信号与系统课程习题集(含参考答案)

合集下载

信号与系统考题参考解答(完整版)

信号与系统考题参考解答(完整版)

《信号与系统》作业参考解答第一章(P16-17)1-3 设)(1t f 和)(2t f 是基本周期分别为1T 和2T 的周期信号。

证明)()()(21t f t f t f +=是周期为T 的周期信号的条件为T nT mT ==21 (m ,n 为正整数) 解:由题知)()(111t f mT t f =+ )()(222t f mT t f =+要使)()()()()(2121t f t f T t f T t f T t f +=+++=+则必须有21nT mT T == (m ,n 为正整数) 1-5 试判断下列信号是否是周期信号。

若是,确定其周期。

(1)t t t f πsin 62sin 3)(+= (2)2)sin ()(t a t f =(8)⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=2cos 28sin 4cos )(k k k k f πππ解:(1)因为t 2sin 的周期为π,而t πsin 的周期为2。

显然,使方程n m 2=π (m ,n 为正整数)成立的正整数m ,n 是不存在的,所以信号t t t f πsin 62sin 3)(+=是非周期信号。

(2)因为)2cos 1()sin ()(22t a t a t f -==所以信号2)sin ()(t a t f =是周期π=T 的周期信号。

(8)由于)4/cos(k π的周期为8)4//(21==ππN ,)8/sin(k π的周期为16)8//(22==ππN ,)2/cos(k π的周期为4)2//(23==ππN ,且有16412321=⨯=⨯=⨯N N N所以,该信号是周期16=N 的周期信号。

1-10 判断下列系统是否为线性时不变系统,为什么?其中)(t f 、][k f 为输入信号,)(t y 、][k y 为零状态响应。

(1))()()(t f t g t y = (2))()()(2t f t Kf t y += 解:(1)显然,该系统为线性系统。

信号与系统练习及答案

信号与系统练习及答案

信号与系统练习及答案一、单项选择题1.已知信号f (t )的波形如题1图所示,则f (t )的表达式为( ) A .tu(t) B .(t-1)u(t-1) C .tu(t-1) D .2(t-1)u(t-1) 2.积分式⎰-δ+δ++4422)]dt-(t 2(t))[23(t t的积分结果是( )A .14B .24C .26D .283.已知f(t)的波形如题3(a )图所示,则f (5-2t)的波形为( )4.周期矩形脉冲的谱线间隔与( ) A .脉冲幅度有关 B .脉冲宽度有关 C .脉冲周期有关D .周期和脉冲宽度有关5.若矩形脉冲信号的宽度加宽,则它的频谱带宽( )A .不变B .变窄C .变宽D .与脉冲宽度无关6.如果两个信号分别通过系统函数为H (j ω)的系统后,得到相同的响应,那么这两个信号()A .一定相同B .一定不同C .只能为零D .可以不同7.f(t)=)(t u e t的拉氏变换为F (s )=11-s ,且收敛域为( )A .Re[s]>0B .Re[s]<0C .Re[s]>1D .Re[s]<18.函数⎰-∞-δ=2t dx)x ()t (f 的单边拉氏变换F (s )等于( )A .1B .s1 C .e -2sD .s1e -2s9.单边拉氏变换F (s )=22++-s e)s (的原函数f(t)等于( )A .e -2t u(t-1)B .e -2(t-1)u(t-1)C .e -2t u(t-2)D .e -2(t-2)u(t-2)答案: BCCCBDCDA二.填空题1.如果一线性时不变系统的单位冲激响应为h(t),则该系统的阶跃响应g(t)为_________。

2.已知x(t)的傅里叶变换为X (j ω),那么x (t-t 0)的傅里叶变换为_________________。

3.如果一线性时不变系统的输入为f(t),零状态响应为y f (t )=2f (t-t 0),则该系统的单位冲激响应h(t)为_________________。

(完整版)信号与系统练习及答案

(完整版)信号与系统练习及答案

信号与系统练习及答案一、单项选择题1.已知信号f (t )的波形如题1图所示,则f (t )的表达式为( )A .tu(t)B .(t-1)u(t-1)C .tu(t-1)D .2(t-1)u(t-1)2.积分式⎰-δ+δ++4422)]dt -(t 2(t))[23(t t 的积分结果是( ) A .14 B .24 C .26 D .283.已知f(t)的波形如题3(a )图所示,则f (5-2t)的波形为( )4.周期矩形脉冲的谱线间隔与( )A .脉冲幅度有关B .脉冲宽度有关C .脉冲周期有关D .周期和脉冲宽度有关 5.若矩形脉冲信号的宽度加宽,则它的频谱带宽( ) A .不变 B .变窄 C .变宽D .与脉冲宽度无关 6.如果两个信号分别通过系统函数为H (j ω)的系统后,得到相同的响应,那么这两个信号()A .一定相同 B .一定不同 C .只能为零 D .可以不同7.f(t)=)(t u e t 的拉氏变换为F (s )=11-s ,且收敛域为( ) A .Re[s]>0B .Re[s]<0C .Re[s]>1D .Re[s]<1 8.函数⎰-∞-δ=2t dx )x ()t (f 的单边拉氏变换F (s )等于( ) A .1 B .s 1 C .e -2s D .s1e -2s 9.单边拉氏变换F (s )=22++-s e )s (的原函数f(t)等于( ) A .e -2t u(t-1) B .e -2(t-1)u(t-1) C .e -2t u(t-2)D .e -2(t-2)u(t-2)答案: BCCCBDCDA二.填空题1.如果一线性时不变系统的单位冲激响应为h(t),则该系统的阶跃响应g(t)为_________。

2.已知x(t)的傅里叶变换为X (j ω),那么x (t-t 0)的傅里叶变换为_________________。

3.如果一线性时不变系统的输入为f(t),零状态响应为y f (t )=2f (t-t 0),则该系统的单位冲激响应h(t)为_________________。

信号与系统试题附答案

信号与系统试题附答案

信科0801《信号与系统》复习参考练习题一、单项选择题 (2分1题,只有一个正确选项,共20题,40分)1、已知连续时间信号,)2(100)2(50sin )(--=t t t f 则信号t t f 410cos ·)(所占有的频带宽度为() A .400rad /s B 。

200 rad /s C 。

100 rad /s D 。

50 rad /s2、已知信号)(t f 如下图(a )所示,其反转右移的信号f 1(t) 是( )3、已知信号)(1t f 如下图所示,其表达式是( )A 、ε(t )+2ε(t -2)-ε(t -3)B 、ε(t -1)+ε(t -2)-2ε(t -3)C 、ε(t)+ε(t -2)-ε(t -3)D 、ε(t -1)+ε(t -2)-ε(t -3)4、如图所示:f (t )为原始信号,f 1(t)为变换信号,则f 1(t)的表达式是( )A 、f(-t+1)B 、f(t+1)C 、f(-2t+1)D 、f(-t/2+1)5、若系统的冲激响应为h(t),输入信号为f(t),系统的零状态响应是( )6。

信号)2(4sin 3)2(4cos 2)(++-=t t t f ππ与冲激函数)2(-t δ之积为( )A 、2B 、2)2(-t δC 、3)2(-t δD 、5)2(-t δ7线性时不变系统的冲激响应曲线如图所示,该系统微分方程的特征根是( )A 、常数B 、 实数C 、复数D 、实数+复数8、线性时不变系统零状态响应曲线如图所示,则系统的输入应当是( )A 、阶跃信号B 、正弦信号C 、冲激信号D 、斜升信号9. 积分⎰∞∞-dt t t f )()(δ的结果为( )A )0(fB )(t f C.)()(t t f δ D.)()0(t f δ10卷积)()()(t t f t δδ**的结果为( )A.)(t δB.)2(t δC. )(t fD.)2(t f11零输入响应是( )A.全部自由响应B.部分自由响应C.部分零状态响应D.全响应与强迫响应之差12号〔ε(t)-ε(t -2)〕的拉氏变换的收敛域为 ( )A.Re[s]>0B.Re[s]>2C.全S 平面D.不存在13知连续系统二阶微分方程的零输入响应)(t y zi 的形式为t t Be Ae 2--+,则其2个特征根为() A 。

信号与系统(带答案)

信号与系统(带答案)

第一套第1题,下列信号的分类方法不正确的是(A)A、数字信号和离散信号B、确定信号和随机信号C、周期信号和非周期信号:D、因果信号与反因果信号第2题,以下信号属于连续信号的是(B)A、e-nTB、e-at sin(ωt)C、cos(nπ)D、sin(nω0)第3题,下列说法正确的是(D)A、两个周期信号x(t),y(t)的和x(t)+y(t)一定是周期信号。

B、两个周期信号x(t),y(t)的周期分别为2和2开根号,其和信号x(t)+y(t)是周期信号。

C、两个周期信号x(t),y(t)的周期分别为2和Pi,其和信号x(t)+y(t)是周期信号。

D、两个周期信号x(t),y(t)的周期分别为2和3,其和信号x(t)+y(t)是周期信号。

第4题,将信号f(t)变换为( A ) 称为对信号f(t)的平移或移位。

A、f(t-t0)B、f( k -k0)C、f(at)D、f(-t)第五题,下列基本单元属于数乘器的是(A )A、B、C、D、第六题、下列傅里叶变换错误的是(D)А.1<-->2πδ(ω)B.ejω0t<-- > 2πδ(ω-ω0 )С.соѕ(ω0t) < -- > π[δ(ω-ω0 ) +δ (ω+ω0 )]D. ѕіn(ω0t)<-> jπ[δ(ω+ω0)+ δ(ω- ω0)]第7题、奇谐函数只含有基波和奇次谐波的正弦和余弦项,不会包含偶次谐波项。

(对)第8题、在奇函数的傅里叶级数中不会含有正弦项,只可能含有直流项和余弦项。

(错)第9题、满足均匀性和____条件的系统称为线性系统。

(叠加性)第10题.根据激励信号和内部状态的不同,系统响应可分为零输入响应和__响应(零状态)第二套1、当周期信号的周期增大时,频谱图中谱线的间隔( C)A:增大B:无法回答C:减小D:不变2、δ(t)的傅立叶变换为( A)。

A:1B: u(t)C: 0D:不存在3、已知f(t),为求f(3-2t)则下列运算正确的是(B)A:f(-2t)左移3/2B:f(-2t)右移3/2C:f(2t)左移3D:f(2t)右移3 ,4、下列说法不正确的是(D)。

(完整版)信号与系统专题练习题及答案

(完整版)信号与系统专题练习题及答案

(完整版)信号与系统专题练习题及答案信号与系统专题练习题一、选择题1.设当t<3时,x(t)=0,则使)2()1(t x t x -+-=0的t 值为 C 。

A t>-2或t>-1B t=1和t=2C t>-1D t>-22.设当t<3时,x(t)=0,则使)2()1(t x t x -?-=0的t 值为 D 。

A t>2或t>-1B t=1和t=2C t>-1D t>-23.设当t<3时,x(t)=0,则使x(t/3)=0的t 值为 C 。

A t>3 B t=0 C t<9 D t=34.信号)3/4cos(3)(π+=t t x 的周期是 C 。

A π2 B π C 2/π D π/25.下列各表达式中正确的是B A. )()2(t t δδ= B.)(21)2(t t δδ= C. )(2)2(t t δδ= D. )2(21)(2t t δδ=6. 已知系统的激励e(t)与响应r(t)的关系为:)1()(t e t r -= 则该系统为 B 。

A 线性时不变系统 B 线性时变系统 C 非线性时不变系统 D 非线性时变系统7. 已知系统的激励e(t)与响应r(t)的关系为:)()(2t e t r = 则该系统为 C 。

A 线性时不变系统B 线性时变系统C 非线性时不变系统D 非线性时变系统 8. ?∞-=td ττττδ2sin )( A 。

A 2u(t) B )(4t δ C 4 D 4u(t)10.dt t t )2(2cos 33+??-δπ等于 B 。

A 0 B -1 C 2 D -211.线性时不变系统输出中的自由响应的形式由 A 决定A 系统函数极点的位置;B 激励信号的形式;C 系统起始状态;D 以上均不对。

12.若系统的起始状态为0,在x (t)的激励下,所得的响应为 D 。

A 强迫响应;B 稳态响应;C 暂态响应;D 零状态响应。

信号与系统课后习题附参考答案

信号与系统课后习题附参考答案

1-1试分别指出以下波形是属于哪种信号?题图1-11-2 试写出题1-1图中信号的函数表达式。

1-3已知信号)(1t x 与)(2t x 波形如题图1-3中所示,试作出下列各信号的波形图,并加以标注。

题图1-3t)(2t x )(b 12112t)(1t x )(a 121123122T T2TEt)(t x )(a t)(t x )(b 13124023412t)(t x )(c n)(n x )(d 2213012112344⑴)2(1t x ⑵)1(1t x ⑶)22(1t x ⑷)3(2tx ⑸)22(2t x ⑹)21(2t x ⑺)(1t x )(2t x ⑻)1(1t x )1(2tx ⑼)22(1t x )4(2tx 1-4 已知信号)(1n x 与)(2n x 波形如题图1-4中所示,试作出下列各信号的波形图,并加以标注。

题图1-4⑴)12(1n x ⑵)4(1n x ⑶)2(1n x ⑷)2(2n x ⑸)2(2n x ⑹)1()2(22n x n x ⑺)2(1nx )21(2n x ⑻)1(1n x )4(2nx ⑼)1(1nx )3(2nx 1-5 已知信号)25(t x 的波形如题图1-5所示,试作出信号)(t x 的波形图,并加以标注。

题图1-5t)25(t x 110232523n)(2n x )(b 2213121124n)(1n x )(a 22131142134212321231-6 试画出下列信号的波形图:⑴)8sin()sin()(t t t x ⑵)8sin()]sin(211[)(t t t x ⑶)8sin()]sin(1[)(t t t x ⑷)2sin(1)(t tt x 1-7 试画出下列信号的波形图:⑴)(1)(t u e t x t⑵)]2()1([10cos )(t u t u t e t x t⑶)()2()(t u e t x t⑷)()()1(t u et x t ⑸)9()(2tu t x ⑹)4()(2tt x 1-8试求出以下复变函数的模与幅角,并画出模与幅角的波形图。

信号与系统试题库史上最全(内含答案)

信号与系统试题库史上最全(内含答案)

信号与系统考试方式:闭卷 考试题型:1、简答题(5个小题),占30分;计算题(7个大题),占70分。

一、简答题:1.dtt df t f x e t y t )()()0()(+=-其中x(0)是初始状态,为全响应,为激励,)()(t y t f 试回答该系统是否是线性的?[答案:非线性]2.)()(sin )('t f t ty t y =+试判断该微分方程表示的系统是线性的还是非线性的,是时变的还是非时变的?[答案:线性时变的]3.已知有限频带信号)(t f 的最高频率为100Hz ,若对)3(*)2(t f t f 进行时域取样,求最小取样频率s f =?[答案:400s f Hz =]4.简述无失真传输的理想条件。

[答案:系统的幅频特性为一常数,而相频特性为通过原点的直线]5.求[]⎰∞∞--+dt t t e t )()('2δδ的值。

[答案:3]6.已知)()(ωj F t f ↔,求信号)52(-t f 的傅立叶变换。

[答案:521(25)()22j f t e F j ωω--↔]7.已知)(t f 的波形图如图所示,画出)2()2(t t f --ε的波形。

[答案: ]8.已知线性时不变系统,当输入)()()(3t e e t x t t ε--+=时,其零状态响应为)()22()(4t e e t y t t ε--+=,求系统的频率响应。

[答案:())4)(2(52)3(++++ωωωωj j j j ]9.求象函数2)1(32)(++=s s s F ,的初值)0(+f 和终值)(∞f 。

[答案:)0(+f =2,0)(=∞f ]10.若LTI 离散系统的阶跃响应为)(k g ,求其单位序列响应。

其中:)()21()(k k g k ε=。

[答案:1111()()(1)()()()(1)()()(1)222k k k h k g k g k k k k k εεδε-=--=--=--]11.已知()1 1 , 0,1,20 , k f k else ==⎧⎨⎩ ,()2 1 , 0,1,2,30 , k k f k else -==⎧⎨⎩设()()()12f k f k f k =*,求()3?f =。

信号与系统作业答案(全部)

信号与系统作业答案(全部)

1-8 试判断下列信号中哪些为能量信号,哪那些为功率信号,或者都不是。

方法二:由已知条件知道:当12(0)5,(0)3y y ==时的零输入响应为12333(0)5(0)3(0)5(23)3(42)229,0ttttttx x x y y y eeeeeet ------=+=++-=+>以(1)为例按照定义说明线性、时不变性和因果性。

线性:设112212[]2[],[]2[];[][][]k k y k f k y k f k f k f k f k αβ===+121212[]2{[][]}2[]2[][][]kkky k f k f k f k f k y k y k αβαβαβ=+=+=+属于线性;时不变性:100001[]{[]}2[][]2[][]kk k y k T f k k f k k y k k f k k y k -=-=--=-≠因果性:[]2[]k y k f k =,输出不超前输入,因此为因果系统。

第二章第三章(1) 解:微分方程的特征方程为:2320s s ++=,特征根1,21,2s =--齐次解形式为:2(),0t t h y t Ae Be t --=+>输入信号()()f t u t =,特解为(),0p y t C t =>,'()''()0p p y t y t ==。

将特解及其导数代入微分方程:0+0+2C=1,C=1/2,特解为()1/2,0p y t t =>。

全解形式为: 2()()()1/2,0t t h p y t y t y t Ae Be t --=+=++>,2'()2t t y t Ae Be --=-- 代入初始条件:(0)1/21,'(0)21y A B y A B =++==--=解得:A=2,B=-3/2(2) (2)解:微分方程的特征方程为:2320s s ++=,特征根1,21,2s =--齐次解形式为:2(),0t t h y t Ae Be t --=+>输入信号()cos(2)()f t t u t =,特解为()sin(2)cos(2),0p y t C t D t t =+>,'()2cos(2)2sin(2),0;''()4sin(2)4cos(2),0p p y t C t D t t y t C t D t t =->=-->将特解及其导数代入微分方程:300.3,10.1A B A A B B --==⎧⎧⎨⎨+==-⎩⎩特解为()0.3sin(2)0.1cos(2),0p y t t t t =->。

《信号与系统》课程习题与解答

《信号与系统》课程习题与解答

《信号与系统》课程习题与解答第二章习题(教材上册第二章p81-p87)2-1,2-4~2-10,2-12~2-15,2-17~2-21,2-23,2-24第二章习题解答2-1 对下图所示电路图分别列写求电压的微分方程表示。

图(a):微分方程:11222012()2()1()()()2()()()()2()()()c cc di t i t u t e t dtdi t i t u t dtdi t u t dt du t i t i t dt ⎧+*+=⎪⎪⎪+=⎪⇒⎨⎪=⎪⎪⎪=-⎩图(b ):微分方程:⎪⎪⎪⎩⎪⎪⎪⎨⎧-==+++=+++⎰⎰2021'2'21'2'11)(01)(1Ri t v Ri Mi Li dt i Ct e Ri Mi Li dt i C)()(1)(2)()2()(2)()(33020022203304422t e dtd MR t v C t v dt d C R t v dt d C L R t v dt d RL t v dt d M L =+++++-⇒ 图(c)微分方程:dt i C i L t v ⎰==211'101)(⎪⎪⎪⎩⎪⎪⎪⎨⎧===⇒⎰dt t v L i t v L i dtdt v L i dt d)(1)(1)(10110'1122011∵ )(122111213t i dt d L C i i i i +=+=)(0(1]1[][101011022110331t e dt dR t v RL v dt d RR L C v dt d R C R C v dt d CC μ=+++++⇒图(d)微分方程:⎪⎩⎪⎨⎧+-=++=⎰)()()()()(1)()(11111t e t Ri t v t v dt t i C t Ri t e μRC v dt d 1)1(1+-⇒μ)(11t e V = ∵)()(10t v t v μ=)()(1)1(0'0t e R v t v R Cv v =+-⇒2-4 已知系统相应的其次方程及其对应的0+状态条件,求系统的零输入响应。

信号与系统试题库史上最全内含答案)

信号与系统试题库史上最全内含答案)

信号与系统考试方式:闭卷 考试题型:1、简答题(5个小题),占30分;计算题(7个大题),占70分。

一、简答题:1.dtt df t f x e t y t )()()0()(+=-其中x(0)是初始状态,为全响应,为激励,)()(t y t f 试回答该系统是否是线性的?[答案:非线性]2.)()(sin )('t f t ty t y =+试判断该微分方程表示的系统是线性的还是非线性的,是时变的还是非时变的?[答案:线性时变的]3.已知有限频带信号)(t f 的最高频率为100Hz ,若对)3(*)2(t f t f 进行时域取样,求最小取样频率s f =?[答案:400s f Hz =]4.简述无失真传输的理想条件。

[答案:系统的幅频特性为一常数,而相频特性为通过原点的直线]5.求[]⎰∞∞--+dt t t e t )()('2δδ的值。

[答案:3]6.已知)()(ωj F t f ↔,求信号)52(-t f 的傅立叶变换。

[答案:521(25)()22j f t e F j ωω--↔]7.已知)(t f 的波形图如图所示,画出)2()2(t t f --ε的波形。

[答案: ]8.已知线性时不变系统,当输入)()()(3t e e t x t t ε--+=时,其零状态响应为)()22()(4t e e t y t t ε--+=,求系统的频率响应。

[答案:())4)(2(52)3(++++ωωωωj j j j ]9.求象函数2)1(32)(++=s s s F ,的初值)0(+f 和终值)(∞f 。

[答案:)0(+f =2,0)(=∞f ]10.若LTI 离散系统的阶跃响应为)(k g ,求其单位序列响应。

其中:)()21()(k k g k ε=。

[答案:1111()()(1)()()()(1)()()(1)222k k k h k g k g k k k k k εεδε-=--=--=--]11.已知()1 1 , 0,1,20 , k f k else ==⎧⎨⎩ ,()2 1 , 0,1,2,30 , k k f k else -==⎧⎨⎩设()()()12f k f k f k =*,求()3?f =。

信号与系统课后习题答案汇总

信号与系统课后习题答案汇总

第一章习题参考解答1.1 绘出下列函数波形草图。

(1) ||3)(t et x -=(2) ()⎪⎪⎨⎧<≥=02021)(n n n x n n (3) )(2sin )(t t tx επ= (5) )]4()([4cos )(--=-t t t et x tεεπ(7) t t t t x 2cos)]2()([)(πδδ--= (9) )2()1(2)()(-+--=t t t t x εεε)5- (11) )]1()1([)(--+=t t dtdt x εε (12) )()5()(n n n x --+-=εε (13) ⎰∞--=td t x ττδ)1()((14) )()(n n n x --=ε1.2 确定下列信号的能量和功率,并指出是能量信号还是功率信号,或两者均不是。

(1) ||3)(t et x -=解 能量有限信号。

信号能量为:(2) ()⎪⎩⎪⎨⎧<≥=02021)(n n n x n n解 能量有限信号。

信号能量为:(3) t t x π2sin )(=解 功率有限信号。

周期信号在(∞-∞,)区间上的平均功率等于在一个周期内的平均功率,t π2sin 的周期为1。

(4) n n x 4sin)(π=解 功率有限信号。

n 4sin π是周期序列,周期为8。

(5) )(2sin )(t t t x επ=解 功率有限信号。

由题(3)知,在),(∞-∞区间上t π2sin 的功率为1/2,因此)(2sin t t επ在),(∞-∞区间上的功率为1/4。

如果考察)(2sin t t επ在),0(∞区间上的功率,其功率为1/2。

(6) )(4sin)(n n n x επ=解 功率有限信号。

由题(4)知,在),(∞-∞区间上n 4sin π的功率为1/2,因此)(4sinn n επ在),(∞-∞区间上的功率为1/4。

如果考察)(4sin n n επ在),0(∞区间上的功率,其功率为1/2。

信号与系统课程习题与解答

信号与系统课程习题与解答

《信号与系统》课程习题与解答第三章习题(教材上册第三章p160-p172)3-1~3-3,3-5,3-9,3-12,3-13,3-15~3-17,3-19,3-22,3-24,3-25,3-29,3-32第三章习题解答3-2 周期矩形信号如题图3-2所示。

若:求直流分量大小以及基波、二次和三次谐波的有效值。

解:直流分量⎰⎰--=⨯==2222301105)(1ττv Edt dt t f T a TTf(t)为偶函数,∴0=n b)(2cos )(222T n Sa T E tdt n t f T a n πττωττ⎰-==)(21T n Sa T E a F n n πςτ== 基波 =1a )1.0s i n (20)(2πππττ=T Sa T E有效值 39.11.0sin 22021≈=ππa二次谐波有效值 32.122≈a三次谐波有效值 21.123≈a3-3 若周期矩形信号)(1t f 和 )(2t f 波形如题图3-2所示,)(1t f 的参数为s μτ5.0=,s T μ1=,E=1V ;)(2t f 的参数为s μτ5.1=,s T μ3=,E=3V ,分别求:(1))(1t f 的谱线间隔和带宽(第一零点位置),频率单位以kHz 表示; (2))(2t f 的谱线间隔和带宽; (3) )(1t f 和 )(2t f 的基波幅度之比; (4) )(1t f 基波与)(2t f 三次谐波幅度之比。

解:(1))(1t f s μτ5.0= s T μ1= E=1V 谱线间隔:khZ T 10001==∆带宽:KHzB f 20001==τ(2) )(2t f s μτ5.1= s T μ3= E=3V间隔:khZ T 310001==∆谱线带宽:KHzB f 320001==τ(3) )(1t f 基波幅度:ππτ2)2cos(4201==⎰dt t T E T a )(2t f 基波幅度:ππτ6)2cos(4201==⎰dt t T E T a幅度比:1:3(4) )(2t f 三次谐波幅度:ππτ2)23cos(4203-=⨯=⎰dt t T E T a 幅度比:1:13-5 求题图3-5所示半波余弦信号的傅立叶级数。

信号与系统习题集

信号与系统习题集

信号与系统 习题1一、填空题1.离散信号()2()k f k k ε=,则该信号的单边Z 变换为 ① .2.信号()f t 的傅里叶变换为()F j ω,则(23)f t -的傅里叶变换为 ① 。

3.已知周期信号()cos(230)sin(4+60)f t t t =++,则其周期为 ① s ,基波频率为 ② rad/s 。

4、已知)(1t f 和)(2t f 的波形如下图所示,设)()()(21t f t f t f *=,则=-)1(f ① ,=)0(f ② 。

5、单边拉氏变换())4(22+=s s s F ,其反变换()=t f ① 。

6、一离散系统的传输算子为23)(22+++=E E EE E H ,则系统对应的差分方程为 ① ,单位脉冲响应为 ② 。

二、单项选择题1. 下列说法不正确的是______。

A. 每个物理系统的数学模型都不相同。

B. 同一物理系统在不同的条件下,可以得到不同形式的数学模型。

C. 不同的物理系统经过抽象和近似,有可能得到形式上完全相同的数学模型。

D 。

对于较复杂的系统,同一系统模型可有多种不同的数学表现形式。

2. 周期信号f (t )的傅立叶级数中所含有的频率分量是______.A 。

余弦项的奇次谐波,无直流 B. 正弦项的奇次谐波,无直流 C 。

余弦项的偶次谐波,直流 D. 正弦项的偶次谐波,直流 3。

当周期矩形信号的脉冲宽度缩小一半时,以下说法正确的是_____.A 。

谱线间隔增加一倍 B. 第一个过零点增加一倍 C. 幅值不变 D. 谱线变成连续的 4。

图3所示的变化过程,依据的是傅立叶变换的_____。

图3A. 时移性 B. 频移性 C. 尺度变换 D 。

对称性 5. 对抽样信号进行恢复,需将信号通过_____。

A. 理想带通滤波器 B 。

理想电源滤波器C. 理想高通滤波器 D 。

理想低通滤波器 6. 连续周期信号的频谱有_____。

信号与系统课后习题答案

信号与系统课后习题答案

第1章 习题答案1-1 题1-1图所示信号中,哪些是连续信号哪些是离散信号哪些是周期信号哪些是非周期信号哪些是有始信号解: ① 连续信号:图a 、c 、d ; ② 离散信号:图b ; ③ 周期信号:图d ;④ 非周期信号:图a 、b 、c ; ⑤有始信号:图a 、b 、c;1-2 已知某系统的输入ft 与输出yt 的关系为yt=|ft|,试判定该系统是否为线性时不变系统; 解: 设T 为此系统的运算子,由已知条件可知: yt=Tft=|ft|,以下分别判定此系统的线性和时不变性; ① 线性 1可加性不失一般性,设ft=f 1t+f 2t,则y 1t=Tf 1t=|f 1t|,y 2t=Tf 2t=|f 2t|,yt=Tft=Tf 1t+f 2t=|f 1t+f 2t|,而|f 1t|+|f 2t|≠|f 1t+f 2t|即在f 1t →y 1t 、f 2t →y 2t 前提下,不存在f 1t +f 2t →y 1t +y 2t,因此系统不具备可加性; 由此,即足以判定此系统为一非线性系统,而不需在判定系统是否具备齐次性特性; 2齐次性由已知条件,yt=Tft=|ft|,则Taft=|aft|≠a|ft|=ayt 其中a 为任一常数即在ft →yt 前提下,不存在aft →ayt,此系统不具备齐次性,由此亦可判定此系统为一非线性系统;② 时不变特性由已知条件yt=Tft=|ft|,则yt-t 0=Tft-t 0=|ft-t 0|,即由ft →yt,可推出ft-t 0→yt-t 0,因此,此系统具备时不变特性; 依据上述①、②两点,可判定此系统为一非线性时不变系统; 1-3 判定下列方程所表示系统的性质: 解:a ① 线性 1可加性由 ⎰+=tdx x f dtt df t y 0)()()(可得⎪⎩⎪⎨⎧→+=→+=⎰⎰tt t y t f dxx f dt t df t y t y t f dxx f dt t df t y 01122011111)()()()()()()()()()(即即则即在)()()()()()()()(21212211t y t y t f t f t y t f t y t f ++前提下,有、→→→,因此系统具备可加性; 2齐次性由)()(t y t f →即⎰+=tdx x f dtt df t y 0)()()(,设a 为任一常数,可得 即)()(t ay t af →,因此,此系统亦具备齐次性; 由上述1、2两点,可判定此系统为一线性系统;② 时不变性)()(t y t f → 具体表现为:⎰+=tdx x f dtt df t y 0)()()( 将方程中得ft 换成ft-t 0、yt 换成yt-t 0t 0为大于0的常数,即 ⎰-+-=-tdx t x f dtt t df t t y 0000)()()( 设τ=-0t x ,则τd dx =,因此⎰--+-=-0)()()(00t t t d f dt t t df t t y ττ也可写成⎰--+-=-0)()()(00t t t dx x f dtt t df t t y , 只有ft 在t=0时接入系统,才存在)()(00t t y t t f -→-,当ft 在t ≠0时接入系统, 不存在)()(00t t y t t f -→-,因此,此系统为一时变系统;依据上述①、②,可判定此系统为一线性时变系统; b ① 线性 1可加性 在由)2()()(3)(2)(''''-+=++t f t f t y t y t y 规定的)()(t y t f →对应关系的前提下,可得 即由)()()()()()()()(21212211t y t y t f t f t y t f t y t f ++可推出→−−→−⎭⎬⎫→→,系统满足可加性;2齐次性 由)()(t y t f →,即)2()()(3)(2)(''''-+=++t f t f t y t y t y ,两边同时乘以常数a,有 即)()(t ay t af→,因此,系统具备齐次性;由1、2可判定此系统为一线性系统;② 时不变性分别将)()(00t t f t t y --和t 0为大于0的常数代入方程)2()()(3)(2)(''''-+=++t f t f t y t y t y 左右两边,则左边=)(3)(2)(00202t t y dt t t dy dtt t y d -+-+- 而 ,)()()(000t t y dt d t t y t t d d -=-- )()]()([)(022000t t y dtd t t y t t d d t t d d -=---所以,右边=)(3)(2)(00202t t y dt t t dy dtt t y d -+-+-=左边,故系统具备时不变特性; 依据上述①、②,可判定此系统为一线性时不变系统; c ① 线性 1可加性在由式)(3)(2)(2)('''t f t y t ty t y =++规定的)()(t y t f →对应关系的前提下,可得即在)()()()(2211t y t f t y t f →→、的前提下,有式)()()()(2121t y t y t f t f +→+存在,即系统满足可加性;2齐次性 由)()(t y t f →,即)(3)(2)(2)('''t f t y t ty t y =++,两边同时乘以常数a,有)]([3)]([2)]([2)]([)(3)(2)(2)(''''''t af t ay t ay t t ay t af t ay t aty t ay =++⇒=++,即有 )()(t ay t af→,因此,系统具备齐次性;依据上述1、2,此系统为一线性系统; ② 时不变性分别将)()(00t t f t t y --和 t 0为大于0的常数代入方程)(3)(2)(2)('''t f t y t ty t y =++ 左右两边,则因此,系统是时变的;依据上述①、②,可判定此系统为一线性时变系统; d ① 线性 1可加性在由式)()()]([2't f t y t y =+规定的)()(t y t f →对应关系的前提下,可得而不是:)]()([)]()([})]'()({[2121221t f t f t y t y t y t y +=+++ 即在)()()()(2211t y t f t y t f →→、的前提下,并不存在)()()()(2121t y t y t f t f +→+因此系统不满足可加性,进而系统不具备线性特性;下面的齐次性判定过程可省略 2齐次性 由)()(t y t f →,即)()()]([2't f t y t y =+,两边同时乘以常数a,有)()()]([2't af t ay t y a =+,即式)]([)]([})]({[2't af t ay t ay =+不成立,不存在)()(t ay t af →因此,系统也不具备齐次性;单独此结论,也可判定此系统为一非线性系统; ② 时不变性分别将)()(00t t f t t y --和 t 0为大于0的常数代入方程)()()]([2't f t y t y =+ 左右两边,则即以式)()()]([2't f t y t y =+规定的)()(t y t f →关系为前提,存在)()(00t t y t t f -→-因此,系统是非时变的;依据上述①、②,可判定此系统为一线性时不变系统; 1-4 试证明方程)()()('t f t ay t y =+所描述的系统为线性系统;提示:根据线性的定义,证明满足可加性和齐次性; 证明:1证明齐次性2证明可加性由以上1、2,可知系统是线性的;1-5 试证明题1-4的系统满足时不变性;提示:将方程中的t 换为t-t 0,导出ft-t 0与yt-t 0对应; 证明:分别将)()(00t t f t t y --和 t 0为大于0的常数代入方程)()()('t f t ay t y =+ 左右两边,则即以式)()()('t f t ay t y =+规定的)()(t y t f →关系为前提,存在)()(00t t y t t f -→-因此,系统满足时不变性;1-6 试一般性的证明线性时不变系统具有微分特性;提示:利用时不变性和微分的定义推导; 证明:设线性时不变系统的激励与响应的对应关系为)()(t y t f →,则由线性可加性可得)()()()(t t y t y t t f t f ∆--→∆--因此tt t y t y t t t f t f ∆∆--→∆∆--)()()()(所以t t t y t y t t t f t f t t ∆∆--→∆∆--→∆→∆)()()()(lim lim即)()(''t y t f → 线性时不变系统具有微分特性;1-7 若有线性时不变系统的方程为)()()('t f t ay t y =+,若在非零ft 作用下其响应te t y --=1)(,试求方程)()(2)()(''t f t f t ay t y +=+的响应;解:已知tet y t f --=→1)()(,由线性关系的齐次性特性,有又由线性系统的微分特性,有 再由线性关系的可加性特性,可得。

信号与系统考试题及答案

信号与系统考试题及答案

信号与系统考试题及答案一、选择题1. 在信号与系统中,周期信号的傅里叶级数展开中,系数\( a_n \)表示:A. 基频的振幅B. 谐波的振幅C. 直流分量D. 相位信息答案:B2. 下列哪个不是线性时不变系统的主要特性?A. 线性B. 时不变性C. 因果性D. 可逆性答案:D二、简答题1. 简述傅里叶变换与拉普拉斯变换的区别。

答案:傅里叶变换主要用于处理周期信号或至少是定义在实数线上的信号,而拉普拉斯变换则可以处理更广泛类型的信号,包括非周期信号和定义在复平面上的信号。

傅里叶变换是拉普拉斯变换的一个特例,当\( s = j\omega \)时,拉普拉斯变换退化为傅里叶变换。

2. 解释什么是系统的冲激响应,并举例说明。

答案:系统的冲激响应是指系统对单位冲激信号的响应。

它是系统特性的一种表征,可以用来分析系统对其他信号的响应。

例如,一个简单的RC电路的冲激响应是一个指数衰减函数。

三、计算题1. 已知连续时间信号\( x(t) = e^{-|t|} \),求其傅里叶变换\( X(f) \)。

答案:\[ X(f) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-|t|}e^{-j2\pi ft} dt \]\[ X(f) = \frac{1}{2\pi} \left[ \int_{-\infty}^{0} e^{t} e^{-j2\pi ft} dt + \int_{0}^{\infty} e^{-t} e^{-j2\pi ft} dt\right] \]\[ X(f) = \frac{1}{2\pi} \left[ \frac{1}{1+j2\pi f} -\frac{1}{1-j2\pi f} \right] \]\[ X(f) = \frac{1}{\pi} \frac{j2\pi f}{1 + (2\pi f)^2} \]2. 给定一个线性时不变系统的系统函数\( H(f) = \frac{1}{1+j2\pi f} \),求该系统对单位阶跃信号\( u(t) \)的响应。

(完整版)信号与系统练习及答案

(完整版)信号与系统练习及答案

信号与系统练习及答案一、单项选择题1.已知信号f (t )的波形如题1图所示,则f (t )的表达式为( )A .tu(t)B .(t-1)u(t-1)C .tu(t-1)D .2(t-1)u(t-1)2.积分式⎰-δ+δ++4422)]dt -(t 2(t))[23(t t 的积分结果是( ) A .14 B .24 C .26 D .283.已知f(t)的波形如题3(a )图所示,则f (5-2t)的波形为( )4.周期矩形脉冲的谱线间隔与( )A .脉冲幅度有关B .脉冲宽度有关C .脉冲周期有关D .周期和脉冲宽度有关 5.若矩形脉冲信号的宽度加宽,则它的频谱带宽( ) A .不变 B .变窄 C .变宽D .与脉冲宽度无关 6.如果两个信号分别通过系统函数为H (j ω)的系统后,得到相同的响应,那么这两个信号()A .一定相同 B .一定不同 C .只能为零 D .可以不同7.f(t)=)(t u e t 的拉氏变换为F (s )=11-s ,且收敛域为( ) A .Re[s]>0B .Re[s]<0C .Re[s]>1D .Re[s]<1 8.函数⎰-∞-δ=2t dx )x ()t (f 的单边拉氏变换F (s )等于( ) A .1 B .s 1 C .e -2s D .s1e -2s 9.单边拉氏变换F (s )=22++-s e )s (的原函数f(t)等于( ) A .e -2t u(t-1) B .e -2(t-1)u(t-1) C .e -2t u(t-2)D .e -2(t-2)u(t-2)答案: BCCCBDCDA二.填空题1.如果一线性时不变系统的单位冲激响应为h(t),则该系统的阶跃响应g(t)为_________。

2.已知x(t)的傅里叶变换为X (j ω),那么x (t-t 0)的傅里叶变换为_________________。

3.如果一线性时不变系统的输入为f(t),零状态响应为y f (t )=2f (t-t 0),则该系统的单位冲激响应h(t)为_________________。

信号与系统复习题(含答案)

信号与系统复习题(含答案)

信号与系统复习题(含答案)试题一一.选择题(共10题,20分) 1、n j n j een x )34()32(][ππ+=,该序列是。

A.非周期序列B.周期3=NC.周期8/3=ND. 周期24=N2、一连续时间系统y(t)= x(sint),该系统是。

A.因果时不变B.因果时变C.非因果时不变D.非因果时变 3、一连续时间LTI 系统的单位冲激响应)2()(4-=-t u e t h t ,该系统是。

A.因果稳定B.因果不稳定C.非因果稳定D. 非因果不稳定4、若周期信号x[n]是实信号和奇信号,则其傅立叶级数系数a k 是。

A.实且偶B.实且为奇C.纯虚且偶D. 纯虚且奇 5、一信号x(t)的傅立叶变换??><=2||02||1)(ωωω,,j X ,则x(t)为。

A. t t 22sinB. tt π2sin C. t t 44sin D.t t π4sin6、一周期信号∑∞-∞=-=n n t t x )5()(δ,其傅立叶变换)(ωj X 为。

A. ∑∞-∞=-k k )52(52πωδπ B. ∑∞-∞=-k k )52(25πωδπC. ∑∞-∞=-k k )10(10πωδπD. ∑∞-∞=-k k)10(101πωδπ7、一实信号x[n]的傅立叶变换为)(ωj e X ,则x[n]奇部的傅立叶变换为。

A.)}(Re{ωj e X j B. )}(Re{ωj e XC. )}(Im{ωj e X j D. )}(Im{ωj e X8、一信号x(t)的最高频率为500Hz ,则利用冲激串采样得到的采样信号x(nT)能唯一表示出原信号的最大采样周期为。

A. 500B. 1000C. 0.05D. 0.001 9、一信号x(t)的有理拉普拉斯共有两个极点s=-3和s=-5,若)()(4t x e t g t =,其傅立叶变换)(ωj G 收敛,则x(t)是。

A. 左边B. 右边C. 双边D. 不确定10、一系统函数1}Re{1)(->+=s s e s H s,,该系统是。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《信号与系统》课程习题集一、计算题1. 已知一连续时间LTI 系统,输入为()(2)n f t t n δ+∞=-∞=-∑,单位冲激响应sin 3()t th t π=。

(1)求()f t 的傅里叶级数系数k a ,以及傅里叶变换()F j ω。

(2)求该系统的频率响应)(ωj H ,并概略画出其波形。

(3)求该系统输出)(t y ,以及)(ωj Y 。

2. 已知一连续时间理想高通滤波器S ,其频率响应是1,400()0,H j otherωω⎧≥⎪=⎨⎪⎩。

当该滤波器的输入是一个基波周期4T π=且傅里叶级数系数为k a 的信号()f t 时,发现有()()()Sf t y t f t −−→=。

问对于什么样的k 值,才能保证0=k a ?3. 已知一连续时间理想低通滤波器S ,其频率响应是1,200()0,>200H j ωωω⎧≤⎪=⎨⎪⎩。

当该滤波器的输入是一个基波周期8T π=且傅里叶级数系数为k a 的信号()f t 时,发现有()()()Sf t y t f t −−→=。

问对于什么样的k 值,才能保证0=k a ?4. 已知一连续时间LTI 系统,输入为()(),4n f t t nT T δ+∞=-∞=-=∑,单位冲激响应sin 2()tth t π=。

(1)求()f t 的傅里叶级数系数k a ,以及傅里叶变换()F j ω。

(2)求该系统的频率响应)(ωj H ,并概略画出其波形。

(3)求该系统输出)(t y ,以及)(ωj Y 。

5. 已知一连续时间LTI 系统,单位冲激响应sin ()t th t ππ=,输入()f t 为如图所示周期性方波。

(1)求()f t 的傅里叶级数系数k a 。

(2)求该系统的频率响应)(ωj H ,并概略画出其波形。

(3)求该系统输出)(t y ,以及)(ωj Y 。

6. 已知常系数线性微分方程描述的连续时间因果线性时不变系统。

22()()()712()d y t dy t df t y t dt dt dt ++=(1)求系统函数)(s H 。

(2)画出系统的零极点及收敛域。

(3)判断系统的稳定性。

(4)当输入(),tf t e t =-∞<<+∞时,求输出?)(=t y7. 已知连续时间稳定LTI 系统的系统函数)(s H 的零极点图,如图所示。

并且53)1(-=H 。

(1)求系统函数)(s H ,并确定它的收敛域。

(2)判断系统的因果性。

(3)求描述该系统的常系数线性微分方程。

(4)当输入()2()()tf t e u t u t -=-时,求输出?)(=t y8. 已知连续时间线性时不变系统的系统函数)4)(2()(++=s s ss H 。

(1)求出系统所有可能的收敛域。

(2)画出系统的零、极点图,并在图上标注当系统满足因果性时收敛域。

(3)写出表征该系统的常系数线性微分方程。

(4)当系统输入3(),t f t e t =-∞<<+∞时,求系统输出?)(=t y 。

9. 已知一LTI 系统的初始状态为0,当输入为)()(2t u e t f t -=时,响应是)(31)(32)(2t u e t u e t y t t --+=。

(1)求系统的系统函数H(s)及收敛域并判定系统的稳定性;(2)写出描述系统的微分方程; (3)画出系统的信流图; (4)若系统的输入+∞<<∞-=t et f t2)(,,求响应y(t).10. 某系统模拟图如下图所示。

(1)求系统的系统函数H(s);(2)求系统的冲击响应;(3)写出描述系统的微分方程;(4)若系统的输入()(),tf t e u t =-求响应y(t)?11. 某系统模拟图如下图所示。

,(1)写出系统函数H(z);(2)画出零极点图,标明收敛域,并说明系统是否稳定; (3)写出系统的差分方程; (4)系统的单位冲击响应。

12. 已知一稳定的离散LTI 系统,描述系统的差分方程为]1[21][]1[31][-+=--n f n f n y n y 。

(1)求该系统的系统函数H(z),标明收敛域,画出零极点图;(2)求系统的单位冲击响应h[n];(3)若系统的输入为][)41(][n u n f n=,求系统的零状态响应y[n]; (4)判断系统的稳定性。

13. 已知离散时间因果线性时不变系统的系统函数11()12H z z -=-。

(1)判断系统的稳定性。

(2)求系统的单位冲激响应][n h 。

(3)求描述该系统的常系数线性差分方程。

(4)画出系统方框图。

14. 已知常系数线性差分方程描述的离散时间因果线性时不变系统1[][1][]7y n y n x n --=(1)求该系统的系统函数)(z H ,指出收敛域。

(2)判断该系统的稳定性。

(3)求该系统的单位冲激响应][n h 。

(4)画出系统方框图。

15. 某离散时间稳定线性时不变系统的系统函数)(z H 的零极点图如图所示,且4)4(=H 。

(1)确定该系统的系统函数)(z H ,指出收敛域。

(2)判断该系统的因果性。

(3)求系统的单位冲激响应][n h 。

(4)写出表征该系统的常系数线性差分方程。

二、判断题16. 输入)(t f 与输出)(t y 满足1)(2)(+=t f t y 的连续系统是线性系统。

( ) 17. 输入)(t f 与输出)(t y 满足()[]t f t y sin )(=的连续系统是时不变系统。

( ) 18. 输入)(t f 与输出)(t y 满足()1)(+=t x t y 的连续系统是非因果系统。

( ) 19. 输入)(t f 与输出)(t y 满足()ττd x t y t⎰∞-=2)(的连续系统是记忆系统。

( )20. 输入)(t f 与输出)(t y 满足()1)(+=t tx t y 的连续系统是稳定系统。

( ) 21. 因果稳定LTI 连续系统的单位冲激响应满足:)()()(t u t h t h =及∞<⎰+∞∞-dt t h )(。

( )22. 在听录音时,我们将磁带慢放,耳朵听到的音乐变柔和了。

这是因为信号在时域上进行了扩展,而在频域上表现出压缩(减少了高频分量)的缘故。

( )23. 周期矩形脉冲的谱线间隔与脉冲周期和宽度有关。

( ) 24. 现实中遇到的周期信号都存在傅利叶级数,因为它们都满足狄里赫利条件。

( ) 25. 所有周期信号的频谱都是离散谱,并且随频率的增高,幅度谱总是减小的。

( ) 26. 连续时间线性时不变系统的系统函数为)2)(1(1)(-+-=s s s s H 。

该系统不可能满足既因果又稳定。

( )27. 已知信号)(t f 的拉普拉斯变换为0}Re{,)()9(12>=+s s F s s ,则其傅立叶变换存在且为)9(12)(+=ωωωj j F 。

( )28. 信号的复频域分析,实质是将信号分解为复指数信号的线性组合。

( )29. 理想低通滤波器实际上是不可实现的非因果系统。

( ) 30. 满足绝对可积条件的信号一定存在傅里叶变换,不满足这一条件的信号一定不存在傅里叶变换。

( )三、 填空题31. _____)()32(20104020⎰+∞∞-=++dt t t t δ32. ⎰+∞∞-=+++_____)1()53(2dt t t t δ33. _____)8()43(176⎰--=-⋅++dt t t t δ34.[]_____)cos(=∑+∞-∞=n n n δπ 35.[]_____)sin(=∑+∞-∞=n n n δπ36. 信号)2()(-=t t f δ的傅里叶变换为_____)(=ωj F 37. 信号)()(10t u e t f t -=的傅里叶变换为_____)(=ωj F 38. 信号)()()52(t u e t f t j +-=的傅里叶变换为_____)(=ωj F 39. 信号)()()1(2t u e t f t --=的傅里叶变换为_____)(=ωj F 40. 信号)3()()3(-=--t u e t f t 的傅里叶变换为_____)(=ωj F 。

41. 连续时间信号)(t f 的最高角频率为πω10000max =s rad /。

若对其采样,则奈奎斯特率为_____=s ω42. 对最高角频率为πω10000max =s rad /的连续时间带限信号)(t f 进行采样。

若使)(t f 能从它的样本点中恢复出来,则要求采样角频率s ω满足_____。

43. 对连续时间带限信号)(t f 进行采样,采样角频率πω20000=s s rad /。

若使)(t f 能从它的样本点中恢复出来,则)(t f 的最高角频率max ω必须满足_____。

44. 已知信号)()(5t u e t f t -=,则)(t f 的LT 变换_____)(=s F 。

45. 已知信号]2010[][][--=n n n f δδ,则][n f 的ZT 变换_____)(=z F 。

46. [])cos()cos(4332n n n x ππ+=的基波周期_____=N 。

47. []nj n j een x ππ5235+=的基波周期是_____=N 。

48. 已知0}Re{),()(σ>−→←s s F t f L ,则根据拉普拉斯变换的指数加权性质,信号)(t f e t λ-的拉普拉斯变换是_____。

49. 若已知0}Re{),()(σ>−→←s s F t f L ,则根据拉普拉斯变换的展缩特性,信号)(at f 的拉普拉斯变换是_____。

50. 已知信号)(t f 的傅里叶变换为)2()2()(-++=ωδωδωj F ,则信号_____)(=t f 。

四、作图题51. 连续时间信号()t f 如图所示,请画出下列各信号并给以标注。

(1))1()(21-=tf t y ,(2)2()(21)y t f t =+图52. 连续时间信号()t f 如图所示,请画出下列各信号并给以标注。

(1)12()(+1)ty t f =,(2)2()(2-1)y t f t =图53. 连续时间信号()t f 如图所示,请画出下列各信号并给以标注。

(1)12()(1)ty t f =-+,(2)2()(21)y t f t =-+图54. 连续时间信号()t f 如图所示,请画出下列各信号并给以标注。

(1)12()(-1)ty t f =-,(2)2()(2-1)y t f t =-图55. 连续时间信号()t f 如图所示,请画出下列各信号并给以标注。

(1)()()12()()f t f t ey t f t +-==,(2)2()()()y t f t u t =图56. 已知一线性时不变系统,它对图(a)所示输入)(0t f 的响应是图(b)所示的)(0t y 。

相关文档
最新文档