向量、解三角形、数列、不等式测试卷
三角形、不等式、数列综合题
三角形、不等式、数列练习题一、选择题 1、若110ab<<,则下列结论不正确的是( )22.A a b< 2.B a b b < .2ab C ba +>.|||||D a b a b+>+ 2、在A B C ∆中,11,20,130a b A ︒===,则此三角形( ).A 两解.B 只有一解 .C 无解D解得个数不确定3、{}n a 为等比数列,2512,4a a ==,则公比q =( )1.2A .2B - .4C .5D4、不等式1111x y x y -≤+≤⎧⎨-≤-≤⎩表示区域内的整点个数为( ).0A.2B .4C .5D5、不等式241270x x -->与20x px q ++>的解相同,则:p q =( ).12:7A .7:12B .12:7C - .3:4D - 6、在A B C ∆中,()()2a c a c b bc +-=+,则A =( ).30A ︒.60B ︒.120C ︒ .150D ︒7、变量,x y 满足120x y x y ≥⎧⎪≤⎨⎪-≤⎩则x y +的最小值为( ).2A.3B .4C .5D8、数列{}n a 的前n 项和为n s 满足221n s n n =+-则( ).21,n A a n n N +=+∈ ()()21.212,n n B a n n n N +⎧=⎪=⎨+≥∈⎪⎩.21,n C a n n N +=-∈ ()()21.212,n n D a n n n N +⎧=⎪=⎨-≥∈⎪⎩9、等比数列{}n a 中,256,15a a ==,若2n n b a =,则数列{}n b 的前52项和为( ).30A .45B .90C .186D10、某纯净水厂在净化过程中,每增加一次过滤可减少水中杂质的20%,要使水中杂质减少到原来的5%以下,则至少需要过滤的次数为( )lg 20.3010=.5A.10B .14C .15D二、填空题11、{}n a 为等差,且1390,,,d a a a ≠成等比,则1392410a a a a a a ++=++_______。
不等式,向量,解三角形专题练习作业含答案
专题集训·作业(九)一、选择题1.平行六面体的各棱长均为4,在其顶点P 所在的三条棱上分别取P A =1,PB =2,PC =3,则棱锥P -ABC 的体积是平行六面体的体积的( )A.164 B.364 C.132 D.332答案 A解析 由已知可将平行六面体模型化为正方体,则有V 正方体=64,V P -ABC =13×12×1×2×3=1,故选A.2.(2014·合肥一中模拟)e ,π分别是自然对数的底数和圆周率,则下列不等式不成立的是( )A .log πe +(log e π)2>2B .log πe +log e π>1C .e e -e>e π-πD .(e +π)3<4(e 3+π3)答案 C解析 设f (x )=e x -x (x >0),则f ′(x )=e x -1,当x >0时,f ′(x )>0,即f (x )在(0,+∞)上是增函数,所以f (π)>f (e),即e π-π>e e -e.3.(2014·鄂西示范性学校联考)命题“∀x ∈R ,x 2-3x +2≥0”的否定是( )A .∃x 0∈R ,x 20-3x 0+2<0B .∃x 0∈R ,x 20-3x 0+2>0C .∃x 0∈R ,x 20-3x 0+2≤0D .∃x 0∈R ,x 20-3x 0+2≥0 答案 A解析 求全称命题的否定时,需要先把全称量词改写为存在量词,再对结论进行否定,所以原命题的否定为“∃x 0∈R ,x 20-3x 0+2<0”.4.(2014·襄阳五校联考)已知双曲线方程为x 2a 2-y 2b 2=1(a >0,b >0),离心率为2,F 1,F 2分别是它的左、右焦点,A 是它的右顶点,过F 1作一条斜率为k (k ≠0)的直线与双曲线交于两个点M ,N ,则∠MAN =( )A .30°B .45°C .60°D .90°答案 D解析 由离心率为2,可得c =2a ,b 2=3a 2,则双曲线方程为3x 2-y 2=3a 2.设M (x 1,y 1),N (x 2,y 2),因直线MN 的斜率不为零,则可设其方程为x =my -2a ,与双曲线方程联立得(3m 2-1)y 2-12amy +9a 2=0,从而有3m 2-1≠0,y 1+y 2=12am 3m 2-1,且y 1y 2=9a 23m 2-1.则AM →·AN→=(x 1-a )(x 2-a )+y 1y 2=(my 1-3a )(my 2-3a )+y 1y 2=(m 2+1)y 1y 2-3am (y 1+y 2)+9a 2=9a 2(m 2+1)3m -1-36a 2m23m -1+9a 2=0,故选D. 5.某几何体的三视图如图所示,其中正视图和侧视图均是腰长为1的等腰直角三角形,则该几何体的外接球体积为( )A.32π B.3π C .23π D .33π答案 A解析 由正视图和侧视图均是腰长为1的等腰直角三角形,可得该几体体是一个四棱锥(如图所示),底面BCDE 是边长为1的正方形,侧棱AE ⊥底面BCDE ,所以根据球与四棱锥的对称性知,外接球的直径是AC .根据勾股定理知AC=1+1+1=3,所以外接球半径为32,于是该几何体的外接球体积V =43π×(32)3=32π.故选A.6.已知对于任意的a ∈[-1,1],函数f (x )=x 2+(a -4)x +4-2a 的值恒大于0,则x 的取值范围是( )A .1<x <3B .x <1或x >3C .1<x <2D .x <2或x >2答案 B解析 将f (x )=x 2+(a -4)x +4-2a 看作是a 的一次函数,记为g (a )=(x -2)a +x 2-4x +4.当a ∈[-1,1]时恒有g (a )>0,只需满足条件⎩⎪⎨⎪⎧ g (1)>0,g (-1)>0,即⎩⎪⎨⎪⎧x 2-3x +2>0,x 2-5x +6>0,解之得x <1或x >3. 7.已知在正三棱锥S -ABC 中,E 是侧棱SC 的中点,且SA ⊥BE ,则SB 与底面ABC 所成角的余弦值为( )A.12B.23C.23D.63答案 D解析 如图所示,在正三棱锥S -ABC 中,作SO ⊥平面ABC ,连接AO ,则O 是△ABC 的中心,所以SO ⊥BC ,AO ⊥BC .由此可得BC ⊥平面SAO ,所以SA ⊥BC .又SA ⊥BE ,所以SA ⊥平面SBC ,故正三棱锥S -ABC 的各侧面全等且均是等腰直角三角形.连接OB ,则∠SBO 为SB 与底面ABC 所成的角.设SA =a ,则AB =2a ,BO =63a ,所以cos ∠SBO =63.8.定义在R 上的可导函数f (x ),当x ∈(1,+∞)时,f (x )+f ′(x )<xf ′(x )恒成立,若a =f (2),b =12f (3),c =(2+1)f (2),则a ,b ,c 的大小关系为( )A .c <a <bB .b <c <aC .a <c <bD .c <b <a答案 A解析 设g (x )=f (x )x -1,则g ′(x )=f ′(x )(x -1)-f (x )(x -1)2.由于f (x )+f ′(x )<xf ′(x ),即f ′(x )(x -1)-f (x )>0,因此g (x )=f (x )x -1在(1,+∞)上为增函数,故c <a <b .9.过正方体ABCD -A 1B 1C 1D 1的顶点A 作直线l ,使l 与直线AB ,AD ,AA 1所成的角都相等,这样的直线l 可以作( )A .1条B .2条C .3条D .4条答案 D解析 本题考查了空间直线与直线所成角问题,考查空间想象能力.显然正方体的对角线AC 1与棱AB ,AD ,AA 1所成的角都相等,将该正方体以A 为坐标原点,AB ,AD ,AA 1分别为坐标轴建立空间直角坐标系,则可以得到8个象限,其中在平面ABCD 上方的四个象限内的每一个象限内均有一条与AC 1相似的对角线与此三条棱成等角,即这样的直线l 有4条,故应选D.10.(2014·芜湖三校一模)已知f (x )是定义在R 上的不恒为零的函数,且对于任意的a ,b ∈R ,满足f (ab )=af (b )+bf (a ),f (2)=2.若b n =f (2n )2n (n ∈N *),则数列{b n }的通项公式为( )A .nB .n -1C .2nD .2n -1答案 A解析 ∵f (ab )=af (b )+bf (a ),f (2)=2,∴f (2n +1)=2f (2n )+2n f (2)=2f (2n )+2n +1.∵b n =f (2n )2n (n ∈N *),又f (2n +1)2n +1=f (2n)2n +1,即b n +1-b n =1,∴{b n }成等差数列,且b 1=f (2)2=1,∴b n =b 1+(n -1)×1=1+n -1=n ,n ∈N *.11.(2014·孝感市质检)若函数f (x )=x -1+1e x (a ∈R ,e 为自然对数的底数)的图像与直线l :y =kx -1没有公共点,则实数k 的最大值为( )A .0B .1C .-1 D.1e答案 B解析 令g (x )=f (x )-(kx -1)=(1-k )x +1e x ,则直线l :y =kx -1与曲线y =f (x )没有公共点,等价于方程g (x )=0在R 上没有实数解.假设k >1,此时g (0)=1>0.g (1k -1)=-1+1e 1k -1<0.又函数g (x )的图像是连续的,由零点存在性定理,可知g (x )=0在R 上至少有一个解,与方程g (x )=0在R 上没有实数解矛盾,故k ≤1.又k =1时,g (x )=1e x >0,易知方程g (x )=0在R 上没有实数解.所以实数k 的最大值为1.12.(2014·武汉部分学校调研)椭圆C :x 24+y 23=1的左、右顶点分别为A 1,A 2,若点P 在C 上且直线P A 2斜率的取值范围是[-2,-1],则直线P A 1斜率的取值范围是( )A .[12,34] B .[38,34] C .[12,1] D .[34,1]答案 B解析 椭圆的左顶点为A 1(-2,0),右顶点为A 2(2,0),设点P (x 0,y 0),则x 204+y 203=1,得y 20x 20-4=-34.而kP A 2=y 0x 0-2,kP A 1=y 0x 0+2,所以kP A 2·kP A 1=y 20x 20-4=-34.又kP A 2∈[-2,-1],所以kP A 1∈[38,34].二、填空题13.已知函数f (x )=3x +sin x +1,若f (t )=2,则f (-t )=________. 答案 0解析 由于g (x )=3x +sin x 为奇函数,且f (t )=3t +sin t +1=2,所以3t +sin t =1,则f (-t )=g (-t )+1=-1+1=0.14.(2014·皖西四校联考)若正数x ,y 满足2x +3y -3=0,则x +2yxy 的最小值为________.答案 7+433解析 由2x +3y -3=0,得1=2x +3y 3.于是x +2y xy =1y +2x =(1y +2x )·2x +3y 3=13(7+2x y +6y x )≥13×(7+43)=7+433,当且仅当⎩⎨⎧2x y =6y x,2x +3y -3=0,即x =6-33,y =23-3时,等号成立.故最小值为7+433.15.已知函数g (x )是R 上的奇函数,且当x <0时,g (x )=-ln(1-x ),函数f (x )=⎩⎪⎨⎪⎧x 3,x ≤0,g (x ),x >0,若f (2-x 2)>f (x ),则实数x 的取值范围是________.答案 (-2,1)解析 方法一 由题意可知,当x ≥0时,g (x )=-g (-x )=-[-ln(1+x )]=ln(1+x ),所以f (x )=⎩⎪⎨⎪⎧x 3,x ≤0,ln (1+x ),x >0.当x ≤-2时,由f (2-x 2)>f (x ),得(2-x 2)3>x 3,因为f (x )=x 3在R 上为增函数,所以有2-x 2>x ,解得-2<x <1,即-2<x ≤- 2.当-2<x ≤0时,由f (2-x 2)>f (x ),得ln(1+2-x 2)>x 3,即-2<x ≤0.当0<x <2时,由f (2-x 2)>f (x ),得ln(1+2-x 2)>ln(1+x ),所以有2-x 2>x ,解得-2<x <1,即0<x <1.当x ≥2时,由f (2-x 2)>f (x ),得(2-x 2)3>ln(1+x ),无解.综上得-2<x <1.方法二 同上得f (x )=⎩⎪⎨⎪⎧x 3,x ≤0,ln (1+x ),x >0.易知f (x )在R 上是增函数,由f (2-x 2)>f (x ),得2-x 2>x ,即x 2+x -2<0,∴-2<x <1.16.已知F 1,F 2分别是双曲线x 2a 2-y 2b 2=1(a >b >0)的左、右焦点,P 为双曲线左支上一点,若|PF 2|2|PF 1|的最小值为8a ,则该双曲线的离心率e 的取值范围是________.答案 (1,3]解析 ∵P 为双曲线左支上一点,∴|PF 2|-|PF 1|=2a .∴|PF 2|=|PF 1|+2a .∴|PF 2|2|PF 1|=(|PF 1|+2a )2|PF 1|=|PF 1|+4a 2|PF 1|+4a ≥8a ,当且仅当4a 2|PF 1|=|PF 1|,即|PF 1|=2a 时取等号,故|PF 2|=4a .当点P 在x 轴上时,|PF 1|+|PF 2|=|F 1F 2|,即2a +4a =2c ,此时e =3;当点P 不在x 轴上时,在△PF 1F 2中,|PF 1|+|PF 2|>|F 1F 2|,即2a +4a >2c ,此时e <3,∴e ≤3.又e >1,于是1<e ≤3.。
不等式解三角形数列高考试题精选
不等式解三角形数列高考试题精选一.选择题(共6小题)1.设x、y、z为正数,且2x=3y=5z,则()A.2x<3y<5z B.5z<2x<3y C.3y<5z<2x D.3y<2x<5z2.若a>b>0,且ab=1,则下列不等式成立的是()A.a+<<log2(a+b))B.<log2(a+b)<a+C.a+<log2(a+b)<D.log2(a+b))<a+<3.已知x,y∈R,且x>y>0,则()A.﹣>0 B.sinx﹣siny>0 C.()x﹣()y<0 D.lnx+lny>0 4.已知a,b>0且a≠1,b≠1,若log a b>1,则()A.(a﹣1)(b﹣1)<0 B.(a﹣1)(a﹣b)>0 C.(b﹣1)(b﹣a)<0 D.(b ﹣1)(b﹣a)>05.若a>b>1,0<c<1,则()A.a c<b c B.ab c<ba cC.alog b c<blog a c D.log a c<log b c6.设f(x)=lnx,0<a<b,若p=f(),q=f(),r=(f(a)+f(b)),则下列关系式中正确的是()A.q=r<p B.p=r<q C.q=r>p D.p=r>q二.选择题(共1小题)7.2﹣3,,log25三个数中最大数的是.三.填空题(共9小题)8.若直线=1(a>0,b>0)过点(1,2),则2a+b的最小值为.9.若a,b∈R,ab>0,则的最小值为.10.设x,y满足约束条件,则z=3x﹣2y的最小值为.11.已知f(x)是定义在R上的奇函数.当x>0时,f(x)=x2﹣4x,则不等式f(x)>x 的解集用区间表示为.12.在数列{a n}中,a1=2,a n+1=2a n,S n为{a n}的前n项和,若S n=126,则n=.13.设数列{a n}的前n项和为S n,且a1=﹣1,a n+1=S n+1S n,则S n=.14.△ABC的内角A,B,C的对边分别为a,b,c,若2bcosB=acosC+ccosA,则B=.15.△ABC的内角A,B,C的对边分别为a,b,c,已知C=60°,b=,c=3,则A=.16.在△ABC中,内角A,B,C所对的边分别为a,b,c.已知△ABC的面积为3,b﹣c=2,cosA=﹣,则a的值为.四.解答题(共24小题)17.△ABC的内角A,B,C的对边分别为a,b,c,已知sin(A+C)=8sin2.(1)求cosB;(2)若a+c=6,△ABC的面积为2,求b.18.△ABC的内角A,B,C的对边分别为a,b,c,已知△ABC的面积为.(1)求sinBsinC;(2)若6cosBcosC=1,a=3,求△ABC的周长.19.在△ABC中,∠A=60°,c=a.(1)求sinC的值;(2)若a=7,求△ABC的面积.20.在△ABC中,内角A,B,C所对的边分别为a,b,c,已知b+c=2acosB.(1)证明:A=2B;(2)若cosB=,求cosC的值.21.已知a,b,c分别是△ABC内角A,B,C的对边,sin2B=2sinAsinC.(Ⅰ)若a=b,求cosB;(Ⅱ)设B=90°,且a=,求△ABC的面积.22.△ABC中,D是BC上的点,AD平分∠BAC,△ABD面积是△ADC面积的2倍.(1)求;(2)若AD=1,DC=,求BD和AC的长.23.设△ABC的内角A、B、C的对边分别为a、b、c,a=btanA,且B为钝角.(Ⅰ)证明:B﹣A=;(Ⅱ)求sinA+sinC的取值范围.24.△ABC中,D是BC上的点,AD平分∠BAC,BD=2DC(Ⅰ)求.(Ⅱ)若∠BAC=60°,求∠B.25.设△ABC的内角A,B,C的对边分别为a,b,c,a=btanA.(Ⅰ)证明:sinB=cosA;(Ⅱ)若sinC﹣sinAcosB=,且B为钝角,求A,B,C.26.在△ABC中,∠A=,AB=6,AC=3,点D在BC边上,AD=BD,求AD 的长.27.已知A、B、C为△ABC的内角,tanA,tanB是关于方程x2+px﹣p+1=0(p ∈R)两个实根.(Ⅰ)求C的大小(Ⅱ)若AB=3,AC=,求p的值.28.△ABC中,角A,B,C所对的边分别为a,b,c.已知a=3,cosA=,B=A+.(Ⅰ)求b的值;(Ⅱ)求△ABC的面积.29.在△ABC中,内角A,B,C所对的边分别为a,b,c,已知a﹣c=b,sinB=sinC,(Ⅰ)求cosA的值;(Ⅱ)求cos(2A﹣)的值.30.在△ABC中,角A,B,C所对应的边分别为a,b,c,已知bcosC+ccosB=2b,则=.31.记S n 为等比数列{a n }的前n 项和.已知S 2=2,S 3=﹣6.(1)求{a n }的通项公式;(2)求S n ,并判断S n +1,S n ,S n +2是否成等差数列.32.设数列{a n }满足a 1+3a 2+…+(2n ﹣1)a n =2n .(1)求{a n }的通项公式;(2)求数列{}的前n 项和.33.已知等差数列{a n }和等比数列{b n }满足a 1=b 1=1,a 2+a 4=10,b 2b 4=a 5. (Ⅰ)求{a n }的通项公式;(Ⅱ)求和:b 1+b 3+b 5+…+b 2n ﹣1.34.已知{a n }是各项均为正数的等比数列,且a 1+a 2=6,a 1a 2=a 3.(1)求数列{a n }通项公式;(2){b n } 为各项非零的等差数列,其前n 项和为S n ,已知S 2n +1=b n b n +1,求数列的前n 项和T n .35.已知等差数列{a n}的前n项和为S n,等比数列{b n}的前n项和为T n,a1=﹣1,b1=1,a2+b2=2.(1)若a3+b3=5,求{b n}的通项公式;(2)若T3=21,求S3.36.已知{a n}为等差数列,前n项和为S n(n∈N*),{b n}是首项为2的等比数列,且公比大于0,b2+b3=12,b3=a4﹣2a1,S11=11b4.(Ⅰ)求{a n}和{b n}的通项公式;(Ⅱ)求数列{a2n b n}的前n项和(n∈N*).37.已知{a n}为等差数列,前n项和为S n(n∈N+),{b n}是首项为2的等比数列,且公比大于0,b2+b3=12,b3=a4﹣2a1,S11=11b4.(Ⅰ)求{a n}和{b n}的通项公式;(Ⅱ)求数列{a2n b2n﹣1}的前n项和(n∈N+).38.已知{a n}是公差为3的等差数列,数列{b n}满足b1=1,b2=,a n b n+1+b n+1=nb n.(Ⅰ)求{a n}的通项公式;(Ⅱ)求{b n}的前n项和.39.设数列{a n}的前n项和为S n,已知S2=4,a n+1=2S n+1,n∈N*.(Ⅰ)求通项公式a n;(Ⅱ)求数列{|a n﹣n﹣2|}的前n项和.40.已知a,b,c,d为实数,且a2+b2=4,c2+d2=16,证明ac+bd≤8.不等式解三角形数列高考试题精选参考答案与试题解析一.选择题(共6小题)1.设x、y、z为正数,且2x=3y=5z,则()A.2x<3y<5z B.5z<2x<3y C.3y<5z<2x D.3y<2x<5z 【解答】解:x、y、z为正数,令2x=3y=5z=k>1.lgk>0.则x=,y=,z=.∴3y=,2x=,5z=.∵==,>=.∴>lg>>0.∴3y<2x<5z.另解:x、y、z为正数,令2x=3y=5z=k>1.lgk>0.则x=,y=,z=.∴==>1,可得2x>3y,==>1.可得5z>2x.综上可得:5z>2x>3y.解法三:对k取特殊值,也可以比较出大小关系.故选:D.2.若a>b>0,且ab=1,则下列不等式成立的是()A.a+<<log2(a+b))B.<log2(a+b)<a+C.a+<log2(a+b)<D.log2(a+b))<a+<【解答】解:∵a>b>0,且ab=1,∴可取a=2,b=.则=4,==,log2(a+b)==∈(1,2),∴<log2(a+b)<a+.故选:B.3.已知x,y∈R,且x>y>0,则()A.﹣>0 B.sinx﹣siny>0 C.()x﹣()y<0 D.lnx+lny>0【解答】解:∵x,y∈R,且x>y>0,则,sinx与siny的大小关系不确定,<,即﹣<0,lnx+lny与0的大小关系不确定.故选:C.4.已知a,b>0且a≠1,b≠1,若log a b>1,则()A.(a﹣1)(b﹣1)<0 B.(a﹣1)(a﹣b)>0 C.(b﹣1)(b﹣a)<0 D.(b ﹣1)(b﹣a)>0【解答】解:若a>1,则由log a b>1得log a b>log a a,即b>a>1,此时b﹣a>0,b>1,即(b﹣1)(b﹣a)>0,若0<a<1,则由log a b>1得log a b>log a a,即b<a<1,此时b﹣a<0,b<1,即(b﹣1)(b﹣a)>0,综上(b﹣1)(b﹣a)>0,故选:D.5.若a>b>1,0<c<1,则()A.a c<b c B.ab c<ba cC.alog b c<blog a c D.log a c<log b c【解答】解:∵a>b>1,0<c<1,∴函数f(x)=x c在(0,+∞)上为增函数,故a c>b c,故A错误;函数f(x)=x c﹣1在(0,+∞)上为减函数,故a c﹣1<b c﹣1,故ba c<ab c,即ab c >ba c;故B错误;log a c<0,且log b c<0,log a b<1,即=<1,即log a c>log b c.故D错误;0<﹣log a c<﹣log b c,故﹣blog a c<﹣alog b c,即blog a c>alog b c,即alog b c<blog a c,故C正确;故选:C6.设f(x)=lnx,0<a<b,若p=f(),q=f(),r=(f(a)+f(b)),则下列关系式中正确的是()A.q=r<p B.p=r<q C.q=r>p D.p=r>q【解答】解:由题意可得若p=f()=ln()=lnab=(lna+lnb),q=f()=ln()≥ln()=p,r=(f(a)+f(b))=(lna+lnb),∴p=r<q,故选:B二.选择题(共1小题)7.2﹣3,,log25三个数中最大数的是log25.【解答】解:由于0<2﹣3<1,1<<2,log25>log24=2,则三个数中最大的数为log25.故答案为:log25.三.填空题(共9小题)8.若直线=1(a>0,b>0)过点(1,2),则2a+b的最小值为8.【解答】解:直线=1(a>0,b>0)过点(1,2),则+=1,由2a+b=(2a+b)×(+)=2+++2=4++≥4+2=4+4=8,当且仅当=,即a=,b=1时,取等号,∴2a+b的最小值为8,故答案为:8.9.若a,b∈R,ab>0,则的最小值为4.【解答】解:【解法一】a,b∈R,ab>0,∴≥==4ab+≥2=4,当且仅当,即,即a=,b=或a=﹣,b=﹣时取“=”;∴上式的最小值为4.【解法二】a,b∈R,ab>0,∴=+++≥4=4,当且仅当,即,即a=,b=或a=﹣,b=﹣时取“=”;∴上式的最小值为4.故答案为:4.10.设x,y满足约束条件,则z=3x﹣2y的最小值为﹣5.【解答】解:由x,y满足约束条件作出可行域如图,由图可知,目标函数的最优解为A,联立,解得A(﹣1,1).∴z=3x﹣2y的最小值为﹣3×1﹣2×1=﹣5.故答案为:﹣5.11.已知f(x)是定义在R上的奇函数.当x>0时,f(x)=x2﹣4x,则不等式f(x)>x 的解集用区间表示为(﹣5,0)∪(5,﹢∞).【解答】解:作出f(x)=x2﹣4x(x>0)的图象,如图所示,∵f(x)是定义在R上的奇函数,∴利用奇函数图象关于原点对称作出x<0的图象,不等式f(x)>x表示函数y=f(x)图象在y=x上方,∵f(x)图象与y=x图象交于P(5,5),Q(﹣5,﹣5),则由图象可得不等式f(x)>x的解集为(﹣5,0)∪(5,+∞).故答案为:(﹣5,0)∪(5,+∞)12.在数列{a n}中,a1=2,a n+1=2a n,S n为{a n}的前n项和,若S n=126,则n=6.=2a n,【解答】解:∵a n+1∴,∵a1=2,∴数列{a n}是a1=2为首项,以2为公比的等比数列,∴S n===2n+1﹣2=126,∴2n+1=128,∴n+1=7,∴n=6.故答案为:613.设数列{a n}的前n项和为S n,且a1=﹣1,a n+1=S n+1S n,则S n=﹣.【解答】解:∵a n=S n+1S n,+1﹣S n=S n+1S n,∴S n+1∴﹣=1,又∵a1=﹣1,即=﹣1,∴数列{}是以首项是﹣1、公差为﹣1的等差数列,∴=﹣n,∴S n=﹣,故答案为:﹣.14.△ABC的内角A,B,C的对边分别为a,b,c,若2bcosB=acosC+ccosA,则B=.【解答】解:∵2bcosB=acosC+ccosA,由正弦定理可得,2cosBsinB=sinAcosC+sinCcosA=sin(A+C)=sinB,∵sinB≠0,∴cosB=,∵0<B<π,∴B=,故答案为:15.△ABC的内角A,B,C的对边分别为a,b,c,已知C=60°,b=,c=3,则A=75°.【解答】解:根据正弦定理可得=,C=60°,b=,c=3,∴sinB==,∵b<c,∴B=45°,∴A=180°﹣B﹣C=180°﹣45°﹣60°=75°,故答案为:75°.16.在△ABC中,内角A,B,C所对的边分别为a,b,c.已知△ABC的面积为3,b﹣c=2,cosA=﹣,则a的值为8.【解答】解:∵A∈(0,π),∴sinA==.==bc=,化为bc=24,∵S△ABC又b﹣c=2,解得b=6,c=4.由余弦定理可得:a2=b2+c2﹣2bccosA=36+16﹣48×=64.解得a=8.故答案为:8.四.解答题(共24小题)17.△ABC的内角A,B,C的对边分别为a,b,c,已知sin(A+C)=8sin2.(1)求cosB;(2)若a+c=6,△ABC的面积为2,求b.【解答】解:(1)sin(A+C)=8sin2,∴sinB=4(1﹣cosB),∵sin2B+cos2B=1,∴16(1﹣cosB)2+cos2B=1,∴(17cosB﹣15)(cosB﹣1)=0,∴cosB=;(2)由(1)可知sinB=,=ac•sinB=2,∵S△ABC∴ac=,∴b2=a2+c2﹣2accosB=a2+c2﹣2××=a2+c2﹣15=(a+c)2﹣2ac﹣15=36﹣17﹣15=4,∴b=2.18.△ABC的内角A,B,C的对边分别为a,b,c,已知△ABC的面积为.(1)求sinBsinC;(2)若6cosBcosC=1,a=3,求△ABC的周长.=acsinB=,【解答】解:(1)由三角形的面积公式可得S△ABC∴3csinBsinA=2a,由正弦定理可得3sinCsinBsinA=2sinA,∵sinA≠0,∴sinBsinC=;(2)∵6cosBcosC=1,∴cosBcosC=,∴cosBcosC﹣sinBsinC=﹣=﹣,∴cos(B+C)=﹣,∴cosA=,∵0<A<π,∴A=,∵===2R==2,∴sinBsinC=•===,∴bc=8,∵a2=b2+c2﹣2bccosA,∴b2+c2﹣bc=9,∴(b+c)2=9+3cb=9+24=33,∴b+c=∴周长a+b+c=3+.19.在△ABC中,∠A=60°,c=a.(1)求sinC的值;(2)若a=7,求△ABC的面积.【解答】解:(1)∠A=60°,c=a,由正弦定理可得sinC=sinA=×=,(2)a=7,则c=3,∴C<A,由(1)可得cosC=,∴sinB=sin(A+C)=sinAcosC+cosAsinC=×+×=,=acsinB=×7×3×=6.∴S△ABC20.在△ABC中,内角A,B,C所对的边分别为a,b,c,已知b+c=2acosB.(1)证明:A=2B;(2)若cosB=,求cosC的值.【解答】(1)证明:∵b+c=2acosB,∴sinB+sinC=2sinAcosB,∵sinC=sin(A+B)=sinAcosB+cosAsinB,∴sinB=sinAcosB﹣cosAsinB=sin(A﹣B),由A,B∈(0,π),∴0<A﹣B<π,∴B=A﹣B,或B=π﹣(A﹣B),化为A=2B,或A=π(舍去).∴A=2B.(II)解:cosB=,∴sinB==.cosA=cos2B=2cos2B﹣1=,sinA==.∴cosC=﹣cos(A+B)=﹣cosAcosB+sinAsinB=+×=.21.已知a,b,c分别是△ABC内角A,B,C的对边,sin2B=2sinAsinC.(Ⅰ)若a=b,求cosB;(Ⅱ)设B=90°,且a=,求△ABC的面积.【解答】解:(I)∵sin2B=2sinAsinC,由正弦定理可得:>0,代入可得(bk)2=2ak•ck,∴b2=2ac,∵a=b,∴a=2c,由余弦定理可得:cosB===.(II)由(I)可得:b2=2ac,∵B=90°,且a=,∴a2+c2=b2=2ac,解得a=c=.∴S==1.△ABC22.△ABC中,D是BC上的点,AD平分∠BAC,△ABD面积是△ADC面积的2倍.(1)求;(2)若AD=1,DC=,求BD和AC的长.【解答】解:(1)如图,过A作AE⊥BC于E,∵==2∴BD=2DC,∵AD平分∠BAC∴∠BAD=∠DAC在△ABD中,=,∴sin∠B=在△ADC中,=,∴sin∠C=;∴==.…6分(2)由(1)知,BD=2DC=2×=.过D作DM⊥AB于M,作DN⊥AC于N,∵AD平分∠BAC,∴DM=DN,∴==2,∴AB=2AC,令AC=x,则AB=2x,∵∠BAD=∠DAC,∴cos∠BAD=cos∠DAC,∴由余弦定理可得:=,∴x=1,∴AC=1,∴BD的长为,AC的长为1.23.设△ABC的内角A、B、C的对边分别为a、b、c,a=btanA,且B为钝角.(Ⅰ)证明:B﹣A=;(Ⅱ)求sinA+sinC的取值范围.【解答】解:(Ⅰ)由a=btanA和正弦定理可得==,∴sinB=cosA,即sinB=sin(+A)又B为钝角,∴+A∈(,π),∴B=+A,∴B﹣A=;(Ⅱ)由(Ⅰ)知C=π﹣(A+B)=π﹣(A++A)=﹣2A>0,∴A∈(0,),∴sinA+sinC=sinA+sin(﹣2A)=sinA+cos2A=sinA+1﹣2sin2A=﹣2(sinA﹣)2+,∵A∈(0,),∴0<sinA<,∴由二次函数可知<﹣2(sinA﹣)2+≤∴sinA+sinC的取值范围为(,]24.△ABC中,D是BC上的点,AD平分∠BAC,BD=2DC(Ⅰ)求.(Ⅱ)若∠BAC=60°,求∠B.【解答】解:(Ⅰ)如图,由正弦定理得:,∵AD平分∠BAC,BD=2DC,∴;(Ⅱ)∵∠C=180°﹣(∠BAC+∠B),∠BAC=60°,∴,由(Ⅰ)知2sin∠B=sin∠C,∴tan∠B=,即∠B=30°.25.设△ABC的内角A,B,C的对边分别为a,b,c,a=btanA.(Ⅰ)证明:sinB=cosA;(Ⅱ)若sinC﹣sinAcosB=,且B为钝角,求A,B,C.【解答】解:(Ⅰ)证明:∵a=btanA.∴=tanA,∵由正弦定理:,又tanA=,∴=,∵sinA≠0,∴sinB=cosA.得证.(Ⅱ)∵sinC=sin[π﹣(A+B)]=sin(A+B)=sinAcosB+cosAsinB,∴sinC﹣sinAcosB=cosAsinB=,由(1)sinB=cosA,∴sin2B=,∵0<B<π,∴sinB=,∵B为钝角,∴B=,又∵cosA=sinB=,∴A=,∴C=π﹣A﹣B=,综上,A=C=,B=.26.在△ABC中,∠A=,AB=6,AC=3,点D在BC边上,AD=BD,求AD 的长.【解答】解:∵∠A=,AB=6,AC=3,∴在△ABC中,由余弦定理可得:BC2=AB2+AC2﹣2AB•ACcos∠BAC=90.∴BC=3…4分∵在△ABC中,由正弦定理可得:,∴sinB=,∴cosB=…8分∵过点D作AB的垂线DE,垂足为E,由AD=BD得:cos∠DAE=cosB,∴Rt△ADE中,AD===…12分27.已知A、B、C为△ABC的内角,tanA,tanB是关于方程x2+px﹣p+1=0(p ∈R)两个实根.(Ⅰ)求C的大小(Ⅱ)若AB=3,AC=,求p的值.【解答】解:(Ⅰ)由已知,方程x2+px﹣p+1=0的判别式:△=(p)2﹣4(﹣p+1)=3p2+4p﹣4≥0,所以p≤﹣2,或p≥.由韦达定理,有tanA+tanB=﹣p,tanAtanB=1﹣p.所以,1﹣tanAtanB=1﹣(1﹣p)=p≠0,从而tan(A+B)==﹣=﹣.所以tanC=﹣tan(A+B)=,所以C=60°.(Ⅱ)由正弦定理,可得sinB===,解得B=45°,或B=135°(舍去).于是,A=180°﹣B﹣C=75°.则tanA=tan75°=tan(45°+30°)===2+.所以p=﹣(tanA+tanB)=﹣(2+)=﹣1﹣.28.△ABC中,角A,B,C所对的边分别为a,b,c.已知a=3,cosA=,B=A+.(Ⅰ)求b的值;(Ⅱ)求△ABC的面积.【解答】解:(Ⅰ)∵cosA=,∴sinA==,∵B=A+.∴sinB=sin(A+)=cosA=,由正弦定理知=,∴b=•sinB=×=3.(Ⅱ)∵sinB=,B=A+>∴cosB=﹣=﹣,sinC=sin(π﹣A﹣B)=sin(A+B)=sinAcosB+cosAsinB=×(﹣)+×=,∴S=a•b•sinC=×3×3×=.29.在△ABC中,内角A,B,C所对的边分别为a,b,c,已知a﹣c=b,sinB=sinC,(Ⅰ)求cosA的值;(Ⅱ)求cos (2A ﹣)的值.【解答】解:(Ⅰ)将sinB=sinC ,利用正弦定理化简得:b=c ,代入a ﹣c=b ,得:a ﹣c=c ,即a=2c ,∴cosA===;(Ⅱ)∵cosA=,A 为三角形内角, ∴sinA==,∴cos2A=2cos 2A ﹣1=﹣,sin2A=2sinAcosA=,则cos (2A ﹣)=cos2Acos+sin2Asin=﹣×+×=.30.在△ABC 中,角A ,B ,C 所对应的边分别为a ,b ,c ,已知bcosC +ccosB=2b ,则= 2 .【解答】解:将bcosC +ccosB=2b ,利用正弦定理化简得:sinBcosC +sinCcosB=2sinB , 即sin (B +C )=2sinB , ∵sin (B +C )=sinA , ∴sinA=2sinB ,利用正弦定理化简得:a=2b , 则=2. 故答案为:231.记S n 为等比数列{a n }的前n 项和.已知S 2=2,S 3=﹣6. (1)求{a n }的通项公式;(2)求S n ,并判断S n +1,S n ,S n +2是否成等差数列. 【解答】解:(1)设等比数列{a n }首项为a 1,公比为q , 则a 3=S 3﹣S 2=﹣6﹣2=﹣8,则a 1==,a 2==,由a1+a2=2,+=2,整理得:q2+4q+4=0,解得:q=﹣2,则a1=﹣2,a n=(﹣2)(﹣2)n﹣1=(﹣2)n,∴{a n}的通项公式a n=(﹣2)n;(2)由(1)可知:S n===﹣(2+(﹣2)n+1),则S n+1=﹣(2+(﹣2)n+2),S n+2=﹣(2+(﹣2)n+3),由S n+1+S n+2=﹣(2+(﹣2)n+2)﹣(2+(﹣2)n+3)=﹣[4+(﹣2)×(﹣2)n+1+(﹣2)2×+(﹣2)n+1],=﹣[4+2(﹣2)n+1]=2×[﹣(2+(﹣2)n+1)],=2S n,即S n+1+S n+2=2S n,∴S n+1,S n,S n+2成等差数列.32.设数列{a n}满足a1+3a2+…+(2n﹣1)a n=2n.(1)求{a n}的通项公式;(2)求数列{}的前n项和.【解答】解:(1)数列{a n}满足a1+3a2+…+(2n﹣1)a n=2n.n≥2时,a1+3a2+…+(2n﹣3)a n﹣1=2(n﹣1).∴(2n﹣1)a n=2.∴a n=.当n=1时,a1=2,上式也成立.∴a n=.(2)==﹣.∴数列{}的前n项和=++…+=1﹣=.33.已知等差数列{a n}和等比数列{b n}满足a1=b1=1,a2+a4=10,b2b4=a5.(Ⅰ)求{a n}的通项公式;(Ⅱ)求和:b1+b3+b5+…+b2n.﹣1【解答】解:(Ⅰ)等差数列{a n},a1=1,a2+a4=10,可得:1+d+1+3d=10,解得d=2,所以{a n}的通项公式:a n=1+(n﹣1)×2=2n﹣1.(Ⅱ)由(Ⅰ)可得a5=a1+4d=9,等比数列{b n}满足b1=1,b2b4=9.可得b3=3,或﹣3(舍去)(等比数列奇数项符号相同).∴q2=3,}是等比数列,公比为3,首项为1.{b2n﹣1b1+b3+b5+…+b2n﹣1==.34.已知{a n}是各项均为正数的等比数列,且a1+a2=6,a1a2=a3.(1)求数列{a n}通项公式;=b n b n+1,求数列(2){b n}为各项非零的等差数列,其前n项和为S n,已知S2n+1的前n项和T n.【解答】解:(1)记正项等比数列{a n}的公比为q,因为a1+a2=6,a1a2=a3,所以(1+q)a1=6,q=q2a1,解得:a1=q=2,所以a n=2n;(2)因为{b n}为各项非零的等差数列,所以S2n=(2n+1)b n+1,+1=b n b n+1,又因为S2n+1所以b n=2n+1,=,所以T n=3•+5•+…+(2n+1)•,T n=3•+5•+…+(2n﹣1)•+(2n+1)•,两式相减得:T n=3•+2(++…+)﹣(2n+1)•,即T n=3•+(+++…+)﹣(2n+1)•,即T n=3+1++++…+)﹣(2n+1)•=3+﹣(2n+1)•=5﹣.35.已知等差数列{a n}的前n项和为S n,等比数列{b n}的前n项和为T n,a1=﹣1,b1=1,a2+b2=2.(1)若a3+b3=5,求{b n}的通项公式;(2)若T3=21,求S3.【解答】解:(1)设等差数列{a n}的公差为d,等比数列{b n}的公比为q,a1=﹣1,b1=1,a2+b2=2,a3+b3=5,可得﹣1+d+q=2,﹣1+2d+q2=5,解得d=1,q=2或d=3,q=0(舍去),则{b n}的通项公式为b n=2n﹣1,n∈N*;(2)b1=1,T3=21,可得1+q+q2=21,解得q=4或﹣5,当q=4时,b2=4,a2=2﹣4=﹣2,d=﹣2﹣(﹣1)=﹣1,S3=﹣1﹣2﹣3=﹣6;当q=﹣5时,b2=﹣5,a2=2﹣(﹣5)=7,d=7﹣(﹣1)=8,S3=﹣1+7+15=21.36.已知{a n}为等差数列,前n项和为S n(n∈N*),{b n}是首项为2的等比数列,且公比大于0,b2+b3=12,b3=a4﹣2a1,S11=11b4.(Ⅰ)求{a n}和{b n}的通项公式;(Ⅱ)求数列{a2n b n}的前n项和(n∈N*).【解答】(Ⅰ)解:设等差数列{a n}的公差为d,等比数列{b n}的公比为q.由已知b2+b3=12,得,而b1=2,所以q2+q﹣6=0.又因为q>0,解得q=2.所以,.由b3=a4﹣2a1,可得3d﹣a1=8.由S11=11b4,可得a1+5d=16,联立①②,解得a1=1,d=3,由此可得a n=3n﹣2.所以,{a n}的通项公式为a n=3n﹣2,{b n}的通项公式为.(Ⅱ)解:设数列{a2n b n}的前n项和为T n,由a2n=6n﹣2,有,,上述两式相减,得=.得.所以,数列{a2n b n}的前n项和为(3n﹣4)2n+2+16.37.已知{a n}为等差数列,前n项和为S n(n∈N+),{b n}是首项为2的等比数列,且公比大于0,b2+b3=12,b3=a4﹣2a1,S11=11b4.(Ⅰ)求{a n}和{b n}的通项公式;(Ⅱ)求数列{a2n b2n﹣1}的前n项和(n∈N+).【解答】解:(I)设等差数列{a n}的公差为d,等比数列{b n}的公比为q.由已知b2+b3=12,得b1(q+q2)=12,而b1=2,所以q+q2﹣6=0.又因为q>0,解得q=2.所以,b n=2n.由b3=a4﹣2a1,可得3d﹣a1=8①.由S11=11b4,可得a1+5d=16②,联立①②,解得a1=1,d=3,由此可得a n=3n﹣2.所以,数列{a n}的通项公式为a n=3n﹣2,数列{b n}的通项公式为b n=2n.(II)设数列{a2n b2n﹣1}的前n项和为T n,由a2n=6n﹣2,b2n﹣1=4n,有a2n b2n﹣1=(3n﹣1)4n,故T n=2×4+5×42+8×43+…+(3n﹣1)4n,4T n=2×42+5×43+8×44+…+(3n﹣1)4n+1,上述两式相减,得﹣3T n=2×4+3×42+3×43+…+3×4n﹣(3n﹣1)4n+1==﹣(3n﹣2)4n+1﹣8得T n=.所以,数列{a2n b2n﹣1}的前n项和为.38.已知{a n}是公差为3的等差数列,数列{b n}满足b1=1,b2=,a n b n+1+b n+1=nb n.(Ⅰ)求{a n}的通项公式;(Ⅱ)求{b n}的前n项和.【解答】解:(Ⅰ)∵a n b n+1+b n+1=nb n.当n=1时,a1b2+b2=b1.∵b1=1,b2=,∴a1=2,又∵{a n}是公差为3的等差数列,∴a n=3n﹣1,(Ⅱ)由(I)知:(3n﹣1)b n+1+b n+1=nb n.即3b n+1=b n.即数列{b n}是以1为首项,以为公比的等比数列,∴{b n}的前n项和S n==(1﹣3﹣n)=﹣.39.设数列{a n}的前n项和为S n,已知S2=4,a n+1=2S n+1,n∈N*.(Ⅰ)求通项公式a n;(Ⅱ)求数列{|a n﹣n﹣2|}的前n项和.【解答】解:(Ⅰ)∵S2=4,a n+1=2S n+1,n∈N*.∴a1+a2=4,a2=2S1+1=2a1+1,解得a1=1,a2=3,=2S n+1,a n=2S n﹣1+1,当n≥2时,a n+1两式相减得a n﹣a n=2(S n﹣S n﹣1)=2a n,+1=3a n,当n=1时,a1=1,a2=3,即a n+1=3a n,满足a n+1∴=3,则数列{a n}是公比q=3的等比数列,则通项公式a n=3n﹣1.(Ⅱ)a n﹣n﹣2=3n﹣1﹣n﹣2,设b n=|a n﹣n﹣2|=|3n﹣1﹣n﹣2|,则b1=|30﹣1﹣2|=2,b2=|3﹣2﹣2|=1,当n≥3时,3n﹣1﹣n﹣2>0,则b n=|a n﹣n﹣2|=3n﹣1﹣n﹣2,此时数列{|a n﹣n﹣2|}的前n项和T n=3+﹣=,则T n==.40.已知a,b,c,d为实数,且a2+b2=4,c2+d2=16,证明ac+bd≤8.【解答】证明:∵a2+b2=4,c2+d2=16,令a=2cosα,b=2sinα,c=4cosβ,d=4sinβ.∴ac+bd=8(cosαcosβ+sinαsinβ)=8cos(α﹣β)≤8.当且仅当cos(α﹣β)=1时取等号.因此ac+bd≤8.另解:由柯西不等式可得:(ac+bd)2≤(a2+b2)(c2+d2)=4×16=64,当且仅当时取等号.∴﹣8≤ac+bd≤8.。
数列、向量、斜三角形、均值不等式
数列、向量、斜三角形、均值不等式(易错题警示)1.设{a n }是等差数列,{b n }为等比数列,其公比q ≠1, 且b i >0(i=1、2、3 …n) 若a 1=b 1,a 11=b 11则 ( )A a 6=b 6B a 6>b 6C a 6<b 6D a 6>b 6或 a 6<b 62.一个只有有限项的等差数列,它的前5项的和为34,最后5项的和为146,所有项的和为234,则它的第七项等于( )A. 22B. 21C. 19D. 183.已知S k 表示{a n }的前K 项和,S n —S n+1=a n (n ∈N +),则{a n }一定是( )A 、等差数列B 、等比数列C 、常数列D 、以上都不正确4.已知数列—1,a 1,a 2,—4成等差数列,—1,b 1,b 2,b 3,—4成等比数列,则212b a a -的值为( ) A 、21 B 、—21 C 、21或—21 D 、41 5.数列{}n a 的前n 项和为s n =n 2+2n-1,则a 1+a 3+a 5+……+a 25=( )A 350B 351C 337D 3386.在等差数列||,0,0}{10111110a a a a a n >><且中,则在S n 中最大的负数为( )A .S 17B .S 18C .S 19D .S 207.从集合{1,2,3,…,10}中任意选出三个不同的数,使这三个数成等比数列,这样的等比数列个数为( ) A .3 B .4 C .6 D .88.数列}{n a 满足121,12210,2{1<≤-<≤=+n n n n n a a a a a ,若761=a ,则2004a 的值为( ) A.76 B. 75 C. 73 D.71 9.已知数列}{n a 的前n 项和为)15(21-=n n S n ,+∈N n ,现从前m 项:1a ,2a ,…,m a 中抽出一项(不是1a ,也不是m a ),余下各项的算术平均数为37,则抽出的是( )A .第6项B .第8项C .第12项D .第15项10.}{n a 是实数构成的等比数列,S n 是其前n 项和,则数列}{n S 中 ( )A 、任一项均不为0B 、必有一项为0C 、至多有有限项为0D 、或无一项为0,或无穷多项为011.数列1,1+2,1+2+4,…,1+2+4+…+2n 各项和为( C )A 、2n+1-2-nB 、2n -n -1C 、2n+2-n -3D 、2n+2-n -212..在∆ABC 中,c b a ,,为C B A ∠∠∠,,的对边,且1)cos(cos 2cos =-++C A B B ,则( )。
高中数学必修5解三角形、数列、不等式测试题
高中数学必修5解三角形、数列、不等式测试题(考试时间120分钟,总分150分)一.选择题 (本大题共12小题 ,每小题5分,共60分,请把正确答案填在答题卡上)1.已知a ,b 为非零实数,且a <b ,则下列命题成立的是( )A .a 2<b 2B .a 2b <ab2C .2a-2b<0 D.1a >1b2.sin15°cos45°+cos15°sin45°等于( ) A .0B .21 C .23 D .13.ABC ∆中,若︒===60,2,1B c a ,则ABC ∆的面积为 ( )A .21B .23 C.1 D.34.在数列{}n a 中,1a =1,12n n a a +-=,则51a 的值为 ( ) A .99 B .49 C .102 D . 1015.已知0x >,函数4y x x=+的最小值是 ( ) A .5 B .4 C .8 D .6 6.在等比数列中,112a =,12q =,132n a =,则项数n 为 ( ) A. 3B. 4C. 5D. 67.不等式20(0)ax bx c a ++<≠的解集为R ,那么( )A. 0,0a <∆<B. 0,0a <∆≤C. 0,0a >∆≥D. 0,0a >∆>8.设,x y 满足约束条件12x y y x y +≤⎧⎪≤⎨⎪≥-⎩,则3z x y =+的最大值为 ( )A . 5 B. 3 C. 7 D. -8 9.若)4πtan(α-=3,则tan α 等于( ) A .-2 B .21-C .21 D .210.在等差数列{a n }中,若a 3+a 9+a 15+a 21=8,则a 12等于( )A .1B .-1C .2D .-211.下列各式中,值为23的是( ) A .2sin15°-cos15° B .cos 215°-sin 215° C .2sin 215°-1D .sin 215°+cos 215°12.关于x 的方程2210ax x +-=至少有一个正的实根,则a 的取值范围是( )A .a ≥0B .-1≤a <0C .a >0或-1<a <0D .a ≥-1二.填空题(共4小题,每题5分,共20分,请把正确答案填在答题卡上) 13.在△ABC 中,若∠A =60°,∠B =45°,BC =32,则AC =14. 不等式组260302x y x y y +-≥⎧⎪+-≤⎨⎪≤⎩表示的平面区域的面积为15.不等式21131x x ->+的解集是 . 16. 已知数列{}n a 满足23123222241n n n a a a a ++++=-,则{}n a 的通项公式 三.解答题(本大题共6小题,满分70分.解答须写出文字说明、证明过程和演算步骤,并把正确解答过程写在答题卡上)17. (10分)(1) 解不等式0542<++-x x ,(2)求函数的定义域:5y =18.(12分)等差数列{}n a 满足 212=a ,155=a ,求通项n a 及前n 项和的最大值.19.(12分)在△ABC 中,BC =a ,AC =b ,a ,b是方程220x -+=的两个根, 且2()1coc A B +=。
解三角形数列不等式
2016年高一下学期期中检测一、选择题。
(12×5分=50分)1.在△ABC 中,b = 8,c =38,S △ABC =316,则∠A 等于( )A. 30 ºB. 60ºC. 30º 或 150ºD. 60º 或120º2.如果1,,,,9a b c --成等比数列,那么( )A.3,9b ac ==B.3,9b ac =-=C.3,9b ac ==-D.3,9b ac =-=-3.已知x 、y 满足约束条件⎪⎩⎪⎨⎧-≥≤≤+11y x y y x ,Z=2x+y 的最大值是 ( )A .5B .23C .3D .54.在△ABC 中,若cos cos a b B A=,则该三角形一定是 ( ) A .等腰三角形但不是直角三角形 B .直角三角形但不是等腰三角形C .等腰直角三角形D .等腰三角形或直角三角形5. 公差不为0的等差数列{a n }中,a 2、a 3、a 6依次成等比数列,则公比等于( ) A. 21 B. 31 C.2 D.3 6.设a>0,b>0,若是3a 与3b的等比中项,则+的最小值为( ) (A)8 (B)4 (C)1 (D)7.在△ABC 中,三边a,b,c 成等差数列,B=30°,且△ABC 的面积为,则b 的值是( )(A)1+ (B)2+ (C)3+ (D)8.已知是等比数列,,则=( ) A.16() B.6() C.() D.() 9. 在△ABC 中,a ,b ,c 分别为A , B , C 的对边,如果c a b +=2, B =30°,△ABC 的面积为23,那么b 等于( ) {}n a 41252==a a ,13221++++n n a a a a a a n --41n --21332n --41332n --21A.231+B.31+C.232+ D.32+ 10.在等比数列{a n }中,a 1=1,q ∈R 且|q |≠1,若a m =a 1a 2a 3a 4a 5,则m 等于( )A.9B.10C.11D.1211.等差数列{a n }和{b n }的前n 项和分别为S n 与Tn ,对一切自然数n ,都有n n T S =132+n n ,则55b a 等于( ) A.32 B. 149 C. 3120 D. 1711 12. 一个直角三角形的周长为2p ,则其斜边长的最小值为( )A. 21+B. 21- C.D. 二、填空题。
高数列,解三角形,不等式练习题
解三角形,数列,不等式练习题一、选择题1、等差数列{}n a 中,12010=S ,那么29a a +的值是( )(A ) 12 (B ) 24 (C ) 16 (D ) 482、ABC ∆中,已知o A c a 30,10,25===则C=( )(A )o 45 (B )o 60 (C )o 135 (D )o 13545或o3.在△ABC 中,若0030,6,90===B a C ,则b c -等于( )A .1B .1-C .32D .32-4.在△ABC 中,若B a b sin 2=,则A 等于( )A .006030或B .006045或C .0060120或D .0015030或5.在△ABC 中,若,3))((bc a c b c b a =-+++则A=( )A .090B .060C .0135D .01506.等比数列{}n a 中, ,243,952==a a 则{}n a 的前4项和为( )A . 81B .120C .168D .1927.已知一等比数列的前三项依次为33,22,++x x x ,那么2113-是此数列的第()项 A .2 B .4 C .6 D .88.已知等差数列{}n a 的公差为2,若431,,a a a 成等比数列, 则2a =( )A . – 4B .-6C .-8D .-109.设a >1>b >-1,则下列不等式中恒成立的是 ( )A .b a 11< B .b a 11> C .a >b 2 D .a 2>2b10.一元二次不等式ax 2+bx +2>0的解集是(-21,31),则a +b 的值是_____。
A. 10B. -10C. 14D. -14二、填空题1.已知数列{}n a 的前n 项和为12+=n S n 则数列的通项公式=n a _____2.在△ABC 中,若=++=A c bc b a 则,222_________。
不等式与解三角形大题
2013-2014学年度第二学期解三角形和不等式的大题注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第I卷(选择题)请点击修改第I卷的文字说明一、选择题(题型注释)第II 卷(非选择题)请点击修改第II 卷的文字说明二、填空题(题型注释)(1,求)(x f 的取值范围;(2)设△ABC 的内角A 、B 、C 所对的边分别为a 、b 、c ,已知A 为锐角,2=b ,3=c ,求)cos(B A -的值.【答案】2.已知向量)sin ,)62(sin(x x m π+=,)sin ,1(x =,1()2f x m n =⋅-. (1)求函数()f x 的单调递减区间;(2)在ABC ∆中,c b a ,,分别是角C B A ,,的对边,a =,1()22Af =, 若C C A cos 2)sin(3=+,求b 的大小.【答案】(1)()f x 递减区间是3,,44k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦. (2) 3.已知函数f(x)=22x x a x++,x ∈[1,+∞).(1)当a =4时,求函数f(x)的最小值;(2)若对任意x ∈[1,+∞),f(x)>0恒成立,试求实数a 的取值范围. 【答案】(1)6(2)()3,-+∞ 4.(1)已知x<54,求函数y =4x -2+145x -的最大值; (2)已知x>0,y>0且19x y+=1,求x +y 的最小值. 【答案】(1)y max =1.(2)最小值为165.某营养师要为某个儿童预订午餐和晚餐.已知一个单位的午餐含12个单位的碳水化合物、6个单位的蛋白质和6个单位的维生素C ;一个单位的晚餐含8个单位的碳水化合物、6个单位的蛋白质和10个单位的维生素C.另外,该儿童这两餐需要的营养中至少含64个单位的碳水化合物、42个单位的蛋白质和54个单位的维生素C.如果一个单位的午餐、晚餐的费用分别是2.5元和4元,那么要满足上述的营养要求,并且花费最少,应当为该儿童分别预订多少个单位的午餐和晚餐? 【答案】4个单位的午餐和3个单位的晚餐,6.设z =2x +y ,式中变量满足下列条件:4335251x y x y x ≤⎧⎪≤⎨⎪≥⎩--,+,,求z 的最大值和最小值.【答案】12 37.在△ABC 中,a =3,b =,∠B =2∠A. (1)求cosA 的值; (2)求c 的值. 【答案】(1)32)5. 8.在△ABC 中,内角C B A 、、的对边分别为c b a 、、,已知cos sin a b C c B =+.(Ⅰ)求B ;(Ⅱ)若2=b ,求△ABC 面积的最大值. 【答案】(Ⅰ)4π=B ;(Ⅱ)12+.9.在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c,且cosA=31. (1)求2sin 2C B ++cos2A 的值;(2)若a=3,求bc 的最大值. 【答案】(1)-91(2)49. 10.△ABC 中,BC =7,AB =3,且B Csin sin =53. (1)求AC ; (2)求∠A . 【答案】(1)5 (2) 120-=∠A11.已知A 、B 、C 为ABC ∆的三个内角,他们的对边分别为a 、b 、c ,且21s in s in c o s c o s =-C B C B 。
陕西省宝鸡教育联盟2022-2023学年高三上学期教学质量检测(四)理科数学试题(解析版)
(1)证明: ;
(2)若 ,求 的面积.
【答案】(1)证明见解析
(2)
【解析】
【分析】(1)根据正弦定理角化边可证;
(2)先求得 ,再根据 计算面积.
【小问1详解】
证明:∵外接圆半径为 ,且 ,
∴ ,
由正弦定理得
,
;
∵ ,
∴当 时, ,
∴ ,
∴ ,
故等比数列 的公比q=3,
令n=1,得 ,
∴ ,
∴ ;
【小问2详解】
由题可知 ,
∴ ,
∵ ,
∴ .
19.已知函数 .
(1)求不等式 的解集;
(2)不等式 的最小值为 ,若 , 为正数,且 ,证明: .
【答案】(1) ;(2)证明见解析.
【解析】
【分析】(1)利用零点分段法去绝对值,由此求得不等式 的解集.
【答案】
【解析】
【分析】设出 , , ,结合题干条件得到 , ,从而求出四棱台的体积和外接球的体积,得到比值.
【详解】设 , , ,
因为以 为球心, 为半径的球与平面 相切,所以 ,
因为 是该四棱台的外接球球心,所以 ,即 ,
所以四棱台的体积 ,
且外接球 体积 ,则 .
故答案为: .
三、解答题:本大题共6小题,共70分.解答应写出必要的文字说明、证明过程及演算步骤.
由上知 ,有 (当且仅当 时取等号),
又有 ,(当且仅当 时取等号),
故有 .
【点睛】基本不等式的运用,常见的有 ,也即 ,要注意等号成立的条件.
20.如图,在四棱锥 中,底面 为直角梯形, 底面AB ,且 分别为 中点.
三角函数向量解三角形数列综合测试含答案
三角函数、向量、解三角形、数列综合测试含答案大冶一中 孙雷一、选择题每题只有一个正确选项,共60分1.若向量===BAC CB AB ∠),0,1-(),23,21(则 A.30° B.60° C. 120° D. 150°2.已知34,4,8===AC BC AB ABC Rt 中,△,则对于ABC △所在平面内的一点P ,)(PC PB PA +•的最小值是A.-8B. -14C.-26D.-303.已知在正方形ABCD 中,点E 为CD 的中点,点F 为CB 上靠近点B 的三等分点,O 为AC 与BD 的交点,则=DB A.OF AE 51858-+ B.OF AE 74718-+ C.OF AE 58518-+ D. OF AE 71874-+ 4.已知)2π-απ-(523-αsin -αcos <<=,则=+αααtan -1)tan 1(2sin A.7528- B.7528 C.7556- D. 7556 5.若函数m x x x f -2cos 2-sin 4)(=在R 上的最小值是3,则实数=mA.6-B.5-C.3-D.2-6.已知α为锐角,且2)8π-α(tan =,则=α2sin A.102 B.1023 C.1027 D. 4237.已知向量)sin 41-(α,=a ,)4πα0)(1-α(cos <<=,b ,且b a //,则=)4π-αcos( A.21- B.21 C.23- D.23 8.在ABC △中,3:2:1::=A B C ,则=a b c ::A.1:2:3B.3:2:1C.1:3:2D. 2: 3:19.在ABC △中,c b a ,,分别为内角C B A ,,的对边,若B A C sin sin sin 3+=,53cos =C ,且4=ABC S △,则=c A.364 B.4 C.362 D.5 10.在ABC △中,°=60C ,322==AC BC ,点D 在边BC 上,且772sin =∠BAD ,则CD =A. 334B.43 C.33 D.332 11.我国古代数学巨著九章算术中,有如下问题:“今有女善织,日自倍,五日织五尺,问日织几何”这个问题用今天的白话叙述为:“有一位善于织布的女子,每天织的布都是前一天的2倍,已知她5天共织布5尺,问这位女子每天分别织布多少”根据上述问题的已知条件,若该女子共织布3135尺,则这位女子织布的天数是 A.2 B.3 C.4 D.112.数列}{n a 中,01=a ,且)2(2-1-1-≥+=+n a a n a a n n n n ,则数列})1-(1{2n a 前2019项和为A.20194036B.10102019C.20194037D.20204039 二、填空题共20分13.已知等差数列}{n a 的前n 项和n S 有最大值,且1-20192020<a a ,则当0<n S 时n 的最小值为_____________. 14.已知数列}{n a 满足2321)2(+=n a a a a n ,则该数列的通项公式为______________.15.已知数列}{n a 满足),2(1)13()1-(*1-1N n n a a n n n ∈≥++=+,且121==a a ,则数列}{n a 的前2020项的和为_______________.16.ABC △中,Ab B a B Ac C B A cos cos sin sin sin -sin sin 222+=+,若1=+b a ,则c 的取值范围是___________.三、解答题共70分17.已知n S 为等差数列}{n a 的前n 项和,81=a ,10-10=S1求n a ,n S ;2设||||||21n n a a a T +++= ,求n T .18.在ABC △中,c b a ,,分别为内角C B A ,,的对边,且552sin =B ,6=•BC BA 1求ABC △的面积;2若8=+c a ,求b 的值.19.已知函数)(|2||-|)(R a x a x x f ∈++=1当1=a 时,求不等式5≥)(x f 的解集;2当]1,0[∈x 时,不等式|4|≤)(+x x f 恒成立,求实数a 的取值范围.20.已知函数)0(23-sin 3cos sin )(2>+=ωωωωx x x x f 的最小正周期为π,将函数)(x f 的图象向左平移6π个单位长度,再向下平移21个单位长度,得到函数=y )(x g 的图象 1求函数)(x f 的单调递减区间;2在锐角ABC △中,角C B A ,,的对边为c b a ,,,若2,0)2(==a A g ,求ABC △面积的最大值.21.已知关于x 的函数1-2-2π3cos(cos 2)(2)x x x f += 1求不等式0)(>x f 的解集;2若关于x 的不等式x a x x f sin ≥|2sin )(|+在区间]4π3,3π[上有解,求实数a 的取值范围.22.已知数列}{n a 的前n 项和为n S ,且31-34n n a S =,等差数列}{n b 各项均为正数,223b a =,4246b b a += 1求数列}{n a ,}{n b 的通项公式;2设数列}{n c 的前n 项和为n T ,对一切*N n ∈有n n n b na c a c a c =++ 22112成立,求n T .。
2020届高考复习高中数学【理】月月考(二):三角函数、平面向量、数列、不等式(解析版)
A.- B.
C. D.-4
答案:A
解析:∵a+b=1,∴- - =- - =- - ,∵a>0,b>0,∴ + ≥2,当且仅当b=2a时取等号,∴- - ≤- -2=- ,∴- - 的上确界为- ,故选A.
5.若点M是△ABC所在平面内的一点,且满足|3 - - |=0,则△ABM与△ABC的面积之比等于()
A. B.
C. D.
答案:C
解析:如图,G为BC的中点,则 + =2 ,∵|3 - - |=0,
∴3 - - =0,
∴3 = + =2 ,
∴ = ,
∴ = ,
又S△ABG= S△ABC,
∴△ABM与△ABC的面积之比等于 × = .故选C.
A.- B.-
C. D.
答案:B
解析:∵角α的终边经过点P(3,4),∴sinα= ,cosα= .
∴sin =-sin =-sin =-cosα=- .故选B.
3.若α为锐角,且3sinα=tanα= tanβ,则tan2β等于()
A. B.
C.- D.-
答案:D
解析:因为3sinα=tanα= ,α为锐角,所以cosα= ,sinα= = ,所以tanα= =2 = tanβ,所以tanβ=2,tan2β= = =- .
A.f(x)在 上单调递减
B.f(x)在 上单调递减
C.f(x)在 上单调递增
D.f(x)在 上单调递增
答案:D
解析:由题意得f(x)= sin(2x+θ)+cos(2x+θ)=2sin .∵函数f(x)的图象经过点 ,
2023年新教材高考数学全程考评特训卷滚动过关检测五集合常用逻辑用语不等式函数与导数三角函数与解三角
滚动过关检测五 集合、常用逻辑用语、不等式、函数与导数、三角函数与解三角形、数列、平面向量与复数一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合M ={x |log 3(x -2)<0},N ={x |x ≥-2},集合M ∩N =( ) A .{x |-2≤x <2}B .{x |-2≤x <3} C .{x |2<x <3}D .{x |x <3}2.[2021·新高考Ⅰ卷]已知z =2-i ,则z ()z -+i =( ) A .6-2iB .4-2i C .6+2iD .4+2i3.[2022·山东春考]已知向量a =⎝ ⎛⎭⎪⎫cos 5π12,sin 5π12,b =⎝ ⎛⎭⎪⎫cos π12,sin π12,那么a ·b等于( )A.12B.32 C .1D .04.[2022·辽宁实验中学月考]已知向量a ,b ,且AB →=a +2b ,BC →=-5a +6b ,CD →=7a -2b ,则一定共线的三点是( )A .A ,B ,D B .A ,B ,C C .B ,C ,D D .A ,C ,D5.在等比数列{a n }中,a 1=1,a 2a 3=8,则a 4+a 5a 1+a 2=( ) A .8B .6 C .4D .26.[2022·福建三明模拟]在△ABC 中,点D 满足BC →=3BD →,点E 为线段AD 的中点,则向量CE →=( )A.13AB →+16AC →B.16AB →+13AC →C.16AB →-23AC →D.13AB →-56AC → 7.[2022·河北沧州模拟]已知非零向量a ,b 满足|b |=2|a |,且(a -b )⊥(3a +2b ),则a 与b 的夹角为( )A .45°B.135° C .60°D.120°8.定义在R 上的函数f (x )的图象是连续不断的曲线,且f (x )=f (-x )e 2x,当x >0时,f ′(x )>f (x )恒成立,则下列判断一定正确的是( )A .e 5f (2)<f (-3) B .f (2)<e 5f (-3) C .e 2f (-2)<f (3) D .f (-2)<e 5f (-3)二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求,全部选对的得5分,有选错的得0分,部分选对的得2分.9.[2022·江苏无锡一中月考]若复数z 满足z (1-2i)=10,则( ) A .|z |=2 5 B .z -2是纯虚数C .复数z 在复平面内对应的点在第三象限D .若复数z 在复平面内对应的点在角α的终边上,则sin α=5510.下列命题错误的是( )A .命题“∃x 0∈R ,x 20+1>3x 0”的否定是“∃x ∈R ,x 2+1>3x ”B .函数“f (x )=cos ax -sin ax 的最小正周期为π”是“a =2”的必要不充分条件C .x 2+2x ≥ax 在x ∈[1,2]时有解⇔(x 2+2x )min ≥(ax )min 在x ∈[]1,2时成立D .“平面向量a 与b 的夹角是钝角”的充分必要条件是“a ·b <0”11.[2022·山东师范大学附中月考]定义在R 的奇函数f (x )满足f (x -3)=-f (x ),当x ∈(0,3)时f (x )=x 2-3x ,则以下结论正确的有( )A .f (x )的周期为6B .f (x )的图象关于⎝ ⎛⎭⎪⎫32,0对称C .f (2021)=2D .f (x )的图象关于x =32对称12.[2021·新高考Ⅰ卷]已知O 为坐标原点,点P 1(cos α,sin α),P 2(cos β,-sin β),P 3(cos(α+β),sin(α+β)),A (1,0),则( )A .|OP 1→|=|OP 2→|B .|AP 1→|=|AP 2→| C.OA →·OP 3→=OP 1→·OP 2→D.OA →·OP 1→=OP 2→·OP 3→三、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中的横线上. 13.[2022·天津静海一中月考]已知log a 12=m ,log a 3=n ,则a m +2n的值为________.14.[2022·辽宁抚顺模拟]设等差数列{a n }的前n 项和为S n ,若a 2+a 5+a 8=15,则S 9=________.15.[2022·江苏响水中学月考]函数f (x )=A sin(ωx +φ)(A >0,ω>0,|φ|<π2)的部分图象如图所示,已知A ,B 分别是最高点、最低点,且满足OA →⊥OB →(O 为坐标原点),则f (x )=________.16.[2022·北京101中学高三开学考试]△ABC 中,D 为AC 上的一点,满足AD →=13DC →.若P 为BD 上的一点,满足AP →=mAB →+nAC →()m >0,n >0,则mn 的最大值为________;4m +1n的最小值为________.四、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.17.(10分)[2022·福建师大附中月考]已知向量a ,b 满足,||a =1,||b =2,且a 与b 不共线.(1)若向量a +k b 与k a +2b 为方向相反的向量,求实数k 的值; (2)若向量a 与b 的夹角为60°,求2a +b 与a -b 的夹角θ.18.(12分)[2022·山东日照模拟]向量m =(2sin x ,3),n =(cos x ,cos2x ),已知函数f (x )=m ·n ,(1)求函数f (x )的最小正周期和单调递减区间;(2)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,其中a =7,若锐角A 满足f ⎝ ⎛⎭⎪⎫A 2-π6=3,且sin B +sin C =13314,求b +c 的值.b n是公差为1的等19.(12分)设{a n}是公比大于0的等比数列,其前n项和为S n,{}差数列,已知a2=2,a4=a3+4,a3=b3+b1.(1)求{a n}和{b n}的通项公式;(2)设数列{a n+b n}的前n项和为T n,求T n.20.(12分)[2022·山东泰安模拟]△ABC的内角A,B,C的对边分别为a,b,c,已知向量m=(c-a,sin B),n=(b-a,sin A+sin C),满足m∥n.(1)求C;(2)若6c+3b=3a,求sinA.21.(12分)[2022·湖北黄冈中学模拟]已知数列{a n }中,a 1=2,n (a n +1-a n )=a n +1.(1)求证:数列⎩⎨⎧⎭⎬⎫a n +1n 是常数数列; (2)令b n =(-1)na n ,S n 为数列{b n }的前n 项和,求使得S n ≤-99的n 的最小值.22.(12分)已知函数f (x )=ax 2+x -e x. (1)若a =12,讨论f (x )的单调性;(2)若f (x )≤1恒成立,求实数a 的取值范围.滚动过关检测五 集合、常用逻辑用语、不等式、函数与导数、三角函数与解三角形、数列、平面向量与复数1.答案:C解析:因为M ={x |log 3(x -2)<0}={x |2<x <3},N ={x |x ≥-2},所以M ∩N ={x |2<x <3}. 2.答案:C解析:因为z =2-i ,故z -=2+i ,故z ()z -+i =()2-i ()2+2i =6+2i. 3.答案:A解析:a =⎝ ⎛⎭⎪⎫cos 5π12,sin 5π12,b =⎝ ⎛⎭⎪⎫cos π12,sin π12,a ·b =cos 5π12cos π12+sin 5π12sinπ12=cos π3=12.4.答案:A解析:因为BC →+CD →=BD →=2a +4b =2(a +2b )=2AB →,所以A ,B ,D 三点共线. 5.答案:A解析:由题设,a 2a 3=a 21q 3=8,又a 1=1,可得q =2,∴a 4+a 5a 1+a 2=a 1q 3+a 1q 4a 1+a 1q =243=8.6.答案:D 解析:由E 为线段AD 的中点,则CE →=12(CA →+CD →),又D 满足BC →=3BD →,∴CD →=23CB →=23(AB →-AC →),∴CE →=12⎣⎢⎡⎦⎥⎤CA →+23AB →-AC →=13AB →-56AC →.7.答案:B解析:∵(a -b )⊥(3a +2b ),∴(a -b )·(3a +2b )=0,即3a 2-a ·b -2b 2=3|a |2-|a |·|b |cos 〈a ,b 〉-2|b |2=0,又|b |=2|a |且|a |≠0, ∴3|a |2-2|a |2cos 〈a ,b 〉-4|a |2=-|a |2-2|a |2cos 〈a ,b 〉=0, ∴cos〈a ,b 〉=-22,又〈a ,b 〉∈[]0,π,∴〈a ,b 〉=3π4,即〈a ,b 〉=135°. 8.答案:B 解析:令g (x )=f xex,则g ′(x )=f ′x -f xex,∵x >0时,f ′(x )>f (x )恒成立,∴x >0时,g ′(x )>0,即g (x )单调递增,又f xex=f -xe-x,则g (-x )=g (x ),g (x )为偶函数.∴x <0时,g (x )单调递减.f 2e2=f -2e-2<f 3e3=f -3e-3,即f (2)<e 5f (-3)、f (3)>e 5f (-2)、e f (-3)>f (-2),∴A、C 、D 错误,B 正确.9.答案:AB解析:由题意z =101-2i =101+2i1-2i 1+2i=2+4i ,|z |=25,A 选项正确;z -2=4i ,B 选项正确;z 在复平面内对应点为(2,4),对应点在第一象限,C 选项错误;sin α=44+16=255,D 选项错误.10.答案:ACD解析:对A :命题“∃x 0∈R ,x 20+1>3x 0”的否定是“∀x ∈R ,x 2+1≤3x ,故A 错误;对B :由函数f (x )=cos ax -sin ax =2cos ⎝ ⎛⎭⎪⎫ax +π4,则T =⎪⎪⎪⎪⎪⎪2πa =π,则a =±2,故B正确;对C :a =2时,x 2+2x ≥ax 在x ∈[1,2]上恒成立,而(x 2+2x )min =3<(2x )max =4,故C 错误;对D ,当“a ·b <0”时,平面向量a 与b 的夹角是钝角或平角,∴“平面向量a 与b 的夹角是钝角”的必要不充分条件是“a ·b <0”,故D 错误.11.答案:ACD解析:因为f (x )满足f (x -3)=-f (x ),所以f (x -6)=-f (x -3)=f (x ),故函数f (x )是周期为6的周期函数,故A 选项正确; 由于函数为R 的奇函数f (x )满足f (x -3)=-f (x ),所以f (x -3)=-f (x )=f (-x ),所以根据周期性得f (x +3)=f (-x ),所以f ⎝ ⎛⎭⎪⎫x +32=f ⎝ ⎛⎭⎪⎫32-x ,所以f (x )的图象关于x =32对称,故B 错误,D 正确;对于C 选项,结合周期性得f (2021)=f (336×6+5)=f (5)=f (-1)=-f (1)=-1+3=2,故正确.故选ACD. 12.答案:AC解析:A :OP 1→=(cos α,sin α),OP 2→=(cos β,-sin β),所以|OP 1→|=cos 2α+sin 2α=1,|OP 2→|=cos 2β+-sin β2=1,故|OP 1→|=|OP 2→|,正确;B :AP 1→=(cos α-1,sin α),AP 2→=(cos β-1,-sin β), 所以|AP 1→|=cos α-12+sin 2α=cos 2α-2cos α+1+sin 2α=21-cos α=4sin2α2=2|sin α2|, 同理|AP 2→|=cos β-12+sin 2β=2|sinβ2|,故|AP 1→|,|AP 2→|不一定相等,错误;C :由题意得:OA →·OP 3→=1×cos(α+β)+0×sin(α+β)=cos(α+β),OP 1→·OP 2→=cos α·cos β+sin α·(-sin β)=cos(α+β),正确;D :由题意得:OA →·OP 1→=1×cos α+0×sin α=cos α,OP 2→·OP 3→=cos β×cos(α+β)+(-sin β)×sin(α+β)=cos ()β+()α+β=cos ()α+2β,故一般来说OA →·OP 1→≠OP 2→·OP 3→,错误.故选AC. 13.答案:92解析:由题设,m +2n =log a 12+2log a 3=log a 92,∴a m +2n=a log a 92=92.14.答案:45解析:因为数列{a n }为等差数列,所以a 2+a 8=2a 5,又a 2+a 5+a 8=15,所以a 5=5,所以S 9=9()a 1+a 92=9a 5=45.15.答案:2sin ⎝⎛⎭⎪⎫π3x +π6解析:由图象知:3T 4=112-1=92,即T =6,则T =2πω=6,可得ω=π3,∴A ()1,A ,B 的横坐标为1+T2=1+3=4,即B (4,-A ),∵OA →⊥OB →,∴(1,A )·(4,-A )=0,则1×4-A 2=0,A >0,得A =2,∴f (x )=2sin ⎝ ⎛⎭⎪⎫π3x +φ,由五点作图法知:π3×1+φ=π2,得φ=π6,综上,函数的解析式为f (x )=2sin ⎝ ⎛⎭⎪⎫π3x +π6.16.答案:116 16解析:如图所示,由AD →=13DC →得AD →=14AC →,所以AP →=mAB →+4nAD →,所以m +4n =1(m >0,n >0),所以mn =14m ·(4n )≤14⎝ ⎛⎭⎪⎫m +4n 22=116,等号成立当且仅当m =12,n =18,所以mn 的最大值为116.因为4m +1n =⎝ ⎛⎭⎪⎫4m +1n (m +4n )=8+16n m +m n ≥16,等号成立当且仅当m =12,n =18,所以4m +1n的最小值为16.17.解析:(1)因为向量a +k b 与k a +2b 为方向相反的向量,所以存在实数λ<0,使得a +k b =λ()k a +2b ,且a 与b不共线,所以⎩⎪⎨⎪⎧1=kλk =2λ,解得:⎩⎪⎨⎪⎧λ=-22k =-2或⎩⎪⎨⎪⎧λ=22k =2(舍);所以实数k 的值为-2;(2)因为向量a 与b 的夹角为60°,|a |=1,|b |=2, 所以a ·b =|a |·|b |·cos60°=1×2×12=1,(2a +b )·(a -b )=2a 2-a ·b -b 2=2|a |2-a ·b -|b |2=2×12-1-22=-3, |2a +b |=2a +b2=4a 2+4a ·b +b 2=4+4+22=23,|a -b |=a -b2=a 2-2a ·b +b 2=1-2×1+22=3,所以cos θ=2a +b ·a -b |2a +b |·|a -b |=-323×3=-12,因为0°≤θ≤180°,所以θ=120°.18.解析:(1)f (x )=m ·n =2sin x cos x +3cos2x =sin2x +3cos2x =2sin ⎝ ⎛⎭⎪⎫2x +π3,∴f (x )的最小正周期T =π;令π2+2k π≤2x +π3≤3π2+2k π(k ∈Z ),解得:π12+k π≤x ≤7π12+k π(k ∈Z ), ∴f (x )的单调递减区间为⎣⎢⎡⎦⎥⎤π12+k π,7π12+k π(k ∈Z ).(2)由f ⎝ ⎛⎭⎪⎫A 2-π6=2sin A =3得:sin A =32,又A 为锐角,∴A =π3; ∴asin A =b sin B =c sin C =732=1433,∴b +c =1433(sin B +sin C )=1433×13314=13.19.解析:(1)设{a n }的公比为q ,因为a 2=2,a 4=a 3+4,所以a 2q 2=a 2q +4,即2q 2=2q +4,所以q 2-q -2=0,因为q >0,所以q =2, 所以a n =a 2qn -2=2·2n -2=2n -1,所以a 3=b 3+b 1=4, 设{b n }的公差为d ,则d =1,所以⎩⎪⎨⎪⎧b 1+2d+b 1=4d =1,解得⎩⎪⎨⎪⎧b 1=1d =1,所以b n =1+(n -1)×1=n ;(2)因为a n =2n -1,所以a 1=20=1,所以a n +b n =2n -1+n ,所以T n =(20+22+…+2n -1)+(1+2+…+n )=1-2n1-2+n 1+n2=2n+n 2+n2-1,所以T n =2n+n 2+n2-1.20.解析:(1)因为m ∥n ,所以(c -a )(sin A +sin C )=(b -a )sin B ,由正弦定理得(c -a )(a +c )=(b -a )b ,所以a 2+b 2-c 2=ab ,所以cos C =a 2+b 2-c 22ab =ab 2ab =12,因为C ∈(0,π),故C =π3.(2)由(1)知B =2π3-A ,由题设及正弦定理得6sin C +3sin ⎝ ⎛⎭⎪⎫2π3-A =3sin A , 即22+32cos A +12sin A =sin A ,可得sin ⎝⎛⎭⎪⎫A -π3=22.由于0<A <2π3,-π3<A -π3<π3,所以cos ⎝⎛⎭⎪⎫A -π3=22, 故sin A =sin ⎝ ⎛⎭⎪⎫A -π3+π3=sin ⎝ ⎛⎭⎪⎫A -π3cos π3+cos ⎝ ⎛⎭⎪⎫A -π3sin π3=22×12+22×32=6+24. 21.解析:(1)由n (a n +1-a n )=a n +1得:na n +1=(n +1)a n +1,即a n +1n +1=a n n +1n n +1∴a n +1n +1=a n n +1n -1n +1,即有a n +1+1n +1=a n +1n ,∴数列⎩⎨⎧⎭⎬⎫a n +1n 是常数数列; (2)由(1)知:a n +1n=a 1+1=3,∴a n =3n -1,∴b n =(-1)n(3n -1),即b n =⎩⎪⎨⎪⎧3n -1,n 为偶数-3n -1,n 为奇数,∴当n 为偶数时,S n =(-2+5)+(-8+11)+…+[]-3n -4+3n -1=3n2,显然S n ≤-99无解;当n 为奇数时,S n =S n +1-a n +1=3n +12-[]3n +1-1=-3n +12,令S n ≤-99,解得:n ≥1973,结合n 为奇数得:n 的最小值为67.22.解析:(1)当a =12时,f (x )=12x 2+x -e x,所以f ′(x )=x +1-e x,令g (x )=f ′(x )=x +1-e x,则g ′(x )=1-e x,所以当x >0时,g ′(x )<0,g (x )单调递减,当x <0时,g ′(x )>0,g (x )单调递增, 所以g (x )≤g (0)=0,即f ′(x )≤0, 所以函数f (x )为R 上的单调递减函数.(2)若f (x )≤1恒成立,即ax 2+x -e x≤1恒成立, 显然,当x =0时成立,当x ≠0时,不等式等价于a ≤e x -x +1x2恒成立, 令h (x )=e x-x +1x2, 则h ′(x )=x -2e x+1x 3,当h ′(x )>0时,得x <0或x >2,即函数h (x )在(-∞,0)和(2,+∞)上单调递增, 当h ′(x )<0时,得0<x <2,即函数h (x )在(0,2)上单调递减,由于x →-∞时,h (x )由正数趋近于0,当x =2时,h (2)min =e 2-14>0,所以函数h (x )的草图如图,所以a ≤⎝ ⎛⎭⎪⎫e x-x+1x 2min 恒成立,只需a ≤0,所以实数a 的取值范围是(-∞,0].。
集合、常用逻辑用语、不等式、函数与导数、三角函数与解三角形、数列、平面向量与复数、立体几何
滚动过关检测六 集合、常用逻辑用语、不等式、函数与导数、三角函数与解三角形、数列、平面向量与复数、立体几何一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.[2022·湖南师大附中月考]已知全集U ={x ∈N *|1≤x ≤6},集合A ={1,2,3,5},B ={3,4,5},则A ∩(∁U B )=( )A .{1,6}B .{2,6}C .{1,2}D .{1,2,6}2.[2022·湖北武汉模拟]若复数z 满足i +z z=i +2,则z 在复平面内对应的点位于( ) A .第一象限 B .第二象限C .第三象限D .第四象限3.[2022·山东济宁模拟]“直线m 垂直平面α内的无数条直线”是“m ⊥α”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件4.[2022·广东中山模拟]数列{a n }为等差数列,S n 为其前n 项和,a 4+a 6=10,则S 9=( )A .40B .42C .43D .455.[2022·河北石家庄模拟]函数f (x )=cos (π·x )e x -e-x 的图象大致为( )6.[2022·福建福州模拟]将曲线C 1:y =2sin x 上各点的横坐标缩短到原来的12倍(纵坐标不变),得到的曲线C 2,把C 2向左平移π6个单位长度,得到曲线C 3:y =f (x ),则下列结论正确的是( )A .f (x )的最小正周期为4πB .x =π12是f (x )的一条对称轴C .f (x )在⎝⎛⎭⎫-π3,π6上的最大值为3 D .f (x )在⎝⎛⎭⎫-π3,π6上单调递增 7.[2022·山东师范大学附中月考]已知定义在R 上的函数f (x )=3|x -m |-1(m 为实数)为偶函数,记a =f (log 0.53),b =(log 25),c =f (2m ),则a ,b ,c 的大小关系为( )A .a <b <cB .a <c <bC .c <a <bD .c <b <a8.[2022·辽宁抚顺二中月考]已知四棱锥P ABCD ,底面ABCD 为矩形,侧面PCD ⊥平面ABCD ,BC =23,CD =PC =PD =26,若点M 为PC 的中点,则下列说法正确的是( )A .BM ⊥平面PCDB .P A ∥平面MBDC .四棱锥P ABCD 外接球的表面积为44πD .四棱锥M ABCD 的体积为6二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求,全部选对的得5分,有选错的得0分,部分选对的得2分.9.[2022·江苏如皋模拟]已知函数f (x )=sin ⎝⎛⎭⎫2ωx +π3(ω>0),下列命题正确的是( ) A .函数y =f (x )的初相位为π3B .若函数f (x )的最小正周期为π,则ω=2C .若ω=1,则函数y =f (x )的图象关于直线x =π12对称 D .若函数y =f (x )的图象关于直线x =π12对称,则ω的最小值为1 10.[2022·广东蛇口育才中学月考]已知函数f (x )=11+2x,则( ) A .f (log 23)=14B .f (x )是R 上的减函数C .f (x )的值域为(-∞,1)D .不等式f (1+2x )+f (x )>1的解集为⎝⎛⎭⎫-∞,-13 11.[2022·重庆八中月考]等比数列{a n }的公比为q ,且满足a 1>1,a 1010a 1011>1,(a 1010-1)(a 1011-1)<0.记T n =a 1a 2a 3…a n ,则下列结论正确的是( )A .0<q <1B .a 1010a 1012-1>0C .T n <T 1011D .使T n <1成立的最小自然数n 等于202112.[2022·河北唐山模拟]如图,ABCD 是边长为2的正方形,点E ,F 分别为边BC ,CD 的中点,将△ABE ,△ECF ,△FDA 分别沿AE ,EF ,F A 折起,使B ,C ,D 三点重合于点P ,则( )A .AP ⊥EFB .点P 在平面AEF 内的射影为△AEF 的垂心C .二面角A EF P 的余弦值为13D .若四面体P AEF 的四个顶点在同一个球面上,则该球的表面积是24π三、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中的横线上.13.[2022·广东顺德一中月考]已知向量a =(1,3),向量b =(3,4),若(a -λb )⊥b ,则λ=________.14.[2022·清华附中月考]若α∈⎝⎛⎭⎫0,π2,cos ⎝⎛⎭⎫α+π3=-45,则sin α=________. 15.[2022·山东潍坊模拟]圆台的上、下底面的圆周都在一个直径为6的球面上,上、下底面半径分别为1和3,则该圆台的体积为________.16.[2022·福建厦门模拟]已知a ,b 为正实数,直线y =2x -a 与曲线y =ln(2x +b )相切,则a 与b 满足的关系式为________.2a +3b的最小值为________. 四、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.17.(10分)已知△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,且满足(b -c )2=a 2-bc .(1)求角A 的大小;(2)若a =2,sin C =2sin B ,求△ABC 的面积.18.(12分)如图所示,三棱柱ABC A 1B 1C 1中,AB ⊥BC ,AB =BC =1,BB 1=2,B 1C =3.(1)证明:BC ⊥A 1C ;(2)若A 1C =2,求三棱柱ABC A 1B 1C 1的体积.19.(12分)已知数列{a n }中,a 1=1,前n 项和为S n ,且满足nS n +1-(n +1)S n -32n 2-32n =0.(1)证明:数列⎩⎨⎧⎭⎬⎫S n n 是等差数列,并求{a n }的通项公式; (2)设b n =2n ·a n ,求{b n }的前n 项和T n .20.(12分)[2022·辽宁沈阳模拟]如图,已知正方体ABCD A 1B 1C 1D 1的上底面内有一点E ,点F 为线段AA 1的中点.(1)经过点E 在上底面画一条直线l 与CE 垂直,并说明画出这条线的理由;(2)若A 1E →=2EC 1→,求CE 与平面FB 1D 1所成角的正切值.21.(12分)[2022·山东淄博模拟]在图1所示的平面图形ABCD 中,△ABD 是边长为4的等边三角形,BD 是∠ADC 的平分线,且BD ⊥BC ,M 为AD 的中点,以BM 为折痕将△ABM 折起得到四棱锥A BCDM (如图2).(1)设平面ABC 和ADM 的交线为l ,在四棱锥A BCDM 的棱AC 上求一点N ,使直线BN ∥l ;(2)若二面角A BM D 的大小为60°,求平面ABD 和ACD 所成锐二面角的余弦值.22.(12分)[2021·新高考Ⅱ卷]已知函数f(x)=(x-1)e x-ax2+b.(1)讨论f(x)的单调性;(2)从下面两个条件中选一个,证明:f(x)只有一个零点.①12<a≤e22,b>2a;②0<a<12,b≤2a.。
不等式,向量,解三角形专题练习作业含答案1
小题专练·作业(十四)一、选择题1.(2014·福建)在下列向量组中,可以把向量a =(3,2)表示出来的是( )A .e 1=(0,0),e 2=(1,2)B .e 1=(-1,2),e 2=(5,-2)C .e 1=(3,5),e 2=(6,10)D .e 1=(2,-3),e 2=(-2,3) 答案 B解析 根据平面向量基本定理理解.由题意知,A 选项中e 1=0,C ,D 选项中两向量均共线,都不符合基底条件,故选B(事实上,a =(3,2)=2e 1+e 2).2.(2014·合肥质检)在△ABC 中,已知2a cos B =c ,sin A sin B ·(2-cos C )=sin 2C 2+12,则△ABC 为( )A .等边三角形B .等腰直角三角形C .锐角非等边三角形D .钝角三角形答案 B解析 由2a cos B =c ,得2a ·a 2+c 2-b 22ac =c .所以a 2=b 2,所以a =b .因为sin A sin B (2-cos C )=sin 2C2+12,所以2sin A ·sin B ·(2-cos C )-2+1-2sin 2C2=0,所以2sin A sin B (2-cos C )-2+cos C =0,所以(2-cos C )(2sin A sin B -1)=0.因为cos C ≠2,所以sin A sin B =12.因为a =b ,所以sin 2A =12,所以A =B =π4,所以△ABC 是等腰直角三角形,故选B.3.(2014·广州综合检测)若函数f (x )=x 2+ax +1的定义域为实数集R ,则实数a 的取值范围为( )A .(-2,2)B .(-∞,-2)∪(2,+∞)C .(-∞,-2]∪[2,+∞)D .[-2,2]答案 D解析 依题意x 2+ax +1≥0对x ∈R 恒成立,∴Δ=a 2-4≤0,∴-2≤a ≤2.4.(2014·安徽示范性高中测试)已知D 是△ABC 中BC 边上的点,AB =22,AC =4,∠C =30°,∠BAC >∠B ,则满足AD =5的点D 的个数为( )A .1B .2C .3D .0 答案 B解析 方法一 在△ABC 中,由正弦定理,得sin ∠B =AC ·sin ∠C AB =4×sin30°22=22,所以∠B =45°或∠B =135°.又∠BAC >∠B ,所以∠B =45°.若AD =5,则在△ABD 中,由余弦定理,得AD 2=AB 2+BD 2-2AB ·BD ·cos ∠B ,即5=8+BD 2-2·22BD ·cos45°,解得BD =1或BD =3,所以满足条件的点D 的个数为2.方法二 在△ABC 中,由正弦定理,得sin ∠B =AC ·sin ∠CAB =4×sin30°22=22,所以∠B =45°或∠B =135°.又∠BAC >∠B ,所以∠B =45°.过A 作AE ⊥BC ,垂足为E ,在Rt △ACE 中,因为AC =4,∠C =30°,所以AE =2.又AD =5,则AB >AD >AE ,所以满足条件的点D 的个数为2.5.(2014·潍坊期末考试)已知不等式x +2x +1<0的解集为{x |a <x <b },点A (a ,b )在直线mx +ny +1=0上,其中mn >0,则2m +1n 的最小值为( )A .4 2B .8C .9D .12答案 C解析 易知不等式x +2x +1<0的解集为(-2,-1),所以a =-2,b=-1,2m +n =1,2m +1n =(2m +n )(2m +1n )=5+2m n +2nm ≥5+4=9(当且仅当m =n =13时取等号),所以2m +1n 的最小值为9.6.(2014·浙江)设θ为两个非零向量a ,b 的夹角,已知对任意实数t ,|b +t a |的最小值为1.( )A .若θ确定,则|a |唯一确定B .若θ确定,则|b |唯一确定C .若|a |确定,则θ唯一确定D .若|b |确定,则θ唯一确定 答案 B解析 先求出向量的模,再通过函数最值求解. |b +t a |2=b 2+2a·b ·t +t 2a 2 =|a |2t 2+2|a|·|b |cos θ·t +|b |2. 因为|b +t a |min =1,所以4|a|2·|b |2-4|a|2·|b |2cos 2θ4|a |2=|b |2(1-cos 2θ)=1.所以|b |2sin 2θ=1,所以|b |sin θ=1,即|b |=1sin θ.即θ确定,|b |唯一确定.7.(2014·皖南八校联考)设A (a,1),B (2,b ),C (4,5)为坐标平面上三点(其中a ,b ∈R ),O 为坐标原点,若OA →与OB →在OC →方向上的投影相同,则实数a 与b 满足的关系式为( )A .4a -5b =3B .5a -4b =3C .4a +5b =14D .5a +4b =12答案 A解析 因为OA →与OB →在OC →方向上的投影相同,所以|OA →|cos 〈OA →,OC →〉=|OB →|cos 〈OB →,OC →〉,所以OA →·OC →=OB →·OC →.因为A (a,1),B (2,b ),C (4,5),所以(a,1)·(4,5)=(2,b )·(4,5),化简得4a -5b =3.8.(2014·武汉模拟)已知△ABC 的内角A ,C 满足sin Csin A =cos(A +C ),则tan C 的最大值为( )A. 2B.24C.22D.33 答案 B解析 因为sin Csin A =cos(A +C ),所以sin C =sin A cos(A +C ),即sin[(A +C )-A ]=sin A cos(A +C ),整理得sin(A +C )·cos A =2sin A ·cos(A +C ),则tan(A +C )=2tan A .因为sin Csin A =cos(A +C )>0.所以A 为锐角,则tan A >0.又tan C =tan[(A +C )-A ]=tan (A +C )-tan A 1+tan (A +C )tan A =tan A1+2tan 2A=11tan A +2tan A≤121tan A ·2tan A =24,当且仅当1tan A =2tan A 时等号成立,所以tan C 的最大值为24.9.(2014·江西五校联考)在棱长均为1的正四棱锥P -ABCD 中,点E 是BC 的中点,动点M 在四棱锥表面上运动,并且总保持ME →·AC →=0,则动点M 的轨迹的长度总和为( )A .2+ 2B .2+22 C .1+22 D .2答案 C 解析连接AC ,BD ,设其交点为O ,连接PO ,得AC ⊥BD ,AC ⊥PO ,所以AC ⊥平面PBD .过E 作与平面PBD 平行的平面EFG ,由ME →·AC →=0,得M 在平面EFG 内,则点M 的轨迹的长度总和等于三角形PBD 周长的一半.因为BD =2,PB =PD =1,所以三角形PBD 的周长为2+2,所以动点M 的轨迹的长度总和为1+22,故选C.10.(2014·福建)要制作一个容积为4 m 3,高为1 m 的无盖长方体容器.已知该容器的底面造价是每平方米20元,侧面造价是每平方米10元,则该容器的最低总造价是( )A .80元B .120元C .160元D .240元答案 C解析 设底面矩形的一条边长是x m ,总造价是y 元,把y 与x 的函数关系式表示出来,再利用均值(基本)不等式求最小值.由题意知,体积V =4 m 3,高h =1 m ,所以底面积S =4 m 2,设底面矩形的一条边长是x m ,则另一条边长是4x m .又设总造价是y 元,则y =20×4+10×⎝ ⎛⎭⎪⎫2x +8x ≥80+202x ·8x =160,当且仅当2x=8x ,即x =2时取得等号.11.(2014·江南十校联考)在△ABC 中,AB =5,AC =6,cos A =15,O 是△ABC 的内心,若OP →=xOB →+yOC →,其中x ,y ∈[0,1],则动点P 的轨迹所覆盖图形的面积为( )A.1063B.1463 C .4 3 D .6 2答案 B解析 根据向量加法的平行四边形法则得动点P 的轨迹是以OB ,OC 为邻边的平行四边形,其面积为△BOC 面积的2倍.在△ABC 中,由余弦定理a 2=b 2+c 2-2bc cos A ,得BC =7.设△ABC 的内切圆的半径为r ,则12bc sin A =12(a +b +c )r ,解得r =263,所以S △BOC =12×BC ×r =12×7×263=763,故动点P 的轨迹所覆盖图形的面积为2S △BOC =1463,故选B.12.(2014·江西二校联合测试)已知圆C :(x -2)2+y 2=4,圆M :(x -2-5cos θ)2+(y -5sin θ)2=1(θ∈R ),过圆M 上任意一点P 作圆C 的两条切线PE ,PF ,切点分别为E ,F ,则PE →·PF →的最小值是( )A .5B .6C .10D .12答案 B解析 圆C :(x -2)2+y 2=4的圆心C (2,0),半径为2;圆M :(x -2-5cos θ)2+(y -5sin θ)2=1(θ∈R )的圆心M (2+5cos θ,5sin θ),半径为1.所以|CM |=(5cos θ)2+(5sin θ)2=5,圆M 上任意一点P 到点C 的距离的取值范围为4≤|PC |≤6,设|PE |2=|PF |2=t ,因为t =|PC |2-4,所以12≤t ≤32.因为cos ∠EPF =cos2∠FPC =2cos 2∠FPC -1=2t t +4-1=t -4t +4=1-8t +4,所以PE →·PF →=|PE ||PF |cos ∠EPF =|PE |2·(1-8t +4)=t (1-8t +4)=t +32t +4-8,设y =t +32t +4-8(12≤t ≤32),因为y ′=1-32(t +4)2≥1-32(12+4)2=78>0,所以函数y =t +32t +4-8在[12,32]上为增函数,所以y ≥12+3212+4-8=6,即PE →·PF →的最小值是6,故选B.二、填空题13.(2014·山东)在△ABC 中,已知AB →·AC →=tan A ,当A =π6时,△ABC 的面积为________.答案 16解析 由向量知识求出|AB →||AC →|的值,代入三角形面积公式求解. 已知A =π6,由题意得|AB →||AC →|cos π6=tan π6,|AB →||AC →|=23,所以△ABC 的面积S =12|AB →||AC →|sin π6=12×23×12=16.14.(2014·天津)已知菱形ABCD 的边长为2,∠BAD =120°,点E ,F 分别在边BC ,DC 上,BC =3BE ,DC =λDF .若AE →·AF →=1,则λ的值为________.答案 2解析 根据条件把向量AF →,AE →用向量AB →,AD →表示出来,然后根据向量数量积公式求解.AE →·AF →=(AB →+BE →)·(AD →+DF →)=⎝ ⎛⎭⎪⎪⎫AB →+13BC →·⎝ ⎛⎭⎪⎪⎫AD →+1λDC →=AB →·AD →+1λAB →·DC →+13BC →·AD →+13λBC →·DC →=2×2×cos120°+1λ×2×2+13×2×2+13λ×2×2×cos120°=-2+4λ+43-23λ=103λ-23,又∵AE →·AF →=1,∴103λ-23=1,∴λ=2.15.(2014·齐鲁名校联考)定义在(0,+∞)上的函数f (x )满足f (x )+f (y )=f (xy ),且当x >1时,f (x )<0,若不等式f (x 2+y 2)≤f (xy )+f (a )对任意x ,y ∈(0,+∞)恒成立,则实数a 的取值范围是________.答案 (0,2]解析 ∵f (x 2+y 2)≤f (xy )+f (a ),∴f (x 2+y 2)≤f (a xy ).设0<x 1<x 2,则f (x 2)-f (x 1)=f (x 2x 1×x 1)-f (x 1)=f (x 2x 1).∵x 2x 1>1,∴f (x 2x 1)<0,则函数f (x )在(0,+∞)上单调递减,即x 2+y 2≥a xy ,∴a ≤x 2+y 2xy .而x 2+y2xy≥2,∴a ≤2,∴0<a ≤ 2.16.(2014·江苏灌云期中)已知不等式x 2-2x -3<0的整数解构成等差数列{a n }的前三项,则数列{a n }的第四项为________.答案 3或-1解析 ∵x 2-2x -3<0,∴-1<x <3,∴a 1=0,a 2=1,a 3=2,a 4=3或a 1=2,a 2=1,a 3=0,a 4=-1.17.(2014·浙江)如图,某人在垂直于水平地面ABC 的墙面前的点A 处进行射击训练.已知点A 到墙面的距离为AB ,某目标点P 沿墙面上的射线CM 移动,此人为了准确瞄准目标点P ,需计算由点A 观察点P 的仰角θ的大小.若AB =15 m ,AC =25 m ,∠BCM =30°,则tan θ的最大值是________.(仰角θ为直线AP 与平面ABC 所成角)答案539解析 先利用解三角形知识求解,再利用确定函数最值的方法确定最值.如图,过点P 作PO ⊥BC 于点O ,连接AO ,则∠P AO =θ. 设CO =x m ,则OP =33x m.在Rt △ABC 中,AB =15 m ,AC =25 m , 所以BC =20 m .所以cos ∠BCA =45. 所以AO =625+x 2-2×25x ×45=x 2-40 x +625 m.所以tan θ=33xx 2-40x +625=331-40x +625x 2=33⎝ ⎛⎭⎪⎫25x -452+925.当25x =45,即x =1254时,tan θ取得最大值为3335=539.18.(2014·四川)设m ∈R ,过定点A 的动直线x +my =0和过定点B 的动直线mx -y -m +3=0交于点P (x ,y ),则|P A |·|PB |的最大值是________.答案 5解析 求出定点A ,B 的坐标,并注意已知两直线互相垂直. ∵直线x +my =0与mx -y -m +3=0分别过定点A ,B , ∴A (0,0),B (1,3).当点P 与点A (或B )重合时,|P A |·|PB |为零;当点P 与点A ,B 均不重合时,∵P 为直线x +my =0与mx -y -m +3=0的交点,且易知此两直线垂直,∴△APB 为直角三角形,∴|AP |2+|BP |2=|AB |2=10.∴|P A |·|PB |≤|P A |2+|PB |22=102=5,当且仅当|P A |=|PB |时,上式等号成立.19.(2014·合肥质量检测)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,则下列命题正确的是________.(写出所有正确命题的编号)①b a cos C <1-c a cos B ;②△ABC 的面积为S △ABC =12AB →·BC →·tan A ;③若a cos A =c cos C ,则△ABC 一定为等腰三角形;④若A 是△ABC 中的最大角,则△ABC 为钝角三角形的充要条件是-1<sin A +cos A <1;⑤若A =π3,a =3,则b 的最大值为2.答案 ④⑤解析 设R 为△ABC 的外接圆的半径,对于①,将b =2R sin B ,a =2R sin A ,c =2R sin C 代入b a cos C <1-c a cos B 中,可得sin B cos C +sin C cos B <sin A ,即sin(B +C )<sin A ,可得sin A <sin A ,所以①错.对于②,由于△ABC 的面积为S △ABC =12|AB →|·|AC →|·sin A ,此时A 可以取π2,而在S △ABC =12AB →·AC →·tan A 中A 取不到π2,所以②错.对于③,将a =2R sin A ,c =2R sin C 代入a cos A =c cos C 中,得sin A cos A =sin C cos C ⇒sin2A =sin2C ,故A =C 或A +C =π2,所以△ABC 不一定是等腰三角形,所以③错.对于④,必要性:因为△ABC 是钝角三角形且A 为最大角,即π2<A <π,所以0<sin A <1,-1<cos A <0,所以-1<sin A +cos A <1;充分性:因为-1<sin A +cos A <1,所以|sin A +cos A |<1,平方得sin2A <0,故π<2A <2π,即π2<A <π,所以A 为钝角,即△ABC 是钝角三角形,所以④对.对于⑤,由正弦定理,得3sin π3=b sin B ⇒b =2sin B ,当B =π2时,b max =2,所以⑤对.20.(2014·安徽)已知两个不相等的非零向量a ,b ,两组向量x 1,x 2,x 3,x 4,x 5和y 1,y 2,y 3,y 4,y 5均由2个a 和3个b 排列而成,记S =x 1·y 1+x 2·y 2+x 3·y 3+x 4·y 4+x 5·y 5,S min 表示S 所有可能取值中的最小值,则下列命题正确的是________.(写出所有正确命题的编号)①S 有5个不同的值;②若a ⊥b ,则S min 与|a |无关;③若a ∥b ,则S min 与|b |无关;④若|b |>4|a |,则S min >0;⑤若|b |=2|a|,S min =8|a|2,则a 与b 的夹角为π4. 答案 ②④解析 根据分类讨论思想及向量数量积定义求解.∵x i ,y i (i =1,2,3,4,5)均由2个a 和3个b 排列而成, ∴S = i =15x i y i 可能情况有以下三种:(1)S =2a 2+3b 2;(2)S =a 2+2a·b +2b 2;(3)S =4a·b +b 2.∵2a 2+3b 2-(a 2+2a·b +2b 2)=a 2+b 2-2a·b =a 2+b 2-2|a||b|cos θ≥0,a 2+2a·b +2b 2-4a·b -b 2=a 2+b 2-2a·b ≥0,∴S 的最小值为S min =b 2+4a·b.因此S 最多有3个不同的值,故①不正确.当a ⊥b 时,S 的最小值为S min =b 2与|a|无关,故②正确.当a ∥b 时,S 的最小值为S min =b 2+4|a||b|或S min =b 2-4|a||b|与|b |有关,故③不正确.当|b |>4|a|时,S min =b 2+4|a||b|cos θ≥b 2-4|a||b|=|b|(|b |-4|a |)>0.故④正确.当|b |=2|a|时,由S min =b 2+4a·b =8|a |2,知4a·b =4a 2,即a·b =a 2,∴|a||b|cos θ=a 2,∴cos θ=12,∴θ=π3,故⑤不正确.因此正确命题的编号为②④.。
客观题专练四 不等式、向量、解三角形
客观题专练四 不等式、平面向量、解三角形一、选择题 (共12小题,每题5分。
每道题只有一个正确选项。
)1.(2016·全国Ⅰ理,1)设集合A ={x |x 2-4x +3<0},B ={x |2x -3>0},则A ∩B 等于( ) A.⎝⎛⎭⎫-3,-32 B.⎝⎛⎭⎫-3,32 C.⎝⎛⎭⎫1,32 D.⎝⎛⎭⎫32,32.(2016·全国Ⅰ理,8)若a >b >1,0<c <1,则( )A .a c <b cB .ab c <ba cC .a log b c <b log a cD .log a c <log b c3.(2016·全国Ⅲ,1)设集合S ={x |(x -2)(x -3)≥0},T ={x |x >0},则S ∩T 等于( ) A .[2,3] B .(-∞,2]∪[3,+∞) C .[3,+∞) D .(0,2]∪[3,+∞)4.(2016·全国Ⅲ,3)已知向量BA →=⎝⎛⎫12,32,BC →=⎝⎛⎫32,12,则∠ABC 等于( )A .30°B .45°C .60°D .120°5.(2016·全国Ⅲ,6)已知a =243,b =425,c =2513,则( )A .b <a <cB .a <b <cC .b <c <aD .c <a <b6.(2016·全国Ⅲ,8)在△ABC 中,B =π4,BC 边上的高等于13BC ,则cos A 等于( )A.31010B.1010 C .-1010 D .-310107.(2016·四川)设p :实数x ,y 满足(x -1)2+(y -1)2≤2,q :实数x ,y 满足⎩⎪⎨⎪⎧y ≥x -1,y ≥1-x ,y ≤1,则p 是q 的( )A .必要不充分条件B .充分不必要条件C .充要条件D .既不充分也不必要条件8.(2016·山东)已知非零向量m ,n 满足4|m |=3|n |,cos 〈m ,n 〉=13.若n ⊥(t m +n ),则实数t 的值为( ) A .4 B .-4 C.94 D .-949.(2016·天津)已知△ABC 是边长为1的等边三角形,点D ,E 分别是边AB ,BC 的中点,连接DE 并延长到点F ,使得DE =2EF ,则AF →·BC →的值为( ) A .-58 B.18 C.14 D.11810.(2015课标全国Ⅰ,理7)设D 为△ABC 所在平面内一点,=3 ,则( ) A =-BCD11. (2014课标全国Ⅰ,理1)已知集合A={|},B=,则=( ) .[-2,-1] .[-1,2) .[-1,1] .[1,2)12.(2013课标全国Ⅰ,理12)设△A n B n C n 的三边长分别为a n ,b n ,c n ,△A n B n C n 的面积为S n ,n=1,2,3,….若b 1>c 1,b 1+c 1=2a 1,a n+1=a n ,b n+1=,c n+1=,则( ).A .{S n }为递减数列B .{S n }为递增数列C .{S 2n-1}为递增数列,{S 2n }为递减数列D .{S 2n-1}为递减数列,{S 2n }为递增数列二、填空题(共4道小题,每题5分,请将正确的结果填到横线上。
三角函数向量解三角形练习题50套带答案
第四章三角函数练习一角的的概念的推广(一)要点1.正角、负角和零角:规定,一条射线绕它的端点按逆时针方向旋转形成的角为正角.按顺时针方向旋转形成的角为负角.射线没有旋转,形成零角.2.象限角:在平面直角坐标系中,使角的顶点与坐标原点重合,角的终边在x轴的非负半轴上,角的终边落在第几象限内,就称这个角是第几象限角.3. 轴上角:当角的终边落在坐标轴上时,就称之为轴上角,它不属于任何象限.同步练习1.给出命题:①-880是第四象限角;②2560是第三象限角;③4800是第二象限角;④-3000是第一象限角.其中正确的有别( )(A)1个(B)2个(C)3个(D)4个2.有下列四个角:⑴-2100,⑵-1900,⑶-6300,⑷12300其中第二象限的角为( )(A)⑴⑷(B)⑴⑶⑷(C)⑴⑵⑷(D)⑴⑵⑶⑷3.下列各组的两个角中,终边不重合的一组是( )(A) -210与6990(B) 1800与-5400(C) 900与9900(D) 1500与69004.时针的分针经过期2小时40分钟,它所转过的角是______度,这个角是第____象限角.5.在00~3600范围内,找出与下列各角终边相同的角,并判断它们是第几象限角或哪个轴上的角.⑴6900; ⑵5400; ⑶-2000; ⑷-4500.6.在平面直角坐标系中,作出下列各角,并指出它们是哪个象限的角.⑴-3300; ⑵-18300; ⑶-6300; ⑷9900.7.在[-1800, 12600]内,写出与1800角终边相同的所有角.练习二 角的概念的推广(二)要点1. 与角α终边相同的角的集合为{β|β=α+k ·3600,k ∈Z}.2. 第一象限角、锐角和小于900的角的区别与联系.1.下列命题中,正确的是 ( )(A)第一象限角必是锐角 (B)终边相同的角必相等(C)相等的角终边位置必相同 (D)不相等的角终边位置必不相同2. 以下四个命题:⑴小于900的角为锐角 ; ⑵钝角是第二象限角; ⑶第一象限角不一定是负角;⑷第二象限角必大于第一象限角.其中正确命题的个数是 ( ) (A)1 (B)2 (C) 3 (D)43. 角α的终边上一点的坐标是(2,-2),则角α的集合是________________.4. 与-20050终边相同且绝对值最小的角是________________.5. 写出与下列各角终边相同的角的集合,并把集合中适合不等式-3600≤α≤3600的元素α写出来.⑴ 600; ⑵ -834030/.6.写出下列角的集合:⑴终边在y 轴负半轴上的角;⑵终边在坐标轴上的角;⑶终边在第二、第四象限角平分线上的角;⑷终边在第三象限的角;⑸终边在第四象限的角. [思考与研究]若α是第一象限角,试确定2α、2α、3α所在的象限.练习三 弧度制 (一)要点1. 角度制与弧度制:这是两种不同的度量角的制度.角度制是以“度”为单位;弧度制是以“弧度”为单位. 2. 度与弧度的相互换算:10≈0.01745弧度, 1弧度≈57018/.3. 在同一个式子中,两种制度不能混用.如:与600终边相同的角的集合不能表示为{x|x=2k π+600,k ∈Z},正确的表示方法是x|x=2k π+3π,k ∈Z }或{ x|x=k ·3600 +600,k ∈Z } 同步练习1. 若α=-3.2,则角α的终边在 ( ) (A)第一象限 (B) 第二象限 (C) 第三象限 (D) 第四象限2.①4π, ② -45π,③419π,④-43π,其中终边相同的角是 ( )(A) ①和② (B) ②和③ (C) ③和④ (D) ①和④ 3. 若4π<α<6π,且与-32π角的终边相同,则α=_________. 4.正三角形,正四边形,正五边形, 正六边形, 正八边形, 正十边形, 正n 边形的一个内角的大小分别_____,____ ,_____,_____,_____,_____, ______.(用弧度表示) 5.把下列各角用另一种度量制表示. ⑴1350⑵ -67030/⑶2 ⑷-67π6. 将下列各数按从小到大的顺序排列.Sin40, sin21, sin300, sin17. 把下列各角化成2k π+α(0≤α<2π,)的形式, 并求出在(-2π,4π)内和它终边相同的角.(1)-316π; (2)-6750.8. 若角θ的终边与1680角的终边相同,求在[0,2π]内终边与3θ角的终边相同的角.练习四 弧度制(二)要点1. 弧长公式和扇形面积公式:弧长公式 L=|α|r 扇形面积公式 S=21Lr=21|α|r 2其中α是圆心角的弧度数,L 为圆心角α所对的弧长,r 为圆半径.2. 无论是角度制还是用弧度制,都能在角的集合与实数集之间建立起一一对应的关系,但用弧度制表示角时,容易找出与角对应的实数. 同步练习1.半径为5 cm 的圆中,弧长为415cm 的圆弧所对的圆心角等于 ( ) (A)145(B) 1350(C)π135 (D)π1452.将分针拨快10分钟,则分针转过的弧度数是 ( ) (A)3π (B)-3π (C) 6π (D)-6π 3. 半径为 4 的扇形,基它的周长等于弧所在的半圆周的长,则这个扇形的面积是_________.4. 已知一弧所对的圆周角为600,圆的半径为10cm,则此弧所在的弓形的面积等于___________.5. 已知扇形的周长为6cm,面积为2cm 2,求扇形圆心角的弧度数.6. 2弧度的圆心角所对的弦长为2,求这个圆心角所夹扇形的面积.7. 一条弦的长度等于其所在圆的半径r.(1) 求这条弦所在的劣弧长;(2) 求这条弦和劣弧所组成的弓形的面积.练习五 任意角的三角函数 (一)要点1. 三角函数是以角为自变量,以比值为函数值的函数.三角函数的定义域:sin α,cos α的定义域都是R,tan α的定义域是{α|α≠k π+2π, k ∈Z}. 2. 三角函数值在各个象限的符号:第一象限全正,第二象限只有正弦正,第三象限只有正切正,第四象限只有余弦正. 同步练习1.当α为第二象限角时ααsin |sin |-|cos |cos αα的值是 ( ) (A)-2 (B)0 (C)-1 (D)22.设角α的终边过点P(-3α,-4α),(α≠0),则sin α-cos α的值是 ( ) (A)51 (B)- 51 (C)- 51或 -57 (D) -51或51 3.在三角形ABC 中,若cosA ·tanB ·cotC<0,则这个三角形的的形状是_____. 4.设θ为第二象限角,其终边上一点为P(m,5),且cos α,则α的值为_______. 5.已知β的终边经过点P(m,-3)(m ≠0),且cos β=2m,求sin β,tan β的值.6.求cos 3π-tan 45π+43tan 26π+sin 611π+cos 267π-sin 23π的值.7.求函数y=xxsin 1tan +的定义域.练习六 任意角的三角函数(二)要点1. 终边相同角的同名三角函数值相等(公式一),利用这组公式可以将任意角的三角函数值化为00~3600(或0~2π)间的角的三角函数值. 2. 三角函数线都是有向线段、线段的方向表示三角函数值的正负,线段的长度表示三角函数值的绝对值.书写三角函数线时,要注意起点与与终点的次序. 同步练习 1.sin637π的值等于 ( ) (A)21 (B)23 (C)- 21(D) -232.设α、β是第二象限角,若sin α>sin β,则 ( )(A)tan α>tan β (B)cos α<cot β (C)cos α>cos β (D)sec α>sec β 3. 在下列各题中的_____处,填上适当的符号(>,=,<). ⑴sin1560·cos(-4400)_____0; ⑵cot(-817π)·sin(-34π)_______0;⑶5.1tan 4sin ____0;⑷sin320π·tan(-417π)·cos 27π______0. 4. 已知α∈(-π,π),且cos α>-23,则角α的取值范围是________. 5. 计算:(1) m 2sin(-6300)+n 2tan(-3150)-2mncos(-7200);(2) sin(-623π)+cos 713πtan4π-cos 313π.6. 在单位圆中,用阴影线表示满足条件的θ的终边的范围: (1)tan θ≥1 (2)cos θ<21 (3)-21<sin θ≤237. 设0<α<2π,利用单位圆中的三角函数线证明:sin α+cos α>1练习七 同角三角函数的基本关系式(一)要点同角三角函数的基本关系式:sin 2α+cos 2α=1,ααcos sin =tan α,tan α·cot α=1.(1)公式中应注意“同角”二字,如sin 2α+cos 2β=1就不恒成立.(2)注意α的范围,第二个关系式中α≠k π+2π(k ∈Z),第三个关系式中α≠2πk (k ∈Z).(3)对公式的的使用要做到顺用、逆用、变用、活用.同步练习1.下列各式正确的是 ( ) (A)sin 2300+cos 2600=1 (B)sin23π/cos 23π=tan 23π (C)tan2π·cot2π=1 (D)sin 220050+cos 220050=12.下列各式能成立的是 ( ) (A)sin α=cos α=21 (B)cos α=21且tan α=2 (C)sin α=21且tan α=33 (D)tan α=2且cot α=-213. 已知cos θ=31,,则1+tan 4θ=______. 4. 已知sin α+ sin 2α=1则cos 2α+cos 4α的值等于_________. 5. 已知sin α=-53,α是第四象限角,求cos α、tan α的值.6. 已知cot α=-3,求sin α、cos α的值.7. 已知cos α=m(|m|≤1),求tan α和sin α.练习八 同角三角函数的基本关系式(二)要点1. 化简三角函数式的一般要求是(1)能求出函数值的要求出函数值,函数种类尽可能的少;(2)要使化简后的式子项数最少,次数最低;(3)尽量化去含有根式的式子,尽可能的不含分母.2. 证明三角恒等式的实质是消除等式两边的差异,一般由繁到简,可采用:①左边⇒右边 ②右边⇒左边③左边-右边=0④分别从左右两边推出相同的结果. 同步练习1.化简02100sin 1-等于 ( )2.若tan α=a,且sin α=21aa +,则α是 ( )(A) 第一、二象限角 (B)第一、三象限角 (C)第一、四象限角 (D)第二、三象限角3. 化简sin 2α+sin 2β-sin 2αsin 2β+cos 2αcos 2β=____________4. 若tanx=3则xx22cos 1sin +的值是___________ 5. 化简下列各式: (1) ααcos 1cos 1-+-ααcos 1cos 1+-,其中α为第二象限角;(2)αααα2222tan sin tan sin -.6. 证明下列恒等式(1) cos α(αcos 2+tan α) (αcos 1-2tan α)=2cos α-3tan α (2) x x x x 2sin 2cos 2cos 2sin 2122--=xx2tan 12tan 1+-练习九 正余弦的诱导公式(一)要点1.公式二:sin(1800+α)=-sin α,cos(1800+α)=-cos α. 公式三: sin(-α)=-sin α, cos(-α)=cos α.2. 公式中的α是任意角,但在记忆时,可把α看作锐角,从而1800+α可看作第三象限角, -α可看作第四象限角. 同步练习1.下列等式中,恒成立的是 ( )(A) sin(1800+2000)=sin2000(B)cos(-α)=-cos α(C) cos(1800+2000)=-cos2000(D)sin(-α)=sin α 2.sin 2(π+α)-cos(π+α)cos(-α)+1的值是 ( )(A) 2sin 2α (B)0 (C)1 (D)2 3. 计算sin34πcos(-6π)tan(-45π)=_________.4. 化简sin 2(-α)tan α+cos 2(π+α)cot α-2 sin(π+α) cos(-α)=_____5. 求下列各三角函数值:(1) sin(-13200) (2) tan9450(3)cos655π(4)cot(-322π)6.(1)求值sin 2(-300) +sin 22250 +2sin2100 +cos 2(-450) ; (2)若sin(π+α)= 41,求[]1)cos(cos )cos(-++απααπ-)cos()cos()2cos()cos(απαπαπα-+++--值;(3) 已知sin(3π-α)= 31;求sin(6π+α),sin(310π-α)的值.7. 化简:)(cos )tan()2cot()cos()(sin 32πααππααππα++--++练习十 正余弦的诱导公式(二)要点1.公式四: sin(1800-α)=sin α,cos(1800-α)=-cos α.公式五sin(3600-α)=-sin α,cos(3600-α)=cos α.2.记忆公式时, 1800-α可看作第二象限角, 3600-α可看作第四象限角 同步练习 1.sin(-619π)的值是 ( ) (A)21 (B) -21(C)23 (D) -232.已知cos(π-x)=-21,23π<x<2π,则sin(2π-x)的值等于 ( ) (A)21(B)± 23 (C)23 (D) -233.计算:sin(-15600)cos9300+cos(-13800) sin(-14100)=_______. 4. 已知COS(6π+θ)= 33,则COS(65π-θ)=__________.5. 求值0200170cos 110cos 10cos 10sin 21---6. 已知cos(π-α)=-21,计算: (1) sin(2π-α); (2)cot[2)12(π+k +α](k ∈Z)7. 已知sin(α-π) =2cos(2π-α),求)sin()cos(3)2cos(5)sin(ααπαπαπ----+-的值数学家陈景润陈景润(1933~1996),中国数学家、中国科学院院士。
不等式、向量、解三角形
2,
y
,已知
rr a//b
,
a
c
.
(1)求向量 b 和向量 c ;
(2)求
b
与
c
夹角和
a
b
.
15.已知
a
=(cos
α,sin
α),
b
=(cos
β,sin
β),且
|
ka
b
|
(1)用 k 表示数量积 a b ;
(2)求 a b 的最小值,并求此时 a, b 的夹角θ.
3
|
a
kb
|
(k
C.等腰直角三角形 D.直角三角形
二、填空题
12.
1
(2a
3b )
3(a
b
)
________________.
3
13.已知点
M
是
ABC
所在平面内的一点,若满足
6 AM
AB
2 AC
0
,且
SABC SABM ,则实数 的值是______.
三、解答题
14.平面向量
a
3,
4
,
b
2,
x
,
c
7.8 作业 不等式(请将选择的重要步骤写在旁边) 1.设 b a , d c ,则下列不等式中一定成立的是
()
A. a c b d B. ac bd C. a c b d D. a d b c
2.不等式 2x 3 x 2 0 的解集是
A.{x|-1<x<3} B.{x|x>3 或 x<-1}
)
A. 1
B. 0
C.1
4.已知向量 a (1, 2) , b (3, 4) ,则 a 在 b 方向上的投影为
解三角形数列不等式
1.若a <0,-1<b <0,则有( )A.a >ab >ab 2B.ab 2>ab >aC.ab >a >ab 2D.ab >ab 2>a2.不等式x -2x +3≤2的解集是( ) A.{x |x <-8或x >-3} B.{x |x ≤-8或x >-3} C.{x |-3≤x ≤2} D.{x |-3<x ≤2}3.若不等式(a 2-1)x 2-(a -1)x -1<0的解集为R ,则实数a 的取值范围是________.4.不等式2x 2-x -1>0的解集是( )A.⎝⎛⎭⎫-12,1B.(1,+∞)C.(-∞,1)∪(2,+∞)D.⎝⎛⎭⎫-∞,-12∪(1,+∞) 5.不等式-6x 2-x +2≤0的解集是( )A.⎩⎨⎧⎭⎬⎫x |-23≤x ≤12B.⎩⎨⎧⎭⎬⎫x |x ≤-23或x ≥12C.⎩⎨⎧⎭⎬⎫x |x ≥12D.⎩⎨⎧⎭⎬⎫x |x ≤-32 6.若不等式ax 2+8ax +21<0的解集是{x |-7<x <-1},那么a 的值是( )A.1B.2C.3D.47.一元二次方程ax 2+bx +c =0的根为2,-1,则当a <0时,不等式ax 2+bx +c ≥0的解集为( )A.{x |x <-1或x >2}B.{x |x ≤-1或x ≥2}C.{x |-1<x <2}D.{x |-1≤x ≤2}8.设数列{a n }是公差不为零的等差数列,S n 是数列{a n }的前n 项和,且S 21=9S 2,S 4=4S 2,则数列{a n }的通项公式是________.9、数列{a n }的通项公式n n a n ++=11,已知它的前n 项和为S n =9,则项数n=( ) (A)9 (B)10 (C)99 (D)10010、等差数列{a n }中,a 3+ a 4+ a 5+ a 6+ a 7=450,求a 2+a 8= ( )(A)45 (B)75 (C)180 (D)30011.设数列{}n a 的前n 项和3S n n =,则4a 的值为( )(A ) 15 (B) 37 (C) 27 (D )6412、已知△ABC 的面积为23,且3,2==c b ,则∠A 等于 ( ) A .30° B .30°或150° C .60°D .60°或120° 13、已知△ABC 的三边长6,5,3===c b a ,则△ABC 的面积为 ( )A . 14B .142C .15D .15214.设等比数列{}n a 的公比2q =,前n 项和为n S ,则42S a =( ) A .2 B .4 C .215 D .217 15.设n S 为等比数列{}n a 的前n 项和,已知3432S a =-,2332S a =-,则公比q =( )(A )3 (B )4 (C )5 (D )616. 已知,231,231-=+=b a 则b a ,的等差中项为______________________.17.等差数列{}n a 满足145=a ,207=a ,数列{}n b 的前n 项和为n S ,且22n n b S =-. (Ⅰ) 求数列{}n a 的通项公式;(Ⅱ) 证明数列{}n b 是等比数列.18. 在△ABC 中,已知边c=10, 又知cos 4cos 3A b B a ==,求边a 、b 的长。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
向量、解三角形、数列、不等式测试卷
一、选择题(本大题共12小题,每小题5分,共60分)
1.由11a =,3d =确定的等差数列{}n a ,
当298n a =时,n 等于 ( ) A.99 B.100 C.96 D.101
2.ABC ∆中,若︒===60,2,1B c a ,则ABC ∆的面积为 ( ) A .
2
1
B .23 C.1
D.3
3.如图,在△ABC 中,1
,3,,,2
BD DC AE ED AB a AC b BE =
===若则= ( )
A .1133a b +
B .11
24a b -+
C .1124a b +
D .11
33
a b -+
4.已知3≥x ,函数1
1
-+=x x y 的最小值是 ( )
A .2
7
B .4
C .8
D .6
5.设a 、b 、c 是单位向量,且a ·b =0,则()()a c b c -•-的最小值为 ( )
A 、2- (
B )22- (
C )1- (D)12-
6.在各项均为正数的等比数列
{}n b 中,若783b b ⋅=,则
3132log log b b ++……314log b +等于 ( )
(A) 5 (B) 6 (C)7
(D)8
7.设,x y 满足约束条件1
2x y y x y +≤⎧⎪
≤⎨⎪≥-⎩
,则3z x y =+的最大值为 ( )
A . 5 B. 3 C. 7 D. -8
8.在ABC ∆中,80,100,45a b A ︒===,则此三角形解的情况是 ( ) A.一解 B.两解 C.一解或两解 D.无解
9.已知b a ,满足:a
=3,b =2,b a +=4,则b a -=( )
A .3
B .5
C .3
D 10
10.一个等比数列}{n a 的前n 项和为48,前2n 项和为60,则前3n 项和为( )
A 、63
B 、108
C 、75
D 、83
11、若{a n }是等差数列,首项a 1>0,a 4+a 5>0,a 4·a 5<0,则使前n 项和S n >0成立的最大自然数n 的值为 ( ).
A .4
B .5
C .7
D .8
12、已知锐角三角形的边长分别为1,3,a ,则a 的范围是(
)
A .()10,8
B .
(
)
10,8
C .
(
)
10,8
D .
()8,10
二、填空题(本大题共4小题,每小题5分,共20分。
) 13. 在ABC ∆中,0601,,A b ==面积为3,
则
a b c
A B C
++=++sin sin sin .
14.不等式21
131
x x ->+的解集是 .
15、两等差数列}{n a 和}{n b ,前n 项和分别为n n T S ,,且
,327++=n n T S n n 则15
720
2
b b a a ++等于 _ 16、给定两个长度为1的平面向量OA 和OB ,它们的夹角为120o
.
如图所示,点C 在以O 为圆心的圆弧AB 上变动. 若,OC xOA yOB =+其中,x y R ∈,则x y + 的最大值是________.
三、解答题
17.(10)分已知c b a ,,是同一平面内的三个向量,其中a
()1,2=.
(1)若52=c ,且c //a ,求c
的坐标;
(2) 若|b |=,2
5且b a 2+与b a -2垂直,求a 与b
的夹角θ.
18. (12分)ABC ∆中,cos ,sin ,cos ,sin 2222C C C C ⎛⎫⎛⎫==- ⎪ ⎪⎝⎭⎝
⎭m n ,且n m ,3
π
.
(1)求角C ;(2)已知c =
2
7
,三角形的面积2s =,求.a b +
19、(12分) 已知等比数列n a 的前n 项和为n S ,且n a 是n S 与2的等差中项,等差数
列n b 中,1
2b ,点1(,)n n P b b 在一次函数2y x =+的图象上.
⑴求1a 和2a 的值;
⑵求数列,n n a b 的通项n a 和n b ;
⑶ 设n n n b a c ⋅=,求数列{}n c 的前n 项和n T .
20、(12分)在△ABC 中,若()B A C B A cos cos sin sin sin +=+.
(1)判断△ABC 的形状;
(2)在上述△ABC 中,若角C 的对边1=c ,求该三角形内切圆半径的取值范围。
21、(12分)已知等差数列{}n a 满足*1221(,2)n n n a a n N n -=+-∈≥,且481a =
(1)求数列的前三项123a a a 、、的值; (2)是否存在一个实数λ,使得数列{
}2
n n a λ
+为等差数列?若存在,求出λ的值;若不存在,说明理由;求数列{}n a 通项公式。
22、(12分))0(1)1()(2
>++-=x x a ax x f (1)、解不等式0)(>x f
(2)对任意的]1,1[-∈a ,不等式0)(>x f 恒成立,求x 范围。