∇=⨯∇⨯∇ρρ左边由矢量恒等变换得(考试点) E E E E ρρρρ22)()(∇-∇=∇-⋅∇∇=⨯∇⨯∇ερ右边 22)()()(t E t J t D J t H t B t t B ∂∂+∂∂=∂∂+∂∂=⨯∇∂∂=⨯∇∂∂=∂∂⨯∇ρρρρρρρμεμμμ 故得关于电场的波动方程:ερμμε∇+∂∂=∂∂-∇t J t E E ρρρ2222用类似的方法可以得到关于磁场的波动方程(补充作业)J t H H ρρρ⨯-∇=∂∂-∇222με3 既然Maxwell 方程已经囊括所有宏观电磁现象,为什么还要波动方程:答案是求解的需要。
Maxwell 方程里电场和磁场耦合在一起,而波动方程里电场和磁场是独立出现的,它们有各自的波动方程。
后者有时便于求解,但方程的阶数是二阶,比Maxwell 方程高一阶。
所以也有不用波动方程,直接用Maxwell 方程求解。
现在流行的FDTD 方法就是直接求解Maxwell 方程。
用于电磁场模拟仿真软件CST 就是基于FDTD 方法。
4 时变电磁场的位函数1) 矢量磁位的定义(同静磁场定义):A B ρρ⨯∇=2) 标量电位的定义(不同于静电场):由于电场的旋度不等于零,不能直接定义。
但有t AA t tB E ∂∂⨯-∇=⨯∇∂∂-=∂∂-=⨯∇ρρρρ)(可得 0)(=∂∂+⨯∇t AE ρρ 我们可以令 ϕ-∇=∂∂+)(tAE ρρ 上面就是标量电位的定义。
由上式可得tA E ∂∂--∇=ρρϕ这样我们就实现了用位函数表示电磁场量的目的。
5 位函数的波动方程: 1)矢量位的波动方程22tA t J t A t J t E JB A ∂∂-∂∂∇-=⎪⎪⎭⎫ ⎝⎛∂∂-∇-∂∂+=∂∂+=⨯∇=⨯∇⨯∇ρρρρρρρρμεϕμεμϕμεμμεμ 根据恒等式 A A A ρρρ2)(∇-⋅∇∇=⨯∇⨯∇上式可写成:)(222t A J tA A ∂∂+⋅∇∇+-=∂∂-∇ϕμεμμερρρρ 由于矢量位A ρ的散度尚待规定,从简化角度,我们可以令:0=∂∂+⋅∇tA ϕμερ这就是洛仑兹规范(请与库仑规范比较)。
由此可得矢量位的波动方程J tA A ρρρμμε-=∂∂-∇2222) 标量位的波动方程:)())(()()(22222tA t t A t A E ∂∂-∇-=⋅∇∂∂+∇-=∂∂⋅∇+∇-=∂∂+∇⋅-∇=⋅∇ϕμεϕϕϕϕρρρρ同时ερ-=⋅∇E ρ故得标量位的波动方程 ερϕμεϕ-=∂∂-∇222t6 Helmholtz 方程:在无源区域,ρ与J ρ均为零,上述场量和位函数的波动方程变为齐次波动方程,即Helmholtz 方程:0222=∂∂-∇t E E ρρμε0222=∂∂-∇t HH ρρμε 0222=∂∂-∇tAA ρρμε0222=∂∂-∇tϕμεϕ若静态场,0→∂∂t,上述波动方程退化为相应的泊松方程和拉普拉斯方程。
§5 4 正弦电磁场1 与电路和信号分析类似,为了便于分析,我们可以把一般随时间变化的时变电磁场,用傅立叶变换分解为许多不同时间频率的正弦电磁场(简谐场,也称时谐电磁场)的叠加。
2 时谐电磁场中场量的瞬时表示式:以余弦函数为基准(工程界惯例。
少数也有用正弦函数的),以电场强度矢量为例)cos(),,()cos(),,()cos(),,(),,,(z z z y y y x x x t z y x E a t z y x E a t z y x E a t z y x E ϕωϕωϕω+++++=ρρρρ注意场量与时间变量t 的关系非常简单和确定,这是引入复矢量的前提。
3时谐电磁场中场量的复数表示式 上式可以也表示为]),,(Re[])),,(),,(),,(Re[(),,(Re ),,(Re ),,(Re ]),,(Re[]),,(Re[]),,(Re[),,,()()()(t j tj zz y y x x t j z z t j y y t j x x t j z z t j y y t j x x e z y x E e z y x E a z y x E a z y x E a ez y x E a e z y x E a e z y x E a e z y x E a e z y x E a e z y x E a t z y x E z y x ωωωωωϕωϕωϕω&ρ&ρ&ρ&ρ&ρ&ρ&ρρρρρ=++=++=++=+++),,(z y x E &ρ称为电场强度的复矢量。
同样时谐电磁场的其它场量也可以有类似的表示式,如 ]),,(Re[),,,(t j e z y x J t z y x J ω&ρρ=上面的表示式建立了时谐电磁场场量的瞬时表示式与复数表示式之间的联系。
4 Maxwell 方程的复数形式以电场旋度方程tBE ∂∂-=⨯∇ρρ为例,代入相应场量的复数表示式,可得)][Re()][Re(t j t j e B te E ωω&ρ&ρ∂∂-=⨯∇∇、t∂∂可与Re 交换次序,得)](Re[)](Re[t j t j e B te E ωω&ρ&ρ∂∂-=⨯∇复数相等与其实部及虚部分别相等是等效的,故可以去掉上式两边的Re ,接着可以消去t j e ω,得到B j E &ρ&ρω-=⨯∇上面的方程里已经没有时间变量了,因此方程得到了简化。
从形式上讲,只有把微分算子t∂∂用ωj 代替,就可以把时谐电磁场场量之间的线性关系,转换为等效的复矢量关系。
如复数形式的Maxwell 方程微分形式⎪⎪⎪⎪⎭⎪⎪⎪⎪⎬⎫⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧-=⋅∇=⋅∇=⋅∇-=⨯∇+=⨯∇ρωρωω&&ρ&ρ&&ρ&ρ&ρ&ρ&ρ&ρj J B D B j E D j J H 0 积分形式⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧-=⋅=⋅=⋅⋅-=⋅⋅+=⋅⎰⎰⎰⎰⎰⎰⎰⎰⎰s V s s V c s cs dV j s d J s d B dV s d D s d B j l d E s d D j J l d H ρωρωω&ρ&ρρ&ρ&ρ&ρρ&ρρ&ρρ&ρ&ρρ&ρ0)( 线性、各向同性媒质中,有vJ E J HB E D &ρ&ρ&ρ&ρ&ρ&ρ&ρ&ρρσμε==== 5 边界条件的复数形式:边界条件由于不含有时间导数,故复矢量形式的边界条件与瞬时表示式形式的边界条件在形式上完全一样。
6 波动方程的复矢量形式:因为ωj t→∂∂,故222ω-→∂∂t 因此矢量位复数形式的波动方程是J A A &ρ&ρ&ρμμεω-=-∇22令μεω22=k 波动方程可写成J A k A &ρ&ρ&ρμ-=-∇227 复数介电常数,复数磁导率:1)E j j E j E D j J H &ρ&ρ&ρ&ρ&ρ&ρ)(ωσεωωεσω-=+=+=⨯∇令ωσεεj-=&为导电媒质的等效复介电常数,则上式可写成 E j H &ρ&&ρεω=⨯∇用途:把导电媒质也视为一种等效的电介质,从而可以统一采用电介质的分析方法。
另外,即使介质不导电,也会有能量损耗,且与频率有关。
这时同样可以用复介电常数表示这种介质损耗,即εεε''-'=j &虚部表示有能量损耗,从能量损耗的角度,ε''与ωσ作用一样。
考虑上述两种能量损耗,总的复介电常数是)(ωσεεε+''-'=j c& 2 )同样在磁介质有损耗的情况下,也可以采用复数磁导率,μμμ''-'=j c3) 损耗角正切:表示介质损耗的相对大小。