第2讲 二次根式(2)(学生版)
第02讲_二次根式的运算(学生版)-2020-2021学年下学期人教版八年级下册专题复习
知识图谱二次根式的加减知识精讲一.二次根式的加减三点剖析一.考点:1.同类二次根式;2.二次根式的加减;3.混合运算.二.重难点:二次根式的混合运算,在计算的过程中注意结合学过的幂的运算和乘法公式简化计算过程.三.易错点:化成最简二次根式后被开方数仍不相同的二次根式不能加减合并,例如235+≠.同类二次根式例题1、 如果最简二次根式3b a b -和22b a -+是同类二次根式,那么a 、b 的值分别是( ) A.0a =,2b = B.2a =,0b = C.1a =-,1b = D.1a =,2b =-同类二次根式二次根式化成最简二次根式后,如果被开方数相同,则称为同类二次根式(1)为同类二次根式(2)若最简二次根式 与可以合并,则二次根式的加减(1)先化成最简二次根式 (2)将同类二次根式合并,混合运算 先乘方,后乘除,最后加减,有括号的先计算括号里面的32x y 32x yz 2b a 2a b274x y 38xy3245a b 235a b例题3、 在下列各组根式中,是同类二次根式的是( )212 3ab 23a b 2121a -1a +随练1、 122223273 ) A.①和② B.②和③C.①和④D.③和④随练2、 下列二次根式:(112(222;(323;(4273 ) A.(1)和(4)B.(2)和(3)C.(1)和(2)D.(3)和(4)随练3、 若最简二次根式125a ++34b a +是同类二次根式,则____a =,____b =二次根式的加减例题1、 下列计算正确的是( )A.4333=1 235 1132=28 22(11148275278+(2)11(30.54 1.5)(0.244)22-(3212(1215)38(4)333y xx y x y xyx y随练1、下列四个算式正确的是()336 B.2332= ()()4949-⨯--- D.43331-=随练2、计算:(1481233(2(18827÷混合运算例题1、下列计算正确的是()3251233326=84 2=例题2、 计算:(1)()23122⎛⎫-- ⎪⎝⎭ (2)12-例题3、 计算:(231⎛+ ⎝=__________; ((((22221111+=__________;=__________.随练1、 计算:(1)(2)2++随练2、计算:(1(11213323-(2)(284821223-随练3、计算:(1)(33513716248a a a a⎛-⎝(2)11318503252⎛⎝(3)2353223302+(4)2210251025-分母有理化知识精讲分母有理化在二次根式的运算中,把分母中的根号去掉的过程称为分母有理化分母有理化形式(1)a a b ab bbbb==()()()()()22121a ba ba ba ba ba ba ba b ---===-++--()()()()()()2211a ba ba b a b a ba b a ba b +++===---+-例:77214(1)==2222⨯⨯;()()12323321232323--===--++⨯-三点剖析一.考点:分母有理化.二.重难点:1.分母中只含有单独的一个二次根式时,分子分母同时乘以这个二次根式,利用2aa =从而消掉分母中的根号;2.当分母为两个二次根式相加减时,分子分母同时乘以这两个二次根式相减加,利用平方差公式从而消掉分母中的根号。
二次根式及其性质课件
1 •下列式子一定是二次根式的是( C )
知1-练
2 •(中考·武汉)若代数式 C
•则x的取值范围是( )
在实数范围内有意义,
•A.x≥-2 B.x>-2 C.x≥2 D.x≤2
知识点 2 二次根式的性质
知2-导
做一做
(1)计算下列各式,你能得到什么猜想?
4 9 ____, 4 9 _____; 4 _____, 4 _____;
•
的根指数为2,所以
是二次根式.
• (7)是.理由:因为|x|≥0,且 根式.
的根指数为2,所以
是二次
总结
知1-讲
二次根式是在初始的外在情势上定义的,不能从化 简结果上判断,如 是二次根式. 像 (a≥0)这样的式子只能称为含有二次根式 的式子,不能称为二次根式.
知1-讲
• 例2 当x取怎样的数时,下列各式在实数范围内有意 义?
知识点 1 二次根式的定义
知1-讲
形如 a (a≥0)的式子叫做二次根式. 其中a为整式或分式,a叫做被开方式. 特点:①都是形如 a 的式子,
②a都是非负数.
例1 判断下列各式是否为二次根式,并说明理由.
知1-讲
导引: 判断一个式子是不是二次根式,实质是看它是否具备二次根
式定义的条件,紧扣定义进行辨认.
知3-练
1 (中考·淮安)下列式子为最简二次根式的是( A )
2 在下列根式中,不是最简二次根式的是( D )
1. 当a≥0时, 2. 当a≥0时, •3.
完成教材P43,习题T1-T4
谢谢!
知2-讲
知识点
商的算术平方根再探索 (1)商的算术平方根的性质的实质是逆用二次根式的除法
北师大版八年级上册数学2.7第2课时二次根式的运算教案2
2.7 二次根式第 2 课时二次根式的运算【上节知识回首】1.对于二次根式的观点,要注意以下几点:( 1)从形式上看,二次根式是以根号“”表示的代数式,这里的开方运算是最后一步运算。
如,等不是二次根式,而是含有二次根式的代数式或二次根式的运算;(2)当一个二次根式前方乘有一个有理数或有理式(整式或分式)时,固然最后运算不是开方而是乘法,但为了方便起见,我们把它看作一个整体仍叫做二次根式,而前方与其相乘的有理数或有理式就叫做二次根式的系数;(3)二次根式的被开方数,能够是某个确立的非负实数,也能够是某个代数式表示的数,但此中所含字母的取值一定使得该代数式的值为非负实数;(4)像“,”等固然能够进行开方运算,但它们仍属于二次根式。
2.二次根式的主要性质( 1);( 2);(3);( 4)积的算术平方根的性质:;( 5)商的算术平方根的性质:;(6)若,则。
3.注意与的运用。
【新授】一、二次根式的乘法一、复习引入1.填空(1)4×9 =_______, 4 9 =______;( 2)16 ×25 =_______, 16 25 =________.( 3)100 ×36 =________, 10036 =_______.参照上边的结果,用“>、 <或=”填空.4×9_____ 4 9,16×25_____16 25,100×36 ________100 36一般地,对二次根式的乘法例定为a ·b = ab反过来 :ab = a · b例 1.计算.( a ≥ 0, b ≥ 0)( a ≥ 0, b ≥ 0)( 1) 5 × 7(2) 1× 9( 3) 9× 27( 4)1 × 632例 2 化简( 1)9 16 (2) 16 81(3)81 100( 4)9x 2 y 2( 5)54例 3.判断以下各式能否正确,不正确的请予以更正:( 1)( 4) ( 9) 4 9 ( 2)412× 25 =4×12 × 25=412× 25=4 12=8 3252525二、二次根式的除法1.写出二次根式的乘法例定及逆向等式. 2.填空( 1)( 3)916 416=________ ,=________ ,9 16 416=_________ ; ( 2)=_________ ; ( 4)16363681=________ ,=________ ,1636 3681=________ ;=________ .规律:9 ______ 9 ; 16 ______ 16; 4 _______ 4 ; 36 _______ 36 .16 16 36 36 1616 81 81 一般地,对二次根式的除法例定:a =a( a ≥ 0, b>0 ), 反过来,a = a( a ≥ 0, b>0 )b bb b例 1. 计算:( 1)例 2.化简:12 3 1 1 1 643( 2)8( 3)16( 4)248( 1)3 ( 2) 64b2( 3)9x ( 4)5x649a 264 y 2169y 2例 3.已知9x9x,且 x 为偶数,求( 1+x )x2 5x 4 的值.x6x6x2 1三、分母有理化两个含有二次根式的代数式相乘,假如它们的积不含有二次根式,我们说这两个代数式互为有理化因式。
人教版数学八年级下册二次根式(第2课时)教学课件
第二十一页,共三十九页。
探究新知
【议一议】如何区别 ( a )2与 a2 ?
( a)2
a2
从运算
(yùn
suàn)顺 从序取看值
范围
(fànwéi)
看从运算结 果看
意义
先开方,后平方
a≥0
a
表示一个非负 数a的算术平方
根的平方
第二十二页,共三十九页。
先平方,后开方
a取任何实数
|a|
表示一个实数a 的平方的算术平 方根
探究新知
【猜一猜】当a<0时, a=2
-a ?
a(a<0) 平方
(píngf
-2
āng)
-0.1 运算
...23
a2 4
0.01
4 .9..
算术
a2
(suànshù)
平方根
2
0.1 2 ..3.
观察两者有什么关系?
第十五页,共三十九页。
探究新知 归纳:
a2 的性质:
a (a≥0) a2 a
②理清语句层次明确运算顺序;
③牢记一些概念和公式.
第三十页,共三十九页。
巩固练习
如图,是一个(yī ɡè)圆形挂钟,正面面积为S,用代
S
数式表示出钟的半径为_________π_.
第三十一页,共三十九页。
连接中考
1.计算( 3)2 1的结果是___4_.
2.下列等式正确的是( A )
A.( 3)2 3
km/h,逆水行驶的速度是(v 2.5)km/h.
(2)设贺卡的长为5x,则宽为3x.依题意得15x2=S,所以 x 1S所5 ,
以它的长为 5 S . 15
第二十九页,共三十九页。
2.7二次根式(第2课时)课件(共16张PPT)
第2课时
山东星火国际传媒集团
学习目标
山东星火国际传媒集团
1.理解最简二次根式的定义. 2.会利用积的算术平方根的性质化简二次根式. 3.理解商的算术平方根的性质,能够应用二次根式的性质化简二次根
式.
温故知新
山东星火国际传媒集团
1.什么叫二次根式?
一般地,形如 a(a≥0)的式子叫做二次根式.
(2) 4a 2b3 4 • a b2 b
2ab b.
山东星火国际传媒集团
想一想:
(4) (9) (4) (9)
成立吗?为什么?
ab a • b (a 0, b 0)
所以 (4) (9)
36 6.
非
负
数
山东星火国际传媒集团
【跟踪训练】
•4、享受阅读快乐,提高生活质量。2022/3/32022/3/32022/3/32022/3/3
谢谢观赏
You made my day!
我们,还在路上……
•2、科学的灵感,决不是坐等可以等来的。如果说,科学上的发现有什么偶然的机遇的话,那么这种‘偶然的机遇’只能给那些学有素养的人,给那些善于独
立思考的人,给那些具有锲而不舍的人。2022年3月2022/3/32022/3/32022/3/33/3/2022
•3、书籍—通过心灵观察世界的窗口.住宅里没有书,犹如房间里没有窗户。2022/3/32022/3/3March 3, 2022
山东星火国际传媒集团
4.如图,在Rt△ABC中,∠C=90°,AC=10 cm,
A
BC=20 cm.求AB的长.
【解析】因为AB2 AC2 BC2 , B
C
所以AB AC2 BC2
二次根式教案
练习1 完成教科书第3页的练习.
练习2 当x 是什么实数时,下列各式有意义.
(1) ;(2) ;(3) ;(4) .
辨析二次根式的概念,确定二次根式有意义的条件.
设计有一定综合性的题目,考查学生的敏捷运用的实力,开阔学生的视野,训练学生的思维.
5.总结反思
老师和学生一起回顾本节课所学主要内容,并请学生回答以下问题.
二次根式的概念.
2.内容解析
本节课是在学生学习了平方根、算术平方根、立方根的概念,会用根号表示数的平方根、立方根,知道开方与乘方互为逆运算的基础上,来学习二次根式的概念. 它不仅是对前面所学学问的综合应用,也为后面学习二次根式的性质和四则运算打基础.
教材先设置了三个实际问题,这些问题的结果都可以表示成二次根式的形式,它们都表示一些正数的算术平方根,由此引出二次根式的定义. 再通过例1探讨了二次根式中被开方数字母的取值范围的问题,加深学生对二次根式的定义的理解.
二次根式教案 篇3
一、复习引入
学生活动:请同学们完成下列各题:
1.计算
(1)(2x+y)·zx(2)(2x2y+3xy2)÷xy
二、探究新知
假如把上面的x、y、z改写成二次根式呢?以上的运算规律是否仍成立呢? 仍成立.
整式运算中的x、y、z是一种字母,它的意义非常广泛,可以代表全部一切, 当然也可以代表二次根式,所以,整式中的运算规律也适用于二次根式.
本节课的教学难点为:理解二次根式的双重非负性.
四、教学过程设计
1.创设情境,提出问题
问题1你能用带有根号的的式子填空吗?
(1)面积为3 的正方形的边长为_______,面积为S 的正方形的边长为_______.
《二次根式》第2课时示范课教学设计【数学八年级上册北师大】
《二次根式》教学设计
第2课时
一、教学目标
1.掌握二次根式的乘、除法运算法则,并能够熟练应用乘、除法法则进行计算.
2.会用二次根式的四则运算法则进行简单运算.
3.用类比的方法,引入实数的运算法则、运算律,并能用这些法则、运算律在实数范围内正确计算,培养类比学习的能力.
4.增强学生的符号、应用意识,培养学生合作交流、合情推理、表达能力。
二、教学重难点
重点:掌握二次根式的乘、除法运算法则,并能够熟练应用乘、除法法则进行计算.
难点:会用二次根式的四则运算法则进行简单运算.
三、教学用具
电脑、多媒体、课件、教学用具等
四、教学过程设计
a a
(a≥0,b>0)
=
b b
思考长方形的面积是20,它的长是5,宽是多少?
教师追问:该怎么计算呢?
教师提示:这一节我们根据之前学过的二次根式的性质来解决二次根式的四则运算问题吧.
a b=a b(a≥0
a
(a≥0,b>0)
=
b
加法、减法法则:
先化为最简二次根式.
35
思维导图的形式呈现本节课的主要内容:。
数学2020年春季人教版教案 八年级-2 二次根式的化简求值
(1)4+的有理化因式是________.
(2)计算:.
(3)计算:.
(4)已知a=,b=,求的值.
答案:(1)4-.
(2)解:=+3-6×
=+3-6×
=2-+3-2
=2.
(3)解:原式=()()
例1、例2、例3对二次根式的混合运算、分母有理化、二次根式值的比较的考察,适合学生独自解答或师生互动的教学方式.例4、例5、例6主要对与二次根式相关的变形、化简、计算等的考察,适合生生互动的教学方式.
根据学生情况,教师可自行选择是否讲解拓展延伸题目.
教学目标
知识技能
1.熟练掌握二次根式的运算技巧,能够对复杂的二次根式进行化简求值;
3.汇报讨论结果
生:通过对①、②分母有理化后进行消元可求解x与y值.
分母有理化①得
分母有理化②得
两式相加得,即x2=y2=2012.
代入上式可得x=y,进而可求3x2-2y2+3x-3y-2011的值.
三、巩固拓展
类似性问题
4.设a=-1,则3a3+12a2-6a-12=()
A. 24 B. 25 C.D.
1.D
2.C
3.A
4.A
5.
6.解:原式=
==,
当x=+,y=-时,x-y=2,xy=1,
∴原式==.
手册答案
1.D
2.B
【解析】=+4××=1+4××.又∵=+1>0,∴a>0,∴=a,
∴=1+4××=5,∴+=.
2第二讲 最简二次根式与同类二次根式学生版
第二讲最简二次根式与同类二次根式知识精讲知识点1 最简二次根式1、条件:(1)被开方数中各因式的指数都为1;(2)被开方数不含分母;(3)分母中不含有根式;我们把同时满足上述两个条件的二次根式叫做最简二次根式.对于条件(1)我们还可以这样理解“被开方数中不含能开得尽方的因数或因式”如18,18=2×9,9能开出来,所以18不是最简二次根式。
对于条件(2)比较明确,如二次根式a a b 21,的被开方数a b 、a 21均含有分母,所以它们都不是最简二次根式.对于条件(3)就比较简单了,如二次根式52,分母里根式,所以,它不是最简二次根式。
【例题1】判断下列二次根式是否为最简二次根式?(1)31; (2)12+x ; (3)122++x x ;(4)71【例题2】把下列根式化成最简二次根式:(1)12; (2)b a 245; (3)2114; (4)xy x 2; (5))0,0(82754<<b a b a c ; (6))0,0(1122<>+b a ba ab .【例题3】化简:11)1(---a a .【例题4】化简:2122-+m m (其中1<m ).知识点2 同类二次根式1、几个二次根式化成最简二次根式后,如果被开方数相同,这几个二次根式叫做同类二次根式.(1)判断几个二次根式是不是同类二次根式,应先将每个二次根式化成最简二次根式后,再看被开方数是否相同.(2)若已知几个最简二次根式是同类二次根式,那么,这几个根式的根指数都是2,它们的被开方数相等。
(3)把一个二次根式化成最简二次根式,要用到积、商的算术平方根的性质,如 ),0,0(≥≥⋅=b a b a ab )0,0(>≥=b a ba b a . 【例题5】从下列二次根式中指出哪些是同类二次根式:(1)b 515;(2)b 516;(3)2.05;(4)a 3223;(5)92229;(6)a 27323.知识点3 合并同类二次根式法则:将同类二次根式的系数相加减,被开方数(式)和根指数保持不变.说明:(1)加法运算律仍然适用于二次根式的运算;(2)不是同类二次根式的二次根式不能合并,如32+,应为最终结果;(3)化简时,注意可能出现的错误,举例如下:,322324,43169=+=+ 792972=,xy y x y x y x +=+2222等; (4)最终的结果必须最简,如结果212+中一个根式含有分母,则要继续化简.【例题6】合并下列各式中的同类二次根式:(1)22332332--++; (2)x m x n m x n --+)(.【例题7】解下列各题:(1)如果最简二次根式x 327+与x -2是同类二次根式,求x 的值; (2)已知最简二次根式12)1(3--n m m 和83)(2--m n m n 是同类二次根式,求n m ,的值; (3)如果q p +42与q p -23是同类二次根式,求qp +1的值.随堂练习1:把下列各根式化为最简二次根式: ()()(),()(),19600224750325121003234a b a b a b c a b ≥≥≥≥2:判断下列各组根式是否是同类根式: ();;()当时,,,117531516238534202--<<+-m n n m m n n m m n1.在根式①ab ;②5x ;③xy x -2;④a b c 27中,最简二次根式是 ( ) A .①② B .③④ C .①③ D .①④2.下列二次根式中与3是同类二次根式的是 ( )A .18B .3.0C .30D .3003.若b <-1,则化1+b a 为最简二次根式得 ( ) A .)1(11++b a b B .-)1(11++b a b C .-)1(1+b a aD .)1(+b )1(+b a 4.下列四组二次根式中,可以化为同类二次根式的是 ( ) A .a a 和a 21 B .2x y 和2y y 1C .23a 和a 8D .222y xy x +-和2)(3y x -5.下列各式中计算正确的是 ( )A .3+2=5B .3+2=32C .m b -n b =(n m -)bD .1162523250=-=- 6.下列说法中正确的是 ( ) A .22b a -不是最简二次根式B .12,75,34是同类二次根式 C .32,121,181是同类二次根式 D .a 51和212ab 是同类二次根式7.化简xx x 13---的值是 ( ) A .-(1+x )x B .(1-x )x -C .(x -1)x -D .08.计算12+3311-315-4832得 ( ) A .131 B .0 C .3316 D .83 9.根式15,a 20,76,ab 41,35y ,22y x +中,最简二次根式有________. 10.化简:(1)10001=________(2)2413=________. 11.若py x mn -是最简二次根式,则m =________,n =________,p =________(其中m ,n ,p 不为0)12.已知a ,b ,c 为三角形的三边,化简 22)()(c b a c b a --+++2)(a c b --+2)(b a c --+=________.13.(35-)2·(35+)2=________.14.若(x -x 1)2=m ,则x x 21+=________. 15.当x =________时,102+x 有最小值是________,当x =________时,225x -有 最大值是________.16.当x =________,y =________时,最简二次根式y y x +和y x 23-是同类二次根式.17.化简:(1)322; (2)a 2211ba -.18.计算:4(m32mn n m n +)-3(n n m m n m 31+)19.已知6的整数部分为a ,小数部分为b ,求a +21+b .20.设a ,b ,x ,y 为有理数,m ,n (n m ≠)是最简二次根式,且a m +b n =xm +y n ,求x ,y 的值.。
二次根式基本运算(根式的乘除)-学生版
二次根式基本运算、分母有理化板块一 二次根式的乘除最简二次根式: 0a≥)中的a 称为被开方数.满足下面条件的二次根式我们称为最简二次根式: ⑴被开放数的因数是整数,因式是整式(被开方数不能存在小数、分数形式)⑵被开方数中不含能开得尽方的因数或因式⑶分母中不含二次根式二次根式的计算结果要写成最简根式的形式.二次根式的乘法法则=0a≥,0b ≥)二次根式的除法法则=0a ≥,0b >) 利用这两个法则时注意a 、ba 、b 都非负,否则不成立,≠一、最简二次根式【例1】中,最简二次根式有____________________.【例2】 下列根式 )A .2个B .3个C .4个 D .5个【例3】下列各式正确的是()A 10b aB .1=C =D .=中考要求例题精讲【例4】 化简下列各式(字母均取正数):2)x ≥.【巩固】把下列各式化成最简二次根式(1 (2 (3)0x ≥【例5】 若0abc <,且a b c >>【例6】 化简:【例7】)20x y >>【例8】 )0a ≥)00x y ≥,≥【例9】 已知:m n =,求m 的取值范围ab【例10】已a b=,10二、二次根式的乘除分母有理化:把分母中的根号化去叫做分母有理化.互为有理化因式:两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,说这两个代数式互为有理化因式.0.【例11】把下列各式分母有理化:2【例12】化=()A BC D.不同于A C的答案【例13】计【例14】 计【例15【例16】 计)000a b c >>>,,【巩固】计算:232xy【例17】 计算:【例18】【例19】计)00a b>>,等于()ABCD.【例20】计【例21】已知长方形的面积2S=,相邻两边分别是a b,,且a=,求b。
【例22】若0x≠的最大值.1.下列二次根式中,最简二次根式的个数是()..A.1个B.2个C.3个D.4个2.化简:)0y x>>;3.)5a≥4.把下列各式分母有理化:⑴课后作业⑵⑶÷5.6.。
二次根式的化简及计算(学生基础版)教案
二次根式的化简及计算(学生基础版)教案第一章:二次根式的概念与性质1.1 引入二次根式的概念,让学生了解二次根式是由二次方程的根演变而来的数学表达式。
1.2 解释二次根式的性质,包括:a) 二次根式中的被开方数必须是非负数;b) 二次根式具有非负性、非负数的乘除法性质;c) 二次根式可以进行乘除运算,乘除运算规则与整数相同。
第二章:二次根式的化简2.1 介绍二次根式化简的方法和步骤:a) 提取二次根式中的最大公因数;b) 将二次根式中的括号展开;c) 合并同类项。
2.2 进行几个简单的例子,让学生熟悉化简方法。
第三章:二次根式的加减法运算3.1 讲解二次根式加减法的运算规则:a) 确保二次根式中的被开方数相同;b) 将同类二次根式相加减;c) 化简结果,确保最简二次根式形式。
3.2 进行几个具体的例子,让学生掌握二次根式的加减法运算。
第四章:二次根式的乘除法运算4.1 讲解二次根式乘除法的运算规则:a) 将二次根式相乘除,确保被开方数相乘除;b) 化简结果,确保最简二次根式形式。
4.2 进行几个具体的例子,让学生掌握二次根式的乘除法运算。
第五章:二次根式的实际应用5.1 引入二次根式在实际问题中的应用,例如:计算物体的体积、面积等。
5.2 进行几个具体的实际应用例子,让学生了解二次根式在实际问题中的应用方法和步骤。
第六章:含绝对值的二次根式6.1 引入绝对值的概念,并解释绝对值与二次根式的关系。
6.2 讲解如何处理含绝对值的二次根式,包括:a) 分析绝对值内的表达式正负,确定二次根式的性质;b) 利用绝对值的性质进行化简和运算。
6.3 进行几个例子,让学生掌握处理含绝对值的二次根式的方法。
第七章:含指数的二次根式7.1 引入指数的概念,并解释指数与二次根式的关系。
7.2 讲解如何处理含指数的二次根式,包括:a) 将指数形式转换为根式形式;b) 利用指数的性质进行化简和运算。
7.3 进行几个例子,让学生掌握处理含指数的二次根式的方法。
二次根式的化简及计算(学生基础版)教案
二次根式的化简及计算(学生基础版)教案一、教学目标1. 让学生掌握二次根式的概念,理解二次根式的性质。
2. 培养学生运用二次根式进行化简和计算的能力。
3. 提高学生解决实际问题的能力,培养学生的数学思维。
二、教学内容1. 二次根式的概念与性质2. 二次根式的化简方法3. 二次根式的计算法则4. 实际问题中的二次根式计算5. 巩固与拓展三、教学重点与难点1. 重点:二次根式的概念、性质、化简方法及计算法则。
2. 难点:二次根式在实际问题中的运用。
四、教学方法1. 采用问题驱动法,引导学生主动探究二次根式的化简与计算方法。
2. 利用案例分析,让学生学会将实际问题转化为二次根式计算问题。
3. 运用小组讨论法,培养学生的合作意识和团队精神。
4. 采用分层教学法,关注学生的个体差异,提高教学效果。
五、教学过程1. 导入:通过生活实例,引出二次根式的概念,激发学生的学习兴趣。
2. 知识讲解:讲解二次根式的性质,引导学生掌握化简方法。
3. 案例分析:分析实际问题,让学生学会将问题转化为二次根式计算。
4. 课堂练习:布置具有代表性的练习题,巩固所学知识。
5. 拓展延伸:引导学生思考二次根式在实际问题中的应用,提高学生的解决问题的能力。
6. 总结:对本节课内容进行总结,强调重点知识点。
7. 作业布置:布置适量作业,巩固所学知识。
六、教学评价1. 评价目标:检查学生对二次根式概念、性质、化简方法和计算法则的理解与应用。
2. 评价方法:课堂问答:通过提问,了解学生对知识的掌握程度。
练习题:设计不同难度的练习题,评估学生的应用能力。
小组讨论:评估学生在团队合作中的表现和问题解决能力。
3. 评价内容:学生能否正确识别二次根式。
学生能否运用二次根式的性质进行化简。
学生能否应用计算法则进行二次根式的计算。
学生能否将实际问题转化为二次根式计算问题。
七、教学资源1. 教学PPT:制作包含二次根式概念、性质、化简方法和计算法则的PPT。
二次根式的性质与乘除运算核心考点讲与练八年级数学下学期考试满分全攻略
第02讲二次根式的性质与乘除运算(核心考点讲与练)一.二次根式的性质与化简(1)二次根式的基本性质:①≥0;a≥0(双重非负性).②()2=a(a≥0)(任何一个非负数都可以写成一个数的平方的形式).③=|a|=(算术平方根的意义)(2)二次根式的化简:①利用二次根式的基本性质进行化简;②利用积的算术平方根的性质和商的算术平方根的性质进行化简.=•(a≥0,b≥0)=(a≥0,b>0)(3)化简二次根式的步骤:①把被开方数分解因式;②利用积的算术平方根的性质,把被开方数中能开得尽方的因数(或因式)都开出来;③化简后的二次根式中的被开方数中每一个因数(或因式)的指数都小于根指数2.【规律方法】二次根式的化简求值的常见题型及方法1.常见题型:与分式的化简求值相结合.2.解题方法:(1)化简分式:按照分式的运算法则,将所给的分式进行化简.(2)代入求值:将含有二次根式的值代入,求出结果.(3)检验结果:所得结果为最简二次根式或整式.二.最简二次根式最简二次根式的概念:(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式.我们把满足上述两个条件的二次根式,叫做最简二次根式.最简二次根式的条件:(1)被开方数的因数是整数或字母,因式是整式;(2)被开方数中不含有可化为平方数或平方式的因数或因式.如:不含有可化为平方数或平方式的因数或因式的有2、3、a(a≥0)、x+y等;含有可化为平方数或平方式的因数或因式的有4、9、a2、(x+y)2、x2+2xy+y2等.三.二次根式的乘除法(1)积的算术平方根性质:=•(a≥0,b≥0)(2)二次根式的乘法法则:•=(a≥0,b≥0)(3)商的算术平方根的性质:=(a≥0,b>0)(4)二次根式的除法法则:=(a≥0,b>0)规律方法总结:在使用性质•=(a≥0,b≥0)时一定要注意a≥0,b≥0的条件限制,如果a<0,b<0,使用该性质会使二次根式无意义,如()×()≠﹣4×﹣9;同样的在使用二次根式的乘法法则,商的算术平方根和二次根式的除法运算也是如此.四.分母有理化(1)分母有理化是指把分母中的根号化去.分母有理化常常是乘二次根式本身(分母只有一项)或与原分母组成平方差公式.例如:①==;②==.(2)两个含二次根式的代数式相乘时,它们的积不含二次根式,这样的两个代数式成互为有理化因式.一个二次根式的有理化因式不止一个.例如:﹣的有理化因式可以是+,也可以是a(+),这里的a可以是任意有理数.一.二次根式的性质与化简(共11小题)1.(2020春•拱墅区期末)=()A.﹣4B.±4C.4D.2【分析】直接利用二次根式的性质化简得出答案.【解答】解:=4,故选:C.【点评】此题主要考查了二次根式的性质与化简,正确化简二次根式是解题关键.2.(2021秋•海口期末)当x<1时,=1﹣x.【分析】利用二次根式的性质化简求出即可.【解答】解:∵x<1,∴=1﹣x.故答案为:1﹣x.【点评】此题主要考查了二次根式的性质与化简,正确把握二次根式的性质是解题关键.3.(2021秋•义乌市月考)下列各式计算正确的是()A.B.C.D.【分析】直接利用二次根式的性质以及立方根的定义分别化简,进而判断得出答案.【解答】解:A.=2,故此选项不合题意;B.=﹣2,故此选项符合题意;C.=4,故此选项不合题意;D.==,故此选项不合题意;故选:B.【点评】此题主要考查了二次根式的性质以及立方根的定义,正确化简二次根式是解题关键.4.(2020秋•长春期末)实数a、b在数轴上的位置如图所示,化简﹣.【分析】直接利用二次根式的性质以及实数与数轴分别化简得出答案.【解答】解:由数轴可得:1<b<2,则b﹣1>0,a﹣b<0,故原式=b﹣1+a﹣b=a﹣1.【点评】此题主要考查了二次根式的性质与化简、实数与数轴,正确化简二次根式是解题关键.5.(2021•南湖区校级模拟)下列计算正确的是()A.B.x2+x2=2x4C.(x﹣y)2=x2﹣y2D.(﹣2x2)3=﹣8x6【分析】根据=|a|判断A选项;根据合并同类项判断B选项;根据完全平方公式判断C选项;根据积的乘方和幂的乘方判断D选项.【解答】解:A选项,原式=2,故该选项不符合题意;B选项,原式=2x2,故该选项不符合题意;C选项,原式=x2﹣2xy+y2,故该选项不符合题意;D选项,原式=﹣8x6,故该选项符合题意;故选:D.【点评】本题考查了二次根式的性质,合并同类项,完全平方公式,积的乘方和幂的乘方,掌握=|a|是解题的关键.6.(2021秋•拱墅区期中)下列计算正确的是()A.B.C.D.【分析】根据平方根的性质、立方根的性质以及绝对值的性质即可求出答案.【解答】解:A、原式=0.3,故A不符合题意.B、原式==,故B不符合题意.C、原式=﹣3,故C符合题意.D、原式=﹣5,故D不符合题意.故选:C.【点评】本题考查二次根式的性质与化简,解题的关键是熟练运用二次根式的性质,本题是基础题型.7.(2021秋•余杭区期中)下列计算正确的是()A.=±B.=C.±=D.±=±【分析】A:算数平方根的结果不可能出现负值;B:被开方数不能为负;C:正数平方根结果有两个;D:正确.【解答】解:A:原式=,∴不符合题意;B:原式不成立,∴不符合题意;C:原式=±,∴不符合题意;D:原式=±,∴符合题意;故选:D.【点评】本题考查了二次根式的性质与化简、平方根,掌握二次根式的基本性质,平方根与算数平方根的区别是解题关键.8.(2021秋•麦积区期末)计算:=﹣1.【分析】判断1和的大小,根据二次根式的性质化简即可.【解答】解:∵1<,∴1﹣<0,∴=﹣1,故答案为:﹣1.【点评】本题考查的是二次根式的化简,掌握二次根式的性质是解题的关键.9.(2021秋•鄞州区期中)先阅读材料,再解决问题.;;;;…根据上面的规律,解决问题:(1)==21;(2)求(用含n的代数式表示).【分析】(1)观察各个等式中最左边的被开方数中各个幂的底数的和与最右边的结果的关系即可得到结论;(2)利用(1)发现的规律解答即可.【解答】解:∵中,1+2=3,=6中,1+2+3=6,=10中,1+2+3+4=10,∴等式中最左边的被开方数中各个幂的底数的和=右边的结果.∵1+2+3+4+5+6=21,∴(1)==21.故答案为:,21;(2)由(1)中发现的规律可得:==1+2+3+•••+n=.【点评】本题主要考查了二次根式的性质与化简,本题是规律型题目,发现数字间的变化的规律是解题的关键.10.先阅读下面的解题过程,然后再解答:形如的化简,只要我们找到两个数a,b,使a+b=m,ab=n,即,,那么便有:.根据上述方法化简:(1).(2).【分析】(1)直接利用完全平方公式化简求出答案;(2)直接利用完全平方公式化简求出答案.【解答】解:(1)==;(2)==2+.【点评】此题主要考查了二次根式的化简,正确应用完全平方公式是解题关键.11.(2021春•永嘉县校级期末)阅读下面的解答过程,然后作答:有这样一类题目:将化简,若你能找到两个数m和n,使m2+n2=a且mn=,则a+2可变为m2+n2+2mn,即变成(m+n)2,从而使得=m+n,化简:例如:∵5+2=3+2+2=()2+()2+2=(+)2.∴==+.请你仿照上例将下列各式化简:(1);(2).【分析】(1)利用完全平方公式把4+2化为(1+)2,然后利用二次根式的性质化简即可.(2)利用完全平方公式把7﹣2化为(﹣)2然后利用二次根式的性质化简即可.【解答】解:(1)∵4+2=1+3+2=12++2=(1+)2,∴==1+;(2)===﹣.【点评】本题主要考查了二次根式的性质与化简,解题的关键是熟记掌握完全平方公式.二.最简二次根式(共5小题)12.(2021春•西湖区校级期末)下列根式是最简二次根式的是()A.B.C.D.【分析】根据最简二次根式的概念判断即可.【解答】解:A、==3,被开方数中含能开得尽方的因数,不是最简二次根式,不符合题意;B、是最简二次根式,符合题意;C、==,被开方数含分母,不是最简二次根式,不符合题意;D、=,被开方数含分母,不是最简二次根式,不符合题意;故选:B.【点评】本题考查的是最简二次根式的判断,掌握被开方数不含分母、被开方数中不含能开得尽方的因数或因式的二次根式,叫做最简二次根式是解题的关键.13.(2021春•宁阳县期末)二次根式、、、、中,最简二次根式有()A.1个B.2个C.3个D.4个【分析】根据最简二次根式的定义逐个判断即可.【解答】解:最简二次根式有,,共2个,故选:B.【点评】本考查了最简二次根式的定义,注意:最简二次根式具备两个条件:①被开方数的每一个因式都是整式,每个因数都是整数,②被开方数不含有能开得尽方的因式或因数.14.(2021春•建邺区校级期末)我们把形如(a,b为有理数,为最简二次根式)的数叫做型无理数,如+1是型无理数,则是()A.型无理数B.型无理数C.型无理数D.型无理数【分析】将代数式化简即可判断.【解答】解:(﹣)2=3﹣2××+6=9﹣2=9﹣2×3=9﹣6,故选:A.【点评】本题考查了最简二次根式,熟练将代数式化简是解题的关键.15.(2021秋•济南期末)将二次根式化为最简二次根式2.【分析】根据二次根式的乘法,可化简二次根式.【解答】解:,故答案为:2.【点评】本题考查了最简二次根式,利用了二次根式的乘法化简二次根式.16.(2021秋•法库县期中)下列二次根式中,是最简二次根式的是()A.B.C.D.【分析】根据最简二次根式的概念:(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式,进而分别判断得出答案.【解答】解:A、=,故本选项不是最简二次根式,不符合题意;B、=2,故本选项不是最简二次根式,不符合题意;C、是最简二次根式,故本选项符合题意;D、=,故本选项不是最简二次根式,不符合题意;故选:C.【点评】此题主要考查了最简二次根式,正确掌握最简二次根式的定义是解题关键.三.二次根式的乘除法(共11小题)17.(2021•宁波模拟)()3的计算结果是()A.3B.3C.9D.27【分析】根据二次根式的乘方法则计算,得到答案.【解答】解:()3=3,故选:A.【点评】本题考查的是二次根式的乘法,掌握二次根式的乘方法则是解题的关键.18.(2019秋•萧山区月考)计算:()2×.【分析】直接利用二次根式的乘法运算法则计算得出答案.【解答】解:原式=×2=.【点评】此题主要考查了二次根式的乘法运算,正确掌握相关运算法则是解题关键.19.(2021春•江干区期末)下列计算中正确的是()A.(﹣)2=﹣3B.=0.1C.=1D.3=【分析】根据二次根式的乘除运算法则即可求出答案.【解答】解:A、原式=3,故A不符合题意.B、原式==,故B不符合题意.C、原式==,故C不符合题意.D、原式=3×=,故D符合题意.故选:D.【点评】本题考查二次根式的运算,解题的关键是熟练运用二次根式的乘除运算法则,本题属于基础题型.20.(2021•杭州三模)﹣×=()A.5B.25C.﹣5D.﹣25【分析】根据二次根式的乘法法则进行计算求解.【解答】解:﹣=﹣5,故选:C.【点评】本题考查二次根式的乘法计算,掌握计算法则准确计算是解题关键.21.(2021春•永嘉县校级期中)若,则x的取值范围是()A.x≥1B.x>2C.1≤x<2D.x≥1且x≠2【分析】根据二次根式有意义的条件即可求出答案.【解答】解:由题意可知:,∴x>2,故选:B.【点评】本题考查二次根式,解题的关键是正确理解二次根式有意义的条件,本题属于基础题题型.22.(2020秋•耒阳市期末)计算:4×2÷.【分析】直接利用二次根式的乘除运算法则计算得出答案.【解答】解:原式=8÷=8×3=24.【点评】此题主要考查了二次根式的乘除运算,正确掌握运算法则是解题关键.23.(2019春•慈溪市期中)计算:(1)(2)【分析】(1)原式利用二次根式的乘除法则计算即可求出值;(2)原式利用二次根式的乘除法则计算即可求出值.【解答】解:(1)原式=8=8×3=24;(2)原式=2××=.【点评】此题考查了二次根式的乘除法,熟练掌握运算法则是解本题的关键.24.(2021春•长兴县月考)阅读下列材料,解答后面的问题:在二次根式的学习中,我们不仅要关注二次根式本身的性质、运算,还要用到与分式、不等式相结合的一些运算.如:①要使二次根式有意义,则需a﹣2≥0,解得:a≥2;②化简:,则需计算1++,而1++=====,所以===1+=1+﹣.(1)根据二次根式的性质,要使=成立,求a的取值范围;(2)利用①中的提示,请解答:如果b=++1,求a+b的值;(3)利用②中的结论,计算:+++…+.【分析】(1)根据二次根式成立的条件求解即可;(2)根据二次根式成立的条件求出a,b的值,进而求解即可;(3)利用②中的结论求解即可.【解答】解:(1)由题意得,,∴﹣2≤a<3;(2)由题意得,,∴a=2,∴b=++1=0+0+1=1,∴a+b=2+1=3;(3)原式=(1+﹣)+(1+﹣)+⋯+(1+﹣)=1×2020+1﹣=2020.【点评】本题考查了二次根式的性质与化简及规律型,解决本题的关键是根据数字的变化寻找规律.25.(2016春•抚顺县期中)小东在学习了后,认为也成立,因此他认为一个化简过程:==是正确的.你认为他的化简对吗?说说理由.【分析】根据被开方数为非负数可得化简过程是错误的,然后进行二次根式的化简即可.【解答】解:错误,原因是被开方数应该为非负数.====2.【点评】本题主要考查二次根式的除法法则运用的条件,注意被开方数应该为非负数.26.(2016秋•柯桥区校级月考)你能找出规律吗?(1)计算:×=6,=6.×=20,=20.(2)请按找到的规律计算:①×;②×.【分析】(1)直接利用二次根式乘法运算法则化简求出答案;(2)直接利用二次根式乘法运算法则化简求出答案.【解答】解:(1)×=6,=6.×=4×5=20,=20.故答案为:6,6,20,20;(2)①×=10;②×===4.【点评】此题主要考查了二次根式乘法运算,正确掌握运算法则是解题关键.27.(2014春•巢湖市月考)已知x为奇数,且,求的值.【分析】本题要先根据已知的等式,求出x的取值范围,已知x为奇数,可求出x的值.然后将x 的值代入所求的式子中进行求解即可.【解答】解:∵,∴,解得6≤x<9;又∵x为奇数,∴x=7,∴=+=+=8+2.【点评】本题主要考查了二次根式的乘除法,根据二次根式成立的条件得出x的取值范围,进而求出x的值是解答本题的关键.四.分母有理化(共9小题)1.(2020秋•会宁县期末)下列各数中与相乘结果为有理数的是()A.B.C.2D.【分析】直接利用二次根式的乘法运算法则计算得出答案.【解答】解:A、(2﹣)×=2﹣2,不合题意;B、×=2,符合题意;C、2×=2,不合题意;D、×=,不合题意;故选:B.【点评】此题主要考查了二次根式的乘法运算,正确掌握相关运算法则是解题关键.2.(2021春•饶平县校级期中)已知:a=,b=,则a与b的关系是()A.a﹣b=0B.a+b=0C.ab=1D.a2=b2【分析】先分母有理化求出a、b,再分别代入求出ab、a+b、a﹣b、a2、b2,求出每个式子的值,即可得出选项.【解答】解:分母有理化,可得a=2+,b=2﹣,∴a﹣b=(2+)﹣(2﹣)=2,故A选项错误;a+b=(2+)+(2﹣)=4,故B选项错误;ab=(2+)×(2﹣)=4﹣3=1,故C选项正确;∵a2=(2+)2=4+4+3=7+4,b2=(2﹣)2=4﹣4+3=7﹣4,∴a2≠b2,故D选项错误;故选:C.【点评】本题考查了分母有理化的应用,能求出每个式子的值是解此题的关键.3.(2020春•长兴县期中)二次根式,,的大小关系是()A.B.<<C.<<D.<<【分析】本题可先将各式分母有理化,然后再比较它们的大小.【解答】解:将三个二次根式化成同分母分数比较:∵=,==,;∴<<.故选:C.【点评】解答本题的关键是将各分式分母有理化,然后再比较它们的大小.在分母有理化的过程中,找出分母的有理化因式是解题的关键.4.(2021春•永嘉县校级期末)实数的整数部分a=2,小数部分b=.【分析】将已知式子分母有理化后,先估算出的大小即可得到已知式子的整数部分与小数部分.【解答】解:==,∵4<7<9,∴2<<3,∴<<3,即实数的整数部分a=2,则小数部分为﹣2=.故答案为:2;.【点评】此题考查了分母有理化,以及估算无理数的大小,是一道中档题.5.(2021•武进区校级自主招生)已知:对于正整数n,有,若某个正整数k满足,则k=8.【分析】读懂规律,按所得规律把左边所有的加数写成的形式,把互为相反数的项结合,可使运算简便.【解答】解:∵,∴+,即1﹣,∴,解得k=8.故答案为:8.【点评】解答此题的关键是读懂题意,总结规律答题.6.(2021春•饶平县校级期末)与的关系是相等.【分析】把分母有理化,即分子、分母都乘以,化简再比较与的关系.【解答】解:∵=,∴的关系是相等.【点评】正确理解分母有理化的概念是解决本题的关键.7.(2021春•思明区校级月考)计算:3﹣1+|1﹣|﹣.【分析】按照实数的运算法则、负整数指数幂计算方法、二次根式乘除法则计算即可;【解答】解:(1)原式=+﹣=+2﹣2=.8.(2021春•永嘉县校级期末)【知识链接】(1)有理化因式:两个含有根式的非零代数式相乘,如果它们的积不含有根式,那么这两个代数式相互叫做有理化因式.例如:的有理化因式是;1﹣的有理化因式是1+.(2)分母有理化:分母有理化又称“有理化分母”,也就是把分母中的根号化去.指的是如果代数式中分母有根号,那么通常将分子、分母同乘分母的有理化因式,达到化去分母中根号的目的.如:==﹣1,==﹣.【知识理解】(1)填空:2的有理化因式是;(2)直接写出下列各式分母有理化的结果:①=﹣;②=3﹣.【启发运用】(3)计算:+++…+.【分析】(1)由2×=2x,即可找出2的有理化因式;(2)①分式中分子、分母同时×(﹣),即可得出结论;②分式中分子、分母同时×(3﹣),即可得出结论;(3)利用分母有理化将原式变形为﹣1+﹣+2﹣+…+﹣,合并同类项即可得出结论.【解答】解:(1)∵2×=2x,∴2的有理化因式是.故答案为:.(2)①==﹣;②==3﹣.故答案为:①﹣;②3﹣.(3)原式=+++…+,=﹣1+﹣+2﹣+…+﹣,=﹣1.【点评】本题考查了分母有理化,解题的关键是:(1)由2×=2x,找出2的有理化因式;(2)根据平方差公式,将各式分母有理化;(3)利用分母有理化将原式变形为﹣1+﹣+2﹣+…+﹣.9.(2021春•寻乌县期末)在进行二次根式化简时,我们有时会碰上如,,一样的式子,其实我们还可以将其进一步化简:以上这种化简的步骤叫做分母有理化.还可以用以下方法化简:(1)请用不同的方法化简;(2)化简:.【分析】(1)分式的分子和分母都乘以﹣,即可求出答案;把2看出5﹣3,根据平方差公式分解因式,最后进进约分即可.(2)先每一个二次根式分母有理化,再分母不变,分子相加,最后合并即可.【解答】解:(1).(2)原式==.【点评】本题考查了分母有理化,平方差公式的应用,主要考查学生的计算和化简能力.分层提分题组A 基础过关练一.选择题(共11小题)1.(2021•海阳市一模)式子成立的条件是()A.x<1且x≠0B.x>0且x≠1C.0<x≤1D.0<x<1【分析】利用二次根式的除法法则及负数没有平方根求出x的范围即可.【解答】解:根据题意得:,解得:0<x≤1,故选:C.【点评】此题考查了二次根式的乘除法,熟练掌握运算法则是解本题的关键.2.(2019秋•乐亭县期末)已知a=,b=2﹣,则a与b的大小关系是()A.a>b B.a=b C.a<b D.不确定【分析】把a=的分母有理化即可.【解答】解:∵a===2﹣,∴a=b.故选:B.【点评】本题考查的是分母有理化,熟知分母有理化常常是乘二次根式本身(分母只有一项)或与原分母组成平方差公式是解答此题的关键.3.(2020春•长兴县期中)二次根式,,的大小关系是()A.B.<<C.<<D.<<【分析】本题可先将各式分母有理化,然后再比较它们的大小.【解答】解:将三个二次根式化成同分母分数比较:∵=,==,;∴<<.故选:C.【点评】解答本题的关键是将各分式分母有理化,然后再比较它们的大小.在分母有理化的过程中,找出分母的有理化因式是解题的关键.4.(2021春•浦江县期末)()2=()A.5B.C.10D.【分析】根据二次根式的性质计算即可.【解答】解:()2=5,故选:A.【点评】本题考查的是二次根式的计算,掌握二次根式的性质:()2=a(a≥0)是解题的关键.5.(2021•上海)下列实数中,有理数是()A.B.C.D.【分析】直接利用二次根式的性质分别化简得出答案.【解答】解:A.=,不是有理数,不合题意;B.=,不是有理数,不合题意;C.=,是有理数,符合题意;D.=,不是有理数,不合题意;故选:C.【点评】此题主要考查了二次根式的性质与化简,正确化简二次根式是解题关键.6.(2021春•上城区期末)下列各式中,为最简二次根式的是()A.B.C.D.【分析】根据最简二次根式的概念判断即可.【解答】解:A、==2,被开方数中含能开得尽方的因数,不是最简二次根式,不符合题意;B、=,被开方数含分母,不是最简二次根式,不符合题意;C、=a,被开方数中含能开得尽方的因式,不是最简二次根式,不符合题意;D、是最简二次根式,符合题意;故选:D.【点评】本题考查的是最简二次根式的概念,掌握被开方数不含分母、被开方数中不含能开得尽方的因数或因式的二次根式,叫做最简二次根式是解题的关键.7.(2021•黑山县一模)下列二次根式中属于最简二次根式的是()A.B.C.D.【分析】根据最简二次根式的定义逐个判断即可.【解答】解:A.=2,被开方数中含有能开得尽方的因式,不是最简二次根式,故本选项不符合题意;B.=6,被开方数中含有能开得尽方的因式,不是最简二次根式,故本选项不符合题意;C.,被开方数中含有分母,不是最简二次根式,故本选项不符合题意;D.是最简二次根式,故本选项符合题意;故选:D.【点评】本题考查了最简二次根式的定义,能熟记最简二次根式的定义是解此题的关键.8.(2021春•永嘉县校级期中)下列二次根式中是最简二次根式的是()A.B.C.D.【分析】根据最简二次根式的概念判断即可.【解答】解:A、==2,被开方数中含能开得尽方的因数,不是最简二次根式;B、=,被开方数含分母,不是最简二次根式;C、=|a|,被开方数中含能开得尽方的因式,不是最简二次根式;D、,是最简二次根式;故选:D.【点评】本题考查的是最简二次根式的概念,最简二次根式的概念:(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式.9.(2021•江干区模拟)=()A.B.C.3D.5【分析】直接利用二次根式的乘法法则:•=(a≥0,b≥0),即可得出答案.【解答】解:×==.故选:A.【点评】此题主要考查了二次根式的乘法,正确掌握二次根式的乘法法则是解题关键.10.(2021春•长兴县月考)根据二次根式的性质,若=•,则a的取值范围是()A.a≤5B.a≥0C.0≤a≤5D.a≥5【分析】根据二次根式有意义的条件、二次根式乘除法法则解答即可.【解答】解:由题意得,a≥0,5﹣a≥0,解得,0≤a≤5,故选:C.【点评】本题考查的是二次根式的乘除法,掌握二次根式的乘除法法则、二次根式有意义的条件是解题的关键.11.(2021•萧山区开学)下列各式中正确的是()A.=±6B.=﹣2C.=D.(﹣)2=﹣7【分析】直接利用二次根式的性质分别化简得出答案.【解答】解:A、=6,故此选项错误;B、=2,故此选项错误;C、=,正确;D、(﹣)2=7,故此选项错误.故选:C.【点评】此题主要考查了二次根式的性质与化简,正确化简二次根式是解题关键.二.填空题(共14小题)12.(2021秋•通州区期末)化简:=π﹣3.【分析】二次根式的性质:=a(a≥0),根据性质可以对上式化简.【解答】解:==π﹣3.故答案是:π﹣3.【点评】本题考查的是二次根式的性质和化简,根据二次根式的性质,对代数式进行化简.13.(2021春•余杭区校级月考)化简的结果是.【分析】利用的化简方法进行化简即可.【解答】解:原式===.故答案为:.【点评】本题主要考查了二次根式的化简方法,正确运用进行化简是解答问题的关键.14.(2015•江干区一模)在,,,﹣,中,是最简二次根式的是.【分析】判定一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.【解答】解:是最简二次根式,故答案为:.【点评】本题考查最简二次根式的定义.根据最简二次根式的定义,最简二次根式必须满足两个条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式.15.(2012春•潍坊期中)将化成最简二次根式的是10.【分析】先将被开方数化为能直接开方的因数与另外因数的积的形式,然后开方即可.【解答】解:==×=10.故答案为:10.【点评】本题考查了二次根式的化简及最简二次根式的知识,解题的关键是将被开方数化为能直接开方的因数与另外因数的积的形式.16.(2021春•长兴县月考)计算:×÷=12.【分析】直接利用二次根式的乘除运算法则即可求解.【解答】解:原式====12.故答案为:12.【点评】此题主要考查了二次根式的乘除,正确掌握相关运算法则是解题的关键.17.(2021春•爱辉区期末)计算×(a≥0)的结果是4a.【分析】直接利用二次根式的性质化简得出答案.【解答】解:×(a≥0)=4a.故答案为:4a.【点评】此题主要考查了二次根式的乘法运算,正确化简二次根式是解题关键.18.(2019春•虹口区期末)计算:×÷=3.【分析】直接利用二次根式乘除运算法则化简求出答案.【解答】解:×÷=15÷==3.故答案为:3.【点评】此题主要考查了二次根式的乘除运算,正确掌握运算法则是解题关键.19.(2021春•饶平县校级期末)与的关系是相等.【分析】把分母有理化,即分子、分母都乘以,化简再比较与的关系.【解答】解:∵=,∴的关系是相等.【点评】正确理解分母有理化的概念是解决本题的关键.20.(2020•天台县一模)已知a=,b=,那么ab=.【分析】直接利用二次根式的乘法运算法则计算得出答案.【解答】解:∵a=,b=,∴ab===.故答案为:.【点评】此题主要考查了分母有理化,正确掌握二次根式的性质是解题关键.。
八年级数学暑假同步讲义第2讲最简二次根式与同类二次根式学生版
最简二次根式与同类二次根式内容分析最简二次根式和同类二次根式是八年级数学上学期第一章第一节内容,是进一步研究二次根式运算的的知识基础.重点是最简二次根式、同类二次根式的判断,难点是同类二次根式的合并及最简二次根式的化简.知识结构模块一最简二次根式知识精讲1、最简二次根式的概念:(1)被开方数中各因式的指数都为1;(2)被开方数不含分母・当被开方数同时符合上述两个条件的二次根式,叫做最简二次根式•例题解析【例1】判断下列二次根式是不是最简二次根式:(1)<42a ; (2)24Xx3 ;1 v4xy2 -8y2 ( y < 0 );【例2】判断下列二次根式是不是最简二次根式:【例3】判断下列二次根式是不是最简二次根式:(3)<9a 2 + 6a + 1 .【例4】将下列二次根式化成最简二次根式:【例5】将下列二次根式化成最简二次根式:(2) (aa 2 -b 2)(a + b )(a > b >0);(3)7x 3 - 2x 2 + x (x 〉1).(1)上(3) 、口.5(a + b ).(1)、3(a 2 + 2a + 1)(a >-1);(2)、;(x 2 - y 2)(x - y )(x > y > 0);(1) 122 ;(2) 4x 3y 2 (y 〉0); (3) v27a 3b 2c 5 ( a < 0 , b < 0 , c < 0 )•【例6】将下歹匚次根式化成最简二次根式:⑴A ;【例7】将下歹二次根式化成最简二次根式:(a + 2)5 ; -(a> 2) • (a — 2)3【例8】若{x —p~是最简二次根式,则m =, n =, p =(其中m , n , p 均不为0)【例9】如果a +17074是最简二次根式,求,:― + -的值. a 2 a 3(2) <1,5a 3 ;b 5 , 、(4) ;, ----- ( a > 0, b > 0 , c > 0 ).27 a 3 c(1) a + b , (0 < a < b ); (a 一 b )2(2) m + n, (m > n > 0);(3)(3)(2)亨和哈-9【例12】 合并下列各式中的同类二次根式:(1) 2K2- - <3 + - <2 +、瓜;23(2) 3 V xy - ay xy + bxxy(3) 3<18 - <50+5<72 ;(4) (3b v b + a\:b ) - (v4ab 3 + ab\b ).模块二同类二次根式1、同类二次根式的概念:几个二次根式化成最简二次根式后,如果被开方数相同,那么这几个二次根式叫做同类 二次根式.(2) \;x 4y , 3、,x 3y (x < 0), -2\xy^y 3(y < 0). 【例11】 判断下列各组的二次根式是否为同类二次根式?知识精讲例题解析【例10】判断下列各组的二次根式是否为同类二次根式?(1) <24 , 448, —12【例13】判断下列各组的二次根式是否为同类二次根式?(1) ava3 + a2 和b;—1一;(2) J——3a土”——和J ---ab 3 + b 3 9 a 2 +12 ab + 4 b 2 \3 a + 2 b 【例14] 若最简二次根式a+•J a^2b与*:a—b + 3是同类二次根式,求a、b的值. 【例15】当% = -3时,二次根式m v2x2 + 5x + 7的值为无,求m的值.【例16】(1) 合并下列各式中的同类二次根式:2 口-2 1 +H ;27 3 3(2) (4<0.5 -4*0.125) - 2/3 + V12 ;(3)仁-3 x v Xx x【例17】 计算:【习题1】_判断下列二次根式是不是最简二次根式: (1)作;(2)'而;(3)/2r3 3b【习题2】 将下列二次根式化成最简二次根式:(1) <18 ; (2) <72 ; (3) <45 ; (4) <90.【习题3】 将下列二次根式化成最简二次根式: __________ (1) v8x 2(x 0) ; (2) ■v45a 2b ; (3) 44a 3b 2 (D 0);【习题4】 下列二次根式,哪些是同类二次根式:■■..■■12 , <24 , 1— , Ja 4b , 2 匚 a 3b (a 0), v'ab 3 (a 0).1. 27随堂检测(4) <5(a 2 2a 1)5 1).0 7 (2)3x \:4(1) , ;(2) ^―― ;(3) H •———(a < 0,b < 0);' 32 \ %',8a5b (4)45 a2b【习题6】判断下列各组根式是否是同类根式:⑴-。
考点02 二次根式(解析版)
考点二二次根式知识点整合1.二次根式的有关概念(1)二次根式的概念形如)0(≥a a 的式子叫做二次根式.其中符号“”叫做二次根号,二次根号下的数叫做被开方数.【注意】被开方数a 只能是非负数.即要使二次根式a 有意义,则a ≥0.(2)最简二次根式被开方数所含因数是整数,因式是整式,不含能开得尽方的因数或因式的二次根式,叫做最简二次根式.(3)同类二次根式化成最简二次根式后,被开方数相同的几个二次根式,叫做同类二次根式.2.二次根式的性质(1)a ≥0(a ≥0);(2))0()(2≥=a a a ;(32(0)0(0)(0)a a a a a a a >⎧⎪===⎨⎪-<⎩;(40,0)ab a b a b =≥≥;(50,0)a a a b b b=≥>.3.二次根式的运算(1)二次根式的加减合并同类二次根式:在二次根式的加减运算中,把几个二次根式化为最简二次根式后,若有同类二次根式,可把同类二次根式合并成一个二次根式.(2)二次根式的乘除0,0)a b ab a b =≥≥;除法法则:(0,0)a aa b bb=≥>.(3)二次根式的混合运算二次根式的混合运算顺序与实数的运算顺序一样,先乘方,后乘除,最后加减,有括号的先算括号内的.在运算过程中,乘法公式和有理数的运算律在二次根式的运算中仍然适用.考向一二次根式的概念及性质1.二次根式的有关概念(1)二次根式的概念形如)0(≥a a 的式子叫做二次根式.其中符号“”叫做二次根号,二次根号下的数叫做被开方数.2.二次根式的性质(1)a ≥0(a ≥0);(2))0()(2≥=a a a ;(32(0)0(0)(0)a a a a a a a >⎧⎪===⎨⎪-<⎩;(40,0)ab a b a b =≥≥;(50,0)a a a b b b=≥>.1.在函数12x y x -=-中,自变量x 的取值范围是()A .0x ≥且2x ≠B .2x >C .1x ≥且2x ≠D .1x >且2x ≠【答案】C【分析】本题考查了函数的自变量有意义的条件,分式有意义的条件、二次根式有意义的条件.根据分式的分母不能为0,被开方数不0即可得.【详解】解:在函数12x y x -=-中,.B..D.【答案】B【分析】根据二次根式有意义的条件列出不等式组求解即可.考向二二次根式的运算(1)二次根式的加减合并同类二次根式:在二次根式的加减运算中,把几个二次根式化为最简二次根式后,若有同类二次根式,可把同类二次根式合并成一个二次根式.(2)二次根式的乘除0,0)a b =≥≥;0,0)a b≥>.(3)二次根式的混合运算二次根式的混合运算顺序与实数的运算顺序一样,先乘方,后乘除,最后加减,有括号的先算括号内的.在运算过程中,乘法公式和有理数的运算律在二次根式的运算中仍然适用.-【答案】2a-【答案】(1)5;(2)2a(1)______的解法是错误的;(2)当2a =时,求26911a a a -++-的值.【答案】(1)小亮OA=__________(1)填空:210(2)请用含有n(n为正整数)的式子填空:(133+(1)求出这个魔方的棱长.(2)图甲中阴影部分是一个正方形ABCD,求出阴影部分正方形(3)把正方形ABCD放置在数轴上,如图乙所示,使得点的数为______.【答案】(1)4cm(1)则原来大正方形的边长为号)(2)求这个长方体盒子的底面边长和体积分别是多少2 1.414,3 1.732,≈≈【答案】(1)42;2A.20cm B.5【答案】A【分析】本题考查二次根式的应用,出关系式,去括号合并即可得到结果.。
人教初中数学八下 16.1 二次根式(第2课时)教案 【经典教学设计合编】
16.1 二次根式(第2课时)教学内容本节课主要学习二次根式的性质a(a≥0)是一个非负数与(a)2=a及其运用。
教学目标一、知识技能理解a(a≥0)是一个非负数和(a)2=a(a≥0),并利用它们进行计算和化简。
二、数学思考乘方与开方互为逆运算在推导结论(a)2=a(a≥0)中的应用。
三、解决问题利用二次根式的非负性和(a)2=a(a≥0)解题。
四、情感态度通过利用乘方与开方互为逆运算推导结论(a)2=a(a≥0),使学生感受到数学知识的内在联系。
重难点、关键重点:a(a≥0)是一个非负数;(a)2=a(a≥0)及其运用。
难点:理解二次根式a(a≥0)是一个非负数与(a)2=a。
关键:用分类思想的方法导出a(a≥0)是一个非负数;•用探究的方法导出(a)2=a(a≥0)。
教学准备教师准备:制作课件,精选习题。
学生准备:复习有关知识,预习本节课内容。
教学过程一、复习引入【提出问题】1、什么叫二次根式?2、当a≥0时,a表示什么?当a<0时,a有意义吗?【活动方略】教师给出题目。
学生根据所学知识回答问题。
【设计意图】复习二次根式的概念及算术平方根的基本形式.为二次根式的性质引入作好铺垫。
二、探索新知【问题】a (a ≥0)有没有可能小于零?为什么?教师提出问题。
学生总结出二次根式的性质1: a (a ≥0)是一个非负数. 【设计意图】使学生归纳出二次根式的性质1:a (a ≥0)是一个非负数。
【探究】根据算术平方根的意义填空:(4)2=_______;(2)2=_______;(13)2=______;(0)2=_______。
教师给出题目。
学生口答结果后总结有何规律。
老师点评:是4的算术平方根,根据算术平方根的意义,4是一个平方等于4的非负数,因此有(4)2=4。
4同理可得:(2)2=2,132=13,0)2=0,所以(a )2=a (a ≥0)【设计意图】归纳出二次根式的性质2:a 2=a (a ≥0)三、范例点击 例1 已知3+x +5-y =0,求xy 的值是多少? 解:∵3+x +5-y =0,∴3+x ≥0且5-y ≥0, ∴3+x =0且5-y =0;即x +3=0且y -5=0解得x =-3,y =5 ∴xy =-15【设计意图】使学生掌握二次根式的性质1,理解非负式的应用。
16.2二次根式的运算(第2课时)讲解与例题
【例2】计算:
(1)-2-3+5+4;
(2)(-)-(-).
分析:进行二次根式的加减法可按一化(把二次根式化成最简二次根式)、二看(看被开方数是否相同)、三合并(把被开方数相同的二次根式进行合并)的步骤进行.(1)题中的每个二次根式都是最简二次根式,可直接识别出:-2与5,-3与4被开方数相同,因此可直接进行合并.
___________________________________________________________________________
___________________________________________________________________________
二次根式加减时,先将二次根式化成最简二次根式,再将同类二次根式进行合并.
(5)二次根式的加减法的一般步骤:
①将每一个二次根式化成最简二次根式;
②找出其中的同类二次根式;
③合并同类二次根式.
知识点拓展:(1)①当式子中有括号时要先去括号,并且在运算过程中应注意符号;②二次根式的加减与整式的加减相类似,体现了数学中的类比思想,在学习时应注意对比理解和应用.
__________________________________________________________________________
____________________________________________________________________________
解:(1)-2-3+5+4
=(-2+5)+(-3+4)=3+.
北师大版数学八上2-7二次根式(第2课时)教学设计
第二章 实数7.二次根式(第2课时)课标与教材:课标要求:了解二次根式的概念及其加、减、乘、除运算法则,会用它们进行有关实数的简单四则运算。
教材分析:教材用类比的方法,引入实数的运算法则,运算律等,并利用这些运算法则、运算率进行有关运算,解决有关实际问题.之前学生已学习了平方根、立方根,认识了无理数,了解了无理数是客观存在的,从而将有理数扩充到实数范围,使学生对数认识进一步深入。
教学建议:在教学中先复习有理数的运算律和运算法则,让学生多计算几个能开的尽的几个根式的乘法运算,通过类比,观察得出计算法则。
二次根式(第2课时)是义务教育课程标准北师大版实验教科书八年级上册第二章《实数》第7节内容.本节内容分为3个课时,本课时是第2课时,基于第1课时二次根式的性质得到二次根式乘除的法则以及加减运算的法则,进而利用它们进行二次根式的运算,经历本节课的学习,学生将对实数的运算,有较全面的了解,同时进一步熟练实数的运算,为今后的学习打下坚实的基础. 学情分析:学生已经知道的:在前面,学生已经掌握了实数的概念,实数的运算法则;学会了利用公式:b a b a ⋅=⋅(a ≥0,b ≥0),ba b a=(a ≥0,b >0)进行简单的实数四则运算.本课时更多的是反用上面的公式,因此,上一课时知识成为本课时很好的知识基础。
学生想知道的:怎样进行实数的运算学生能自己解决的:学生已经学习了有理数的运算法则,有了学习经验,单项式与多项式的乘法,多项式的乘法。
进行类比运算。
根据建构学生需要教师指导解决的:综合运用知识解决问题,进行确定评价。
教学目标:1、知识与技能目标(1)了解有理数的运算法则在实数范围内仍然适用.(2)用类比的方法,引入实数的运算法则、运算律,并能用这些法则、运算律在实数范围进行正确计算.(3)正确运用公式:b a b a ⋅=⋅(a ≥0,b ≥0) ba b a=(a ≥0, b >0) 2、数学思考;能独立思考,体会数学的基本思想和思维方式,能用类比的方法解决问题,用已有知识去探索新知识.3、问题解决:在与他人合作交流过程中,能较好的理解他人的思考方法和结论。
学生版二次根式的运算(基础)知识讲解
二次根式的运算(基础)知识讲解【学习目标】1、理解并掌握二次根式的加减法法则,会合并同类二次根式,进行简单的二次根式加减运算;2、掌握二次根式的乘除法法则和化简二次根式的常用方法,熟练进行二次根式的乘除运算;3、会利用运算律和运算法则进行二次根式的混合运算.【要点梳理】要点一、二次根式的加减二次根式的加减实质就是合并同类二次根式,即先把各个二次根式化成最简二次根式,再把其中的同类二次根式进行合并.对于没有合并的二次根式,仍要写到结果中.要点诠释:(1)在进行二次根式的加减运算时,整式加减运算中的交换律、结合律及去括号、添括号法则仍然适用. (2)二次根式加减运算的步骤:1)将每个二次根式都化简成为最简二次根式;2)判断哪些二次根式是同类二次根式,把同类的二次根式结合为一组;要点二、二次根式的乘法及积的算术平方根1.乘法法则:(a≥0,b≥0),即两个二次根式相乘,根指数不变,只把被开方数相乘.要点诠释:(1).在运用二次根式的乘法法则进行运算时,一定要注意:公式中a、b都必须是非负数;(在本章中,如果没有特别说明,所有字母都表示非负数).(2).该法则可以推广到多个二次根式相乘的运算:≥0,≥0,…..≥0).(3).若二次根式相乘的结果能写成的形式,则应化简,如.2.积的算术平方根:(a≥0,b≥0),即积的算术平方根等于积中各因式的算术平方根的积.要点诠释:(1)在这个性质中,a、b可以是数,也可以是代数式,无论是数,还是代数式,都必须满足a≥0,b≥0,才能用此式进行计算或化简,如果不满足这个条件,等式右边就没有意义,等式也就不能成立了; (2)二次根式的化简关键是将被开方数分解因数,把含有形式的a移到根号外面.要点三、二次根式的除法及商的算术平方根1.除法法则:(a≥0,b>0),即两个二次根式相除,根指数不变,把被开方数相除.要点诠释:(1)在进行二次根式的除法运算时,对于公式中被开方数a、b的取值范围应特别注意,a≥0,b>0,因为b在分母上,故b不能为0.(2)运用二次根式的除法法则,可将分母中的根号去掉,二次根式的运算结果要尽量化简,最后结果中分母不能带根号.2.商的算术平方根的性质:(a ≥0,b >0),即商的算术平方根等于被除式的算术平方根除以除式的算术平方根.要点诠释:运用此性质也可以进行二次根式的化简,运用时仍要注意符号问题. 要点四、二次根式的混合运算二次根式的混合运算是对二次根式的乘除及加减运算法则的综合运用. 要点诠释:(1)二次根式的混合运算顺序与实数中的运算顺序一样,先乘方,后乘除,最后算加减,有括号要先算括号里面的;(2)在实数运算和整式运算中的运算律和乘法公式在二次根式的运算中仍然适用; (3)二次根式混合运算的结果要写成最简形式. 【典型例题】类型一、二次根式的加减运算1.计算: (1).+(2). 311932a a a a a+-举一反三:【变式】计算:011(1)()527232π--++--类型二、二次根式的乘除法2.(1)×; (2)×; (3); (4);举一反三【变式】各式是否正确,不正确的请予以改正:(1); (2)×=4××=4×=4=8.3.算:(1))4323(4819-÷- (2)21521)74181(2133÷-⨯类型三、二次根式的混合运算4.(聊城模拟)下列计算正确的是( ) A .5﹣2=3 B .2×3=6 C .=3 D .3=35、计算: 已知625,625-=+=b a ,则ab =_______,a b +=________.举一反三:【变式】(汉阳区期中)已知x=1﹣,y=1+,则x 2+y 2﹣xy ﹣2x ﹣2y 的值为 .二次根式的运算(基础)巩固练习【巩固练习】一、 选择题1.计算18827÷⨯的结果是( ). A .463 B.186 C.932 D.1642. (广西)下列计算正确的是( ) A .﹣=B .3×2=6C .(2)2=16D .=13. 化简二次根式3a -的正确结果是( ).A .a a --B .a a -C .a aD .a a - 4. (泰安模拟)下列计算或化简正确的是( ). A. 2+4=6B.=4C.=﹣3 D.=35.若,则的值等于( ).A. 4B.C. 2D.6.下列计算正确的是( ).A. 2=b a b ++(a ) B. a b ab +=C.22+a b a b =+D. 1aa a= 二. 填空题 7.计算:4118(2854)33-÷⋅=____________________________. 8.(潍坊)计算:(+)= .9. 化简:(1).111a a +=_________,(2).2411a a a+=___________. 10. (新泰市期末)若=,则x 的取值范围为 .11. 一个三角形的三边长分别为,,,则它的周长是________cm.12. 101100103103)()(-+=________________. 三 综合题13. (1)11(318504)52+-÷32 (2)()1212328-⎪⎭⎫⎝⎛+--14.(市南区校级期中)某居民小区有一块长方形绿地,先进行如下改造:将长方形的长减少米,宽增加米,得到一块正方形绿地,它的面积是原长方形绿地的2倍,求改造后的正方形绿地的边长是多少米?(结果精确到1米)15.(1)先化简,再求值:(a +((6)a a a --,其中12a =.(2).已知251,251+=-=b a ,求722++b a 的值.。
02.秋季-八年级 第2讲 复合二次根式(学生版)
第二讲复合二次根式姓名:______ 【知识导航】一、配方法【知识要点】1、如果二次根式的被开方数(式)中含有二次根式,这样的式子叫做复合二次根式(有的也叫重二次根式).等.2、)x y=≥,其中x y Axy B+=⎧⎨=⎩,通过解方程组就可以求出x、y.将复合二次根式内部的二次根式化成平方形式从而脱去外层根号.【例题详解】【例1】化简:(1(2【例2】_________.【例3】a,小数部分为b,那么11114a b a b+++−的值是__________.【例4】已知x、y x=+= __________.【例5】【例6】化简:【例7】()0a>二、平方法平方法:先将复合二次根式平方后化简,再对结果开平方.【例8】 若N =N =__________;【例9】 化简+三、待定系数法待定系数法:根据重二次根式的特点,将原式设为几个简单二次根式的和或差的形式,通过平方并化简后,比较系数求出结果.注意:待定系数法之所以可以使用,是因为二次根式的性质:设a 、b 、c 、d 、n 是有理数,且n 不是完全平方数,则当且仅当a c =,b d =时,a c +=+【例10】 化【例11】化=__________;第二讲复合二次根式(回家做业)姓名:______1.2.3.设a−b 21b a−的值.4.已知a b+,a b−=ab=__________.5.+6.。