继续教育统考专升本高等数学模拟试题
《高等数学(一)》(专升本)2024年福建省全真模拟试题含解析
《高等数学(一)》(专升本)2024年福建省全真模拟试题一、单选题(每题4分)1、设x2是f(x)的一个原函数,则f(x)=()2、()A.收敛B.发散C.收敛且和为零D.可能收敛也可能发散3、设z=z3-3x-y,则它在点(1,0)处( )A.取得极大值B.取得极小值C.无极值D.无法判定4、5、()A.0或1B.0或-1C.0或2D.1或-16、设b≠0,当x→0时,sinbx是x2的( )A.高阶无穷小量B.等价无穷小量C.同阶但不等价无穷小量D.低阶无穷小量7、A.xex2B.一xex2C.Xe-x2D.一xe-x28、A.充分必要条件B.充分条件C.必要条件D.既非充分也非必要条件9、10、A.0B.1C.2D.+∞二、填空题(每题4分)11、12、13、设y=5+lnx,则dy=_______。
14、求函数y=x-lnx的单调区间,并求该曲线在点(1,1)处的切线l的方程.15、设ex-ey=siny,求y'16、17、18、函数y=cosx在[0,2x]上满足罗尔定理,则ξ= .19、20、设函数z=x2ey。
则全微分dz= .三、解答题(每题10分)21、22、23、求微分方程y”-5y'-6y=0的通解.24、25、26、27、求微分方程y''-y'-2y=0的通解.参考答案一、单选题(每题4分)1、【正确答案】:A【试题解析】:由于x2为f(x)的一个原函数,由原函数的定义可知f(x)=(x2)'=2x,故选A.2、【正确答案】:D【试题解析】:本题考查了数项级数收敛的必要条件的知识点.3、【正确答案】:C【试题解析】:本题考查了函数在一点处的极值的知识点.(1,0)不是驻点,故其处无极值.4、【正确答案】:B【试题解析】:由级数收敛的定义可知B正确,C不正确.由于极限存在的数列不一定能保证极限为0,可知A不正确.极限存在的数列也不一定为单调数列,可知D也不正确.5、【正确答案】:A【试题解析】:本题考查了定积分的知识点.k2-k3=k2(1-k)=0.所以k=0或k=1.6、【正确答案】:D【试题解析】:本题考查了无穷小量的比较的知识点.7、【正确答案】:B【试题解析】:本题考查了变上限积分的性质的知识点.8、【正确答案】:C【试题解析】:由级数收敛的必要条件可知C正确,D不正确.9、【正确答案】:D【试题解析】:10、【正确答案】:B【试题解析】:所给级数为不缺项情形。
新程专转本高等数学模拟卷5份含答案
江苏省2012年普通高校“专转本”统一考试高等数学 模拟考试试题(一)一、选择题(本大题共6小题,每小题4分,满分24分)1. 当x →0时,函数e x -cosx-x 是x 2的( ) A.低阶无穷小量 B.等价无穷小量C.高阶无穷小量D.同阶但非等价的无穷小量2.. 下列函数中,当x →0时是无穷小量的是( )A.f (x )=x x sinB.f (x )=x 1C.f (x )=⎪⎩⎪⎨⎧<≥02x xx xD.f (x )=x1x)(1+3.、下列级数中,条件收敛的是( ). A. ∑∞=++12231n n n B. ()11nn ∞=-∑ C. ()11nn ∞=-∑21sin 1n n n ∞=+∑4. 下列函数在给定区间上满足罗尔中值定理条件的是( )A .[]π,0,cos sin )(x x x f +=B .[]1,0,1)(x x x f -=C .[]e x x x f ,1,ln )(∈=D .()=tan ,0,4f x x x π⎡⎤∈⎢⎥⎣⎦5. 曲线x 2=4-y 与x 轴所围图形的面积为( ) A.⎰-202dx )x 4(2 B.⎰-202dx )x 4(C.⎰-2dy y 4D.2⎰-20dy y 46、直线34273x y z++==--与平面-2x-7y+3z=3的位置关系是( ). A. 平行 B. 垂直 C. 直线在平面内 D. 直线与平面斜交二、填空题(本大题共6小题,每小题4分,满分24分)7、21dz z y dy y+=的解的是 . 8、301lim(1)4xx x-→+= .9、设0()10,12,133x f x x x x ⎧≥⎪⎪=-≤<⎨⎪⎪->-⎩ 则在x = 处, ()f x 不可导.10、z=,y x 122--则dz . 11、131(1x dx -+=⎰,12、用待定系数法求方程25sin 2xy y y e x '''-+=的通解时,特解*y 应设为 .三、解答题(本大题共8小题,每小题8分,满分64分)13、(1)计算011lim 1x x x e →⎛⎫- ⎪-⎝⎭. (2)求极限1lim(1)tan2x xx π→-14、计算dx x cos x cos 203⎰π-15、设()y y x =是由函数方程22ln()1x y x y +=+-在(0,1)处所确定的隐函数, 求y '及(0,1)|.dy16、计算120x x e dx⎰.17、求微分方程cos sin 1y x y x '+=满足01x y ==的特解.18、计算⎰⎰==+=D0y ,2y x ,x y D ,xydxdy 由其中围成的平面区域.19、求过点()1,2,1且与两直线21010x y z x y z +-+=⎧⎨-+-=⎩和200x y z x y z -+=⎧⎨-+=⎩都平行的平面方程.20、求复合函数2,y u f x y x ⎛⎫= ⎪⎝⎭的二阶混合偏导数,其中f 具有连续的二阶偏导数.求2u x y∂∂∂四、证明题(本大题共1小题,满分8分)21、当0x >时,证明不等式)1lnx x +>五、综合题(本大题共3小题,每小题10分,满分30分)22、计算二重积分:211y xdx e dy-⎰⎰.23、已知曲线::C y =(1)求C 上一点()2,1处的切线L 的方程;(2)求,L C 与x轴所围平面图形A 的面积S ;(3)求A 绕y 轴旋转一周所得旋转体的体积yV .24、设函数()f x 连续, 且201(2)arctan .2xtf x t dt x -=⎰ 已知(1)1,f = 求21()f x dx ⎰的值.江苏省2012年普通高校“专转本”统一考试高等数学 模拟考试试题(二)一、选择题(本大题共6小题,每小题4分,满分24分)1、1lim sin 4n n n→∞=( )A.2B.41C.1D.21 2(1)() 07 0x e x f x x ⎧≠=⎨=⎩,则=→)x (f lim 0x ( )A.不存在B.∞C.0D.12(2)设f(x)=⎪⎩⎪⎨⎧=≠-1,0,)1(1x k x x x 连续,则k=( )A.e -1B.e +1C.e 0D.不存在3.当0x →时,2(1xe -)+x 2sinx1是x 的( ) A.等价无穷小 B.同阶但不等价的无穷小 C.高阶无穷小 D.低阶无穷小4.当△x →0时,1cos x -∆与△x 相比,是( ) A.与△x 等价的无穷小量B.与△x 同阶(但不等价)的无穷小量C.比△x 低阶的无穷小量D.比△x 高阶的无穷小量5曲线y=x 3-1在点(-2,-9)的切线斜率k=( ) A.-9 B.7 C.12 D.-86.设函数f(x)在x 0可导,则=--+→h)h 2x (f )h 2x (f lim 000h ( )A.)x (f 410'B. )x (f 210'C.)x (f 0'D.4)x (f 0'二、填空题(本大题共6小题,每小题4分,满分24分)7、设函数f(x)=⎪⎪⎩⎪⎪⎨⎧π>+π≤4x k x 224x x sin 在x=4π处可导,则k= 8、曲线2xy e -=在x = 处有拐点.9、设()21,0x x af t dt e x =->⎰,则()f x =.10、设→→→c b a ,,为单位向量,且满足0=++→→→c b a ,则=⋅+⋅+⋅→→→→→→a c c b b a .11、幂级数∑∞=⋅-12)1(n n nn x 的收敛区间为 .12、交换二次积分次序:()2220,y y dy f x y dx =⎰⎰.三、解答题(本大题共8小题,每小题8分,满分64分)13、求极限xsin xsin tgx x lim 330x -+→.14、设函数()y y x =由参数方程()32ln 1x t t y t t⎧=-+⎨=+⎩所确定,求22d y dx .15、设04222=-++z z y x ,求22xz∂∂。
2024浙江专升本高数模拟卷2
2024浙江•专升本高数•模拟卷2考试时间: 120分钟 班次: ____________姓名:___________一、单选题 (共5小题20分)1.x =0是f(x)={e x +1x <0,2x =0ln(1+x)x >0的( )A.可去间断点B.跳跃间断点C.连续点D.无穷间断点2.设a 1=x(cos √x −1),a 2=√xln(1+√x 3),a 3=√x +13−1, 当x →0+时,以上3个无穷小量按照从低阶到高阶的排序是( ) A.a 1,a 2,a 3 B.a 2,a 3,a 1 C.a 2,a 1,a 3D.a 3,a 2,a 13.设f(x)在(−∞,+∞)连续,下列说法正确的是( ) A.dd x [∫f(x)d x]=f(x)+C,C 为任意常数B.若f(x)在[a,b]上连续, 则f(x)在(a,b)上必有最大值和最小值C.对任意常数a,b , 总有∫a bf(x)d x =∫a bf(a +b −x)d x 成立 D.若f(x)为偶函数, 则f(x)的原函数一定是奇函数4.级数∑n=1∞(−1)n (1−cos βn )(β为常数且大于0)( )A.发散B.条件收敛C.绝对收玫D.收敛性与β有关5.设P =∫−1212cos 2x ∙ln 1−x1+x d x,N =∫−1212[cosx 2+ln 1−x1+x ]d x,M =∫−1212[xsin 2x −cos 2x ]d x , 则有( ) A.N <P <M B.M <P <N C.N <M <PD.P <M <N二、填空题 (共10小题40分)6.已知函数f(x)={x,x <0,0,x =0e x −2,x >0,则f[f(1)]=________.7.lim x→+∞x 3+x 2+12x+x 3sinx =_______ . 8.函数f(x)=13x 3−3x 2+9x 在区间[0,4]上的最大值为________.9.设y =f(x)由方程xy +2lnx =y 4确定,则曲线y =f(x)在点(1,1)处的切线方程为_______.10.极限lim n→∞1n (ln 2πn +ln 22πn +⋯+ln 2nπn )用定积分表示为________.11.lim x→0+(sinx x )11−cosx =_______.12.已知f(x)在x =1处可导, 且limΔx→0f(1+2Δx)−f(1)4Δx =2, 则f ′(1)=________.13.已知y =cos (x +lnx 2), 则d y =_______.14.设函数f(x)在(−∞,+∞)上连续, 且∫01f(x)d x =3, 则∫0π2cosxf(sinx)d x=__________.15.位于曲线y =1x (1+ln 2x )(e ⩽x <+∞)下方以及x 轴上方的无界区域的面积为_________.三、计算题 (共8小题60分)16.求极限limx→0e x2−e 2−2cosx x 4. 17.设f(x)={x1+e 1x,x ≠0,0,x =0,判断f(x)在x =0处的连续性与可导性.18.设y =(2x+3)4∙√x−6√x+13, 求y ′.19.求∫xtan 2x d x .20.∫−11(sin 3x +x 2)e −|x|d x . 21.一平面经过直线l:x+53=y−21=z4,且垂直于平面x +y −z +15=0, 求该平面的方程.22.求xy ′−y =2023x 2满足y |x=1=2024的特解.23.已知定义在(−∞,0)∪(0,+∞)上的可导函数f(x)满足方程f(x)−4x∫1xf(t)d t =x 2,试求: 该函数的单调区间、极值. 四、综合题 (共3小题20分)24.求∑n=1∞(−1)n−1n(2n−1)x2n 的收敛区间及其和函数. 25.设直线y =ax(0<a <1)与拋物线y =x 2围成图形D 1面积记作A 1;由直线y =ax(0<a <1)、抛物线y =x 2及直线x =1围成图形D 2面积记作A 2.26.设函数f(x)在[0,2]连续,(0,2)可导, 且f(0)=0,∫02f(x)d x =2, 试证明: 至少存在ξ∈(0,2), 使得f ′(ξ)=f(ξ)−ξ+1.。
最新专升本考试高等数学模拟题10套(含答案解析)
1
1.若 f x
1 ex
1
,则 x 0 是 f x 的(
1
x 3n
10.幂级数
的收敛域为
n1 n
。 。
4 1y4
11.交换二次积分的积分次序 dy 2 f x, ydx = 0 4 y
y 12.函数 z ln 在点(2,2)处的全微分 dz =
x
三、计算题(本大题共 8 小题,每小题 8 分,满分 64 分)
sin x sin(sin x)
1 x , y , x 2及x 轴所围成的平面区域。
x
D
yx
20.求微分方程 y y 2x 1满足 lim 1的特解。 x0 x
四、证明题(本大题共 2 小题,每小题 9 分,共 18 分)
21.证明:当 x 0 时, ex x 2 cos x 。
2 x2
1
cos
x
x0
22.设函数
(1)求常数 k 的值,使 D1 与 D2 的面积相等; (2)当 D1 与 D2 的面积相等时,求 D1 绕 y 轴旋转一周所成的旋转体体积Vy 和 D2 绕 x 轴旋
转一周所成的旋转体体积Vx 。
全真模拟测试卷2
一、选择题(本大题共 6 小题,每小题 4 分,共 24 分。在每小题给出的四个选项中,只
ln1 x2
x0
2.设 f (x) x
,其中 (x) 是有界函数,则f (x)在x =0处( )。
x2x x 0
A.极限不存在 B.极限存在但不连续 C.连续但不可导 D.可导
3.设 f x 的导数为 ex ,且 f (0) 0 ,则 f xdx =( )。
A. ex x C B. ex x C C. ex x C D. ex x C
2022-2023学年河南省许昌市成考专升本高等数学二自考模拟考试(含答案带解析)
2022-2023学年河南省许昌市成考专升本高等数学二自考模拟考试(含答案带解析) 学校:________ 班级:________ 姓名:________ 考号:________一、单选题(30题)1.2.3.4.A.A.2x+1B.2xy+1C.x2+1D.x25.()。
A.B.C.D.6.7.A.xyB.xylnyC.xylnxD.yxy-l8.9.10.设事件A,B相互独立,A,B发生的概率分别为0.6,0.9,则A,B都不发生的概率为()。
A.0.54B.0.04C.0.1D.0.411.12.13.下列结论正确的是A.A.B.C.D.14.15.16.()A.6B.2C.1D.017.()。
A.B.C.D.18.A.A.2,-1B.2,1C.-2,-1D.-2,119. A.0 B.1/3 C.1/2 D.320.A.A.B.C.D.21.()。
A.3B.2C.1D.2/322.()。
A.B.C.D.23.24.下列定积分的值等于0的是()。
A.B.C.D.25.26.A.A.0B.1/2C.1D.227.()。
A.sin(x2y)B. x2sin(x2y)C.-sin(x2y)D.-x2sin(x2y)28.29.30.二、填空题(30题)31.32.33.34.35.37.五人排成一行,甲、乙二人必须排在一起的概率P=__________.38.39.40.41.42.43.44.45.46.47.第 17 题48. 设y=y(x)由方程xy+x2=1确定,则dy/dx=__________。
49.50.51.52.53.54.55.56.57.58.59.60.三、计算题(30题)61.62.63.64.65.66.67.68.69.70.71.72.73.74.75.设函数y=x4sinx,求dy.76.77.78.79.80.81.82.83.84.已知曲线C为y=2x2及直线L为y=4x.①求由曲线C与直线L所围成的平面图形的面积S;②求曲线C的平行于直线L的切线方程.85.86.87.求函数f(x)=x3-3x2-9x+2的单调区间和极值.88.①求曲线y=x2(x≥0),y=1与x=0所围成的平面图形的面积S:②求①中的平面图形绕Y轴旋转一周所得旋转体的体积Vy.89.设函数y=x3cosx,求dy90.四、综合题(10题)91.92.93.94.95.96.97.98.99.100.五、解答题(10题) 101.102.103.104.105. 已知f(x)的一个原函数是arc tanx,求∫xf'(x)dx。
专升本高数模拟试卷
专升本高数模拟试卷一、选择题(每题2分,共20分)1.设函数 f(x) = 3x^2 - 2x +5,则当 x = 2 时,f(x) 的值是()A. 13B. 19C. 17D. 112.已知函数 y = f(x) 在x = 2 处的导数为 f'(2) = 3,则 f(x) 在 x = 2处的切线方程为()A. y = 3x - 5B. y = 3x + 5C. y = -3x + 5D. y = -3x - 53.已知函数 f(x) = 4x^3 - 3x^2 + 7x + 1,若 f(x) 在区间[1, 3] 上的平均值为 9 ,则 f'(c) = 9 的解 c 的值是()A. 1B. 3C. 2D. 44.函数 y = x^3 + \frac{1}{2}x^2 - 2x + 3 的单调增区间是()A. (-\infty , -1)B. (1, +\infty)C. (-\infty, -1) \cup (1, +\infty)D. (-\infty, +\infty)5.设已知函数 f(x) = \frac{x}{x+1} , g(x) = \sin x ,则 f(x)g(x) 的导数是()A. \frac{x}{(x+1)^2} \cos xB. \frac{x}{(x+1)^2} \sin xC.\frac{x}{(x+1)} \cos x D. \frac{x}{(x+1)} \sin x6.设已知函数 f(x) = e^x \ln(x+1),则 f'(x) = ()A. e^x \ln(x+1)B. e^x \ln xC. \frac{e^x}{(x+1)}D. e^x7.函数 y = \sin x 在[0, \pi] 上的和最大值是()A. 2B. 1C. -2D. -18.已知曲线 C 的方程为 y = \ln (x+1) ,则曲线 C 的斜率为 1 时, C 的切线方程为()A. y = xB. y = x + 1C. y = 2xD. y = 2x + 19.设函数 f(x) = \sin x ,则 f(\frac{\pi}{2} - x) = ()A. \cos xB. -\cos xC. \sin xD. -\sin x10.函数 f(x) = x^3 + x^2 - 6x ,则函数 f(x) 在[0,1] 上的最大值是()A. 1B. -1C. 3D. -3二、填空题(每题2分,共20分)1.函数 y = x^4 + 6x^3 + ax^2 在 x = -2 处的导数为 0 ,则 a = ()2.设函数 f(x) = \ln (5+2^x) , 则 f'(x) = ()3.函数 f(x) = \sin x 在区间 [0, \frac{\pi}{2}] 上的平均值为()4.若 f(x) = e^x ,则 f(x) = e^{x - 1} 的解 x 等于()5.牛顿-莱布尼兹公式的形式为()6.设函数 f(x) = \frac{1}{2} x^2 - x + 3 ,则在 [1, 3] 上的定积分f(x)dx = ()7.\int e^x \sin x dx = ()8.设函数 f(x) = \ln (x+1)^2 ,则 f'(x) = ()9.函数 y = x^4 在 x = -2 处的切线方程为 y = ()10.设函数 f(x) = \frac{1}{x+1} ,则在区间(1,2) 上的不定积分 \intf(x)dx = ()三、综合题(共60分)1.设函数 f(x) = x^3 - 3x + 2, 求 f(x) 在 (0,3) 上的单调区间和极值点。
2024年成考专升本高等数学(一)-模拟押题卷
2024年成考专升本高等数学(一)-模拟卷一、选择题:1~12小题,每小题7分,共84分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1. 221lim x x x x →∞+=+ ( )A. -1B. 0C. 12 D. 12. 设函数 3()5sin f x x x =+, 则 (0)f '= ( )A. 5B. 3C. 1D. 03. 设函数 ()ln f x x x =-, 则 ()f x '= ( )A. xB. 1x -C. 1x D. 11x -4. 函数 32()293f x x x =-+ 的单调递减区间是 ( )A. (3,)+∞B. (,)-∞+∞C. (,0)-∞D. (0,3) 5. 23 d x x =⎰ ( ) A. 23x C + B. 5335x C + C. 53x C + D. 13x C +6. 设函数 ()||f x x =, 则 11()d f x x -=⎰ ( )A. -2B. 0C. 1D. 27. 设 ()f x 为连续函数, 且满足 0()d e 1xx f t t =-⎰, 则 ()f x =() A. x e B. x e 1- C. e 1x + D. 1x +8. 设 ()2214z x y =+, 则 2zx y ∂=∂∂ ( ) A. 2xB. 0C. 2yD. x y +9. (2,1,2),(1,21)=--=-a b , 则 ⋅=a b ( )A. -1B. -3C. 3D. 210. 余弦曲线 cos y x = 在 0,2π⎡⎤⎢⎥⎣⎦ 上与 x 轴所围成平面图形的面积为 ( ) A. 0 B. 1 C. -1 D. 211. 若 lim 0n n a →∞=, 则数项级数 1n n a ∞=∑ ( )A. 收敛B. 发散C. 收玫且和为零D. 可能收玫也可能发散12. 如果区域 D 被分成两个子区域 12,D D , 且12(,)5,(,)1D D f x y dxdy f x y dxdy ==⎰⎰⎰⎰,则 (,)D f x y dxdy =⎰⎰ ( )A. 5B. 4C. 6D. 1二、填空题:13~15小题,每小题7分,共21分13. 32234x t y t ⎧=+⎨=-⎩ 在 1t = 相应的点处切线斜率为 . 14. 求 2x x y = 的全微分 .15. {(,)01,03}D x y x y x =≤≤≤≤-∣, 求D d σ=⎰⎰ .三、解答题:16~18小题,每小题15分,共45分.解答应写出文字说明、证明过程或演算步骤16. 求微分方程 220x y y e'--= 的通解. 17. 求由方程 2y y xe -= 所确定的隐函数 ()y y x = 的导数 0x dydx =.18. 证明: 当 0x 时, 2ln(1)2x x x +-.参考答案1.【答案】D【考情点拨】本题考查了函数极限的知识点.【解析】 222111lim lim 111x x x x x x x →∞→∞++==++. 2. 【答案】 A【解析】可求得 2()35cos f x x x '=+, 则 (0)5f '=.3. 【答案】D【解析】 1()(ln )1f x x x x''=-=-. 4.【答案】D【解析】由题可得 2()6186(3)f x x x x x '=-=-, 令 ()0f x '<, 得 03x <<, 故单调墄区间为 (0,3).5.【答案】B 【解析】 25333 d 5x x x C =+⎰. 6.【答案】C【解析】 01101221101011()d ()d ?d 122f x x x x x x x x ---=-+=-+=⎰⎰⎰. 7.【答案】A【解析】 0()d e 1xx f t t =-⎰ 两边同时求导, 得 ()()e 1e x x f x '=-=. 8. 【答案】B【解析】 12z x x ∂=∂, 所以 20z x y ∂=∂∂. 9.【答案】D【解析】 a 21(1)2(2)(1)2⋅=⨯+-⨯+-⨯-=b10.【答案】B【解析】由题意得 2200cos sin 1S xdx x ππ===⎰, 故选 B. 11.【答案】D 【解析】 lim 0n n a →∞= 是级数 1n n a ∞=∑ 收敛的必要条件, 但不是充分条件, 从例子 211n n ∞=∑收敛可知 B 错误, 由11n n ∞=∑ 发散可知 A, C 错误, 故选 D. 12.【答案】C 【解析】根据二重积分的可加性, (,)6D f x y dxdy =⎰⎰, 应选 C.13.【答案】 13【解析】 212,6,3dy dx dy dy dt t t dt dt dx dt dx t ===⋅=, 当1t =时, 13dy dx =, 故切线的斜率为 1314.【答案】 22xydx x dy +【解析】 22z z dz dx dy xydx x dy x y∂∂=+=+∂∂. 15.【答案】 52【解析】积分区域为梯形区域,此二重积分的一样即为求梯形面积,故 (23)1522D d σ+⨯==⎰⎰. 16.【答案】 22x x y xe Ce =+ (C 为任意常数)【解析】由通解公式可得,()(2)(2)222222dx dx x x x x x x y e e e dx C e e e dx C xe Ce ----⎡⎤⎰⎰=⋅+=⋅+=+⎢⎥⎣⎦⎰⎰ ( C 为任意常数). 17.【答案】 2e【解析】方程两边同时关于 x 求导得 0y y y e xe y ''--⋅=, 当 0x = 时, 2y =,代人得 200x x dyy e dx '==== 。
2023年成人高等考试《数学一》(专升本)模拟试卷一
2023年成人高等考试《数学一》(专升本)模拟试卷一[单选题]1.下列不等式成立的是()。
A.B.C.D.参考答案:B参考解析:在[0,1]上,x2≥x3,由定积分的性质可知选B。
同样在[1,2]上,x2≤x3,可知D不正确。
[单选题]2.()。
A.exB.2exC.-exD.-2ex参考答案:D参考解析:[单选题]3.设z=ysinx,则等于()。
A.-cosxB.-ycosxC.cosxD.ycosx参考答案:C参考解析:本题考查的知识点为二阶偏导数。
可知应选C。
[单选题]4.()。
A.-1/2B.0C.1/2D.1参考答案:B参考解析:[单选题]5.()。
A.0B.1C.π/2D.π参考答案:C[单选题]6.()。
A.1/2B.1C.π/2D.π参考答案:B参考解析:[单选题]7.微分方程的通解为()。
A.B.C.D.参考答案:C参考解析:[单选题]8.在空间直角坐标系中,方程x2+z2=z的图形是()。
A.圆柱面B.圆C.抛物线D.旋转抛物面参考答案:A参考解析:线为圆、母线平行于y轴的圆柱面。
[单选题]9.()。
A.x=-2B.x=1C.x=2D.x=3参考答案:B参考解析:所给级数为不缺项情形,[单选题]10.设区域D是由直线y=x,x=2,y=1围成的封闭平面图形,()。
A.B.C.D.参考答案:D参考解析:积分区域如右图中阴影部分所示。
D可以表示为1≤x≤2,1≤y≤x 或1≤y≤2,y≤x≤2,对照所给选项,知应选D。
[问答题]1.参考答案:无参考解析:[问答题]2.参考答案:无参考解析:[问答题]3.参考答案:无参考解析:[问答题]4.参考答案:无参考解析:[问答题]5.设F(x)为f(x)的一个原函数,且f(x)=xlnx,求F(x)。
参考答案:无参考解析:本题考查的知识点为两个:原函数的概念和分部积分法。
由题设可得知:[问答题]6.(1)将f(x)展开为x的幂级数;(2)利用(1)的结果,求数项级数的和。
河南专升本_模拟_高数(共五套)
河南专升本_模拟_高数(共五套)高等数学模拟试题(一)说明:考试时间120分钟,试卷共150分.一、单项选择题(每小题2分后,共50分后.在每个小题的候选答案中挑选出一个恰当答案,并将其代码写下在题干后的括号内.)1.已知f(x)的定义域为[-1,2],则函数f(x)?f(x?2)?f(2x)的定义域为()(a)[?3,0](b)[?3,1](c)[?11,1](d)[?,0]22x2sin2.limx?0sinx1x=()(a)无穷(b)不存有(c)0(d)1x?0?x?1?1,?3.设f(x)??则x=0是函数f(x)的()x?0,x?0?(a)可去间断点(b)无穷间断点(c)连续点(d)跳跃间断点44.方程x?x?1?0,至少存有一个根的区间就是()1122(c)(2,3)(d)(1,2)(a)(0,)(b)(,1)5.f(x)?(x?x0)??(x)其中?可微,则f?(x0)?()(a)0(b)?(x0)(c)??(x0)(d)?6.设f(x)?xsinn1(x?0)且f(0)?0,则f(x)在x=0处为()xnx?0(a)仅当limf(x)?limxsinx?01?f(0)?0时,才可以微x(b)在任何条件下都可以微(c)当且仅当n>1时才可以微(d)因sin1在x=0处并无定义,所以不容微x7.设f(x)在[a,?)上二次连续函数,且f(a)?0,f?(a)?0,f??(x)?0(x?a),则方程f(x)?0在[a,?)上()(a)没实根(b)存有多个实根第1页共28页(c)存有且仅有一个实根(d)无法推论与否存有实根8.下列函数在[?1,1]上满足罗尔定理条件的是()(a)y?1(b)y?1?xx(c)y?x(x2?1)(d)y?ln(1?x)9.设函数f(x)有连续的二阶导数,且f?(0)?0,limx?0f??(x)?1,则()x(a)f(0)是函数的极大值(b)f(0)是函数的极小值(c)(0,f(0))就是曲线y?f(x)的拐点(d)f(0)不是f(x)的极值,(0,f(0))也不是曲线y?f(x)的拐点10.若d?f(x)??d?g(x)?,则以下各式中不设立的就是()??(a)f(x)?g(x)(b)f?(x)?g?(x)(c)d?f(x)??d?g(x)?(d)d11.由曲线y?f?(x)dxdg?(x)dx?1,直线y?x,x?2所围成图形面积为()x2211(a)?(?x)dx(b)?(x?)dx1x1x222211(c)?(2?)dy??(2?y)dy(d)?(2?)dx??(2?x)dx1111xy12.i?(a)?120x3?2x2?xdx,则求该分数时恰当的作法就是i=()102?20x?1?x?dx(b)?x?x?1?dxx?1?x?dx??21x?x?1?dx(c)?200x?1?x?dx(d)0x?x?1?dx13.对于非零向量a,b满足a?3b?7a?5b,a?4b?7a?2b,则向量a,b夹角为()(b)64(c)(d)32(a)?y2?z2?2x?014.曲线?在xoy平面上投影曲线方程为()z3y22xy22x9(a)(b)z?0??z?0?y2?2x?y2?2x?9(c)?(d)?z3z3第2页共28页15.函数f(x,y)在点(x0,y0)的偏导数存在是f(x,y)在该点连续的()(a)充分条件但不是必要条件(b)必要条件但不是充分条件(c)充要条件(d)既不是充分条件也不是必要条件16.函数z?ln41的定义域为()?arcsin2222x?yx?y(a)1?x2?y2?4(b)1?x2?y2?4(c)1?x2?y2?4(d)1?x2?y2?417.发生改变(a)dx12x22xf(x,y)dy分数次序得()?10dy?422?y5yf(x,y)dx(b)?dy?0122?y2?yf(x,y)dx+?dy?14142y5yf(x,y)dxf(x,y)dx(c)dy02yf(x,y)dx(d)dy012f(x,y)dx+dy218.设d:x2?y2?r2,则(a)dx2?y2dxdy?()rdxdyrd3(b)?2?0drdrr20r(c)20dr02r23rdrr(d)dr2dr2r3003219.直观闭合曲线c所围区域d的面积为()11xdx?xdyydy?xdx(b)2?c2?c11(c)?ydx?xdy(d)?xdy?ydx2c2c1n1?),则级数()20.设un?(?1)ln(n(a)(a)?un?1?n与?un?1?2n收敛(b)2n?un?1?n与un12n都收敛2n(c)?un?1??n收敛而?un?1?发散(d)?un?1?n发散而un1发散21.设级数a收敛(a为常数),则有()?nn?1q(a)q?1(b)q?1(c)q??1(d)q?122.级数nen1nx的发散域就是()(a)x??1(b)x?0(c)0?x?1(d)?1?x?0第3页共28页23.微分方程y2y??x的特解应设为y??()(a)ax(b)ax?b(c)ax?bx(d)ax?bx?c24.过函数y?f(x)的图形上点(0,?2)的切线为:2x?3y?6且该函数满足微分方程y6x,则此函数为()(a)y?x2?2(b)y?3x2?2(c)3y?3x3?2x?6?0(d)y?x?3222x325.微分方程xdy?ydx?y2eydy的吉龙德为()(a)y?x(ex?c)(b)x?y(ey?c)(c)y?x(c?e)(d)x?y(c?e)二、填空题(每小题2分,共30分)1.设f(x)为已连续奇函数且f(2)?1,则limf(x)?______________.x??2xy2.lim(1?3x)x?01sinx?______________.3.曲线y?x?ex在点(0,1)处的切线斜率k?_________________________.4.函数f(x)?x3?x在[0,3]上满足罗尔定理的??_______________.5.函数f(x)?x?2cosx在[0,32?2]上的最大值为_______________.6.曲线f(x)?x?3x?2x?1的拐点为_________________________.7.设f(x)?sinx?cos2x,则f(27)(?)___________________.21x?18.不定积分:?edx?___________________.d2sin2xdx?____________________.9.dx?110.设0e tdt22,则1x20e?xdx=_______________________.11.将xoz平面内曲线z?5x拖x轴转动一周,分解成的转动曲面的方程为______________________________.12.由方程:ex?y?xyz?ez确认的隐函数z?z(x,y)的偏导数n?z=______________.?xxn13.幂级数1??(?1)2的收敛域为____________.nn?1?第4页共28页(?1)nxn14.级数?的和函数s(x)为________________.n2n?015.若d[e?xf(x)]?exdx,则f(x)?________________.三、计算题(每小题5分后,共40分后)1.谋limsin6x?6x.x?02x3dy.dx22.设y?xx?2xxx,求x23.谋分数??(x)dx,其中f(x?1)?ln2,且f[?(x)]?lnx.x?24lnx4.求定积分?1dx.x4?z?z5.设z?f2(x,xy),其中f具备一阶已连续的偏导数,谋,.?x?y6.排序10dxx2eydy.x2127.将f(x)?ex?2x进行为(x+1)的幂级数ZR19其发散域.228.谋微分方程:2x(yex?1)dx?exdy?0的吉龙德.四、应用题(每小题7分后,共21分后)1.用a元钱购料,建造一个宽与深相同的长方体水池,已知四周的单位面积材料费为底面单位面积的材料费的1.2倍,求水池的长与宽各多少米,才能使水池的容积最大?2.由曲线y?x3和直线x?2,y?0围成一平面图形,试求:(1)该平面图形的面积;(2)该平面图形拖y轴转动一周的旋转体体积.3.谋微分方程cosydy?siny?ex的吉龙德.dx12x?ln(1?x).2五、证明题(9分)证明:当x>0时,有x?答案一、单项选择题1.d2.c3.a4.d5.b6.c7.c8.c9.c10.a11.b12.b13.c14.b15.d16.a17.b18.c19.d20.c21.d22.b23.c24.c25.d二、填空题1.-12.e3.24.25.3?6?31x?16.(1,1)7.08.?e229.010.?11.y?z?5x第5页共28页c。
专升本(高等数学一)模拟试卷100(题后含答案及解析)
专升本(高等数学一)模拟试卷100(题后含答案及解析)题型有:1. 选择题 2. 填空题 3. 解答题选择题1.当x→0时,无穷小x+sinx是比xA.高阶无穷小B.低阶无穷小C.同阶但非等价无穷小D.等价无穷小正确答案:C解析:因=2,所以选C。
2.设函数f(x)在点x0的某邻域内可导,且f(x0)为f(x)的—个极小值,则等于A.一2B.0C.1D.2正确答案:B解析:因f(x)在x=x0处取得极值,且可导.于是f’(x0)=0.又3.设函数f(x)=,则f’(x)等于A.B.C.D.正确答案:C4.函数y=x-arctanx在(一∞,+∞)内A.单调增加B.单调减少C.不单调D.不连续正确答案:A解析:因y=x—arctanx,则y’=1一于是函数在(一∞,+∞)内单调增加.5.设∫f(x)dx=ex+C,则∫xf(1一x2)dx为A.B.C.D.正确答案:D解析:6.设ψ(x)=则ψ’(x)等于A.tanx2B.tanxC.sec2x2D.2xtanx2正确答案:D解析:因tantdt是复合函数,于是ψ’(x)=tanx2.2x=2xtanx2.7.下列反常积分收敛的A.B.C.D.正确答案:D解析:当p≤1时发散,p>1时收敛,可知应选D.8.级数A.绝对收敛B.条件收敛C.发散D.无法确定敛散性正确答案:C解析:级数的通项为此级数为p级数.又因所以级数发散.9.方程x2+y2=R2表示的二次曲面是A.椭球面B.圆柱面C.圆锥面D.旋转抛物而正确答案:D解析:由方程特征知,方程x2+y2=R2表示的二次曲面是圆柱面.10.曲线A.有水平渐近线,无铅直渐近线B.无水平渐近线,有铅直渐近线C.既有水平渐近线,又有铅直渐近线D.既无水平渐近线,也无铅直渐近线正确答案:C填空题11.函数F(x)=(x>0)的单调递减区间是________.正确答案:解析:12.设f”(x)连续,正确答案:yf”(xy)+f’(x+y)+yf”(x+y)解析:13.设D是圆域x2+y2≤a2,则I=________.正确答案:0解析:用极坐标计算.14.设f(x)=ax3一6ax2+b在区间[一1,2]的最大值为2,最小值为一29,又知a>0.则a,b的取值为_________.正确答案:解析:f’(x)=3ax2一12ax,f’(x)=0,则x=0或x=4.而x=4不在[一1.2]中,故舍去.f”(x)=6ax一12a,f”(0)=一12a.因为a>0,所以f”(0)<0,所以x=0是极值点.又因f(一1)=一a一6a+b=b一7a,f(0)=b,f(2)=8a一24a+b=b—16a,因为a>0,故当x=0时,f(x)最大,即b=2;当x=2时,f(x)最小.所以b一16a=一29,即16a=2+29=31.15.设曲线则该曲线的铅直渐近线为_______.正确答案:x=一1解析:16.当p_______时,级数收敛.正确答案:>1解析:当p>1时收敛,由比较判别法知p>1时,17.求正确答案:解析:18.幂级数的收敛半径R=_______.正确答案:1解析:19.方程y”一2y’+5y=exsin2x的特解可没为y*=________.正确答案:xex(Asin2x+Bcos2x)解析:由特征方程为r2一2r+5=0,得特征根为1±2i,而非齐次项为exsin2x,因此其特解应设为y*=Axexsin2x+Bxexcos2x=xex(Asin2x+Bcos2x).20.正确答案:解析:解答题21.确定函数f(x,y)=3axy-x3-y3(a>0)的极值点.正确答案:在(0,0)点,△>0,所以(0,0)不是极值点.在(a,a)点,△<0.且一6a<0(a>0).故(a,a)是极大值点.22.正确答案:23.讨论级数的敛散性.正确答案:因所以级数收敛.24.正确答案:25.证明:ex>1+x(x>0).正确答案:对F(x)=ex在[0,x]上使用拉格朗日中值定理得F(x)-F(0)=F’(ξ)x,0<ξ<x,因F’(ξ)=eξ>1,即故ex>x+1(x>0).26.设x>0时f(x)可导,且满足f(x)=f(t)dt,求f(x).正确答案:因f(x)=可导,在该式两边乘x得xf(x)=x+∫1xf(t)dt,两边对x求导得f(x)+xf’(x)=1+f(x),则f(x)=lnx+C,再由x=1时.f(1)=1.得C=1,故f(x)=lnx+1.27.求方程y”-2y’+5y=ex的通解.正确答案:y”一2y’+5y=0的特征方程为r2一2r+5=0。
成人高考专升本高等数学(一)全真模拟试题及答案解析⑤
成人高考专升本高等数学(一)------------------------全真模拟试题及答案解析⑤1(单选题)函数在x=0处()(本题4分)A 连续且可导B 连续且不可导C 不连续D 不仅可导,导数也连续标准答案: B解析:【考情点拨】本题考查了函数在一点处的连续性和可导性的知识点。
【应试指导】因为所以函数在x=0处连续;又因不存在,所以函数在x=0处不可导。
2(单选题)曲线()(本题4分)A 没有渐近线B 仅有水平渐近线C 仅有铅直渐近线D 既有水平渐近线,又有铅直渐近线标准答案: D解析:【考情点拨】本题考查了曲线的渐近线的知识点。
【应试指导】所以y=1为水平渐近线。
又因所以x=0为铅直渐近线。
3(单选题)则α的值为()(本题4分)A -1B 1C -1/2D 0标准答案: B解析:【考情点拨】本题考查了洛必达法则的知识点。
【应试指导】因为x→0时分母极限为0,只有分子极限也为0,才有可能使分式极限为6,故解得a=-1,所以4(单选题)设()(本题4分)A 等价无穷小B f(x)是比g(x)高阶无穷小C f(x)是比gCc)低阶无穷小D f(x)与g(x)是同阶但非等价无穷小标准答案: D解析:【考情点拨】本题考查了两个无穷小量阶的比较的知识点。
【应试指导】故f(x)与g(x)是同价但非等价无穷小。
5(单选题)已知=()(本题4分)ABCD标准答案: B解析:【考情点拨】本题考查了已知积分函数求原函数的知识点。
【应试指导】因为所以6(单选题)曲线y=e^x与其过原点的切线及y轴所围面积为()(本题4分)ABCD标准答案: A解析:【考情点拨】本题考查了曲线围成的面积的知识点。
【应试指导】设(x0,y0)为切点,则切线方程为联立得x0=1,y0=e,所以切线方程为y=ex。
故所求面积为7(单选题)设函数()(本题4分)A 1B 0C -1/2D -1标准答案: D解析:【考情点拨】本题考查了一元函数在一点处的一阶导数的知识点。
专升本《高等数学》模拟试题三
3. 1 (sin x cos 2x x2 )dx 1
A. 0 B.1 C. 4
D. 2
3
3
4. a 1 ln xdx,b 2 x dx ,则
0x
1 ln x
A. a,b 都收敛 B. a,b 都发散 C. a 收敛, b 发散 D. b 收敛, a 发散
5. a (1,1,0), b (1,0,1) ,则 a 和 b 的夹角是
2.求证
2
ln(sin
x)dx
ln
2
0
2
n1
n
10. y'' y 的通解是_________
3.计算题共 8 题, 前 4 道各 7 分,后 4 道各 8 分,总分 60 分;
tan x sin x
1. lim x0
x3
Байду номын сангаас
2. lim 1 x 1 x0 sin 4x
3.设 y y(x) 是由 x2 y2 xy 4 确定的隐函数,求 dy
4. 4 x2 dx 5. sec xdx 6. lim 1 x cos t 2dt
x x0 0
7. 2
cos x
dx
0 sin x cos x
8.将 ln(1 3x 2x2 ) 展开成麦克劳林级数
综合题共 3 题, 每小题 10 分, 总分 30 分
1.证明
1
dx
2 2 0 1 x4 2
4. lim x sin x _______ x x
5. f (x) x2 432 的极小值是________ x
6.
dx x(1
x)
____________
7.
lim
2023年成人高等考试《数学一》(专升本)模拟试卷三
2023年成人高等考试《数学一》(专升本)模拟试卷三[单选题]1.当x→0时,下列变量中为无穷小的是A.lgxB.C.cotxD.参考答案:D参考解析:[单选题]2.下列等式成立的是A.B.C.D.参考答案:C参考解析:[单选题]3.设函数f(x)=2lnx+ex,则f'(2)等于A.eB.1C.1+e2D.1n2参考答案:C参考解析:[单选题]4.设函数f(x)=(1+x)ex,则函数f(x)A.有极小值B.有极大值C.既有极小值又有极大值D.无极值参考答案:A参考解析:[单选题]5.A.B.0C.D.参考答案:A参考解析:[单选题]6.下列各式中正确的是A.B.C.D.参考答案:B参考解析:[单选题]7.下列反常积分收敛的是A.B.C.D.参考答案:D参考解析:[单选题]8.方程x2+y2-z2=0表示的二次曲面是A.球面B.旋转抛物面C.圆柱面D.圆锥面参考答案:D参考解析:因方程可化为,z2=x2+y2,由方程可知它表示的是圆锥面. [单选题]9.A.B.C.D.参考答案:B参考解析:[单选题]10.微分方程y''-2y=ex的特解形式应设为A.y*=AexB.y*=AxexC.y*=2exD.y*=ex参考答案:A参考解析:[问答题]1.参考解析:[问答题]2.参考解析:[问答题]3.参考解析:[问答题]4.参考解析:[问答题]5.参考解析:[问答题]6.参考解析:积分区域D如下图所示.[问答题]7.求由曲线y2=(x—1)3和直线x=2所围成的图形绕z轴旋转所得的旋转体的体积.参考解析:[问答题]8.参考解析:[填空题]1.参考解析:0[填空题]2.参考解析:-1[填空题]3.参考解析:[填空题]4.函数y=cosx在[0,2π]上满足罗尔定理,则ξ=_____. 参考解析:Ⅱ[填空题]5.参考解析:x—arctanx+C[填空题]6.参考解析:[填空题]7.参考解析:[填空题]8.参考解析:3半径R=3.[填空题]9.微分方程y''+y=0的通解是______.参考解析:y=C1cosx+C2sinx微分方程y''+y=0的特征方程是r2+1=0,故特征根为r=±i,所以方程的通解为y=C1cosx+C2sinx.[填空题]10.设f(x,y)=sin(xy2),则df(x,y)=______.参考解析:y2cos(xy2)dx+2xycos(xy2)dy。
专升本数学模拟试卷10套及答案
11.如果当 x ® 0 时,无穷小量(1 - cos x )与 a sin 2 x 为等阶无穷小量,则a = 2
ò 12.设 f ¢(x) 的一个原函数为 sin ax ,则 xf ¢¢(x)dx =
ò 13. sin x + cos x dx =
3 sin x - cos x
14.已知
a,
b, c
三、解答题:本大题共 8 小题,共 86 分.解答应写出文字说明,证明过程或演算步骤。 得分 评卷人 17.(本小题满分 10 分)
确定常数 a 和 b 的值,使 lim [ x2 + x + 1 - (ax + b)] = 0 x®-¥ 96-4
得分 评卷人 18.(本小题满分 10 分)
ò求Leabharlann xe x dx .10.已知 y = x 是微分方程 y¢ = y + j ( x ) 的解,则j ( x ) 的表达式为
ln x
xy
y
A. - y 2 x2
B. y2 x2
C. - x 2 y2
D. x2 y2
96-3
天津市高等院校“高职升本科”招生统一考试
高等数学标准模拟试卷(一)
第Ⅱ卷 (选择题 共 110 分)
B.是 f (x)g(x) 的驻点,但不是极值点
C.是 f (x)g(x) 的极大点
D.是 f (x)g(x) 的极小点
3.已知 f ¢(e x ) = xe-x 且 f (1) = 0 则 f (x) =
A. f (x) = (ln x)2 2
B. ln x
C. f (x) = ln x2 2
D. ln x 2
x
f (t)dt +
专升本模拟试题高数及答案
专升本模拟试题高数及答案一、选择题(每题3分,共30分)1. 函数f(x)=x^2-4x+3在区间[0,5]上的最大值是:A. 1B. 2C. 3D. 42. 已知某函数的导数为f'(x)=3x^2-2x,那么f(x)的原函数是:A. x^3 - x^2 + CB. x^3 - x + CC. x^3 + x^2 + CD. x^3 + x + C3. 曲线y=x^3-2x^2+x在点(1,0)处的切线斜率是:A. -1B. 0B. 1D. 24. 定积分∫[0,1] x^2 dx的值是:A. 1/3B. 1/4C. 1/2D. 15. 函数y=sin(x)的周期是:A. πB. 2πC. 3πD. 4π6. 函数f(x)=|x-1|在x=1处的连续性是:A. 连续B. 可导C. 不连续D. 不可导7. 若f(x)=e^x,g(x)=ln(x),则f(g(x))=:A. e^(ln(x))B. ln(e^x)C. xD. 1/x8. 极限lim(x→0) (sin(x)/x)的值是:A. 0B. 1C. ∞D. 不存在9. 级数∑[1/n^2](n从1到∞)是:A. 收敛B. 发散C. 条件收敛D. 无界10. 函数y=x^2在x=2处的泰勒展开式为:A. x^2 - 4x + 4B. x^2 - 4 + 4C. x^2 - 4x + 4 + O(x^3)D. x^2 - 4x + 4 + O(x^2)二、填空题(每题2分,共20分)11. 若函数f(x)=2x^3-3x^2+x-5,求f'(1)=________。
12. 定积分∫[1,2] (2x+1)dx=________。
13. 函数y=ln(x)在x=e处的导数值是________。
14. 函数y=x^2+3x+2在x=-1处的极小值是________。
15. 函数y=cos(x)的周期是________。
16. 函数y=x^3-6x^2+11x-6在x=2处的切线方程是________。
高等数学(专升本考试)模拟题及答案
, ,
2 4
, ,
4 2
B D
. .
4
, ,
4 2
, ,
8 2
= , 由于 即
=2 cos
cos
2
cos
cos
2
cos
2
1
1
2
2
cos 2 1 0 2 2
2
化简得到 cos
2
2cos
2
解得 因为 、
cos
0 或 cos
、
都在 0 到 , ,
的范围里,因此可以通过解反三角函数得到: 或者 , ,
2
所以 z 是 x,y 的复合函数,故 左边 = x
z x y z y x z u u z u y z x v z y z x v
,
z y
z u
0
z 1 v x
,从而
因此方程变为:
23.曲线 y A.
1 2
e 在点 (0,1) 处的切线斜率是 【 A】 B
x
x 2
.
1 2
x
1 2
e
1
C
.2
D
. e2
A. x 5 B . x 0 C .x 1 D .不存在 解:由作图知道,函数在第二象限是减函数,在第一象限是增函数。 当 x=0 时,函数取得最小值 y=5。 34. y
x 0 处间断,则有【 D 】 x 0 处一定没有意义; f (x
f ( x) 0) ; ( 即 xlim x
0
x
lim f ( x) ) ; x0
lim f ( x) 不存在,或 x lim f ( x) C. x x x
0 0
; x 0 时, f ( x) 【 B】 D .0 f ( x 0 ) 不是无穷小
成人高考专升本高等数学(一)全真模拟试题及答案解析①
成人高考专升本高等数学(一)--------------------------------全真模拟试题①一、单选题,共10题,每题4分,共40分:1(单选题)当x→0时,下列变量中为无穷小的是_________ (本题4分)ABCD标准答案: D解析:【考情点拨】本题考查了无穷小量的知识点.【应试指导】2(单选题)下列等式成立的是__________(本题4分)ABCD标准答案: C解析:【考情点拨】本题考查了函数的极限的知识点.【应试指导】3(单选题)设函数则等于_____(本题4分)A eB 1CD ln2标准答案: C解析:【考情点拨】本题考查了函数在一点的导数的知识点.【应试指导】4(单选题)设函数则函数f(X)______(本题4分)A 有极小值B 有极大值C 即有极小值又有极大值D 无极值标准答案: A解析:【考情点拨】本题考查了函数极值的知识点【应试指导】5(单选题)( )(本题4分)A 2/5B 0C -2/5D 1/2标准答案: A解析:【考情点拨】本题考查了定积分的知识点.【应试指导】6(单选题)下列各式中正确的是( )(本题4分)ABCD标准答案: B解析:【考情点拨】本题考查了定积分的性质的知识点.【应试指导】7(单选题)下列反常积分收敛的是________(本题4分)ABCD标准答案: D解析:【考情点拨】本题考查了反常积分的敛散性的知识点.【应试指导】8(单选题)方程表示的二次曲面是(本题4分)A 球面B 旋转抛物面C 圆柱面D 圆锥面标准答案: D解析:【考情点拨】本题考查了二次曲面(圓锥面)的知识点.【应试指导】由方程可知它表示的是圓锥面.9(单选题)函数在(-3,3)内展开成x的幂级数是()(本题4分)ABCD标准答案: B解析:【考情点拨】本题考查了函数展开为幂级数的知识点.【应试指导】10(单选题)微分方程________(本题4分)ABCD标准答案: A解析:【考情点拨】本题考查了二阶线性微分方程的特解形式的知识点.【应试指导】二、填空题,共10题,每题4分,共40分:11(填空题)函数在x=0连续此时α=________(本题4分)标准答案: 0解析:【考情点拨】本题考查了函数在一点处的连续性的知识点.【应试指导】12(填空题)若则_______(本题4分)标准答案: -1解析:【考情点拨】本题考查了利用导数定义求极限的知识点.【应试指导】13(填空题)设则y'=_______(本题4分)标准答案:解析:【考情点拨】本题考查了函数的一阶导数的知识点.【应试指导】14(填空题)函数上满足罗尔定理,则ε=_________(本题4分)标准答案:π解析:【考情点拨】本题考查了罗尔定理的知识点.【应试指导】15(填空题)_______(本题4分)标准答案:解析:【考情点拨】本题考查了不定积分的知识点.【应试指导】16(填空题)_________(本题4分)标准答案:解析:【考情点拨】本题考查了利用换元法求定积分的知识点.【应试指导】17(填空题)将积分改变积分顺序,则I=__________(本题4分)标准答案:解析:【考情点拨】本题考查了改变积分顺序的知识点.【应试指导】18(填空题)幂级数的收敛半径为______(本题4分)标准答案: 3解析:【考情点拨】本题考查了幂级数的收敛半径的知识点.【应试指导】19(填空题)微分方程的通解是______(本题4分)标准答案:解析:【考情点拨】本题考查了二阶线性微分方程的通解的知识点.【应试指导】微分方程的特征方程是微分方程的特征方程是20(填空题)若则_______(本题4分)标准答案:解析:【考情点拨】本题考查了二元函数的全微分的知识点.【应试指导】一、问答题8题,前5题每题8分,后3题每题10分,共70分:21(问答题)求函数的二阶导数(本题8分)标准答案及解析:22(问答题)求(本题8分)标准答案及解析:23(问答题)求(本题8分)标准答案及解析:24(问答题)求函数的极值. (本题8分)标准答案及解析:25(问答题)设求(本题8分)标准答案及解析:26(问答题)计算其中D是由:y=x,y=2x,x=2与x=4围成(本题10分)标准答案: 9解析:积分区域D如下图所示. 被积函数 H:为二次积分时对哪个变量皆易于积分;但是区域D易于用X —型不等式表示,因此选择先对:y积分,后对x积分的二次积分次序.27(问答题)求由曲线y2=(x-1)3和直线x=2所围成的图形绕x轴旋转所得的旋转体的体积.(本题10分)标准答案及解析:28(问答题)已知证明: (本题10分)标准答案及解析:。
2023年山东省济南市成考专升本高等数学二自考模拟考试(含答案)
2023年山东省济南市成考专升本高等数学二自考模拟考试(含答案) 学校:________ 班级:________ 姓名:________ 考号:________一、单选题(30题)1.下列定积分的值等于0的是()。
A.B.C.D.2.3.A.A.B.C.D.4.A.A.3f'(0)B.-3f'(0)C.f'(0)D.-f'(0) 5.6.A.A.B.C.D.7.A.-1B.-1/2C.0D.18.9.10.A.B.C.D.11.A.B.C.D.12.()。
A. B. C. D.13.14.15.16.17.A.A.B.-1C.2D.-418.A.A.B.C.D.19.20.曲线y=x3的拐点坐标是()。
A.(-1,-1)B.(0,0)C.(1,1)D.(2,8)21.22.设f’(cos2x)=sin2x,且f(0)=0,则f(x)等于【】A.x+1/2x2B.x-1/2x2C.sin2xD.cosx-1/2cos2x23.曲线y=α-(x-b)1/3的拐点坐标为A.A.(α,0)B.(α,-b)C.(α,b)D.(b,α)24.25.26.【】A.(4,2)B.x=4C.y=2D.(2,4)27.A.A.仅有一条B.至少有一条C.不一定存在D.不存在28.29.30.设函数?(x)在x=0处连续,当x<0时,?’ (x)<0;当x>0时,?,(x)>0.则().A.?(0)是极小值B.?(0)是极大值C.?(0)不是极值D.?(0)既是极大值又是极小值二、填空题(30题)31.32.33.34. 设函数y=e2/x,则y'________。
35.36.37.38.39.40.41.当f(0)=__________时,f(x)=ln(l+kx)m/x在x=0处连续.42.43.44.曲线y=x3+3x2+1的拐点坐标为______.45.46.47.48.曲线y=ln(1+x)的铅直渐近线是__________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
继续教育统考专升本高等数学模拟试题
一、单选题(共80题)
1. 极限().
A.1
B.
C.
D.
2. 函数的定义域为,则函数的定义域为().
A.[0,1];
B.;
C.;
D.
3. 当时,与比较,则().
A.是较高阶的无穷小;
B.是与等价的无穷小;
C.是与同阶但不等价的无穷小;
D.是较低阶无穷小.
4. ( )。
A.-1
B.0
C.1
D.不存在
5. 设, 则
A.
B.
C.
D.
6. 当时,是().
A.无穷小量;
B.无穷大量;
C.有界变量;
D.无界变量.
7. 函数是()函数.
A.单调
B.有界
C.周期
D.奇
8. 设则常数( )。
A.0
B.-1
C.-2
D.-3
9. 下列函数在区间上单调增加的是().
A.
B.
C.
D.
10. 设函数,则的连续区间为()
A.
B.
C.
D.
11. 当时,与比较,则().
A.是较高阶的无穷小量;
B.是较低阶的无穷小量;
C.与是同阶无穷小量,但不是等价无穷小;
D.与是等价无穷小量.
12. 下列函数中()是奇函数
A.
B.
C.
D.
13. 如果存在,则在处().
A.一定有定义;
B.一定无定义;
C.可以有定义,也可以无定义;
D.有定义且有
14. ( )。
A.0
B.1
C.2
D.不存在
15. 极限 ( )。
A.1/2
B.1
C.0
D.1/4
16. 设,则()
A.
B.
C.
D.
17. 函数的复合过程为().
A.
B.
C.
D.
18. ( ).
A.1
B.
C.
D.
19. 存在是在连续的().
A.充分条件,但不是必要条件;
B.必要条件,但不是充分条件;
C.充分必要条件;
D.既不是充分条件也不是必要条件.
20. 已知,求().
A.3
B.2
C.1
D.0
21. 函数是()函数.
A.单调
B.无界
C.偶
D.奇
22. ( ).
A.0
B.1
C.2
D.
23. 下面各组函数中表示同一个函数的是()。
A.;
B.;
C.
D.
24. 函数是()函数.
A.单调
B.有界
C.周期
D.奇
25. ()
A.
B.
C.
D.
26. 设求的值为 ( )
A.
B.
C.
D.
27. 当时,与无穷小量等价的无穷小量是().
A.
B.
C.
D.
28. ( ).
A.-1
B.0
C.1
D.不存在
29. 设,则( )
A.
B.
C.
D.
30. 设,则( )
A.
B.
C.
D.
31. 设,则
A.
B.
C.
D.1
32. 极限=()。
A.1
B.
C.
D.
33. 设是可微函数,则?/span( )
A.
B.
C.
D.?/span
34. 设?/span则等于()
A.
B.
C.
D.
35. 极限?/span( ).
A.1/2
B.1/3
C.1/6
D.0
36. 极限
A.
B.
C.
D.
37. ()
A.1
B.2
C.0
D.3
38. 已知,则( )。
A.2
B.
C.
D.
39. 设,且,则=()。
A.
B.
C.e
D.1
40. 设,其中b为常数,f存在二阶导数,则是()
A.
B.
C.
D.
41. 若,则()
A.0
B.1
C.-ln2
D.1/ln2
42. 若则 ( )。
A.-1
B.1
C.2
D.-2
43. 函数单调增加区间是()
A.(-∞,-1)
B.( -1,1)
C.(1,+∞)
D.(-∞,-1)和(1,+∞)
44. 为()时与相切。
A.
B.
C.
D.
45. 函数的单调减的范围是()。
A.
B.
C.
D.
46. 下列等式中,不正确的是()。
A.
B.
C.
D.
47. 设则
A.1
B.
C.
D.
48. 函数在上的最小值是( ).
A.1
B.2
C.
D.
49. 若在区间内恒有,,则函数的曲线为()
A.上凹且上升
B.上凹且下降
C.下凹且上升
D.下凹且下降
50. 极限=()。
A.1;
B.2;
C.3;
D.4.
51. ,函数的微分是()
A.
B.
C.
D.
52. 若,则 ( )
A.
B.
C.
D.0
.
53. 函数的极大值为()。
A.
B.
C.
D.
54. 曲线在(1,1)处的切线方程为().
A.
B.
C.
D.
55. 若由方程确定,则( ).
A.
B.
C.
D.
.
56. 函数在区间的最大值与最小值分别是()
A.15,4
B.13,2
C.15,2
D.13,4
57. 定积分(?)
A.
B.
C.
D.0
58. 求的不定积分()
A.
B.
C.
D.
59. 若函数,则(?)
A.
B.
C.
D.
.
60. (?)
A.
B.
C.
D.
61. 设函数,则(?)
A.
B.
C.
D.
62. (?)
A.
B.
C.
D.
63.
A.
B.
C.
D.
64. (?)
A.0
B.1
C.
D.
65.
A.
B.
C.0
D.
66. (?)
A.
B.
C.
D.
67. ()
A.
B.0
C.
D.
68. (?)
A.
B.
C.
D.
69. ()
A.
B.
C.
D.
70. 若,则()
A.
B.
C.
D.
.
71. (?)
A.
B.
C.
D.
72.
A.
B.
C.
D.
73.
A.
B.
C.
D.
.
74. 已知,则(?)
A.
B.
C.
D.
75. 极限()
A.-1
B.0
C.1
D.2
76. ()
A.
B.
C.
D.
77. 设函数,则(?).
A.; -3
B.
C.
D.
78. 设,则(?).
A.
B.
C.
D.
79. 设,则()
A.1
B.0
C.2
D.3
80. 设,则二阶偏导数().
A.
B.
C.0
D.。