高中数学双曲线导学案及答案

合集下载

双曲线的几何性质导学案

双曲线的几何性质导学案

双曲线的几何性质(一)导学案学习目标:1、用类比的方法分析双曲线的范围,对称性,顶点等几何性质。

2、明确标准方程中a,b,c 的几何意义。

学习过程:复习巩固:1、已知a=3,b=4焦点在x 轴上,双曲线的标准方程为2、已知a=3,b=4焦点在y 轴上,双曲线的标准方程为3、a=25,经过点A (2,5),焦点在Y 轴上,双曲线的标准方程为一、定向自学: 阅读教材P 49---P 51页内容(独学) 1 、双曲线 的几何性质(1)、范围 方程中的x 的范围是 y 的范围是 (2)、对称性 双曲线的图象关于 成轴对称图形,关于 成中心对称图形。

(3)、顶点:作出图形,然后指出顶点坐标,实轴是 长度是 实半轴长是虚轴 长度是 虚半轴长是(4)、渐近线:(作图指出渐近线) 双曲线 的渐近线方程是 双曲线 的渐近线方程是问题:什么是等轴双曲线?它的方程是什么?(5)、离心率e= 其范围是例1、(1)求双曲线9y2-16x2=144的实半轴长、虚半轴长、焦点坐标、离心率和渐近线方程;(2)求双曲线9y2-16x2=-144的实半轴长、虚半轴长、焦点坐标、离心率和渐近线方程;)0,0(12222>>=-b a b y a x )0,0(12222>>=-b a b y a x ),b (a b x a y 00 1 >>=-2222二、 小组讨论(对学、群学)对独学的中存在的问题进行讨论三、 全班交流(展示,提出疑问或质疑)展示组在黑板上展示内容,其他组认真倾听并提出疑问或质疑四、 归纳小结这节课我们学到了什么知识?五、 巩固提升1、 求下列双曲线的实轴,虚轴的长顶点的、焦点的坐标和离心率:(1)X 2-8y 2=32 (2)9 X 2- y 2=81(3) X 2- y 2=-4 (4) 492x -252y =-12.方程 表示双曲线时,则m 的取值范围是_________________.3求以椭圆492x +252y =1 的焦点为顶点,以椭圆的顶点为焦点的双曲线的方程。

高考数学理科一轮复习双曲线学案含答案

高考数学理科一轮复习双曲线学案含答案

高考数学(理科)一轮复习双曲线学案含答案学案52 双曲线导学目标: 1.了解双曲线的定义、几何图形和标准方程,知道它们的简单几何性质.2.理解数形结合的思想.自主梳理1.双曲线的概念平面内动点P与两个定点F1、F2(|F1F2|=2c0)的距离之差的绝对值为常数2a(2a2c),则点P的轨迹叫________.这两个定点叫双曲线的________,两焦点间的距离叫________.集合P={M|||MF1|-|MF2||=2a},|F1F2|=2c,其中a、c为常数且a0,c0;(1)当________时,P点的轨迹是________;(2)当________时,P点的轨迹是________;(3)当________时,P点不存在.2.双曲线的标准方程和几何性质标准方程x2a2-y2b2=1(a0,b0)y2a2-x2b2=1(a0,b0)图形性质范围x≥a或x≤-a,y∈Rx∈R,y≤-a或y≥a 对称性对称轴:坐标轴对称中心:原点对称轴:坐标轴对称中心:原点顶点顶点坐标:A1(-a,0),A2(a,0)顶点坐标:A1(0,-a),A2(0,a)渐近线y=±baxy=±abx离心率e=ca,e∈(1,+∞),其中c=a2+b2实虚轴线段A1A2叫做双曲线的实轴,它的长|A1A2|=2a;线段B1B2叫做双曲线的虚轴,它的长|B1B2|=2b;a叫做双曲线的实半轴长,b叫做双曲线的虚半轴长a、b、c的关系c2=a2+b2 (ca0,cb0)3.实轴长和虚轴长相等的双曲线为________________,其渐近线方程为________,离心率为________.自我检测1.(2011安徽)双曲线2x2-y2=8的实轴长是( ) A.2 B.22C.4 D.422.已知双曲线x22-y2b2=1 (b0)的左、右焦点分别为F1、F2,其中一条渐近线方程为y=x,点P(3,y0)在该双曲线上,则PF1→PF2→等于( )A.-12 B.-2C.0 D.43.(2011课标全国)设直线l过双曲线C的一个焦点,且与C的一条对称轴垂直,l与C交于A,B两点,|AB|为C的实轴长的2倍,则C的离心率为( )A.2 B.2 D.34.(2011武汉调研)已知点(m,n)在双曲线8x2-3y2=24上,则2m+4的范围是__________________.5.已知A(1,4),F是双曲线x24-y212=1的左焦点,P是双曲线右支上的动点,求|PF|+|PA|的最小值.探究点一双曲线的定义及应用例1 已知定点A(0,7),B(0,-7),C(12,2),以C为一个焦点作过A,B的椭圆,求另一焦点F的轨迹方程.变式迁移1 已知动圆M与圆C1:(x+4)2+y2=2外切,与圆C2:(x-4)2+y2=2内切,求动圆圆心M的轨迹方程.探究点二求双曲线的标准方程例2 已知双曲线的一条渐近线方程是x-2y=0,且过点P(4,3),求双曲线的标准方程.变式迁移2 (2011安庆模拟)已知双曲线与椭圆x29+y225=1的焦点相同,且它们的离心率之和等于145,则双曲线的方程为____________.探究点三双曲线几何性质的应用例3 已知双曲线的方程是16x2-9y2=(1)求此双曲线的焦点坐标、离心率和渐近线方程;(2)设F1和F2是双曲线的左、右焦点,点P在双曲线上,且|PF1||PF2|=32,求∠F1PF2的大小.变式迁移3 已知双曲线C:x22-y2=1.(1)求双曲线C的渐近线方程;(2)已知M点坐标为(0,1),设P是双曲线C上的点,Q是点P关于原点的对称点.记λ=MP→MQ→,求λ的取值范围.方程思想的应用例(12分)过双曲线x23-y26=1的右焦点F2且倾斜角为30°的直线交双曲线于A、B两点,O为坐标原点,F1为左焦点.(1)求|AB|;(2)求△AOB的面积;(3)求证:|AF2|+|BF2|=|AF1|+|BF1|.多角度审题(1)要求弦长|AB|需要A、B两点坐标或设而不求利用弦长公式,这就需要先求直线AB;(2)在(1)的基础上只要求点到直线的距离;(3)要充分联想到A、B两点在双曲线上这个条件.【答题模板】(1)解由双曲线的方程得a=3,b=6,∴c=a2+b2=3,F1(-3,0),F2(3,0).直线AB的方程为y=33(x-3).设A(x1,y1),B(x2,y2),由y=33x-3x23-y26=1,得5x2+6x-27=0.[2分]∴x1+x2=-65,x1x2=-275,∴|AB|=1+k2|x1-x2|=1+332x1+x22-4x1x2=433625+1085=1635.[4分](2)解直线AB的方程变形为3x-3y-33=0.∴原点O到直线AB的距离为d=|-33|32+-32=32.[6分]∴S△AOB=12|AB|d=12×1635×32=1235.[8分] (3)证明如图,由双曲线的定义得|AF2|-|AF1|=23,|BF1|-|BF2|=23,[10分]∴|AF2|-|AF1|=|BF1|-|BF2|,即|AF2|+|BF2|=|AF1|+|BF1|.[12分]【突破思维障碍】写出直线方程,联立直线方程、双曲线方程,消元得关于x的一元二次方程,利用弦长公式求|AB|,再求点O到直线AB的距离从而求面积,最后利用双曲线的定义求证等式成立.【易错点剖析】在直线和双曲线相交的情况下解题时易忽视消元后的一元二次方程的判别式Δ0,而导致错解.1.区分双曲线中的a,b,c大小关系与椭圆中a,b,c 的大小关系,在椭圆中a2=b2+c2,而在双曲线中c2=a2+b2;双曲线的离心率大于1,而椭圆的离心率e∈(0,1).2.双曲线x2a2-y2b2=1 (a0,b0)的渐近线方程是y=±bax,y2a2-x2b2=1 (a0,b0)的渐近线方程是y=±abx.3.双曲线标准方程的求法:(1)定义法,根据题目的条件,判断是否满足双曲线的定义,若满足,求出相应的a、b、c,即可求得方程.(2)待定系数法,其步骤是:①定位:确定双曲线的焦点在哪个坐标轴上;②设方程:根据焦点的位置设出相应的双曲线方程;③定值:根据题目条件确定相关的系数.(满分:75分)一、选择题(每小题5分,共25分)1.已知M(-2,0)、N(2,0),|PM|-|PN|=3,则动点P的轨迹是( )A.双曲线 B.双曲线左边一支C.双曲线右边一支 D.一条射线2.设点P在双曲线x29-y216=1上,若F1、F2为双曲线的两个焦点,且|PF1|∶|PF2|=1∶3,则△F1PF2的周长等于( )A.22 B.16 C.14 D.123.(2011宁波高三调研)过双曲线x2a2-y2b2=1 (a0,b0)的右焦点F作圆x2+y2=a2的切线FM(切点为M),交y轴于点P.若M为线段FP的中点,则双曲线的离心率为( )A.2B.3 C.2 D.双曲线x2a2-y2b2=1的左焦点为F1,左、右顶点分别为A1、A2,P是双曲线右支上的一点,则分别以PF1和A1A2为直径的两圆的位置关系是( )A.相交 B.相离 C.相切 D.内含5.(2011山东)已知双曲线x2a2-y2b2=1(a0,b0)的两条渐近线均和圆C:x2+y2-6x+5=0相切,且双曲线的右焦点为圆C的圆心,则该双曲线的方程为( ) A.x25-y24=1 B.x24-y25=x23-y26=1 D.x26-y23=1二、填空题(每小题4分,共12分)6.(2011上海)设m是常数,若点F(0,5)是双曲线y2m-x29=1的一个焦点,则m=________.7.设圆过双曲线x29-y216=1的一个顶点和一个焦点,圆心在此双曲线上,则此圆心到双曲线中心的距离为______.8.(2011铜陵期末)已知以双曲线C的两个焦点及虚轴的两个端点为顶点的四边形中,有一个内角为60°,则双曲线C的离心率为________.三、解答题(共38分)9.(12分)根据下列条件,求双曲线方程:(1)与双曲线x29-y216=1有共同的渐近线,且经过点(-3,23);(2)与双曲线x216-y24=1有公共焦点,且过点(32,2).10.(12分)(2011广东)设圆C与两圆(x+5)2+y2=4,(x-5)2+y2=4中的一个内切,另一个外切.(1)求圆C的圆心轨迹L的方程;(2)已知点M(355,455),F(5,0),且P为L上动点,求||MP|-|FP||的最大值及此时点P的坐标..(14分)(2010四川)已知定点A(-1,0),F(2,0),定直线l:x=12,不在x轴上的动点P与点F的距离是它到直线l的距离的2倍.设点P的轨迹为E,过点F的直线交E于B、C两点,直线AB、AC分别交l于点M、N.(1)求E的方程;(2)试判断以线段MN为直径的圆是否过点F,并说明理由.学案52 双曲线自主梳理1.双曲线焦点焦距(1)ac 双曲线(2)a=c 两条射线(3)ac 3.等轴双曲线y=±x e=2 自我检测1.C [∵2x2-y2=8,∴x24-y28=1,∴a=2,∴2a=4.]2.C3.B [设双曲线的标准方程为x2a2-y2b2=1(a0,b0),由于直线l过双曲线的焦点且与对称轴垂直,因此直线l的方程为l:x=c或x=-c,代入x2a2-y2b2=1得y2=b2(c2a2-1)=b4a2,∴y=±b2a,故|AB|=2b2a,依题意2b2a=4a,∴b2a2=2,∴c2-a2a2=e2-1=2,∴e=3.] 4.(-∞,4-23]∪[4+23,+∞)5.解设双曲线的右焦点为F1,则由双曲线的定义可知|PF|=2a+|PF1|=4+|PF1|,∴|PF|+|PA|=4+|PF1|+|PA|.∴当满足|PF1|+|PA|最小时,|PF|+|PA|最小.由双曲线的图象可知当点A、P、F1共线时,满足|PF1|+|PA|最小,易求得最小值为|AF1|=5,故所求最小值为堂活动区例1 解题导引求曲线的轨迹方程时,应尽量地利用几何条件探求轨迹的曲线类型,从而再用待定系数法求出轨迹的方程,这样可以减少运算量,提高解题速度与质量.在运用双曲线的定义时,应特别注意定义中的条件“差的绝对值”,弄清所求轨迹是整条双曲线,还是双曲线的一支,若是一支,是哪一支,以确保轨迹的纯粹性和完备性.解设F(x,y)为轨迹上的任意一点,因为A,B两点在以C,F为焦点的椭圆上,所以|FA|+|CA|=2a,|FB|+|CB|=2a(其中a表示椭圆的长半轴).所以|FA|+|CA|=|FB|+|CB|.所以|FA|-|FB|=|CB|-|CA|=122+92-122+52=2.所以|FA|-|FB|=2.由双曲线的定义知,F点在以A,B为焦点,2为实轴长的双曲线的下半支上.所以点F的轨迹方程是y2-x248=1 (y≤-1).变式迁移1 解设动圆M的半径为r,则由已知得,|MC1|=r+2,|MC2|=r-2,∴|MC1|-|MC2|=22,又C1(-4,0),C2(4,0),∴|C1C2|=8.∴22|C1C2|.根据双曲线定义知,点M的轨迹是以C1(-4,0)、C2(4,0)为焦点的双曲线的右支.∵a=2,c=4,∴b2=c2-a2=∴点M的轨迹方程是x22-y214=1 (x≥2).例2 解题导引根据双曲线的某些几何性质求双曲线方程,一般用待定系数法转化为解方程(组),但要注意焦点的位置,从而正确选取方程的形式,当焦点不能定位时,则应分两种情况讨论.解决本题的方法有两种:一先定位,避免了讨论;二利用其渐近线的双曲线系,同样避免了对双曲线方程类型的讨论.在共渐近线的双曲线系x2a2-y2b2=λ (参数λ≠0)中,当λ0时,焦点在x轴上;当λ0时,焦点在y轴上.解方法一∵双曲线的一条渐近线方程为x-2y=0,当x=4时,y=2yp=3,∴双曲线的焦点在y轴上.从而有ab=12,∴b=2a.设双曲线方程为y2a2-x24a2=1,由于点P(4,3)在此双曲线上,∴9a2-164a2=1,解得a2=5.∴双曲线方程为y25-x220=1.方法二∵双曲线的一条渐近线方程为x-2y=0,即x2-y=0,∴双曲线的渐近线方程为x24-y2=0.设双曲线方程为x24-y2=λ (λ≠0),∵双曲线过点P(4,3),∴424-32=λ,即λ=-5.∴所求双曲线方程为x24-y2=-5,即y25-x220=1.变式迁移2 y24-x212=1解析由于在椭圆x29+y225=1中,a2=25,b2=9,所以c2=16,c=4,又椭圆的焦点在y轴上,所以其焦点坐标为(0,±4),离心率e=45.根据题意知,双曲线的焦点也应在y轴上,坐标为(0,±4),且其离心率等于145-45=2.故设双曲线的方程为y2a2-x2b2=1 (a0,b0),且c=4,所以a=12c=2,a2=4,b2=c2-a2=12,于是双曲线的方程为y24-x212=1.例3 解题导引双曲线问题与椭圆问题类似,因而研究方法也有许多相似之处,如利用“定义”“方程观点”“直接法或待定系数法求曲线方程”“数形结合”等.解(1)由16x2-9y2=144,得x29-y216=1,∴a=3,b=4,c=5.焦点坐标F1(-5,0),F2(5,0),离心率e=53,渐近线方程为y=±43x.(2)||PF1|-|PF2||=6,∠F1PF2=|PF1|2+|PF2|2-|F1F2|22|PF1||PF2|=|PF1|-|PF2|2+2|PF1||PF2|-|F1F2|22|PF1||PF2|=36+64-10064=0,∴∠F1PF2=90°.变式迁移3 解(1)因为a=2,b=1,且焦点在x轴上,所以渐近线方程为y-22x=0,y+22x=0.(2)设P点坐标为(x0,y0),则Q的坐标为(-x0,-y0),λ=MP→MQ→=(x0,y0-1)(-x0,-y0-1)=-x20-y20+1=-32x20+2.∵|x0|≥2,∴λ的取值范围是(-∞,-1].课后练习区1.C 2.A 3.A .A [∵双曲线x2a2-y2b2=1的渐近线方程为y=±bax,圆C的标准方程为(x-3)2+y2=4,∴圆心为C(3,0).又渐近线方程与圆C相切,即直线bx-ay=0与圆C相切,∴3ba2+b2=2,∴5b2=4a2.①又∵x2a2-y2b2=1的右焦点F2(a2+b2,0)为圆心C(3,0),∴a2+b2=9.②由①②得a2=5,b2=4.∴双曲线的标准方程为x25-y24=1.]6.16解析由已知条件有52=m+9,所以m=8.62 9.解(1)方法一由题意可知所求双曲线的焦点在x轴上,(2分)设双曲线的方程为x2a2-y2b2=1,由题意,得ba=43,-32a2-232b2=1,解得a2=94,b2=4.(4分)所以双曲线的方程为49x2-y24=1.(6分)方法二设所求双曲线方程x29-y216=λ (λ≠0),(2分)将点(-3,23)代入得λ=14,(4分)所以双曲线方程为x29-y216=14,即49x2-y24=1.(6分)(2)设双曲线方程为x2a2-y2b2=1.由题意c=25.(8分)又双曲线过点(32,2),∴322a2-4b2=1.又∵a2+b2=(25)2,∴a2=12,b2=8.(10分)故所求双曲线的方程为x212-y28=1.(12分)10.解(1)设圆C的圆心坐标为(x,y),半径为r.圆(x+5)2+y2=4的圆心为F1(-5,0),半径为2,圆(x-5)2+y2=4的圆心为F(5,0),半径为2.由题意得|CF1|=r+2,|CF|=r-2或|CF1|=r-2,|CF|=r+2,∴||CF1|-|CF||=4.(4分)∵|F1F|=254.∴圆C的圆心轨迹是以F1(-5,0),F(5,0)为焦点的双曲线,其方程为x24-y2=1.(6分)(2)由图知,||MP|-|FP||≤|MF|,∴当M,P,F三点共线,且点P在MF延长线上时,|MP|-|FP|取得最大值|MF|,(8分)且|MF|=355-52+455-02=2.(9分)直线MF的方程为y=-2x+25,与双曲线方程联立得y=-2x+25,x24-y2=1,整理得15x2-325x+84=0.解得x1=14515(舍去),x2=此时y=-255.(11分) ∴当||MP|-|FP||取得最大值2时,点P的坐标为(655,-255).(12分)11.解(1)设P(x,y),则x-22+y2=2x-12,化简得x2-y23=1(y≠0).(5分)(2)①当直线BC与x轴不垂直时,设BC的方程为y=k(x-2) (k≠0),与双曲线方程x2-y23=1联立消去y,得(3-k2)x2+4k2x-(4k2+3)=0.由题意知,3-k2≠0且Δ>0.(7分)设B(x1,y1),C(x2,y2),则x1+x2=4k2k2-3,x1x2=4k2+3k2-3,2=k2(x1-2)(x2-2)=k2x1x2-2x1+x2+4=k24k2+3k2-3-8k2k2-3+4=-9k2k2-3.因为x1,x2≠-1,所以直线AB的方程为y=y1x1+1(x+1).因此M点的坐标为12,3y12x1+1,FM→=-32,3y12x1+1.同理可得FN→=-32,3y22x2+1.因此FM→FN→=-32×-32+9y1y24x1+1x2+1=94+-81k2k2-344k2+3k2-3+4k2k2-3+1=0.(11分)②当直线BC与x轴垂直时,其方程为x=2,则B(2,3),C(2,-3).AB的方程为y=x+1,因此M点的坐标为12,32,FM→=-32,32.同理可得FN→=-32,-32.因此FM→FN→=-32×-32+32×-32=0.(13分) 综上,FM→FN→=0,故FM⊥FN.故以线段MN为直径的圆过点F.(14分)。

人教新课标版数学高二选修1-1导学案 双曲线及其标准方程

人教新课标版数学高二选修1-1导学案 双曲线及其标准方程

2.2.1双曲线及其标准方程【教学目标】1.了解双曲线的定义、几何图形和标准方程的推导过程.2.掌握双曲线的标准方程及其求法.3.会利用双曲线的定义和标准方程解决简单的问题.【教学过程】一、创设情景教师首先提出问题:通过学生对课本的预习,让学生观看《2.2.1双曲线及其标准方程》课件“新课导入”部分,通过一首有趣而形象的诗歌及几幅美观的图片,引入本节课要学习的双曲线及其标准方程的知识.二、自主学习知识点一双曲线的定义(1)平面内与两个定点F1,F2的距离的差的绝对值等于常数(小于|F1F2|)的点的轨迹叫做双曲线.这两个定点叫做双曲线的焦点,两焦点间的距离叫做双曲线的焦距;(2)关于“小于|F1F2|”:①若将“小于|F1F2|”改为“等于|F1F2|”,其余条件不变,则动点轨迹是以F1,F2为端点的两条射线(包括端点);②若将“小于|F1F2|”改为“大于|F1F2|”,其余条件不变,则动点轨迹不存在;(3)若将“绝对值”去掉,其余条件不变,则动点的轨迹只有双曲线的一支;(4)若常数为零,其余条件不变,则点的轨迹是线段F1F2的中垂线.知识点二双曲线的标准方程(1)两种形式标准方程焦点所在的坐标轴x轴y轴标准方程x2a2-y2b2=1(a>0,b>0)y2a2-x2b2=1(a>0,b>0)图形焦点坐标F1(-c,0),F2(c,0)F1(0,-c),F2(0,c)a 、b 、c 的关系式a 2+b 2=c 2(2)如果含x 2项的系数为正数,那么焦点在x 轴上,如果含y 2项的系数是正数,那么焦点在y 轴上.对于双曲线,a 与b 无截然的大小关系,因而不能像椭圆那样,通过比较a 与b 的大小来确定其焦点位置.三、合作探究问题1 若取一条拉链,拉开它的一部分,在拉开的两边上各选择一点,分别固定在点F 1,F 2上,把笔尖放在点M 处,拉开或闭拢拉链,笔尖经过的点可画出一条曲线,那么曲线上的点应满足怎样的几何条件?答案 如图,曲线上的点满足条件:|MF 1|-|MF 2|=常数;如果改变一下笔尖位置,使|MF 2|-|MF 1|=常数,可得到另一条曲线.问题2 双曲线的标准方程的推导过程是什么?答案 (1)建系:以直线F 1F 2为x 轴,F 1F 2的中点为原点建立平面直角坐标系. (2)设点:设M (x ,y )是双曲线上任意一点,且双曲线的焦点坐标为F 1(-c,0),F 2(c,0). (3)列式:由|MF 1|-|MF 2|=±2a , 可得x +c2+y 2-x -c 2+y 2=±2a .①(4)化简:移项,平方后可得(c 2-a 2)x 2-a 2y 2=a 2(c 2-a 2). 令c 2-a 2=b 2,得双曲线的标准方程为x 2a 2-y 2b 2=1(a >0,b >0).② (5)验证:从上述过程可以看到,双曲线上任意一点的坐标都满足方程②;以方程②的解(x ,y )为坐标的点到双曲线两个焦点(-c,0),(c,0)的距离之差的绝对值为2a ,即以方程②的解为坐标的点都在双曲线上,这样,就把方程②叫做双曲线的标准方程.(此步骤可省略)问题3 双曲线中a ,b ,c 的关系如何?与椭圆中a 、b 、c 的关系有何不同? 答案 双曲线标准方程中的两个参数a 和b ,确定了双曲线的形状和大小,是双曲线的定形条件,这里b 2=c 2-a 2,即c 2=a 2+b 2,其中c >a ,c >b ,a 与b 的大小关系不确定;而在椭圆中b 2=a 2-c 2,即a 2=b 2+c 2,其中a >b >0,a >c ,c 与b 大小不确定.探究点1 双曲线定义的理解及应用例1 (1)已知定点F 1(-2,0),F 2(2,0),在平面内满足下列条件的动点P 的轨迹中为双曲线的是( )A .|PF 1|-|PF 2|=±3B .|PF 1|-|PF 2|=±4C .|PF 1|-|PF 2|=±5D .|PF 1|2-|PF 2|2=±4(2)已知圆C 1:(x +3)2+y 2=1和圆C 2:(x -3)2+y 2=9,动圆M 同时与圆C 1及圆C 2相外切,则动圆圆心M 的轨迹方程为________________.答案 (1)A(2)x 2-y 28=1(x ≤-1)解析 (1)当|PF 1|-|PF 2|=±3时,||PF 1|-|PF 2||=3<|F 1F 2|=4,满足双曲线定义, P 点的轨迹是双曲线.(2)如图,设动圆M 与圆C 1及圆C 2分别外切于点A 和B ,根据两圆外切的条件 |MC 1|-|AC 1|=|MA |,|MC 2|-|BC 2|=|MB |, 因为|MA |=|MB |,所以|MC 1|-|AC 1|=|MC 2|-|BC 2|,即|MC 2|-|MC 1|=2,这表明动点M 与两定点C 2,C 1的距离的差是常数2.根据双曲线的定义,动点M 的轨迹为双曲线的左支(点M 与C 2的距离大,与C 1的距离小),这里a =1,c =3,则b 2=8,设点M 的坐标为(x ,y ),其轨迹方程为x 2-y 28=1 (x ≤ -1).反思与感悟 双曲线定义的两种应用:(1)根据双曲线的定义判断动点轨迹时,一定要注意双曲线定义中的各个条件,不要一看到动点到两个定点的距离之差的绝对值是常数,就认为其轨迹是双曲线,还要看该常数是否小于两个已知定点之间的距离且大于零,否则就不是双曲线.(2)巧妙利用双曲线的定义求曲线的轨迹方程,可以使运算量大大减小,同时提高解题速度和质量.其基本步骤为:①寻求动点M 与定点F 1,F 2之间的关系;②根据题目的条件计算是否满足||MF 1|-|MF 2||=2a (常数,a >0);③判断:若2a <2c =|F 1F 2|,满足定义,则动点M 的轨迹就是双曲线,且2c =|F 1F 2|,b 2=c 2-a 2,进而求出相应a ,b ,c ;④根据F 1,F 2所在的坐标轴写出双曲线的标准方程. 探究点2 待定系数法求双曲线的标准方程例2 (1)已知双曲线的焦点在y 轴上,并且双曲线过点(3,-42)和⎝⎛⎭⎫94,5,求双曲线的标准方程;(2)求与双曲线x 216-y 24=1有公共焦点,且过点(32,2)的双曲线方程.解 (1)由已知可设所求双曲线方程为y 2a 2-x2b 2=1(a >0,b >0),则⎩⎨⎧32a 2-9b 2=1,25a 2-8116b 2=1,解得⎩⎪⎨⎪⎧a 2=16,b 2=9,∴双曲线的标准方程为y 216-x 29=1.(2)方法一 设所求双曲线方程为x 2a 2-y 2b 2=1(a >0,b >0),由题意易求得c =2 5.又双曲线过点(32,2),∴322a 2-4b2=1. 又∵a 2+b 2=(25)2,∴a 2=12,b 2=8. 故所求双曲线方程为x 212-y 28=1.方法二 设双曲线方程为x 216-k -y 24+k =1(-4<k <16),将点(32,2)代入得k =4,∴所求双曲线方程为x 212-y 28=1.反思与感悟 待定系数法求方程的步骤(1)定型:即确定双曲线的焦点所在的坐标轴是x 轴还是y 轴. (2)设方程:根据焦点位置设出相应的标准方程的形式,①若不知道焦点的位置,则进行讨论,或设双曲线的方程为Ax 2+By 2=1(AB <0). ②与双曲线x 2a 2-y 2b 2=1(a >0,b >0)共焦点的双曲线的标准方程可设为x 2a 2-k -y 2b 2+k =1(-b 2<k <a 2).(3)计算:利用题中条件列出方程组,求出相关值. (4)结论:写出双曲线的标准方程. 探究点3 双曲线定义的综合应用例3 已知A ,B 两地相距2000m ,在A 地听到炮弹爆炸声比在B 地晚4s ,且声速为340m/s ,求炮弹爆炸点的轨迹方程.解 如图,建立直角坐标系xOy ,使A ,B 两点在x 轴上,并且坐标原点O 与线段AB 的中点重合.设爆炸点P 的坐标为(x ,y ), 则|P A |-|PB |=340×4=1 360. 即2a =1 360,a =680. 又|AB |=2 000,所以2c =2 000,c =1 000,b 2=c 2-a 2=537 600. 因为|P A |-|PB |=340×4=1 360>0,所以x >0.因此炮弹爆炸点的轨迹(双曲线)的方程为x 2462 400-y 2537 600=1(x >0).反思与感悟 结合双曲线的定义,解决综合问题,诸如:实际应用题,焦点三角形问题等,要充分利用双曲线的定义、正弦定理、余弦定理等,利用化归思想,重点考查综合运用能力与求解能力.四、当堂测试1.平面内有两个定点F 1(-5,0)和F 2(5,0),动点P 满足|PF 1|-|PF 2|=6,则动点P 的轨迹方程是( )A.x 216-y 29=1(x ≤-4) B.x 29-y 216=1(x ≤-3) C.x 216-y 29=1(x ≥4) D.x 29-y 216=1(x ≥3) 答案 D解析 |PF 1|-|PF 2|=6<|F 1F 2|=10,根据双曲线的定义可得D 正确. 2.椭圆x 24+y 2a 2=1与双曲线x 2a -y 22=1有相同的焦点,则a 的值是( )A.12 B .1或-2 C .1或12D .1答案 D解析 由于a >0,0<a 2<4,且4-a 2=a +2,所以可解得a =1,故选D. 3.若方程x 210-k +y 25-k =1表示双曲线,则k 的取值范围是( )A .(5,10)B .(-∞,5)C .(10,+∞)D .(-∞,5)∪(10,+∞) 答案 A解析 由题意得(10-k )(5-k )<0,解得5<k <10.4.设m 是常数,若点F (0,5)是双曲线y 2m -x 29=1的一个焦点,则m =________.答案 16解析 由已知条件知m +9=52,所以m =16.5.已知双曲线x 29-y 216=1上一点M 的横坐标为5,则点M 到左焦点的距离是________.答案343解析 由于双曲线x 29-y 216=1的右焦点为F (5,0),将x M =5,代入双曲线方程可得|y M |=163,即为点M 到右焦点 的距离,由双曲线的定义知M 到左焦点的距离为163+2×3=343.五、课堂小结本节课我们学习过哪些知识内容?(1)椭圆、双曲线的标准方程以及它们之间的区别与联系:程后,再运用待定系数法求解.求双曲线的标准方程也是从“定形”“定式”和“定量”三个方面去考虑.“定形”是指对称中心在原点,以坐标轴为对称轴的情况下,焦点在哪条坐标轴上;“定式”是根据“形”设双曲线标准方程的具体形式;“定量”是指用定义法或待定系数法确定a ,b 的值.。

3.2.1双曲线的标准方程导学案高二上学期数学选择性

3.2.1双曲线的标准方程导学案高二上学期数学选择性

第3章圆锥曲线与方程 3.2 双曲线3.2.1 双曲线的标准方程【学习目标】1.了解双曲线的定义,几何图形和标准方程;2.理解双曲线标准方程的推导过程,并能运用标准方程解决相关问题.【温顾·习新】一、双曲线的定义思考取一条拉链,拉开一部分;在拉开的两边各选择一点,分别固定在点F1,F2上;把笔尖放在M处,随着拉链的拉开或闭拢,画出一条曲线.试观察这是一条什么样的曲线?点M在运动过程中满足什么几何条件?(4)平面内到点F1(0,4),F2(0,-4)的距离之差等于6的点的轨迹是双曲线吗?(5)平面内到点F1(0,4),F2(0,-4)的距离之差的绝对值等于8的点的轨迹是双曲线吗?填空平面内到两个定点F1,F2的距离之差的绝对值等于(小于F1F2的正数)的点的轨迹叫作双曲线,两个定点F1,F2叫作双曲线的焦点,两个焦点间的距离叫作双曲线的.做一做(1)已知F1(3,3),F2(-3,3),动点P满足PF1-PF2=4,则P点的轨迹是() A.双曲线B.双曲线的一支C.不存在D.一条射线(2)已知点P(x,y)的坐标满足(x-1)2+y2-(x+1)2+y2=±2,则动点P的轨迹是()A.椭圆B.双曲线C.两条射线D.双曲线的一支【研讨·拓展】二、双曲线的标准方程思考(1)类比求椭圆标准方程的过程.如何建立适当的坐标系,求出双曲线的标准方程?PF1-PF2(2)设双曲线的焦点为F1和F2,焦距为2c,而且双曲线上的动点P满足||=2a,其中c>a>0,以F1,F2所在直线为y轴,线段F1F2的垂直平分线为x轴,建立平面直角坐标系,如图所示,此时,双曲线的标准方程是什么?填空 焦点位置焦点在x 轴上 焦点在y 轴上图形标准方程焦点焦距F 1F 2= a ,b ,c 的关系 c 2= 做一做 若椭圆34+n 2=1和双曲线n 2-16=1有相同的焦点,则实数n 的值是( )A .±5B .±3C .5D .9【例1】(1)若双曲线E :x 29-y 216=1的左、右焦点分别为F 1,F 2,点P 在双曲线E 上,且PF 1=3,则PF 2=( )A .11B .9C .5D .3(2)设F 1,F 2分别是双曲线x 2-y 224=1的左、右焦点,P 是双曲线上的一点,且3PF 1=4PF 2,则△PF 1F 2的面积等于( ) A .4 2 B .8 3 C .24 D .48【变式11】在△ABC 中,已知A (-22,0),B (22,0),且内角A ,B ,C 满足sin B -sin A =12sin C ,求顶点C 的轨迹方程.【例2】根据下列条件,分别求双曲线的标准方程.(1)经过点P ⎝ ⎛⎭⎪⎫3,154,Q ⎝ ⎛⎭⎪⎫-163,5; (2)c =6,经过点(-5,2),焦点在x 轴上.【变式21】分别求适合下列条件的双曲线的标准方程:(1)两个焦点的坐标分别是(-5,0),(5,0),双曲线上的点与两焦点的距离之差的绝对值等于8;(2)焦点在x轴上,经过点P(4,-2)和点Q(26,22);(3)与双曲线x216-y24=1有相同的焦点,且经过点(32,2).【变式22】已知F1,F2是双曲线的两个焦点,且|F1F2|=10,过F2的直线交双曲线的一支于A,B两点,当|AB|=5,△AF1B的周长等于26时,求此双曲线的标准方程.【例3】给出曲线方程x24+k+y21-k=1.(1)若该方程表示双曲线,求实数k的取值范围;(2)若该方程表示焦点在y轴上的双曲线,求实数k的取值范围.【变式31】若k∈R,则“k>5”是“方程x2k-5-y2k-2=1表示双曲线”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【变式32】若方程y 24-x 2m +1=1表示双曲线,则实数m 的取值范围是________;若表示椭圆,则实数m 的取值范围是________.【变式33】(多选)已知曲线C :mx 2-ny 2=1,下列说法正确的是( )A .若mn >0,则C 为双曲线B .若m >0且m +n <0,则C 为焦点在x 轴上的椭圆C .若m >0,n <0,则C 不可能表示圆D .若m >0,n >0,则C 为两条直线【例4】如图,已知F 1,F 2是双曲线x 29-y 216=1的两个焦点.若P 是双曲线左支上的点,且PF 1·PF 2=32,试求△F 1PF 2的面积.【变式41】已知双曲线x 29-y 216=1的左、右焦点分别是F 1,F 2,若双曲线上一点P 使得∠F 1PF 2=60°,求△F 1PF 2的面积.【变式42】设椭圆x 26+y 22=1和双曲线x 23-y 2=1的公共焦点为F 1,F 2,P 是两曲线的一个公共点,则cos ∠F 1PF 2=( )A .14B .13C .19D .35【变式43】已知F 1,F 2分别是双曲线C :x 216-y 29=1的左、右焦点,P 为双曲线C 上的一点.若△PF 1F 2为直角三角形,则△PF 1F 2的面积等于________.【例5】已知A (-4,0),B 是圆(x -1)2+(y -4)2=1上的点,点P 在双曲线x 29-y 27=1的右支上,则|P A |+|PB |的最小值为( )A .9B .25+6C .10D .12【变式51】(多选)双曲线x 225-y 29=1上的点到一个焦点的距离为12,则到另一个焦点的距离可能为( )A .17B .7C .22D .2【变式52】已知定点A (3,1),F 是双曲线x 24-y 212=1的右焦点,P 是双曲线右支上的动点,则|P A |+|PF |的最小值为( )A . 2B .52+4C .52-4D .2+4【例6】已知△ABC 的一边的两个顶点为B (-a ,0),C (a ,0)(a >0),另两边的斜率之积等于m (m ≠0).求顶点A 的轨迹方程,并且根据m 的取值情况讨论轨迹的图形.【变式61】动圆与圆x 2+y 2=1和x 2+y 2-8x +12=0都外切,则动圆圆心的轨迹是( )A .双曲线的一支B .圆C .椭圆D .双曲线【变式62】已知圆C :(x +3)2+y 2=4及点A (3,0),Q 为圆周上一点,AQ 的垂直平分线交直线CQ 于点M ,则动点M 的轨迹方程为________.【例7】已知△OFQ 的面积为26,且OF→·FQ →=m ,其中O 为坐标原点. (1)设6<m <46,求OF→与FQ →的夹角θ的正切值的取值范围; (2)设以O 为中心,F 为其中一个焦点的双曲线经过点Q ,如图所示,|OF →|=c ,m =⎝ ⎛⎭⎪⎫64-1c 2,当|OQ →|取得最小值时,求此双曲线的标准方程.【例8】2021年9月17日神舟“十二号”返回舱顺利到达地球后,为了及时将航天员安全救出,地面指挥中心在返回舱预计到达区域安排了三个救援中心(记为A ,B ,C ),A 在B 的正东方向,相距6千米,C 在B 的北偏西30°方向,相距4千米,P 为航天员着陆点.某一时刻,A 接收到P 的求救信号,由于B ,C 两地比A 距P 远,在此4秒后,B ,C 两个救援中心才同时接收到这一信号.已知该信号的传播速度为1千米/秒,求在A 处发现P 的方位角.【变式81】如图,B 地在A 地的正东方向4 km 处,C 地在B 地的北偏东30°方向2 km 处,河流的沿岸PQ (曲线)上任意一点D 到A的距离比到B 的距离远2 km ,现要在曲线PQ 上选一处M 建一座码头,向B ,C 两地转运货物,那么这两条公路MB ,MC 的路程之和最短是______km .【变式82】如图为陕西博物馆收藏的国宝——唐金筐宝钿团花纹金杯,杯身曲线内收,玲珑娇美,巧夺天工,是唐代金银细作的典范之作.该杯的主体部分可以近似看作是双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的右支与y 轴及平行于x 轴的两条直线围成的曲边四边形ABMN 绕y 轴旋转一周得到的几何体,若该金杯主体部分的上口外直径为1033,下底座外直径为2393,且杯身最细之处到上杯口的距离是到下底座距离的2倍,则杯身最细之处的周长为( )A .22πB .3πC .23πD .4π【总结提炼】1.牢记2个知识点:(1)双曲线的定义;(2)双曲线的标准方程.2.掌握求标准方程的2种方法:(1)待定系数法;(2)定义法.3.注意1个易错点:忽略双曲线方程中含有的字母的正负而致错.【拓展强化】完成练习册相关课时作业。

高中数学 选修2-1双曲线导学案加课后作业及参考答案

高中数学  选修2-1双曲线导学案加课后作业及参考答案

双曲线及其标准方程导学案【学习要求】1.了解双曲线的定义,几何图形和标准方程的推导过程. 2.掌握双曲线的标准方程.3.会利用双曲线的定义和标准方程解决简单的问题.【学法指导】本节课的学习要运用类比的方法,在与椭圆的联系与区别中建立双曲线的定义及标准方程.【知识要点】1.双曲线的定义把平面内与两个定点F 1,F 2的距离的 等于常数(小于|F 1F 2|)的点的轨迹叫做双曲线,这两个定点叫做 , 叫做双曲线的焦距. 2探究点一 双曲线的定义问题1 取一条拉链,拉开它的一部分,在拉开的两边上各选择一点,分别固定在点F 1,F 2上,把笔尖放在点M 处,拉开闭拢拉链,笔尖经过的点可画出一条曲线,思考曲线满足什么条件?问题2 双曲线的定义中强调平面内动点到两定点的距离差的绝对值为常数,若没有绝对值,则动点的轨迹是什么?问题3 双曲线的定义中,为什么要限制到两定点距离之差的绝对值为常数2a,2a <|F 1F 2|?问题4 已知点P (x ,y )的坐标满足下列条件,试判断下列各条件下点P 的轨迹是什么图形? (1)6)5()5(2222=+--++y x y x ;(2)6)4()4(2222=+--++y x y x(3)方程x =3y 2-1所表示的曲线是( )A .双曲线B .椭圆C .双曲线的一部分D .椭圆的一部分 探究点二 双曲线的标准方程问题1 类比椭圆的标准方程推导过程,思考怎样求双曲线的标准方程?问题2 两种形式的标准方程怎样进行区别?能否统一?问题3 如图,类比椭圆中a ,b ,c 的意义,你能在y 轴上找一点B ,使|OB |=b 吗?例1 (1)已知双曲线的焦点在y 轴上,并且双曲线过点(3,-42)和⎝⎛⎭⎫94,5,求双曲线的标准方程; (2)求与双曲线x 216-y 24=1有公共焦点,且过点(32,2)的双曲线方程.跟踪训练1 (1)过点(1,1)且ba=2的双曲线的标准方程是 ( )A .12122=-y x B .y 212-x 2=1 C .x 2-y 212=1D .x 212-y 2=1或y 212-x 2=1(2)若双曲线以椭圆x 216+y 29=1的两个顶点为焦点,且经过椭圆的两个焦点,则双曲线的标准方程为_______探究点三 与双曲线定义有关的应用问题例2 已知双曲线的方程是x 216-y 28=1,点P 在双曲线上,且到其中一个焦点F 1的距离为10,点N 是PF 1的中点,求|ON |的大小(O 为坐标原点).跟踪训练2 如图,从双曲线x 23-y 25=1的左焦点F 引圆x 2+y 2=3的切线FP 交双曲线右支于点P , T 为切点,M 为线段FP 的中点,O 为坐标原点,则|MO |-|MT |等于( )A . 3B . 5C .5- 3D .5+ 3例3 已知A ,B 两地相距800 m ,在A 地听到炮弹爆炸声比在B 地晚2 s ,且声速为340 m/s ,求炮弹爆炸点的轨迹方程.跟踪训练3 2008年5月12日,四川汶川发生里氏8.0级地震,为了援救灾民,某部队在如图所示的P 处空降了一批救灾药品,今要把这批药品沿道路PA 、PB 送到矩形灾民区ABCD 中去,已知PA =100 km ,PB =150 km ,BC =60 km ,∠APB =60°,试在灾民区中确定一条界线,使位于界线一侧的点沿道路PA 送药较近,而另一侧的点沿道路PB 送药较近,请说明这一界线是一条什么曲线?并求出其方程.【当堂检测】1.已知A (0,-5)、B (0,5),|PA |-|PB |=2a ,当a =3或5时,P 点的轨迹为 ( ) A .双曲线或一条直线 B .双曲线或两条直线 C .双曲线一支或一条直线 D .双曲线一支或一条射线2.若k >1,则关于x ,y 的方程(1-k )x 2+y 2=k 2-1所表示的曲线是 ( ) A .焦点在x 轴上的椭圆 B .焦点在y 轴上的椭圆 C .焦点在y 轴上的双曲线 D .焦点在x 轴上的双曲线 3.双曲线x 216-y 29=1上一点P 到点(5,0)的距离为15,那么该点到(-5,0)的距离为 ( )A .7B .23C .5或25D .7或234.已知动圆M 与圆C 1:(x +4)2+y 2=2外切,与圆C 2:(x -4)2+y 2=2内切,求动圆圆心的轨迹方程.【课堂小结】1.双曲线定义中||PF 1|-|PF 2||=2a (2a <|F 1F 2|)不要漏了绝对值符号,当2a =|F 1F 2|时表示两条射线.2.在双曲线的标准方程中,a >b 不一定成立.要注意与椭圆中a ,b ,c 的区别.在椭圆中a 2=b 2+c 2,在双曲线中c 2=a 2+b 2.3.用待定系数法求双曲线的标准方程时,要先判断焦点所在的位置,设出标准方程后,由条件列出a ,b ,c 的方程组.如果焦点不确定要分类讨论,采用待定系数法求方程或用形如mx 2+ny 2=1 (mn <0)的形式求解.【拓展提高】1.已知方程12522=---k y k x 的图形是双曲线,那么k 的取值范围是( )A .k >5B .k >5,或22<<-kC .k >2,,或2-<kD .22<<-k2.===-212221121625,PF PF y x F F P ,则上一点,且为焦点的双曲线是以点( ) A .2 B .22 C .4或22 D .2或223.已知双曲线14922=-y x ,B A 、为过左焦点1F 的直线与双曲线左支的两个交点,2,9F AB =为右焦点,则△B AF 2的周长为4.是双曲线上的一点,且,点的两个焦点分别是已知双曲线P F F y x 2122,13=-__________602121的面积等于,则PF F PF F ∆=∠5.根据下列条件,求双曲线的标准方程. (1)过点P )415,3(,Q )5,316(-且焦点在坐标轴上; (2)c =6,经过点(-5,2),焦点在x 轴上.(3))的双曲线。

双曲线的简单几何性质(一)导学案

双曲线的简单几何性质(一)导学案

1标准方程 错误!-错误!=1 (a 〉0,b>0) 错误!-错误!=1(a 〉0,b 〉0) a ,b,c 关系 a 2+b 2=c 2 a 2+b 2=c 2
渐近
线
探究点二由性质求标准方程(定型→设方程→定量→作答)
例2 求满足下列条件的双曲线的标准方程:
(1)双曲线的焦点为(2,0),右顶点为(错误!,0); (2)实半轴长为8,离心率为错误!;
变式:求满足下列条件的双曲线方程
(1)双曲线C的焦点为(0,5),虚轴长为4; (2)实轴长为2,离心率为2;
四、巩固提高(链接高考):
1、(2013陕西卷)双曲线x2
16
-错误!=1的离心率为______,两条渐近线的方程为_____.
2、(2011年高考安徽卷)双曲线2x2-y2=8的实轴长是
3、(2011年高考江西卷)若双曲线错误!-错误!=1的离心率e=2,则m=__ __.
4、思考:若a=b,则渐近线的方程为_____,离心率e=
五、小结(方法总结):
(1)双曲线的简单性质(2)应用:①方程→性质②性质→方程
六、作业:1、P835 2、补充:求适合下列条件的双曲线的标准方程:
(1)焦点分别为F1(-3,0),F2(3,0),离心率e= 3
(2)虚轴长为12,离心率为4
5
;。

高中数学选修一《双曲线及其标准方程》教案与导学案和同步练习

高中数学选修一《双曲线及其标准方程》教案与导学案和同步练习

《3.2.1双曲线及其标准方程》教案【教材分析】本节课选自《2019人教A版高中数学选择性必修第一册》第二章《直线和圆的方程》,本节课主要学习双曲线及其标准方程学生初步认识圆锥曲线是从椭圆开始的,双曲线的学习是对其研究内容的进一步深化和提高。

如果双曲线研究的透彻、清楚,那么抛物线的学习就会顺理成章。

所以说本节课的作用就是纵向承接椭圆定义和标准方程的研究,横向加深对双曲线的标准方程及简单几何性质的理解与应用。

从高考大纲要求和课程标准角度来讲,双曲线的定义、标准方程作为了解内容,在高考的考查当中以选择、填空为主。

正因如此,学生在学习过程当中对双曲线缺少应有的重视,成为了学生的一个失分点。

而且由于学生对椭圆与双曲线的区别与联系认识不够,无法做到知识与方法的迁移,在学习双曲线时极易与椭圆混淆。

在教学中要时刻注意运用类比的方法,让学生充分的类比体会椭圆与双曲线的异同点,使得椭圆与双曲线的学习能相互促进。

【教学目标与核心素养】【教学重点】:用双曲线的定义和标准方程解决简单实际问题.【教学难点】:双曲线的标准方程及其求法.【教学过程】双曲线也是具有广泛应用的一种圆锥曲线,如发电厂冷却塔的外形、通过声音时差测定定位等都要用到双曲线的性质。

类比椭圆的研究方法研究双曲线的有关问题。

我们知道,平面内与两个定点F 1,F 2的距离的和等于常数于|F 1F 2|)的点的轨迹是椭圆,一个自然的问题是:平面内与两个定点的距离的差等于常数的点的轨迹是什么?1.双曲线的定义121如图,在直线上取两个定点,,是直线上的动点。

在平面内,取定点,,以点为圆心、线段为半径作圆,在以为圆心、线段为半径作圆。

l A B P l F F F PA F PB 12如图,在>的条件下,让两圆的交点的轨迹是什么形状?F F AB M从椭圆的情形一样,下面我们用坐标法来探讨尝试与发现中的问题,并求出双曲线的标准方程。

F(-c,0),F F(0,-c),F解:建立平面直角坐标系,使并且原点与线段的中点重合。

(完整版)双曲线的定义及其标准方程导学及练习含答案

(完整版)双曲线的定义及其标准方程导学及练习含答案

课题 双曲线及其标准方程【学本研读】【学习目标】1.通过类比椭圆的定义理解并掌握双曲线的定义;2.掌握双曲线的标准方程,体会数形结合和类比的数学思想.【知识链接】一、课前准备1:椭圆的定义是什么?椭圆的标准方程是什么?2:在椭圆的标准方程12222=+b y a x 中, a,b,c 有何关系?3:阅读课本P52-55.【研读学本问题】一、双曲线的定义1:把椭圆定义中的“距离的和”改为“距离的差”,那么点的轨迹会怎样?2.双曲线的定义: 叫做双曲线。

两定点1F , 2F 叫做双曲线的____,两焦点间的距离|21F F |叫做双曲线的 .3.设常数为2a ,为什么2a < |21F F | ?2a = |21F F |时,轨迹是__________ ;2a > |21F F | 时,轨迹是____________例1.点 A ( 1,0) , B (-1 ,0) ,若 ||AC | - |BC || = 2 ,则点C 的轨迹方程是__________ ;若 |AC | - |BC | = 1 ,则点C 的轨迹方程是__________ .二、双曲线的标准方程1.试根据双曲线的定义结合椭圆标准方程的推导过程推导双曲线的标准方程2.总结双曲线的标准方程的特点,与椭圆的标准方程进行比较例2:求满足下列条件的双曲线的标准方程:(1)焦点在x轴上,4a=,3b=.(2)焦点在x轴上,经过点(,.(3)焦点为(0,6)-,(0,6),且经过点(2,5)-.例3双曲线191622=-yx上一点p到焦点)(0,5的距离为15,那么该点到另一个焦点的距离为【变式1】双曲线 224640x y -+= 上一点P 到它的一个焦点的距离等于1,求点P 到另一个焦点的距离.. 【变式2】双曲线1366422=-y x 上一点P 到焦点)(0,10-的距离为17,那么该点到另 一个焦点)(0,10-的距离为___。

3.2.1 双曲线及其标准方程 导学案正文

3.2.1 双曲线及其标准方程  导学案正文

3.2 双曲线3.2.1 双曲线及其标准方程【学习目标】1.能直观认识双曲线的几何特征,会识别双曲线的定义和相关概念.2.能根据双曲线的几何特征选择适当的平面直角坐标系,根据双曲线定义的代数表达类比导出双曲线的标准方程.3.能识别焦点在不同坐标轴上的双曲线的标准方程,能说出标准方程中特征量的关系,能初步应用双曲线的定义和标准方程解决一些相关问题.◆ 知识点一 双曲线的定义1.双曲线的定义:平面内与两个定点F 1,F 2的距离的 等于非零常数( )的点的轨迹叫作双曲线.这两个定点叫作双曲线的焦点,两焦点间的距离叫作双曲线的 .2.双曲线上动点M 的集合表示:P= ,焦距常用 表示. 【诊断分析】 判断正误.(请在括号中打“√”或“×”)(1)已知两定点F 1(-3,0),F 2(3,0),满足条件|PF 1|-|PF 2|=5的动点P 的轨迹是双曲线. ( ) (2)已知两定点F 1(-3,0),F 2(3,0),满足条件||PF 1|-|PF 2||=6的动点P 的轨迹是双曲线. ( ) (3)已知两定点F 1(-3,0),F 2(3,0),满足条件||PF 1|-|PF 2||=7的动点P 的轨迹是双曲线.( )◆ 知识点二 双曲线的标准方程 焦点位置 焦点在x 轴上焦点在y 轴上图形标准方程 焦点坐标a ,b ,c 的关系【诊断分析】 判断正误.(请在括号中打“√”或“×”)(1)已知方程x 23-m -y 2m -5=1表示焦点在y 轴上的双曲线,则m 的取值范围是3<m<5. ( )(2)在双曲线的标准方程中,a ,b ,c 的关系是a 2=b 2+c 2. ( ) (3)双曲线x 2-y23=1的焦点在y 轴上. ( )◆探究点一与双曲线有关的轨迹方程例1 (1)(多选题)[2024·武汉外国语学校高二月考] 已知F1(-4,0),F2(4,0),下列说法中错误的是( )A.平面内到F1,F2两点的距离相等的点的轨迹是直线B.平面内到F1,F2两点的距离之和等于8的点的轨迹是椭圆C.平面内到F1,F2两点的距离之差等于6的点的轨迹是双曲线的一支D.平面内到F1,F2两点的距离的平方之和为12的点的轨迹是圆(2)若动圆与圆C1:x2+(y-2)2=1和圆C2:x2+(y+2)2=4都内切,则动圆的圆心P的轨迹方程为.变式已知在△ABC中,内角A,B,C所对的边分别为a,b,c,若B(-1,0),C(1,0),且sin C-sin B=12sin A,求顶点A 的轨迹方程.[素养小结]1.求解与双曲线有关的点的轨迹问题,常见的方法有两种:(1)列出等量关系,化简得到方程;(2)寻找几何关系,结合双曲线的定义,得出对应的方程.2.求解与双曲线有关的点的轨迹问题时要特别注意:(1)双曲线的焦点所在的坐标轴;(2)检验所求的轨迹是双曲线的一支还是两支.◆探究点二双曲线的标准方程例2求满足下列条件的双曲线的标准方程.(1)a=4,经过点A(1,-4√103);(2)经过点(3,0),(-6,-3).(3)与双曲线x 24-y22=1有相同的焦点且过点P(2,1).变式 根据下列条件,求双曲线的标准方程.(1)a=4,c=6,且焦点在x 轴上; (2)与椭圆C :x 215+y 26=1共焦点且过点P (2,√2).(3)经过点P (-3,2√7),Q (-6√2,-7).[素养小结]双曲线标准方程的两种求法:(1)定义法:根据双曲线的定义得到相应的a ,b ,c ,再写出双曲线的标准方程.(2)待定系数法:首先设出双曲线的标准方程为x 2a 2-y 2b 2=1或y 2a 2-x 2b2=1(a>0,b>0),然后根据条件求出待定的系数,代入方程即可.特别地,若双曲线的焦点的位置不明确,则应注意分类讨论,也可以设双曲线方程为mx 2+ny 2=1,注意标明条件mn<0.◆ 探究点三 双曲线定义的应用例3 (1)设F 1,F 2分别是双曲线C :x 24-y 23=1的左、右焦点,过F 2的直线与C 的右支交于P ,Q 两点,则|F 1P|+|F 1Q|-|PQ|= ( ) A .5B .6C .8D .12(2)已知双曲线x 24-y 29=1,F 1,F 2分别是双曲线的左、右焦点,点M 在双曲线上且∠F 1MF 2=120°,则△F 1MF 2的面积是 .变式 (1)已知双曲线x 24-y 29=1上一点M 到左焦点F 1的距离为10,则MF 1的中点N 到坐标原点O 的距离为 ( )A .3或7B .6或14C .3D .7(2)设F 1,F 2分别是双曲线C :x 2-y 2b2=1(b>0)的左、右焦点,过F 2作x 轴的垂线与C 交于A ,B 两点,若△ABF 1为正三角形,则△ABF 1的面积为( ) A .4√3B .4C .3√3D .3(3)[2024·湖北荆荆襄宜七校联盟高二期中] 已知双曲线的方程为x 29-y 216=1,点F 1,F 2分别是其左、右焦点,A是圆x 2+(y-5)2=4上的一点,点M 在双曲线的右支上,则|MF 1|+|MA|的最小值是 .[素养小结]双曲线定义的两种应用(1)求双曲线上一点到某一焦点的距离时,若已知该点的横、纵坐标,则根据两点间的距离公式可求结果;若已知该点到另一焦点的距离,则根据||PF1|-|PF2||=2a求解,注意对所求结果进行必要的验证(负数应该舍去,且所求距离应该不小于c-a).(2)双曲线中的焦点三角形问题在双曲线上的点P与其两个焦点F1,F2连接而成的焦点三角形PF1F2中,令|PF1|=r1,|PF2|=r2,∠F1PF2=θ,因为|F1F2|=2c,所以有①定义:|r1-r2|=2a;②余弦公式:4c2=r12+r22-2r1r2cos θ;③面积公式:S△PF1F2=12r1r2sin θ.一般地,在△PF1F2中,通过以上三个等式,所求问题就会顺利解决.◆探究点四双曲线的实际应用例4如图所示,B地在A地的正东方向4千米处,C地在B地的北偏东30°方向2千米处,河流的沿岸PQ(曲线)上任意一点到A的距离比到B的距离远2千米.现要在曲线PQ上选一处M建一座码头,向B,C两地转运货物.经测算,从M到B,C两地修建公路的费用都是a万元/千米,求修建这两条公路的最低总费用.变式 如图所示,某拱桥的截面图可以看作双曲线y 216-x 2m =1(m>0)的一部分,当拱顶M 到水面的距离为4米时,水面宽AB 为4√3米,则当水面宽度为4√6米时,拱顶M 到水面的距离为( )A .4米B .(8√2-4)米C .(2√6-4)米D .(4√7-4)米[素养小结]利用双曲线的定义与标准方程解决双曲线的实际应用问题的一般方法:在实际问题中寻找几何量之间的关系,得到几何关系式,验证满足双曲线的定义.检验所求的轨迹是双曲线、线段还是不存在,判断是双曲线的一支还是两支.。

双曲线的简单几何性质+导学案- 高二上学期数学人教A版(2019)选择性必修第一册

双曲线的简单几何性质+导学案- 高二上学期数学人教A版(2019)选择性必修第一册

3.2.2 双曲线的简单几何性质导学案课时目标:1.掌握双曲线的简单几何性质,了解双曲线的渐近线及渐近线的求法;2理解离心率的几何意义.活动一、复习回顾1.双曲线的定义:一般地,把平面内与两个定点F 1,F 2的距离的______________ 等于非零常数(小于|F 1F 2|)的点的轨迹叫做_________ .这两个定点叫做双曲线的________,两焦点间的距离叫做双曲线的_______ .2. 焦点位置 焦点在x轴上 焦点在y 轴上图形标准方程 焦点坐标a, b, c 的关系活动二:类比探究1.思考:我们前面在学习椭圆的几何性质时,主要从哪几方面学习了椭圆的几何性质?2.类比探究双曲线的几何性质 (1焦点位置焦点在x 轴上焦点在y 轴上图形标准方程x 2a 2-y 2b 2=1 (a>0,b>0)y 2a 2-x 2b 2=1 (a>0,b>0)性质范围对称性顶点轴及轴长 实轴长=____,虚轴长=____离心率渐近线(2)重、难点突破:双曲线的渐近线渐近线方程:____________________ 渐近线方程:____________________(3)思考归纳:结合双曲线的离心率与渐近线斜率的关系总结出离心率的几何意义.活动三:练习巩固例. 求双曲线 229-16=144y x 的顶点坐标、焦点坐标、实轴长、虚轴长、离心率及渐近线方程.活动四:课堂小结1.知识清单:双曲线的几何性质:范围、对称性、顶点、渐近线及离心率;结论1:渐近线方程为:y =±ba x (焦点在x 轴上)或y =±ab x (焦点在y 轴上). 结论2:离心率越大,双曲线开口越___ ;离心率越小,开口越___.2.数学思想方法归纳: 类比、数形结合等.3.常见误区:忽略焦点位置致错.活动五:作业布置课后思考:设双曲线方程为22(0)x y k k R k -=∈≠且,求该双曲线的渐近线方程与离心率,并观察该双曲线有什么特点?。

§2.2.1《双曲线及其标准方程》导学案

§2.2.1《双曲线及其标准方程》导学案

高二数学选修 2-1 §一、学习任务:1.理解双曲线的定义,掌握求双曲线的方程,和一些几何性质。

培养解析法的思想。

2.双曲线的定义和标准方程。

二、探究新知:(学习情景,自主学习,合作探究,(问题1,2,3)当堂检查,巩固训练,拓展延伸,对点训练,感受高考等) 自主学习:(一)、学习情景: 已知两定点F 1F 2距离为10,求动点M 到两定点距离的差为6的轨迹方程. (二)、探究点一、——双曲线的定义问题1:根据课本上双曲线的定义,制作教具,画双曲线?问题2:写出双曲线上的点满足的关系式________________________________________ 问题3:这两个定点叫做双曲线的_______。

两个定点的距离用______表示。

常数用______表示问题4:双曲线的定义中强调平面内动点到两定点的距离差的绝对值为常数,若没有绝对值,则动点的轨迹是什么? 双曲线的定义为什么要满足2a <2c 呢?(1)当2a <∣F 1F 2∣时,轨迹是_____ (2)当2a =∣F 1F 2∣时,轨迹是_____ (3)当2a >∣F 1F 2∣时轨迹是. _____对点训练: 动点P 到两定点F1(-4,0),F2(4,0)的距离差是8,则动点P 的轨迹为( ) (A )双曲线 (B )双曲线的一支(C )以F 1,F 2 为端点的两条射线(D )不能确定。

问题5:建立坐标系后,利用问题2的关系式,写出推导双曲线方程的过程 问题6:双曲线的标准方程是:___________________________ 问题7:上面的a,b,c 三个量满足的关系式为:___________ 问题8:如何判断焦点在何轴? (三)、合作、探究、展示:探究点二、——双曲线的标准方程根据下列方程,分别求出a 、b 、c 并且判断焦点在何轴?(1)双曲线标准方程为161022=-y x ,则a = ,b = , =c ;(2)双曲线标准方程为1522=-y x ,则a = ,b = , =c ; (3)双曲线标准方程为8222=-y x ,则a = ,b = , =c . 书本课后练习练 1:求适合下列条件的双曲线的标准方程式:(1)焦点在x 轴上, a = 4 , b = 3 ;(2) 已知双曲线两个焦点为(0,-6 ),(0,6) ,且经过点(2,-5 ) .变式:(1)已知双曲线的焦点在y 轴上,并且双曲线过点(3,-42)和⎝⎛⎭⎫94,5,求双曲线的标准方程;(2)求与双曲线x 216-y 24=1有公共焦点,且过点(32,2)的双曲线方程.探究点三、——与双曲线定义有关的应用问题1、已知双曲线221169x y-=的左支上一点P 到左焦点的距离为 10,则 点 P 到右焦点的距离为_______ . 2.===-212221121625,PF PF y x F F P ,则上一点,且为焦点的双曲线是以点( ) A .2 B .22 C .4或22 D .2或223.已知双曲线14922=-y x ,B A 、为过左焦点1F 的直线与双曲线左支的两个交点,2,9F AB =为右焦点,则△B AF 2的周长为4、 已知点P (x ,y )的坐标满足下列条件,试判断下列各条件下点P 的轨迹是什么图形?(1)6)5()5(2222=+--++y x y x ; (2)6)4()4(2222=+--++y x y x探究点四、——轨迹问题例3、点 A , B 的坐标分别是(-5 ,0) ,(5,0),直线AM , BM 相交于点M ,且它们斜率之积是94,试求点M 的轨迹方程式,并由点M 的轨迹方程判断轨迹的形状.思考:1.双曲线 52x + k 2y = 5 的一个焦点是(6,0),那么实数k 的值为( ). A . -2 5 B .25 C . -1 D .12.已知双曲线的方程是x 216-y 28=1,点P 在双曲线上,且到其中一个焦点F 1的距离为10,点N 是PF 1的中点,求|ON |的大小(O 为坐标原点).2.已知方程11222=+-+m y m x 表示双曲线,则m 的取值范围_____________ . 3.求与椭圆2214924x y +=有公共焦点,且离心率54e =的双曲线的方程.三、 本节小结和感悟F 2F 1。

2025年高考数学一轮复习-8.6.1-双曲线的定义、方程与性质【导学案】

2025年高考数学一轮复习-8.6.1-双曲线的定义、方程与性质【导学案】

1.焦点在 x 轴上,焦距为 10,且与双曲线 -x2=1 有相同渐近线的双曲线的标准方程是 - =1 . 解析:设所求双曲线的标准方程为 -x2=-λ(λ>0),即 - =1,则有 4λ+λ=25,解得λ=5,
所以所求双曲线的标准方程为 - =1.
2.经过点 P(3,2 ),Q(-6 ,7)的双曲线的标准方程为 - =1 . 解析:设双曲线方程为 mx2+ny2=1(mn<0),因为所求双曲线经过点 P(3,2 ),Q(-6 ,
A.
B.
C.
D.
(2)(2022·全国甲卷 15 题)记双曲线 C: - =1(a>0,b>0)的离心率为 e,写出满足条
件“直线 y=2x 与 C 无公共点”的 e 的一个值 2(答案不唯一,(1, ]内的任意值均可) .
7 / 15
解析:(1)设|PF2|=m,|PF1|=3m,则|F1F2|= + - × × × cos °= m, 所以 C 的离心率 e= = = | | = = .
双曲线定义的应用主要有两个方面
1.已知动点 M(x,y)满足 ( + ) + - ( - ) + =4,则动点 M 的轨迹是( )
A.射线 C.椭圆
B.直线 D.双曲线的一支
4 / 15
解析:A 设 F1(-2,0),F2(2,0),由题意知动点 M 满足|MF1|-|MF2|=4=|F1F2|,
PF2|,则 cos∠F1PF2=

(2)已知 F 是双曲线 - =1 的左焦点,A(1,4),P 是双曲线右支上的一动点,则|PF| +|PA|的最小值为 9 . 解析:(1)∵由双曲线的定义有||PF1|-|PF2||=2a=2 ,∴|PF1|=2|PF2|=4 ,

双曲线(经典导学案及练习答案详解)

双曲线(经典导学案及练习答案详解)

§8.7双曲线学习目标1.了解双曲线的定义、几何图形和标准方程.2.掌握双曲线的几何性质(范围、对称性、顶点、离心率、渐近线).3.了解双曲线的简单应用.知识梳理1.双曲线的定义把平面内与两个定点F1,F2的距离的差的绝对值等于非零常数(小于|F 1F2|)的点的轨迹叫做双曲线.两个定点F1,F2叫做双曲线的焦点,两焦点间的距离叫做双曲线的焦距.2.双曲线的标准方程和简单几何性质标准方程x2a2-y2b2=1(a>0,b>0)y2a2-x2b2=1(a>0,b>0)图形性质焦点F1(-c,0),F2(c,0)F1(0,-c),F2(0,c)焦距|F1F2|=2c范围x≤-a或x≥a,y∈R y≤-a或y≥a,x∈R对称性对称轴:坐标轴;对称中心:原点顶点A1(-a,0),A2(a,0)A1(0,-a),A2(0,a)轴实轴:线段A1A2,长:2a;虚轴:线段B1B2,长:2b,实半轴长:a,虚半轴长:b离心率e=ca∈(1,+∞)渐近线y=±ba x y=±ab xa,b,c的关系c2=a2+b2 (c>a>0,c>b>0)常用结论(1)双曲线的焦点到其渐近线的距离为b.(2)若P是双曲线右支上一点,F1,F2分别为双曲线的左、右焦点,则|PF1|min=a+c,|PF2|min=c -a .(3)同支的焦点弦中最短的为通径(过焦点且垂直于实轴的弦),其长为2b 2a.(4)若P 是双曲线上不同于实轴两端点的任意一点,F 1,F 2分别为双曲线的左、右焦点,则12PF F S △=b 2tan θ2,其中θ为∠F 1PF 2.(5)与双曲线x 2a 2-y 2b 2=1(a >0,b >0)有共同渐近线的方程可表示为x 2a 2-y 2b 2=t (t ≠0).思考辨析判断下列结论是否正确(请在括号中打“√”或“×”)(1)到两定点的距离差的绝对值等于常数的点的轨迹是双曲线.( × ) (2)方程x 2m -y 2n =1(mn >0)表示焦点在x 轴上的双曲线.( × )(3)双曲线x 2m 2-y 2n 2=1(m >0,n >0)的渐近线方程是x m ±yn =0.( √ )(4)等轴双曲线的渐近线互相垂直,离心率等于 2.( √ ) 教材改编题1.若双曲线x 2a 2-y 2b 2=1(a >0,b >0)的焦点到其渐近线的距离等于实轴长,则该双曲线的离心率为( )A. 5 B .5 C. 2 D .2 答案 A解析 由题意知焦点到其渐近线的距离等于实轴长,即b =2a , 又a 2+b 2=c 2,∴5a 2=c 2. ∴e 2=c 2a 2=5,∴e = 5. 2.设P 是双曲线x 216-y 220=1上一点,F 1,F 2分别是双曲线的左、右焦点,若|PF 1|=9,则|PF 2|等于( )A .1B .17C .1或17D .以上均不对 答案 B解析 根据双曲线的定义得||PF 1|-|PF 2||=8⇒|PF 2|等于1或17.又|PF 2|≥c -a =2,故|PF 2|=17. 3.(2022·汕头模拟)写一个焦点在y 轴上且离心率为3的双曲线方程________. 答案y 2-x 22=1(答案不唯一,符合要求就可以) 解析 取c =3,则e =ca=3,可得a =1,∴b =c 2-a 2=2, 因此,符合条件的双曲线方程为y 2-x 22=1(答案不唯一,符合要求就可以).题型一 双曲线的定义及应用例1 (1)已知定点F 1(-2,0),F 2(2,0),N 是圆O :x 2+y 2=1上任意一点,点F 1关于点N 的对称点为M ,线段F 1M 的中垂线与直线F 2M 相交于点P ,则点P 的轨迹是( ) A .椭圆 B .双曲线 C .抛物线 D .圆答案 B解析 如图,连接ON ,由题意可得|ON |=1,且N 为MF 1的中点,又O 为F 1F 2的中点,所以|MF 2|=2.因为点F 1关于点N 的对称点为M ,线段F 1M 的中垂线与直线F 2M 相交于点P ,由垂直平分线的性质可得|PM |=|PF 1|, 所以||PF 2|-|PF 1||=||PF 2|-|PM || =|MF 2|=2<|F 1F 2|,所以由双曲线的定义可得,点P 的轨迹是以F 1,F 2为焦点的双曲线.(2)已知F 1,F 2为双曲线C :x 2-y 2=2的左、右焦点,点P 在C 上,∠F 1PF 2=60°,则△F 1PF 2的面积为______. 答案 2 3解析 不妨设点P 在双曲线的右支上, 则|PF 1|-|PF 2|=2a =22, 在△F 1PF 2中,由余弦定理,得 cos ∠F 1PF 2=|PF 1|2+|PF 2|2-|F 1F 2|22|PF 1|·|PF 2|=12, ∴|PF 1|·|PF 2|=8,∴12F PF S △=12|PF 1|·|PF 2|·sin 60°=2 3.延伸探究 在本例(2)中,若将“∠F 1PF 2=60°”改为“PF 1―→·PF 2―→=0”,则△F 1PF 2的面积为_____.答案 2解析 不妨设点P 在双曲线的右支上, 则|PF 1|-|PF 2|=2a =22, ∵PF 1―→·PF 2―→=0,∴PF 1―→⊥PF 2―→,∴在△F 1PF 2中,有|PF 1|2+|PF 2|2=|F 1F 2|2, 即|PF 1|2+|PF 2|2=16, ∴|PF 1|·|PF 2|=4,∴12F PF S △=12|PF 1|·|PF 2|=2.教师备选1.已知圆C 1:(x +3)2+y 2=1,C 2:(x -3)2+y 2=9,动圆M 同时与圆C 1和圆C 2相外切,则动圆圆心M 的轨迹方程为( ) A .x 2-y 28=1B.x 28-y 2=1 C .x 2-y 28=1(x ≤-1) D .x 2-y 28=1(x ≥1) 答案 C解析 设圆M 的半径为r ,由动圆M 同时与圆C 1和圆C 2相外切, 得|MC 1|=1+r ,|MC 2|=3+r , |MC 2|-|MC 1|=2<6,所以点M 的轨迹是以点C 1(-3,0)和C 2(3,0)为焦点的双曲线的左支, 且2a =2,a =1,又c =3, 则b 2=c 2-a 2=8, 所以点M 的轨迹方程为x 2-y 28=1(x ≤-1). 2.(2022·长春模拟)双曲线C 的渐近线方程为y =±233x ,一个焦点为F (0,-7),点A (2,0),点P 为双曲线第一象限内的点,则当点P 的位置变化时,△P AF 周长的最小值为( ) A .8 B .10 C .4+37 D .3+317答案 B解析 由已知得双曲线方程为y 24-x 23=1,设双曲线的另一个焦点为F ′,则|PF |=|PF ′|+4,△P AF 的周长为|PF |+|P A |+|AF |=|PF ′|+4+|P A |+3,当F ′,P ,A 三点共线时, |PF ′|+|P A |有最小值,为|AF ′|=3, 故△P AF 的周长的最小值为10.思维升华 在“焦点三角形”中,常利用正弦定理、余弦定理,结合||PF 1|-|PF 2||=2a ,运用平方的方法,建立与|PF 1|·|PF 2|的联系.跟踪训练1 (1)(2022·扬州、盐城、南通联考)已知双曲线C 的离心率为3,F 1,F 2是C 的两个焦点,P 为C 上一点,|PF 1|=3|PF 2|,若△PF 1F 2的面积为2,则双曲线C 的实轴长为( ) A .1 B .2 C .3 D .6 答案 B解析 由题意知,|PF 1|-|PF 2|=2a , 所以|PF 2|=a ,|PF 1|=3a , 又离心率e =ca =3,|F 1F 2|=2c =23a ,所以cos ∠F 1PF 2=9a 2+a 2-12a 22·3a ·a=-2a 26a 2=-13, sin ∠F 1PF 2=223,所以12PF F S △=12·a ·3a ·223=2a 2=2,所以a =1,实轴长2a =2.(2)已知F 是双曲线x 24-y 212=1的左焦点,A (1,4),P 是双曲线右支上的动点,则|PF |+|P A |的最小值为________. 答案 9解析 设双曲线的右焦点为F 1,则由双曲线的定义,可知|PF |=4+|PF 1|, 所以当|PF 1|+|P A |最小时满足|PF |+|P A |最小. 由双曲线的图象,可知当点A ,P ,F 1共线时, 满足|PF 1|+|P A |最小,|AF 1|+4即|PF |+|P A |的最小值. 又|AF 1|=5,故所求的最小值为9. 题型二 双曲线的标准方程例2 (1)(2021·北京)双曲线C :x 2a 2-y 2b 2=1过点(2,3),且离心率为2,则该双曲线的标准方程为( )A .x 2-y 23=1B.x 23-y 2=1 C .x 2-3y 23=1D.3x 23-y 2=1答案 A解析 ∵e =ca=2,则c =2a ,b =c 2-a 2=3a , 则双曲线的方程为x 2a 2-y 23a2=1,将点(2,3)的坐标代入双曲线的方程可得2a 2-33a 2=1a 2=1,解得a =1,故b =3,因此,双曲线的方程为x 2-y 23=1. (2)若双曲线经过点(3,2),且渐近线方程是y =±13x ,则双曲线的标准方程是________.答案y 2-x 29=1 解析 设双曲线的方程是y 2-x 29=λ(λ≠0). 因为双曲线过点(3,2), 所以λ=2-99=1,故双曲线的标准方程为y 2-x 29=1. 教师备选1.过双曲线C :x 2a 2-y 2b 2=1(a >b >0)的右顶点作x 轴的垂线,与C 的一条渐近线相交于点A .若以C 的右焦点F 为圆心、半径为4的圆经过A ,O 两点(O 为坐标原点),则双曲线C 的标准方程为( ) A.x 24-y 212=1 B.x 27-y 29=1 C.x 28-y 28=1 D.x 212-y 24=1 答案 A解析 因为渐近线y =ba x 与直线x =a 交于点A (a ,b ),c =4且(4-a )2+b 2=4,解得a 2=4,b 2=12,因此双曲线的标准方程为x 24-y 212=1. 2.经过点P (3,27),Q (-62,7)的双曲线的标准方程为________.答案 y 225-x 275=1解析 设双曲线方程为mx 2-ny 2=1(mn >0).∴⎩⎪⎨⎪⎧9m -28n =1,72m -49n =1, 解得⎩⎨⎧m =-175,n =-125.∴双曲线的标准方程为y 225-x 275=1.思维升华 求双曲线的标准方程的方法(1)定义法:由题目条件判断出动点轨迹是双曲线,确定2a ,2b 或2c ,从而求出a 2,b 2. (2)待定系数法:“先定型,再定量”,如果焦点位置不好确定,可将双曲线方程设为x 2m 2-y 2n 2=λ(λ≠0),再根据条件求λ的值.跟踪训练2 (1)已知双曲线过点(2,3),渐近线方程为y =±3x ,则该双曲线的标准方程是( ) A.7x 216-y 212=1 B.y 23-x 22=1 C .x 2-y 23=1 D.3y 223-x 223=1 答案 C解析 因为双曲线的渐近线方程为y =±3x ,所以可设双曲线的方程为x 2-y 23=λ(λ≠0),将点(2,3)代入其中,得λ=1,所以该双曲线的标准方程为x 2-y 23=1. (2)(2022·佛山调研)已知F 1,F 2分别为双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点,P 为双曲线上一点,PF 2与x 轴垂直,∠PF 1F 2=30°,且虚轴长为22,则双曲线的标准方程为( ) A.x 24-y 22=1 B.x 23-y 22=1 C.x 24-y 28=1 D .x 2-y 22=1 答案 D解析 由题意可知|PF 1|=43c3, |PF 2|=23c3, 2b =22,由双曲线的定义可得43c 3-23c3=2a ,即c =3a .又b =2,c 2=a 2+b 2,∴a =1,∴双曲线的标准方程为x 2-y 22=1.题型三 双曲线的几何性质 命题点1 渐近线例3 (1)由伦敦著名建筑事务所Steyn Studio 设计的南非双曲线大教堂惊艳世界,该建筑是数学与建筑完美结合造就的艺术品.若将如图所示的大教堂外形弧线的一段近似看成双曲线y 2a 2-x 2b 2=1(a >0,b >0)下支的一部分,且此双曲线的下焦点到渐近线的距离为2,离心率为2,则该双曲线的方程为( )A.y 212-x 24=1 B.3y 24-x 24=1 C.x 24-y 24=1 D.y 216-x 24=1 答案 B解析 由题意知,b =2, 又因为e =ca =1+⎝⎛⎭⎫b a 2=2,解得a 2=43,所以双曲线的方程为3y 24-x 24=1.(2)设O 为坐标原点,直线x =a 与双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的两条渐近线分别交于D ,E 两点,若△ODE 的面积为8,则C 的焦距的最小值为( ) A .4 B .8 C .16 D .32 答案 B解析 由题意知双曲线的渐近线方程为y =±bax .因为D ,E 分别为直线x =a 与双曲线C 的两条渐近线的交点, 所以不妨设D (a ,b ),E (a ,-b ),所以S △ODE =12×a ×|DE |=12×a ×2b =ab =8,所以c 2=a 2+b 2≥2ab =16(当且仅当a =b 时等号成立), 所以c ≥4,所以2c ≥8, 所以C 的焦距的最小值为8.思维升华 (1)渐近线的求法:求双曲线x 2a 2-y 2b 2=1(a >0,b >0)的渐近线的方法是令x 2a 2-y 2b 2=0,即得两渐近线方程x a ±yb =0⎝⎛⎭⎫y =±b a x . (2)在双曲线的几何性质中重点是渐近线方程和离心率,在双曲线x 2a 2-y 2b 2=1(a >0,b >0)中,离心率e 与双曲线的渐近线的斜率k =±ba ,满足关系式e 2=1+k 2.命题点2 离心率例4 (1)(2021·全国甲卷)已知F 1,F 2是双曲线C 的两个焦点,P 为C 上一点,且∠F 1PF 2=60°,|PF 1|=3|PF 2|,则C 的离心率为( ) A.72 B.132C.7D.13 答案 A解析 设|PF 2|=m ,则|PF 1|=3m , 在△F 1PF 2中,|F 1F 2|=m 2+9m 2-2×3m ×m ×cos 60° =7m ,所以C 的离心率e =c a =2c 2a =|F 1F 2||PF 1|-|PF 2|=7m 2m =72. 高考改编已知双曲线E :x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,点A 在双曲线E 的左支上,且∠F 1AF 2=120°,|AF 2|=2|AF 1|,则双曲线E 的离心率为( ) A. 3 B. 5 C.7 D .7答案 C解析 点A 在双曲线E 的左支上,左、右焦点分别为F 1,F 2, 设|AF 1|=m ,由|AF 2|=2|AF 1|知|AF 2|=2m ,由双曲线定义得|AF 2|-|AF 1|=2m -m =m =2a , 在△AF 1F 2中,|AF 1|=2a ,|AF 2|=4a ,∠F 1AF 2=120°, 由余弦定理知,|F 1F 2|2=|AF 1|2+|AF 2|2-2|AF 1||AF 2|cos 120° =4a 2+16a 2+8a 2=28a 2, ∴|F 1F 2|=27a , 又|F 1F 2|=2c ,∴27a =2c ,e =ca=7.(2)(2022·滨州模拟)已知F 1,F 2分别是双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点,点P是双曲线C 上在第一象限内的一点,若sin ∠PF 2F 1=3sin ∠PF 1F 2,则双曲线C 的离心率的取值范围为( ) A .(1,2) B .(1,3) C .(3,+∞) D .(2,3)答案 A解析 在△PF 1F 2中, sin ∠PF 2F 1=3sin ∠PF 1F 2, 由正弦定理得,|PF 1|=3|PF 2|,又点P 是双曲线C 上在第一象限内的一点, 所以|PF 1|-|PF 2|=2a , 所以|PF 1|=3a ,|PF 2|=a ,在△PF 1F 2中,由|PF 1|+|PF 2|>|F 1F 2|, 得3a +a >2c ,即2a >c , 所以e =ca <2,又e >1,所以1<e <2. 教师备选1.(2022·济南模拟)已知双曲线x 2m +1-y 2m =1(m >0)的渐近线方程为x ±3y =0,则m 等于( )A.12B.3-1C.3+12D .2答案 A解析 由渐近线方程y =±b a x =±33x , 所以b a =33, 则b 2a 2=13, 即m m +1=13,m =12. 2.设F 为双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的右焦点,O 为坐标原点,以OF 为直径的圆与圆x 2+y 2=a 2交于P ,Q 两点.若|PQ |=|OF |,则C 的离心率为( )A. 2B. 3 C .2D. 5答案 A解析 令双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的右焦点F 的坐标为(c ,0),则c =a 2+b 2. 如图所示,由圆的对称性及条件|PQ |=|OF |可知,PQ 是以OF 为直径的圆的直径,且PQ ⊥OF .设垂足为M ,连接OP ,则|OP |=a ,|OM |=|MP |=c 2, 由|OM |2+|MP |2=|OP |2,得⎝⎛⎭⎫c 22+⎝⎛⎭⎫c 22=a 2,∴c a=2,即离心率e = 2. 思维升华 求双曲线的离心率时,将提供的双曲线的几何关系转化为关于双曲线基本量a ,b ,c 的方程或不等式,利用c 2=a 2+b 2和e =c a转化为关于e 的方程(或不等式),通过解方程(或不等式)求得离心率的值(或范围).跟踪训练3 (1)(多选)已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的离心率e =2,C 上的点到其焦点的最短距离为1,则( )A .双曲线C 的焦点坐标为(0,±2)B .双曲线C 的渐近线方程为y =±3xC .点(2,3)在双曲线C 上D .直线mx -y -m =0(m ∈R )与双曲线C 恒有两个交点答案 BC解析 双曲线C 上的点到其焦点的最短距离为c -a =1,离心率e =c a =2,所以a =1,c =2,所以b 2=3,所以双曲线C 的方程为x 2-y 23=1,所以C 的焦点坐标为(±2,0),A 错误; 双曲线C 的渐近线方程为y =±b ax =±3x ,B 正确; 因为22-323=1,所以点(2,3)在双曲线C 上,C 正确; 直线mx -y -m =0即y =m (x -1),恒过点(1,0),当m =±3时,直线与双曲线C 的一条渐近线平行,此时直线与双曲线只有一个交点,D 错误.(2)(2022·威海模拟)若双曲线C 1:y 24-x 29=1与双曲线C 2:x 2a 2-y 2b2=1(a >0,b >0)有公共点,则双曲线C 2的离心率的取值范围是( )A.⎝⎛⎭⎫1,132B.⎝⎛⎭⎫1,133 C.⎝⎛⎭⎫132,+∞ D.⎝⎛⎭⎫133,+∞ 答案 D解析 因为双曲线C 1:y 24-x 29=1的渐近线方程为y =±23x , 双曲线C 2:x 2a 2-y 2b 2=1(a >0,b >0)的渐近线方程为y =±b ax , 为使双曲线C 1:y 24-x 29=1与双曲线C 2:x 2a 2-y 2b2=1(a >0,b >0)有公共点, 只需b a >23, 则离心率为e =c a =a 2+b 2a 2=1+⎝⎛⎭⎫b a 2>1+49=133. 课时精练1.双曲线9x 2-16y 2=1的焦点坐标为( )A.⎝⎛⎭⎫±512,0 B.⎝⎛⎭⎫0,±512 C .(±5,0) D .(0,±5)答案 A解析 将双曲线的方程化为标准形式为x 219-y 2116=1, 所以c 2=19+116=25144, 所以c =512, 所以焦点坐标为⎝⎛⎭⎫±512,0. 2.已知双曲线x 2m -y 2m +6=1(m >0)的虚轴长是实轴长的2倍,则双曲线的标准方程为( ) A.x 22-y 24=1 B.x 24-y 28=1 C .x 2-y 28=1 D.x 22-y 28=1 答案 D解析 由题意,得2m =m +6,解得m =2,所以双曲线的标准方程为x 22-y 28=1. 3.若双曲线E :x 29-y 216=1的左、右焦点分别为F 1,F 2,点P 在双曲线E 上,且|PF 1|=3,则|PF 2|等于( )A .11B .9C .5D .3答案 B解析 方法一 依题意知,点P 在双曲线的左支上,根据双曲线的定义,得|PF 2|-|PF 1|=2×3=6,所以|PF 2|=6+3=9.方法二 根据双曲线的定义,得||PF 2|-|PF 1||=2×3=6,所以||PF 2|-3|=6,所以|PF 2|=9或|PF 2|=-3(舍去).4.(2022·大连模拟)若双曲线C :x 29-y 2b 2=1的右焦点到它的一条渐近线的距离是33,则C 的离心率为( )A .2 B. 3 C.43 D.233答案 A解析 双曲线C :x 29-y 2b 2=1的右焦点坐标为(9+b 2,0),渐近线方程为y =±b 3x ,即bx ±3y =0, ∵双曲线C :x 29-y 2b 2=1的右焦点到它的一条渐近线的距离是33, ∴b 9+b 2b 2+9=33, 解得b =33,∴c =9+b 2=9+(33)2=6,∴离心率e =c a =63=2. 5.(多选)已知双曲线C 的方程为x 216-y 29=1,则下列说法正确的是( ) A .双曲线C 的实轴长为8B .双曲线C 的渐近线方程为y =±34x C .双曲线C 的焦点到渐近线的距离为3D .双曲线C 上的点到焦点距离的最小值为94答案 ABC解析 因为a 2=16,所以a =4,2a =8,故A 正确;因为a =4,b =3,所以双曲线C 的渐近线方程为y =±b a x =±34x ,故B 正确; 因为c =a 2+b 2=16+9=5,所以焦点坐标为(-5,0),(5,0),焦点(5,0)到渐近线3x -4y =0的距离为|15|32+(-4)2=3,故C 正确;双曲线C 上的点到焦点距离的最小值为c -a =1,故D 错误. 6.(多选)(2022·潍坊模拟)已知双曲线C :x 2a 2-y 29=1(a >0)的左、右焦点分别为F 1,F 2,一条渐近线方程为y =34x ,P 为C 上一点,则以下说法正确的是( ) A .C 的实轴长为8B .C 的离心率为53 C .|PF 1|-|PF 2|=8D .C 的焦距为10 答案 AD解析 由双曲线方程知,渐近线方程为y =±3a x ,而一条渐近线方程为y =34x , ∴a =4,故C :x 216-y 29=1, ∴双曲线实轴长为2a =8,离心率e =c a =16+94=54, 由于P 可能在C 不同分支上,则有||PF 1|-|PF 2||=8,焦距为2c =2a 2+b 2=10.∴A ,D 正确,B ,C 错误.7.(2021·新高考全国Ⅱ)已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的离心率e =2,则该双曲线C 的渐近线方程为________.答案 y =±3x解析 因为双曲线x 2a 2-y 2b2=1(a >0,b >0)的离心率为2, 所以e =c 2a 2=a 2+b 2a 2=2,所以b 2a2=3, 所以该双曲线的渐近线方程为y =±b ax =±3x . 8.设双曲线x 29-y 216=1的右顶点为A ,右焦点为F .过点F 且平行于双曲线的一条渐近线的直线与双曲线交于点B ,则△AFB 的面积为________.答案 3215解析 因为a 2=9,b 2=16,所以c =5.所以A (3,0),F (5,0),不妨设直线BF 的方程为y =43(x -5), 代入双曲线方程解得B ⎝⎛⎭⎫175,-3215. 所以S △AFB =12|AF |·|y B |=12×2×3215=3215. 9.已知双曲线x 216-y 24=1的左、右焦点分别为F 1,F 2. (1)若点M 在双曲线上,且MF 1-→·MF 2-→=0,求M 点到x 轴的距离;(2)若双曲线C 与已知双曲线有相同的焦点,且过点(32,2),求双曲线C 的方程. 解 (1)不妨设M 在双曲线的右支上,M 点到x 轴的距离为h ,∵MF 1-→·MF 2-→=0,∴MF 1⊥MF 2.设|MF 1|=m ,|MF 2|=n ,由双曲线的定义知m -n =2a =8.①在Rt △F 1MF 2中,由勾股定理得m 2+n 2=(2c )2=80,②由①②得m ·n =8.∵12MF F S △=12mn =4=12×2ch , ∴h =255. 即M 点到x 轴的距离为255. (2)设双曲线C 的方程为x 216-λ-y 24+λ=1(-4<λ<16). ∵双曲线C 过点(32,2),∴1816-λ-44+λ=1, 解得λ=4或λ=-14(舍去),∴双曲线C 的方程为x 212-y 28=1. 10.已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,渐近线方程是y =±255x ,点A (0,b ),且△AF 1F 2的面积为6.(1)求双曲线C 的标准方程;(2)直线l :y =kx +m (k ≠0,m ≠0)与双曲线C 交于不同的两点P ,Q ,若|AP |=|AQ |,求实数m 的取值范围. 解 (1)由题意得b a =255,① 12AF F S △=12×2c ·b =6,②a 2+b 2=c 2,③由①②③可得a 2=5,b 2=4,∴双曲线C 的标准方程是x 25-y 24=1. (2)由题意知直线l 不过点A .设P (x 1,y 1),Q (x 2,y 2),线段PQ 的中点为D (x 0,y 0),连接AD (图略).将y =kx +m 与x 25-y 24=1联立,消去y , 整理得(4-5k 2)x 2-10kmx -5m 2-20=0,由4-5k 2≠0且Δ>0,得⎩⎪⎨⎪⎧4-5k 2≠0,80(m 2-5k 2+4)>0,④ ∴x 1+x 2=10km 4-5k 2,x 1x 2=-5m 2+204-5k 2, ∴x 0=x 1+x 22=5km 4-5k 2, y 0=kx 0+m =4m 4-5k 2. 由|AP |=|AQ |知,AD ⊥PQ ,又A (0,2),∴k AD =y 0-2x 0=4m 4-5k 2-25km 4-5k 2=-1k, 化简得10k 2=8-9m ,⑤由④⑤,得m <-92或m >0. 由10k 2=8-9m >0,得m <89. 综上,实数m 的取值范围是m <-92或0<m <89.11.(多选)双曲线C :x 24-y 22=1的右焦点为F ,点P 在双曲线C 的一条渐近线上,O 为坐标原点,则下列说法正确的是( )A .双曲线C 的离心率为62B .双曲线y 24-x 28=1与双曲线C 的渐近线相同 C .若PO ⊥PF ,则△PFO 的面积为 2D .|PF |的最小值为2答案 ABC解析 因为a =2,b =2,所以c =a 2+b 2=6,所以e =c a =62, 故A 正确;双曲线y 24-x 28=1的渐近线方程为y =±22x ,双曲线C 的渐近线方程为y =±22x ,故B 正确; 因为PO ⊥PF ,点F (6,0)到渐近线2x -2y =0的距离d =|2×6|6=2, 所以|PF |=2,所以|PO |=(6)2-(2)2=2,所以△PFO 的面积为12×2×2=2, 故C 正确;|PF |的最小值即为点F 到渐近线的距离,即|PF |=2,故D 不正确.12.(2022·湖南师大附中模拟)已知双曲线C: x 24-y 2b2=1(b >0),以C 的焦点为圆心,3为半径的圆与C 的渐近线相交,则双曲线C 的离心率的取值范围是( )A.⎝⎛⎭⎫1,32 B.⎝⎛⎭⎫1,132 C.⎝⎛⎭⎫ 32,132 D .(1,13) 答案 B解析 由题意可知双曲线的其中一条渐近线为y =b 2x ,即bx -2y =0, 又该圆的圆心为(c ,0),故圆心到渐近线的距离为bc b 2+4, 则由题意可得bc b 2+4<3,即b 2c 2<9(b 2+4), 又b 2=c 2-a 2=c 2-4,则(c 2-4)c 2<9c 2,解得c 2<13,即c <13,则e =c a =c 2<132,又e >1, 故离心率的取值范围是⎝⎛⎭⎫1,132. 13.已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的一条渐近线方程为x -2y =0,双曲线的左焦点在直线x +y +5=0上,A ,B 分别是双曲线的左、右顶点,点P 为双曲线右支上位于第一象限的动点,直线P A ,PB 的斜率分别为k 1,k 2,则k 1+k 2的取值范围为( )A .(1,+∞)B .(2,+∞)C .(2,+∞)D .[2,+∞)答案 A 解析 由双曲线x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线方程为x -2y =0,可得a =2b ,由双曲线的左焦点在直线x +y +5=0上,可得c =5,则由a 2+b 2=c 2,得a =2,b =1,双曲线的方程为x 24-y 2=1, 由题意可得A (-2,0),B (2,0),设P (m ,n )(m >2,n >0),则m 24-n 2=1,即n 2m 2-4=14, k 1k 2=n m +2·n m -2=n 2m 2-4=14, 易知k 1,k 2>0,则k 1+k 2≥2k 1k 2=1,由A ,B 分别为双曲线的左、右顶点,可得k 1≠k 2,则k 1+k 2>1.14.已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,O 为原点,若以F 1F 2为直径的圆与C 的渐近线的一个交点为P ,且|F 1P |=3|OP |,则C 的渐近线方程为________. 答案 y =±3x解析 根据双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点为F 1,F 2,O 为原点,以F 1F 2为直径的圆与C 的渐近线的一个交点为P ,如图所示,则|F 1O |=|OP |=c ,|F 1P |=3|OP |=3c ,所以在△POF 1中,由余弦定理可得cos ∠POF 1=|OP |2+|OF 1|2-|PF 1|22|OP |·|OF 1|=c 2+c 2-()3c 22×c ×c=-12. 所以∠POF 1=2π3,则∠POF 2=π3,所以tan ∠POF 2=tan π3=3, 则渐近线方程为y =±3x .15.(多选)双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的焦点在圆O :x 2+y 2=13上,圆O 与双曲线C 的渐近线在第一、二象限分别交于点M ,N ,点E (0,a )满足EO →+EM →+EN →=0(其中O 为坐标原点),则( )A .双曲线C 的一条渐近线方程为3x -2y =0B .双曲线C 的离心率为132C .|OE →|=1D .△OMN 的面积为6答案 ABD解析 如图,设双曲线C 的焦距为2c =213,MN 与y 轴交于点P ,由题意可知|OM |=c =13,则P (0,b ),由EO →+EM →+EN →=0得点E 为△OMN 的重心,可得|OE |=23|OP |, 即a =23b ,b 2a 2=c 2-a 2a 2=94, 所以a =2,b =3,e =132. 双曲线C 的渐近线方程为3x ±2y =0,|OE →|=2,M 的坐标为(2,3),S △OMN =6.16.双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的左顶点为A ,右焦点为F ,动点B 在C 上.当BF ⊥AF 时,|AF |=|BF |.(1)求C 的离心率;(2)若B 在第一象限,证明:∠BF A =2∠BAF .(1)解 设双曲线的半焦距为c ,则F (c ,0),B ⎝⎛⎭⎫c ,±b 2a , 因为|AF |=|BF |,所以b 2a=a +c , 所以c 2-a 2a=a +c , 所以c -a =a ,即c =2a ,所以e =2.(2)证明 设B (x 0,y 0),其中x 0>a ,y 0>0. 因为e =2,故c =2a ,b =3a , 故双曲线的渐近线方程为y =±3x ,所以∠BAF ∈⎝⎛⎭⎫0,π3,∠BF A ∈⎝⎛⎭⎫0,2π3. 当∠BF A =π2时, 由题意易得∠BAF =π4, 此时∠BF A =2∠BAF .当∠BF A ≠π2时, 因为tan ∠BF A =-y 0x 0-c =-y 0x 0-2a, tan ∠BAF =y 0x 0+a, 所以tan 2∠BAF =2y 0x 0+a 1-⎝⎛⎭⎫y 0x 0+a 2=2y 0(x 0+a )(x 0+a )2-y 20 =2y 0(x 0+a )(x 0+a )2-b 2⎝⎛⎭⎫x 20a 2-1 =2y 0(x 0+a )(x 0+a )2-3a 2⎝⎛⎭⎫x 20a 2-1 =2y 0(x 0+a )(x 0+a )2-3(x 20-a 2) =2y 0(x 0+a )-3(x 0-a ) =-y 0x 0-2a=tan ∠BF A ,因为2∠BAF ∈⎝⎛⎭⎫0,2π3,故∠BF A =2∠BAF . 综上,∠BF A =2∠BAF .。

高二数学 双曲线练习课导学案

高二数学 双曲线练习课导学案

高二数学双曲线练习课导学案1、掌握椭圆、双曲线、抛物线的定义、标准方程和几何性质;2、能够根据条件利用工具画圆锥曲线的图形,并了解圆锥曲线的初步应用;学习重点1、曲线的标准方程与几何性质2、会灵活运用曲线的定义,解直线与曲线有关的综合问题学习难点如何贯彻数形结合思想,运用曲线方程研究几何性质学法指导数形结合学习过程学习笔记(教学设计)【预习案(自主学习)】一、定义(1)椭圆:(2)抛物线:(3)双曲线:平面内到一个定点和一条定直线的距离的比等于定长e的点的集合、(1)当0<e<1时,是 (2)当e>1时,是 (3)当e=1时,是【探究案(合作学习)】小组合作完成下列问题1、已知椭圆的一个焦点将长轴分为:两段,其离心率翰2、过点(0,1)且与抛物线y2=x只有一个公共点的直线有( )(A)一条 (B)两条 (C)三条 (D)无数条3、抛物线y2=ax(a≠0)的准线方程是 ( )(A)x= (D)x=4、方程mx2+ny2+mn=0(m<n<0)所表示的曲线的焦点坐标是( )(A)(0,)(B)(0,)(C)(,0)(D)(,0)5、双曲线kx2+4y2=4k的离心率小于2,则k的取值范围是( )(A)(-∞,0)(B)(-3,0)(C)(-12,0)(D)(-12,1)翰林汇【当堂检测】1、过抛物线的焦点作直线交抛物线于,两点,如果,那么= 、2、过点(3,0)的直线与双曲线4x2-9y2=36只有一个公共点,则直线共有、3、已知平面内有一固定线段AB,其长度为4,动点P满足|PA|-|PB|=3,则|PA|的最小值为 ( )(A)1、5 (B)3 (C)0、5 (D)3、4、椭圆,其上一点P(3,)到两焦点的距离分别是6、5和3、5,求椭圆方程【课后巩固(布置作业)】复习题三:A组6、7、8【纠错反思(教学反思)】。

高中数学(选修2-1)同步导学案(213)双曲线含答案

高中数学(选修2-1)同步导学案(213)双曲线含答案

高中数学(选修2-1)同步导学案2.3双 曲 线【基础知识梳理】:1.双曲线的定义:平面内与两定点F 1 ,F 2的距离的差___________________________________的点的轨迹叫做双曲线。

这两个定点叫做双曲线的_________ , 两焦点之间的距离叫做双曲线的________.2.双曲线的标准方程:双曲线0)b 0,1(a by a x 2222>>=-的中心在______,焦点在_______轴上,焦点的坐标是____________;顶点坐标是______________,渐近线方程是_____________. 双曲线0)b 0,1(a bx a y 2222>>=-的中心在______,焦点在_______轴上, 焦点的坐标是____________;顶点坐标是______________,渐近线方程是_____________.3.几个概念:双曲线与对称轴的交点,叫作双曲线的_____.a 和b 分别叫做双曲线的________长和_________长。

双曲线的焦距是_____. a ,b ,c 的关系式是______________。

双曲线的________与________的比称为双曲线的离心率,记作e=_____,e 的范围是_________.4.等轴双曲线:_______和______等长的双曲线叫做等轴双曲线, 等轴双曲线的方程是___________。

双曲线是等轴双曲线的两个充要条件:(1)离心率e =_______,(2)渐近线方程是_________.【典型例题分析】:例1..(2007全国Ⅱ文)设F 1,F 2分别是双曲线19y x 22=-的左右焦点,若点P 在双曲线上,且0PF 21=∙,则=+( ) (A)10 (B)210 (C)5 (D) 25例2.(2016全国Ⅱ理)已知12,F F 是双曲线2222:1x y E a b-=的左,右焦点,点M 在E 上,1MF 与x 轴垂直,211sin 3MF F ∠=,则E 的离心率为( )(A (B )32(C (D )2例3.(2013北京理)若双曲线x 2a 2-y 2b 2=1的离心率为3,则其渐近线方程为( ). A .y =±2x B .y =±2x C .y =±12x D .y =±22x例4. (2011全国新课标卷理)设直线L 过双曲线C 的一个焦点,且与C 的一条对称轴垂直,L 与C 交于A ,B 两点,AB 为C 的实轴长的2倍,则C 的离心率为 ( )(A (B (C )2 (D )3例5.(2008江西文)已知双曲线22221(0,0)x y a b a b -=>>的两条渐近线方程为3y x =±, 若顶点到渐近线的距离为1,则双曲线方程为 .【基础训练】1.(2016全国Ⅰ理)已知方程222213x y m n m n-=+-表示双曲线,且该双曲线两焦点间的距离为4,则n 的取值范围是 ( )。

双曲线导学案与答案解析

双曲线导学案与答案解析

2014级高三理科数学导学案平面解析几何编制:高春芳审阅:厉强第二讲双曲线(2课时)班级姓名【考试说明】1.了双曲线的定义、几何图形和标准方程,知道其简单几何性质(范围、对称性、顶点、离心率、)2. 理解数形结合的思想.3. 了解双曲线的简单应用.【知识聚焦】(必须活楚、必须牢记)1. 双曲线定义平面内与两个定点F i, F2的等于常数(小于|F iE|)的点的轨迹叫做双曲线.这两个定点叫做,两焦点间的距离叫做集合 A {M il MF| — |MF|| = 2a}, | F1F2I = 2c,其中a, c为常数且a>0, c>0.(1)当时,P点的轨迹是双曲线;(2)当时,P点的轨迹是两条射线;(3)当时,P点不存在.2. 双曲线的标准方程和几何性质3实轴和目等的双曲线叫做等轴双曲线 .离心率e=是双曲线为等轴双曲线的充要条件,且等轴双曲线两条渐近线互相垂直.一般可设其方程为x2— y2=入(入乒0). 2 2 2 24. 巧设双曲线方程(1)与双曲线勺一%= 1 (a>0, b>0)有共同渐近线的方程可表示为土一%=t (t丰0).a b a b⑵ 过已知两个点的双曲线方程可设为X + - = 1 (m<0) .m n【链接教材】(打好基哗兴基成长)1. (教材改编)若双曲线生一% = 1 (a>0, b>0)的焦点到其渐近线的距离等于实轴长,贝U该双曲线的离心率为()a bA. g B . 5C.也D. 22. (2015 •安徽)下列双曲线中,渐近线方程为y=± 2x的是()2 y2x2 2 八 2 y2x22A. x - 4 = 1B. -- y = 1C. x - 2 = 1D.- — y = 12014级高三理科数学导学案平面解析几何编制:高春芳审阅:厉强3. (2014 •广东)若实数k满足0<k<9,则曲线余一= 1与曲线——y = 1的()25 9 —k 25 —k 9A.焦距相等B .实半轴长相等C.虚半轴长相等 D.离心率相等4. 已知F为双曲线C:x2— my= 3n( m>0)的一个焦点,则点F到C的一条渐近线的距离为5. (教材改编)经过点A(3, - 1),且对称轴都在坐标轴上的等轴双曲线方程为.6. 设双曲线一=1(a>0)的渐近线方程为3x±2y= 0,贝U a的值为()A.4B.3C.2D.17 ()已知0< e <,则双曲线C: — = 1与C2: — = 1的()A.实轴长相等B.虚轴长相等C.焦距相等D.离心率相等2 28.已知曲线方程左2 一云七=1,若方程表示双曲线,贝u 入的取值范围是.【课堂考点探究】探究点一双曲线定义的应用例1 1.已知圆G: (x+ 3)2+ y2= 1和圆G: (x—3)2+ y2= 9,动圆M同时与圆C及圆G相外切,则动圆圆心M的轨迹方程为______________________2. 设P是双曲线/ y2_1上的一点,16 一亦-A.1B.17C.1 或17D. F1F2分别是双曲线的左右焦点,若为以上答案均不对PF I=9则PF2=()[总结反思]探究点二双曲线的标准方程的求法例2 1.根据下列条件,求双曲线的标准方程:.......... . . 5 ...(1)虚轴长为12,离心率为石;(2)经过两点R - 3,2 寸7)和Q -暴,-7).2 22.( 2014 •天津)已知双曲线§一b2= 1( a>0, b>0)的一条渐近线平行于直线上,则双曲线的方程为()x2 y2x2 y23x23y23x2 3y2A厂元=1 B.无一?TG赤一而=1 D.应一赤=1l : y = 2x+ 10,双曲线的一个焦点在直线l [总结反思]变式题(1)(2015 •课标全国n )已知双曲线过点 (1)(4 ,也),且渐近线方程为y=± ^x,则该双曲线的标准方程为 (5)⑵设椭圆C1的离心率为—,焦点在x轴上且长轴长为26,若曲线G上的点到椭圆C1的两个焦点的距离的差的绝对值13等于8,则曲线0的标准方程为 .探究点三双曲线的几何性质线与双曲线交于 B, C 两点,若ABL AC,则该双曲线的渐近线的斜率为 ( )A. ± 1 B . 土 ^C. ± 1D.土 y/2⑵(2015 •湖北)将离心率为e 1的双曲线G 的实半轴长a 和虚半轴长 率为e 2的双曲线G,则( )A.对任意的a, b, e 1 <e 2B .当 a >b 时,e<e 2;当 a <b 时,e>e 2C.对任意的 a, b, e 1 >e2D.当 a >b 时,e>e 2;当 a <b 时,e<e 2探究点四直线与双曲线的综合问哗例4 (1)(2015 •四』I )过双曲线x 2-y = 1的右焦点且与x 轴垂直的直线,交该双曲线的两条渐近线于A, B 两点,3贝U|AB 等于( )A.433B. 20C. 6D. 402⑵若双曲线E : A y 2= 1(a >0)的离心率等于 寸2,直线y= kx — 1与双曲线E 的右支交于A, B 两点.①求k 的取值范围;②若|AB = 6^/3,点C 是双曲线上一点,且 OO mO 商OB,求k, m 的值.[总结反思]⑴过双曲线x y 厂小1(a >0'b >0)的一个焦点 F 作一条渐近线的垂线,垂足为点A 与另一条渐近线交于点 B,若F !』2FX 则此双曲线的离心率为 ( )A. 2B. 3C. 2D. 52014级高三理科数学 导学案 ⑵(2015 •山东)平面直角坐标系平面解析几何 xOy 中,双曲线编制:高春芳 审阅:厉强一 x 2 y 2 2、十:点O, A, B 若AOAB 勺垂心为 G 的焦点,贝U G 的离心率为[总结反思] ........................... ................................................ .变式题(1)(2015 •重庆)设双曲线22了一 b^= 1( a> 0 ‘ b> 0)的右焦点是 F,左,右顶点分别是 A, A,过F 作AA 的垂b (a 乒b )同时增加n (m>0)个单位长度,得到离心变式题已知双曲线C 的两个焦点分别为 F i ( — 2,0) , F 2(2 , 0),双曲线C 上一点P 到F l, F 2的距离差的绝对值等于 2.⑴求双曲线C 的标准方程;【课后作业】 2. 设直线l 过双曲线C 的一个焦点,且与 C 的一条对称轴垂直,l 与C 交于A, B 两点,|AB 为C 的实轴长的2倍, 则C 的离心率为( ) A 瑚 B. >/3C . 2 D . 3 22、一 ,―.一 -x y3.(2014 -江西)过双曲线C:孑一春=1的右顶点作x 轴的垂线,与 C 的一条渐近线相交于点 A 若以C 的右焦点为圆。

高中数学《双曲线及其标准方程》(导学案)

高中数学《双曲线及其标准方程》(导学案)

第二章 圆锥曲线与方程2.2.1 双曲线及其标准方程一、学习目标1.掌握双曲线的定义;2.掌握双曲线的标准方程.【重点、难点】1.双曲线的定义及标准方程2.双曲线的标准方程的推导及简单应用二、学习过程【复习引入】复习1:椭圆的定义是什么?椭圆的标准方程是什么?复习2:在椭圆的标准方程22221x y a b+=中,,,a b c 有何关系?若5,3a b ==,则?c =写出符合条件的椭圆方程.【导入新课】问题1:把椭圆定义中的“距离的和”改为“距离的差”,那么点的轨迹会怎样?如图2-23,定点12,F F 是两个按钉,MN 是一个细套管,两条细绳分别拴在按钉上且穿过套管,点M 移动时,12MF MF -是常数,这样就画出一条曲线;由21MF MF -是同一常数,可以画出另一支.新知1:双曲线的定义:平面内与两定点12,F F 的距离的差的 等于常数(小于12F F )的点的轨迹叫做双曲线。

两定点12,F F 叫做双曲线的 ,两焦点间的距离12F F 叫做双曲线的 .反思:设常数为2a ,为什么2a <12F F ?2a =12F F 时,轨迹是 ;2a >12F F 时,轨迹 .试试:点(1,0)A ,(1,0)B -,若1AC BC -=,则点C 的轨迹是 .新知2:双曲线的标准方程:22222221,(0,0,)x y a b c a b a b-=>>=+(焦点在x 轴) 其焦点坐标为1(,0)F c -,2(,0)F c .思考:若焦点在y 轴,标准方程又如何?【典型例题】【例1】 根据下列条件,求双曲线的标准方程.(1)经过点P (3,154),Q (-163,5); (2)c =6,经过点(-5,2),焦点在x 轴上.【例2】 如图,若F 1,F 2是双曲线x 29-y 216=1的两个焦点. (1)若双曲线上一点M 到它的一个焦点的距离等于16,求点M 到另一个焦点的距离;(2)若P 是双曲线左支上的点,且|PF 1|·|PF 2|=32,试求△F 1PF 2【变式拓展】1. 求适合下列条件的双曲线的标准方程:(1)a =3,c =4,焦点在x 轴上;(2)焦点为(0,-6),(0,6),经过点A (-5,6).2.已知双曲线x 29-y 216=1的左、右焦点分别是F 1、F 2,若双曲线上一点P 使得∠F 1PF 2=60°,求△F 1PF 2的面积.三、总结反思1.对双曲线定义的理解(1)把定常数记为2a ,当2a <|F 1F 2|时,其轨迹是双曲线;当2a =|F 1F 2|时,其轨迹是以F 1、F 2为端点的两条射线(包括端点);当2a >|F 1F 2|时,其轨迹不存在.(2)距离的差要加绝对值,否则只为双曲线的一支.若F 1、F 2表示双曲线的左、右焦点,且点P 满足|PF 1|-|PF 2|=2a ,则点P 在右支上;若点P 满足|PF 2|-|PF 1|=2a ,则点P 在左支上.(3)双曲线定义的表达式是|||PF 1|-|PF 2|=2a (0<2a <|F 1F 2|).(4)理解双曲线的定义要紧扣“到两定点距离之差的绝对值为定值且小于两定点的距离.”2.双曲线的标准方程(1)只有当双曲线的两焦点F 1、F 2在坐标轴上,并且线段F 1F 2的垂直平分线也是坐标轴时得到的方程才是双曲线的标准方程.(2)标准方程中的两个参数a 和b ,确定了双曲线的形状和大小,是双曲线的定形条件,这里b 2=c 2-a 2,与椭圆中b 2=a 2-c 2相区别,且椭圆中a >b >0,而双曲线中a 、b 大小则不确定.(3)焦点F 1、F 2的位置,是双曲线定位的条件,它决定了双曲线标准方程的类型.“焦点跟着正项走”,若x2项的系数为正,则焦点在x 轴上;若y 2项的系数为正,那么焦点在y 轴上.(4)用待定系数法求双曲线的标准方程时,如不能确定焦点的位置,可设双曲线的标准方程为Ax 2+By 2=1(AB <0)或进行分类讨论.四、随堂检测1.动点P 到点M (1,0),N (-1,0)的距离之差的绝对值为2,则点P 的轨迹是( )A .双曲线B .双曲线的一支C .两条射线D .一条射线2.双曲线方程为x 2-2y 2=1,则它的右焦点坐标为( )A .(22,0) B .(52,0)C .(62,0) D .(3,0)3.满足条件a =2,一个焦点为(4,0)的双曲线的标准方程为( )A.x 24-y 212=1B.x 212-y 24=1C.x 24-y 216=1 D.x 216-y 24=14.已知双曲线x 216-y 29=1的左支上一点M 到其左焦点F 1的距离为10,求点M 到该曲线左焦点F 2的距离.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高三理科数学 导学案 平面解析几何 编制: 审阅:第二讲 双曲线(2课时) 班级 姓名【考试说明】1.了双曲线的定义、几何图形和标准方程,知道其简单几何性质(范围、对称性、顶点、离心率、)2.理解数形结合的思想. 3.了解双曲线的简单应用.【知识聚焦】(必须清楚、必须牢记)1.双曲线定义平面内与两个定点F 1,F 2的____________等于常数(小于|F 1F 2|)的点的轨迹叫做双曲线.这两个定点叫做_____________,两焦点间的距离叫做_______________.集合P ={M |||MF 1|-|MF 2||=2a },|F 1F 2|=2c ,其中a ,c 为常数且a >0,c >0.(1)当______________时,P 点的轨迹是双曲线;(2)当_____________时,P 点的轨迹是两条射线; (3)当_____________时,P 点不存在. 2.双曲线的标准方程和几何性质3实轴和_________相等的双曲线叫做等轴双曲线.离心率e =2是双曲线为等轴双曲线的充要条件,且等轴双曲线两条渐近线互相垂直.一般可设其方程为x 2-y 2=λ(λ≠0).4.巧设双曲线方程 (1)与双曲线x 2a 2-y 2b 2=1 (a >0,b >0)有共同渐近线的方程可表示为x 2a 2-y 2b 2=t (t ≠0).(2)过已知两个点的双曲线方程可设为x 2m +y 2n=1 (mn <0).【链接教材】(打好基础,奠基成长)1.(教材改编)若双曲线x 2a 2-y 2b2=1 (a >0,b >0)的焦点到其渐近线的距离等于实轴长,则该双曲线的离心率为( )A. 5 B .5 C. 2 D .22.(2015·安徽)下列双曲线中,渐近线方程为y =±2x 的是( )A .x 2-y 24=1 B.x 24-y 2=1 C .x 2-y 22=1D.x 22-y 2=1 高三理科数学 导学案 平面解析几何 编制: 审阅:3.(2014·广东)若实数k 满足0<k <9,则曲线x 225-y 29-k =1与曲线x 225-k -y 29=1的( )A .焦距相等B .实半轴长相等C .虚半轴长相等D .离心率相等4.已知F 为双曲线C :x 2-my 2=3m (m >0)的一个焦点,则点F 到C 的一条渐近线的距离为________. 5.(教材改编)经过点A (3,-1),且对称轴都在坐标轴上的等轴双曲线方程为_______.6. 设双曲线x 2a 2-y 29=1(a >0)的渐近线方程为3x ±2y =0,则a 的值为( )A.4B.3C.2D.17 (2013·湖北)已知0<θ<π4,则双曲线C 1:x 2cos 2θ-y 2sin 2θ=1与C 2:y 2sin 2θ-x 2sin 2θtan 2θ=1的( )A.实轴长相等 B .虚轴长相等 C.焦距相等 D.离心率相等8. 已知曲线方程x 2λ+2-y2λ+1=1,若方程表示双曲线,则λ的取值范围是________________.【课堂考点探究】探究点一 双曲线定义的应用例1 1.已知圆C 1:(x +3)2+y 2=1和圆C 2:(x -3)2+y 2=9,动圆M 同时与圆C 1及圆C 2相外切,则动圆圆心M 的轨迹方程为____________________. 2. 设P 是双曲线2211620y x-=上的一点,F1F2分别是双曲线的左右焦点,若为129PFPF ==则( )A.1B.17C.1或17D.以上答案均不对 [总结反思]探究点二 双曲线的标准方程的求法例2 1.根据下列条件,求双曲线的标准方程:(1)虚轴长为12,离心率为54;(2)经过两点P (-3,27)和Q (-62,-7).2 .(2014·天津)已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的一条渐近线平行于直线l :y =2x +10,双曲线的一个焦点在直线l上,则双曲线的方程为( ) A.x 25-y 220=1 B.x 220-y 25=1 C.3x 225-3y 2100=1 D.3x 2100-3y 225=1[总结反思]变式题 (1)(2015·课标全国Ⅱ)已知双曲线过点(4,3),且渐近线方程为y =±12x ,则该双曲线的标准方程为__________________.(2)设椭圆C 1的离心率为513,焦点在x 轴上且长轴长为26,若曲线C 2上的点到椭圆C 1的两个焦点的距离的差的绝对值等于8,则曲线C 2的标准方程为________.探究点三 双曲线的几何性质例3 (1)过双曲线x 2a 2-y 2b 2=1(a >0,b >0)的一个焦点F 作一条渐近线的垂线,垂足为点A ,与另一条渐近线交于点B ,若FB →=2F A →,则此双曲线的离心率为( )A. 2B. 3 C .2 D.5高三理科数学 导学案 平面解析几何 编制: 审阅:(2)(2015·山东)平面直角坐标系xOy 中,双曲线C 1:x 2a 2-y 2b 2=1(a >0,b >0)的渐近线与抛物线C 2:x 2=2py (p >0)交于点O ,A ,B .若△OAB 的垂心为C 2的焦点,则C 1的离心率为________.[总结反思]变式题(1)(2015·重庆)设双曲线x 2a 2-y 2b 2=1(a >0,b >0)的右焦点是F ,左,右顶点分别是A 1,A 2,过F 作A 1A 2的垂线与双曲线交于B ,C 两点,若A 1B ⊥A 2C ,则该双曲线的渐近线的斜率为( ) A .±12 B .±22C .±1D .±2(2)(2015·湖北)将离心率为e 1的双曲线C 1的实半轴长a 和虚半轴长b (a ≠b )同时增加m (m >0)个单位长度,得到离心率为e 2的双曲线C 2,则( )A .对任意的a ,b ,e 1<e 2B .当a >b 时,e 1<e 2;当a <b 时,e 1>e 2C .对任意的a ,b ,e 1>e 2D .当a >b 时,e 1>e 2;当a <b 时,e 1<e 2探究点四 直线与双曲线的综合问题例4 (1)(2015·四川)过双曲线x 2-y 23=1的右焦点且与x 轴垂直的直线,交该双曲线的两条渐近线于A ,B 两点,则|AB |等于( ) A.433B .2 3C .6D .43(2)若双曲线E :x 2a 2-y 2=1(a >0)的离心率等于2,直线y =kx -1与双曲线E 的右支交于A ,B 两点.①求k 的取值范围;②若|AB |=63,点C 是双曲线上一点,且OC →=m (OA →+OB →),求k ,m 的值.[总结反思]变式题已知双曲线C 的两个焦点分别为F 1(-2,0),F 2(2,0),双曲线C 上一点P 到F 1,F 2的距离差的绝对值等于2.(1)求双曲线C 的标准方程;(2)经过点M (2,1)作直线l 交双曲线C 的右支于A ,B 两点,且M 为AB 的中点,求直线l 的方程; (3)已知定点G (1,2),点D 是双曲线C 右支上的动点,求|DF 1|+|DG |的最小值.高三理科数学 导学案 平面解析几何 编制: 审阅:【课后作业】1.(2015·广东)已知双曲线C :x 2a 2-y 2b 2=1的离心率e =54,且其右焦点为F 2(5,0),则双曲线C 的方程为( )A.x 24-y 23=1B.x 29-y 216=1C.x 216-y 29=1D.x 23-y 24=12.设直线l 过双曲线C 的一个焦点,且与C 的一条对称轴垂直,l 与C 交于A ,B 两点,|AB |为C 的实轴长的2倍,则C 的离心率为( )A. 2B. 3 C .2 D .33.(2014·江西)过双曲线C :x 2a 2-y 2b 2=1的右顶点作x 轴的垂线,与C 的一条渐近线相交于点A .若以C 的右焦点为圆心、半径为4的圆经过A ,O 两点(O 为坐标原点),则双曲线C 的方程为( ) A.x 24-y 212=1 B.x 27-y 29=1 C.x 28-y 28=1D.x 212-y 24=1 4.(2015·课标全国Ⅰ)已知M (x 0,y 0)是双曲线C :x 22-y 2=1上的一点,F 1,F 2是C 的两个焦点,若MF 1→·MF 2→<0,则y 0的取值范围是( ) A.⎝⎛⎭⎫-33,33 B.⎝⎛⎭⎫-36,36 C.⎝⎛⎭⎫-223,223 D.⎝⎛⎭⎫-233,233 5.已知椭圆x 2a 21+y 2b 21=1 (a 1>b 1>0)的长轴长、短轴长、焦距成等比数列,离心率为e 1;双曲线x 2a 22-y 2b 22=1 (a 2>0,b 2>0)的实轴长、虚轴长、焦距也成等比数列,离心率为e 2.则e 1e 2等于( ) A.22B .1 C. 3 D .2 6.已知F 为双曲线C :x 29-y 216=1的左焦点,P ,Q 为C 上的点.若PQ 的长等于虚轴长的2倍,点A (5,0)在线段PQ 上,则△PQF 的周长为________.7.已知双曲线x 2m -y 23m =1的一个焦点是(0,2),椭圆y 2n -x 2m=1的焦距等于4,则n =________.8.若点O 和点F (-2,0)分别为双曲线x 2a 2-y 2=1(a >0)的中心和左焦点,点P 为双曲线右支上的任意一点,则OP →·FP →的取值范围为______________.9.(2014·浙江)设直线x -3y +m =0(m ≠0)与双曲线x 2a 2-y 2b 2=1(a >0,b >0)的两条渐近线分别交于点A ,B .若点P (m,0)满足|P A |=|PB |,则该双曲线的离心率是________.10.已知椭圆C 1的方程为x 24+y 2=1,双曲线C 2的左、右焦点分别是C 1的左、右顶点,而C 2的左、右顶点分别是C 1的左、右焦点. (1)求双曲线C 2的方程;(2)若直线l :y =kx +2与双曲线C 2恒有两个不同的交点A 和B ,且OA →·OB →>2(其中O 为原点),求k 的取值范围.双曲线 参考答案 【基础回眸】1.答案 A 解析 由题意得b =2a ,又a 2+b 2=c 2,∴5a 2=c 2.∴e 2=c 2a 2=5,∴e = 5. 2.答案 A 解析 由双曲线渐近线方程的求法知:双曲线x 2-y 24=1的渐近线方程为y =±2x ,故选A.3.答案 A 解析 因为0<k <9,所以两条曲线都表示双曲线.双曲线x 225-y 29-k =1的实半轴长为5,虚半轴长为9-k ,焦距为225+(9-k )=234-k ,离心率为34-k 5.双曲线x 225-k -y 29=1的实半轴长为25-k ,虚半轴长为3,焦距为2(25-k )+9=234-k ,离心率为34-k25-k,故两曲线只有焦距相等.故选A. 4.3解析 双曲线C 的标准方程为x 23m -y 23=1(m >0),其渐近线方程为y =±mmx ,即my =±x ,不妨选取右焦点F (3m +3,0)到其中一条渐近线x -my =0的距离求解,得d =3m +3m +1= 3.5. x 28-y 28=1解析设双曲线的方程为x 2a 2-y 2a 2=±1(a >0),把点A (3,-1)代入,得a 2=8,故所求方程为x 28-y 28=1.6.C 解:由双曲线方程可知渐近线方程为y =±3ax ,又a >0,可知a =2.故选C.7.D 解:易知双曲线C 1实轴长为2cos θ,虚轴长为2sin θ,焦距为2,离心率为1cos θ;双曲线C 2实轴长为2sin θ,虚轴长为2sin θtan θ,焦距为2tan θ,离心率为1cos θ,又0<θ<π4,所以sin θ≠cos θ,tan θ≠1,综上知两双曲线只有离心率相等. 8.(-∞,-2)∪(-1,+∞).解:∵方程x 2λ+2-y2λ+1=1表示双曲线, ∴(λ+2)(λ+1)>0,解得λ<-2或λ>-1.【典例精讲】 例1 1.x 2-y 28=1(x ≤-1) 2.B 1.解析 如图所示,设动圆M 与圆C 1及圆C 2分别外切于A 和B . 根据两圆外切的条件,得|MC 1|-|AC 1|=|MA |,|MC 2|-|BC 2|=|MB |, 因为|MA |=|MB |,所以|MC 1|-|AC 1|=|MC 2|-|BC 2|,即|MC 2|-|MC 1|=|BC 2|-|AC 1|=2,所以点M 到两定点C 1、C 2的距离的差是常数且小于|C 1C 2|=6. 又根据双曲线的定义,得动点M 的轨迹为双曲线的左支(点M 与C 2的距离大,与C 1的距离小), 其中a =1,c =3,则b 2=8.故点M 的轨迹方程为x 2-y 28=1(x ≤-1). 例2 解 (1)设双曲线的标准方程为x 2a 2-y 2b 2=1或y 2a 2-x 2b 2=1(a >0,b >0).由题意知,2b =12,e =c a =54.∴b =6,c =10,a =8. ∴双曲线的标准方程为x 264-y 236=1或y 264-x 236=1.(2)设双曲线方程为mx 2-ny 2=1(mn >0).∴⎩⎪⎨⎪⎧9m -28n =1,72m -49n =1,解得⎩⎨⎧m =-175,n =-125.∴双曲线的标准方程为y 225-x 275=1.2.A 解:由题意可知,双曲线的其中一条渐近线y =b a x 与直线y =2x +10平行,∴ba=2.又双曲线的一个焦点在直线l上,∴-2c +10=0,c =5.∴a 2+b 2=c 2=25.将b =2a 代入上式得a 2=5,b 2=20,故双曲线的方程为x 25-y 220=1.变式 答案 (1)x 24-y 2=1 (2)x 216-y 29=1解析 (1)由双曲线渐近线方程为y =±12x ,可设该双曲线的标准方程为x 24-y 2=λ(λ≠0),已知该双曲线过点(4,3),所以424-(3)2=λ,即λ=1,故所求双曲线的标准方程为x 24-y 2=1.(2)由题意知椭圆C 1的焦点坐标为F 1(-5,0),F 2(5,0),设曲线C 2上的一点P ,则||PF 1|-|PF 2||=8. 由双曲线的定义知:a =4,b =3.故曲线C 2的标准方程为x 242-y 232=1.即x 216-y 29=1.例3 答案 (1)C (2)32解析 (1)如图,∵FB →=2F A →,∴A 为线段BF 的中点,∴∠2=∠3.又∠1=∠2,∴∠2=60°,∴ba =tan 60°=3,∴e 2=1+(ba)2=4,∴e =2.(2)由题意,不妨设直线OA 的方程为y =b a x ,直线OB 的方程为y =-bax .由⎩⎪⎨⎪⎧y =b a x ,x 2=2py ,得x 2=2p ·bax ,∴x =2pb a ,y =2pb 2a 2,∴A ⎝⎛⎭⎫2pb a ,2pb 2a 2.设抛物线C 2的焦点为F ,则F ⎝⎛⎭⎫0,p 2,∴k AF =2pb 2a 2-p22pba .∵△OAB 的垂心为F ,∴AF ⊥OB ,∴k AF ·k OB =-1,∴2pb 2a 2-p22pb a ·⎝⎛⎭⎫-b a =-1,∴b 2a 2=54. 设C 1的离心率为e ,则e 2=c 2a 2=a 2+b 2a 2=1+54=94.∴e =32.变式 答案 (1)C (2)B解析 (1)如图,双曲线x 2a 2-y 2b 2=1的右焦点F (c,0),左,右顶点分别为A 1(-a,0),A 2(a,0),易求B ⎝⎛⎭⎫c ,b 2a ,C ⎝⎛⎭⎫c ,-b2a , 则kA 2C =b 2a a -c ,kA 1B =b 2aa +c,又A 1B 与A 2C 垂直,则有kA 1B ·kA 2C =-1,即b 2a a +c ·b 2a a -c =-1,∴b 4a 2c 2-a 2=1,∴a 2=b 2,即a =b ,∴渐近线斜率k =±ba =±1. (2)e 1=1+b 2a 2,e 2=1+(b +m )2(a +m )2.不妨令e 1<e 2,化简得b a <b +m a +m (m >0),得bm <am ,得b <a .所以当b >a 时,有b a >b +m a +m ,即e 1>e 2;当b <a 时,有b a <b +ma +m ,即e 1<e 2.故选B.例4 (1)答案 D解析 右焦点F (2,0),过F 与x 轴垂直的直线为x =2,渐近线方程为x 2-y 23=0,将x =2代入渐近线方程得y 2=12,∴y =±23,∴A (2,23),B (2,-23),∴|AB |=4 3. (2)解 ①由⎩⎪⎨⎪⎧c a =2,a 2=c 2-1得⎩⎪⎨⎪⎧a 2=1,c 2=2,故双曲线E 的方程为x 2-y 2=1.设A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧y =kx -1,x 2-y 2=1,得(1-k 2)x 2+2kx -2=0.(*)∵直线与双曲线右支交于A ,B 两点,故⎩⎪⎨⎪⎧k >1,Δ=(2k )2-4(1-k 2)×(-2)>0,即⎩⎨⎧k >1,-2<k <2,所以1<k < 2. 故k 的取值范围是{k |1<k <2}.②由(*)得x 1+x 2=2k k 2-1,x 1x 2=2k 2-1,∴|AB |=1+k 2·(x 1+x 2)2-4x 1x 2=2(1+k 2)(2-k 2)(k 2-1)2=63,整理得28k 4-55k 2+25=0,∴k 2=57或k 2=54,又1<k <2,∴k =52,所以x 1+x 2=45,y 1+y 2=k (x 1+x 2)-2=8.设C (x 3,y 3),由OC →=m (OA →+OB →),得(x 3,y 3)=m (x 1+x 2,y 1+y 2)=(45m,8m ). ∵点C 是双曲线上一点. ∴80m 2-64m 2=1,得m =±14.故k =52,m =±14. 变式答案 解 (1)依题意,得双曲线C 的实半轴长为a =1,半焦距为c =2,所以其虚半轴长b =c 2-a 2= 3. 又其焦点在x 轴上,所以双曲线C 的标准方程为x 2-y 23=1. (2)设A ,B 的坐标分别为(x 1,y 1),(x 2,y 2),则⎩⎪⎨⎪⎧3x 21-y 21=3,3x 22-y 22=3.两式相减,得3(x 1-x 2)(x 1+x 2)-(y 1-y 2)(y 1+y 2)=0.因为M (2,1)为AB 的中点,所以⎩⎪⎨⎪⎧x 1+x 2=4,y 1+y 2=2,所以12(x 1-x 2)-2(y 1-y 2)=0,即k AB =y 1-y 2x 1-x 2=6,故AB 所在直线l 的方程为y -1=6(x -2),即6x -y -11=0. (3)由已知,得|DF 1|-|DF 2|=2,即|DF 1|=|DF 2|+2,所以|DF 1|+|DG |=|DF 2|+|DG |+2≥|GF 2|+2,当且仅当G ,D ,F 2三点共线时取等号.因为|GF 2|=(1-2)2+22=5,所以|DF 2|+|DG |+2≥|GF 2|+2=5+2,故|DF 1|+|DG |的最小值为5+2. 【必做题】1. C 解析 因为所求双曲线的右焦点为F 2(5,0)且离心率为e =c a =54,所以c =5,a =4,b 2=c 2-a 2=9,所以所求双曲线方程为x 216-y 29=1,故选C.2.答案 B解析 设双曲线的标准方程为x 2a 2-y 2b 2=1(a >0,b >0),由于直线l 过双曲线的焦点且与对称轴垂直,因此直线l 的方程为:x =c 或x =-c ,代入x 2a 2-y 2b 2=1得y 2=b 2(c 2a 2-1)=b 4a 2,∴y =±b 2a ,故|AB |=2b 2a ,依题意2b 2a =4a ,∴b 2a 2=2,∴c 2-a 2a2=e 2-1=2,∴e = 3.3.答案 A 解析 由⎩⎪⎨⎪⎧x =a ,y =-ba x ,得⎩⎪⎨⎪⎧x =a ,y =-b ,∴A (a ,-b ).由题意知右焦点到原点的距离为c =4, ∴(a -4)2+(-b )2=4,即(a -4)2+b 2=16.而a 2+b 2=16,∴a =2,b =2 3.∴双曲线C 的方程为x 24-y 212=1.4.答案 A解析 由题意知a =2,b =1,c =3,∴F 1(-3,0),F 2(3,0),∴MF 1→=(-3-x 0,-y 0),MF 2→=(3-x 0,-y 0).∵MF 1→·MF 2→<0,∴(-3-x 0)(3-x 0)+y 20<0, 即x 20-3+y 20<0.∵点M (x 0,y 0)在双曲线上,∴x 202-y 20=1,即x 20=2+2y 20,∴2+2y 20-3+y 20<0,∴-33<y 0<33.故选A. 5.答案 B解析 由b 21=a 1c 1,得a 21-c 21=a 1c 1,∴e 1=c 1a 1=5-12.由b 22=a 2c 2,得c 22-a 22=a 2c 2,∴e 2=c 2a 2=5+12. ∴e 1e 2=5-12×5+12=1. 6.答案 44解析 由双曲线C 的方程,知a =3,b =4,c =5,∴点A (5,0)是双曲线C 的右焦点,且|PQ |=|QA |+|P A |=4b =16,由双曲线定义,得|PF |-|P A |=6,|QF |-|QA |=6.∴|PF |+|QF |=12+|P A |+|QA |=28, 因此△PQF 的周长为|PF |+|QF |+|PQ |=28+16=44. 7.答案 5解析 因为双曲线的焦点是(0,2),所以焦点在y 轴上,所以双曲线的方程为y 2-3m -x 2-m =1,即a 2=-3m ,b 2=-m ,所以c 2=-3m -m =-4m =4,解得m =-1.所以椭圆方程为y 2n+x 2=1,且n >0,椭圆的焦距为4,所以c 2=n -1=4或1-n =4,解得n =5或-3(舍去). 8.答案 [3+23,+∞) 解析 由条件知a 2+1=22=4,∴a 2=3,∴双曲线方程为x 23-y 2=1, 设P 点坐标为(x ,y ),则OP →=(x ,y ),FP →=(x +2,y ),∵y 2=x 23-1,∴OP →·FP →=x 2+2x +y 2=x 2+2x +x 23-1=43x 2+2x -1=43(x +34)2-74.又∵x ≥3(P 为右支上任意一点),∴OP →·FP →≥3+2 3. 9.答案 52 解析 双曲线x 2a 2-y 2b 2=1的渐近线方程为y =±b a x .由⎩⎪⎨⎪⎧y =b a x ,x -3y +m =0得A (am 3b -a ,bm 3b -a),由⎩⎪⎨⎪⎧y =-b a x ,x -3y +m =0得B (-am a +3b ,bm a +3b ),所以AB 的中点C 的坐标为(a 2m 9b 2-a 2,3b 2m9b 2-a 2).设直线l :x -3y +m =0(m ≠0),因为|P A |=|PB |,所以PC ⊥l ,所以k PC =-3,化简得a 2=4b 2. 在双曲线中,c 2=a 2+b 2=5b 2,所以e =c a =52.10.解 (1)设双曲线C 2的方程为x 2a 2-y 2b 2=1 (a >0,b >0),则a 2=3,c 2=4,再由a 2+b 2=c 2,得b 2=1.故C 2的方程为x 23-y 2=1.(2)将y =kx +2代入x 23-y 2=1,得(1-3k 2)x 2-62kx -9=0.由直线l 与双曲线C 2交于不同的两点,得⎩⎨⎧1-3k 2≠0,Δ=(-62k )2+36(1-3k 2)=36(1-k 2)>0,∴k 2≠13且k 2<1.① 设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=62k 1-3k 2,x 1x 2=-91-3k 2. ∴x 1x 2+y 1y 2=x 1x 2+(kx 1+2)(kx 2+2)=(k 2+1)x 1x 2+2k (x 1+x 2)+2=3k 2+73k 2-1.又OA →·OB →>2,得x 1x 2+y 1y 2>2,∴3k 2+73k 2-1>2,即-3k 2+93k 2-1>0,解得13<k 2<3.②由①②得13<k 2<1,故k 的取值范围为⎝⎛⎭⎫-1,-33∪⎝⎛⎭⎫33,1.。

相关文档
最新文档