【必考题】高二数学上期中试题(附答案)
2024-2025学年高二上学期期中模拟考试数学试题含解析
2024-2025学年高二数学上学期期中模拟卷(考试时间:120分钟试卷满分:150分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
4.测试范围:沪教版2020必修第三册第十~十一章。
5.难度系数:0.72。
一、填空题(本大题共有12题,满分54分,第1-6题每题4分,第7-12题每题5分)1.不重合的两个平面最多有条公共直线【答案】1【解析】根据平面的位置关系可知,不重合两平面平行或相交,当相交时,有且只有一条公共直线.故答案为:12.已知球的表面积是16π,则该球的体积为.3.空间中一个角∠A的两边和另一个角∠B的两边分别平行,若∠A=,则∠B=;【答案】【解析】如图,若角∠A 的两边和角∠B 的两边分别平行,且方向相同,则∠A 与∠B 相等此时70B A ∠=∠=︒;②当角∠A 的两边和角∠B 的两边分别平行,且一边方向相同另一边方向相反,则∠A 与∠B 互补,此时180110B A ∠=︒-∠=︒.故答案为70︒或110︒.4.如图,正三棱柱的底面边长为2,高为1,则直线1B C 与底面ABC 所成的角的大小为(结果用反三角函数值表示).5.在空间中,给出下面四个命题,其中真命题为.(填序号)①过平面α外的两点,有且只有一个平面与平面α垂直;②若平面β内有不共线三点到平面α的距离都相等,则αβ∥;③若直线l 与平面α内的任意一条直线垂直,则l α⊥;④两条异面直线在同一平面内的射影一定是两条相交直线.【答案】③【解析】①过平面α外两点可确定一条直线,当这条直线垂直于平面α时,有无数个平面垂直于平面α,故①错误;②若三点在平面α同侧,则αβ∥;若三点在平面α两侧,则α与β相交,故②错误;③直线l 与平面α内的任意一条直线垂直,则l 垂直于平面α内两条相交直线,由线面垂直的判定定理可得l α⊥,故③正确;④两条异面直线在同一个平面内的射影有可能是两条相交直线,也可能是两条平行直线,还可能是一个点和一条直线,故④错误;故答案为:③6.正四棱锥P -ABCD 的所有棱长均相等,E 是PC 的中点,那么异面直线BE 与P A 所成角的余弦值为.连接AC 交BD 于O 点,连接OE ,则OE 因为⊥PO 面ABCD ,所以PO DB ⊥,又因为所以直在角三角形EOB 中,设PA a =,则故答案为:33.7.如图,有一圆锥形粮堆,其轴截面是边长为6m 的正ABC V ,粮堆母线AC 的中点P 处有一老鼠正在偷吃粮食,此时小猫正在B 处,它要沿圆锥侧面到达P 处捕捉老鼠,则小猫所经过的最短路程是m .【答案】35【解析】解:由题意得:圆锥的底面周长是6π,则66180n ππ=,解得:180n ︒=可知圆锥侧面展开图的圆心角是180︒,如图所示:则圆锥的侧面展开图中:()3m AP =,6(m)AB =,90BAP ︒∠=所以在圆锥侧面展开图中:()223635m BP =+=故答案为:358.已知一球体刚好和圆台的上、下底面及侧面都相切,且圆台上底面的半径为2,下底面的半径为1,则该圆台的侧面积为.【答案】9π【解析】圆台的轴截面如下图示:截面中圆为内切球的最大圆,且2AF DF AG DH ====,1BE CE BG CH ====,所以3AB CD ==,而上下底面周长分别为4π、2π,故该圆台的侧面积为13(2π4π)9π2⨯⨯+=.故答案为:9π9.如图,已知三棱柱111ABC A B C -的体积为3,P ,Q ,R 分别为侧棱1AA ,1BB ,1CC 上的点,且1AP CR AA +=,则Q ACRP V -=.则111332Q ACRP V d S d -=⋅⋅=⋅⋅⋅设三棱柱111ABC A B C -的体积故答案为:1.10.已知大小为π6的二面角的一个面内有一点,它到二面角的棱的距离为6,则这个点到另一个面的距离为.11.正方形ABCD 中,E ,F 分别为线段AB ,BC 的中点,连接DE ,DF ,EF ,将ADE V ,CDF V ,BEF △分别沿DE ,DF ,EF 折起,使A ,B ,C 三点重合,得到三棱锥O DEF -,则该三棱锥外接球半径R 与内切球半径r 的比值为.【答案】26【解析】在正方形ABCD 中,,AD AE CD ⊥12.空间给定不共面的A,B,C,D四个点,其中任意两点间的距离都不相同,考虑具有如下性质的平面α:A,B,C,D中有三个点到的距离相同,另一个点到α的距离是前三个点到α的距离的2倍,这样的平面α的个数是___________个【答案】32【解析】首先取3个点相等,不相等的那个点由4种取法;然后分3分个点到平面α的距离相等,有以下两种可能性:(1)全同侧,这样的平面有2个;(2)不同侧,必然2个点在一侧,另一个点在一侧,1个点的取法有3种,并且平面过三角形两个点边上的中位线,考虑不相等的点与单侧点是否同侧有两种可能,每种情况下都唯一确定一个平面,故共有6个,⨯=个,所有这两种情况共有8个,综上满足条件的这样的平面共有4832故答案为:32二、选择题(本题共有4题,满分18分,第13-14题每题4分,第15-16题每题5分;每题有且只有一个正确选项)13.下列几何体中,多面体是()A.B.C.D.【答案】B【解析】A选项中的几何体是球,是旋转体;B选项中的几何体是三棱柱,是多面体;C 选项中的几何体是圆柱,旋转体;D 选项中的几何体是圆锥,是旋转体.故选B.14.已知两个平面α、β,在下列条件下,可以判定平面α与平面β平行的是().A .α、β都垂直于一个平面γB .平面α内有无数条直线与平面β平行C .l 、m 是α内两条直线,且l ∥β,m ∥βD .l 、m 是两条异面直线,且l ∥α,m ∥α,l ∥β,m ∥β【答案】D【解析】对于A ,如在正方体1111ABCD A B C D -中,平面11AAC C 和平面11AA B B 都与平面ABCD 垂直,但这两个平面不平行,所以A 错误,对于B ,如在正方体1111ABCD A B C D -中,平面11AAC C 和平面11AA B B ,平面11AAC C 中所有平行于交线1AA 的直线都与平面11AA B B 平行,但这两个平面不平行,所以B 错误,对于C ,如在正方体1111ABCD A B C D -中,平面11AAC C 和平面11AA B B ,,M N 分别为11,A B AB 的中点,则1,MN BB 在平面11AA B B 内,且都与平面11AAC C 平行,但这两个平面不平行,所以C 错误.对于D ,因为l 、m 是两条异面直线,所以将这两条直线平移到共面α时,一定在α内形成两条相交直线,由面面平行的判定定理可知,该结论正确.故选:D15.将3个1212⨯的正方形沿邻边的中点剪开分成两部分(如图1);将这6部分接于一个边长为六边形边上(如图2),若拼接后的图形是一个多面体的表面展开图,则该多面体的体积是()A .17282B .864C .576D .2【答案】B【解析】折成的多面体如图①所示,将其补形为正方体,如图②,所求多面体体积为正方体的一半,又依题易求得正方体的边长为12,故3112864,2V =⨯=故选:B.16.如图,在正方体1111ABCD A B C D -中,E 是棱BC 的中点,F 是侧面11BCC B 上的动点,且1A F ∥平面1AD E .设1A F 与平面11BCC B 所成的角为1,A F α与1AD 所成的角为β,那么下列结论正确的是()A .α的最小值为arctan2,β的最小值为arctan3B .α的最小值为arctan3,β的最大值为2πC .α的最小值大于arctan2,β的最小值大于arctan3D .α的最大值小于arctan3,β的最大值小于2π设正方体的棱长为2,因为MN GE ∥,且MN ⊄MN ∴∥平面1AEGD ;同理1A N ∥平面1AEGD ,且∴平面1A MN ∥平面AEGD ∵11A B ⊥面11BB C C ,所以又1AD MN ,所以1A F 与1AD 所成的角为111tan A B B Fα∴=;当F 为MN 中点时,此时当F 与M 或N 重合时,此时2tan 22α∴≤≤,arctan2对于β,当F 为MN 中点时,当F 与M 或N 重合时,β()221252A F ⎛⎫∴=-= ⎪ ⎪⎝⎭tan 3β∴=,tan 3β∴≥,arctan 3β≤≤又arctan3 1.4≈,arctan2故选:A.三、解答题(本大题共有5题,满分78分,第17-19题每题14分,第20、21题每题18分.)17.如图,长方体1111ABCD A B C D -中,1AB AD ==,12AA =,点P 为1DD 的中点.(1)求证:直线1BD //平面PAC ;(2)求异面直线1BD 与AP 所成角的大小.【解析】(1)设AC 和BD 交于点O ,则O 为BD 的中点,连接PO ,(1分)∵P 是1DD 的中点,∴1//PO BD ,(3分)又∵PO ⊂平面PAC ,1⊄BD 平面PAC ,∴直线1BD //平面PAC ;(6分)(2)由(1)知,1//PO BD ,∴APO ∠即为异面直线1BD 与AP 所成的角,(8分)∵PA PC =12AO AC ==且PO AO ⊥,∴1sin2AO APO AP ∠==.又(0,90]APO ∠∈︒︒,∴30APO ∠=︒故异面直线1BD 与AP 所成角的大小为30︒.(14分)18.如图,在圆柱中,底面直径AB 等于母线AD ,点E 在底面的圆周上,且AF D E ⊥,F 是垂足.(1)求证:AF DB ⊥;(2)若圆柱与三棱锥D ABE -的体积的比等于3π,求直线DE 与平面ABD 所成角的大小.【解析】(1)证明:根据圆柱性质,DA ⊥平面ABE ,因为EB ⊂平面ABE ,所以DA EB ⊥,又因为AB 是圆柱底面的直径,点E 在圆周上,所以AE EB ⊥,因为AE DA A ⋂=且,AE DA ⊂平面DAE ,所以EB ⊥平面DAE ,(2分)又因为AF ⊂平面DAE ,所以EB AF ⊥,因为AF D E ⊥,且EB DE E =I ,且,EB DE ⊂平面DEB ,所以AF ⊥平面DEB ,又因为DB ⊂平面DEB ,所以AF DB ⊥.(6分)(2)解:过点E 作EH AB ⊥,H 是垂足,连接DH ,根据圆柱性质,平面ABD ⊥平面ABE ,且平面ABD ⋂平面ABE AB =,且EH ⊂平面ABE ,所以EH ⊥平面ABD ,因为DH ⊂平面ABD ,所以DH 是ED 在平面ABD 上的射影,从而EDH ∠是DE 与平面ABD 所成的角,(8分)设圆柱的底面半径为R ,则2DA AB R ==,所以圆柱的体积为32πV R =,且21233D ABEABE R V AD S EH -=⋅=⋅ ,由:3πD ABE V V -=,可得EH R =,可知H 是圆柱底面的圆心,且AH R =,且DH =,在直角EDH 中,可得tan EH EDH DH ∠==EDH ∠=(14分)19.如图,将边长为2的正方形ABCD 沿对角线BD 折叠,使得平面ABD ⊥平面CBD ,AE ⊥平面ABD ,且2AE(1)求证:直线EC 与平面ABD 没有公共点;(2)求点C 到平面BED 的距离.【解析】(1)取BD 的中点F ,连接CF 、AF ,如图,依题意,在BCD △中,,BC CD BC CD =⊥,则CF BD ⊥,而平面ABD ⊥平面CBD ,平面ABD ⋂平面CBD BD =,CF ⊂平面CBD ,于是得CF ⊥平面ABD ,且2CF =因为AE ⊥平面ABD ,且2AE =//AE CF ,且AE CF =,从而得四边形AFCE 为平行四边形,//EC AF ,(4分)又AF ⊂平面ABD ,EC ⊂/平面ABD ,则//EC 平面ABD ,所以直线EC 与平面ABD 没有公共点;(6分)(2)因为CF ⊥平面ABD ,AF ⊂平面ABD ,所以CF AF ⊥,因为BD AF ⊥,BD CF F = ,,BD CF ⊂平面,CBD 所以AF ⊥平面,CBD 因为//,EC AF ,于是得EC ⊥平面CBD ,因为AE ⊥平面ABD ,,AB AD ⊂平面ABD ,所以,AE AB AE AD ⊥⊥,(8分)因为EC AF ==EB ED =,则等腰BED 底边BD 上的高2h ==,12BED S BD h =⋅= ,而2BCD S =,设点C 到平面BED 的距离为d ,由C BED E BCD V V --=得1133BED BCD S d S EC ⋅=⋅ ,即2=,解得1d =,所以点C 到平面BED 的距离为1(14分)20.如图所示,在四棱锥P ABCD -中,底面四边形ABCD 是菱形,底面,AC BD O PAC = △是边长为2的等边三角形,PB =PD ,AP =4AF(1)求证:PO ⊥底面ABCD (2)求直线CP 与OF 所成角的大小.(3)在线段PB 上是否存在点M ,使得//CM 平面BDF ?如果存在,求BMBP的值;如果不存在,请说明理由.【解析】(1)因为底面ABCD 是菱形,且AC BD O = ,所以O 为AC ,BD 中点,在PBD △中,PB =PD ,可得PO ⊥BD ,因为在PAC 中,PA =PC ,O 为AC ,BD 中点,所以PO ⊥AC ,(3分)又因为AC ⋂BD =O ,所以PO ⊥底面ABCD .(4分)(2)连接OF ,取AP 中点为E ,连接OE ,因为底面ABCD 是菱形,AC ⋂BD =O ,由O 为AC 中点,且E 为AP 中点,AP =4AF ,所以F 为AE 中点,所以CP //OE .,故∠EOF 为直线CP 与OF 所成的角,(8分)又由PAC 为等边三角形,且E 为中点,所以∠EOF =30o .(10分)(3)存在,13BM BP =,连接CE ,ME ,因为AP =4AF ,E 为AP 中点,所以13EF FP =,又因为13BM BP =,所以在PFB △中,EF BMFP BP =,即EM //BF ,(12分)因为EM ⊄平面BDF ,BF ⊂平面BDF ,所以EM //平面BDF ,由(2)知EC //OF ,因为EC ⊄平面BDF ,OF ⊂平面BDF ,所以EC //平面BDF ,因为EC ⋂EM =E ,所以平面EMC //平面BDF ,因为CM ⊂平面EMC ,所以CM //平面BDF .(18分)21.在棱长均为2的正三棱柱111ABC A B C -中,E 为11B C 的中点.过AE 的截面与棱111,BB AC 分别交于点F ,G.(1)若F 为1BB 的中点,试确定点G 的位置,并说明理由;(2)在(1)的条件下,求截面AGEF 与底面ABC 所成锐二面角的正切值;(3)设截面AFEG 的面积为0S ,AEG △面积为1S ,AEF △面积为2S ,当点F 在棱1BB 上变动时,求2012S S S 的取值范围.【解析】(1)在平面11BCC B 内延长1CC ,FE 相交于点P ,则P ∈平面AGEF ,又1P CC ∈⊂平面11ACC A ,则有平面AGEF 平面11ACC A AG =,P AG ∈,即A ,G ,P 三点共线.(2分)因为E 为11B C 的中点,F 为1BB 的中点,所以11112PC B F CC ==,所以113PC PC =,又因为1//GC AC ,所以1113GC PC AC PC ==,所以111112333GC AC A C ===,即点G 为棱11AC 上靠近点1C 的三等分点.(4分)(2)在平面11BCC B 内延长CB ,EF 相交于点Q ,连接AQ ,则平面AGEF 平面ABC AQ =,在平面11ACC A 内作GM AC ⊥于点M ,则GM ⊥平面ABC ,又AQ ⊂平面ABC ,所以G M AQ ⊥,在平面ABC 内作MN AQ ⊥于点N ,连接GN ,又,GM MN ⊂平面GMN ,GM MN M ⋂=,所以AQ ⊥平面GMN ,GN ⊂平面GMN ,所以AQ GN ⊥,所以GNM ∠为截面AGEF 与底面ABC 所成锐二面角的平面角.(6分)在AQC 中,作CH AQ ⊥于点H ,11BQ C E ==,2AC =,3CQ =,60AC B ∠= ,12222ABC S =⨯⨯⨯=△AQC S =由余弦定理2222cos 4967AQ AC CQ AC CQ ACQ =+-⋅⋅∠=+-=,则AQ122AQC S AQ CH ==⋅ ,可得3217CH =,所以237MN CH ==,又22G M AA ==,所以21tan 3GM GNM MN ∠==,故截面AGEF 与底面ABC (10分)(3)设1GC m =,则[]0,1m ∈,2PG mGA m=-.设PGE 的面积为S ,所以12S m S m=-,又因为21S S S =+,所以1222S m S -=,且1221,122S m S -⎡⎤=∈⎢⎥⎣⎦,故()22120121212212S S S S SS S S S S S +==++,令12S t S =,则1,12t ⎡⎤∈⎢⎥⎣⎦,(11分)设()112,12g t t t t ⎛⎫⎡⎤=++∈ ⎪⎢⎥⎣⎦⎝⎭,当12112t t ≤<≤时,()()()()121212121212111t t g t g t t t t t t t t t --=+--=-,120t t -<,120t t >,1210t t -<,则()()120g t g t ->,即()()12g t g t >,所以()12g t t t =++在1,12t ⎡⎤∈⎢⎥⎣⎦上单调递减,所以()()min 14g t g ==,()max 1922g t g ⎛⎫== ⎪,所以()94,2g t ⎡⎤∈⎢⎥,。
人教版高二上学期期中考试数学试题与答案解析(共两套)
人教版高二上学期期中考试数学试题(一) (本卷满分150分,考试时间120分钟)测试范围:选择性必修第一册:第一章、第二章、第三章一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个选项是符合题目要求的.1.已知两个非零向量)(111z y x a ,,=,)(222z y x b ,,=,则这两个向量在一条直线上的充要条件是( )。
A 、||||b b a a ::= B 、212121z z y y x x == C 、0212121=++z z y y x x D 、存在非零实数k ,使b k a =2.已知焦点在x 轴上的双曲线的焦距为32,焦点到渐近线的距离为2,则双曲线的方程为( )。
A 、1222=-y xB 、1222=-y xC 、1222=-x y D 、1222=-x y3.若直线m my x +=+2与圆012222=+--+y x y x 相交,则实数m 的取值范围为( )。
A 、)(∞+-∞, B 、)0(,-∞ C 、)0(∞+, D 、)0()0(∞+-∞,, 4.点)24(-,P 与圆422=+y x 上任一点连线的中点的轨迹方程是( )。
A 、1)1()2(22=++-y x B 、4)1()2(22=++-y x C 、1)1()2(22=-++y x D 、4)2()4(22=-++y x5.若P 、Q 分别为直线01243=-+y x 与0586=++y x 上任意一点,则||PQ 的最小值为( )。
A 、59 B 、1029 C 、518 D 、5296.已知椭圆C :12222=+b y a x (0>>b a )的左焦点1F ,过点1F 作倾斜角为 30的直线与圆222b y x =+相交的弦长为b 3,则椭圆的离心率为( )。
A 、21 B 、22 C 、43 D 、237.已知点1F 是抛物线C :py x 22=的焦点,点2F 为抛物线C 的对称轴与其准线的交点,过2F 作抛物线C 的切线,切点为A ,若点A 恰好在以1F 、2F 为焦点的双曲线上,则双曲线的离心率为( )。
高二数学上学期期中试题含解析试题_2 3(共21页)
2021-2021学年高二数学上学期(xuéqī)期中试题〔含解析〕一、选择题(本大题一一共10小题,每一小题4分,一共40分,在每一小题给出的四个选项里面,只有一项是哪一项符合题目要求的)A(5,0),B(2,3)两点的直线的倾斜角为〔〕A. 45°B. 60°C. 90°D. 135°【答案】D【解析】【分析】先根据两点的斜率公式求出斜率,结合斜率与倾斜角的关系可得倾斜角.【详解】因为A(5,0),B(2,3),所以过两点的直线斜率为,所以倾斜角为.应选:D.【点睛】此题主要考察直线倾斜角的求解,明确直线和倾斜角的关系是求解此题的关键,侧重考察数学运算的核心素养.过点且与直线垂直,那么l的方程为〔〕A.B.C.D.【答案】C【解析】【分析(fēnxī)】根据所求直线与直线垂直,可以设出直线,结合所过点可得. 【详解】因为直线l 与直线2340x y -+=垂直, 所以设直线,因为直线l 过点(1,2)-, 所以,即方程为3210x y ++=.应选:C.【点睛】此题主要考察两直线的位置关系,与直线平行的直线一般可设其方程为;与直线0ax by c垂直的直线一般可设其方程为.3.一条直线与两条平行线中的一条为异面直线,那么它与另一条( ) A. 相交 B. 异面C. 相交或者异面D. 平行【答案】C 【解析】 如下列图所示,三条直线平行,与异面,而与d 异面,与d 相交,应选C.4. 不在3x+2y>3表示的平面(píngmiàn)区域内的点是〔〕A. 〔0,0〕B. 〔1,1〕C. 〔0,2〕D. 〔2,0〕【答案】A【解析】试题分析:将各个点的坐标代入,判断不等式是否成立,可得结论.解:将〔0,0〕代入,此时不等式3x+2y>3不成立,故〔0,0〕不在3x+2y>3表示的平面区域内,将〔1,1〕代入,此时不等式3x+2y>3成立,故〔1,1〕在3x+2y>3表示的平面区域内,将〔0,2〕代入,此时不等式3x+2y>3成立,故〔0,2〕在3x+2y>3表示的平面区域内,将〔2,0〕代入,此时不等式3x+2y>3成立,故〔2,0〕在3x+2y>3表示的平面区域内,应选A.考点:二元一次不等式〔组〕与平面区域.M(-2,1,3)关于坐标平面xOz的对称点为A,点A关于y轴的对称点为B,那么|AB|=( )A. 2B.C. D. 5【答案(dá àn)】B【解析】【分析】先根据对称逐个求出点的坐标,结合空间中两点间的间隔公式可求.【详解】因为点M(-2,1,3)关于坐标平面xOz的对称点为A,所以,因为点A关于y轴的对称点为B,所以,所以.应选:B.【点睛】此题主要考察空间点的对称关系及两点间的间隔公式,明确对称点间坐标的关系是求解的关系,侧重考察直观想象和数学运算的核心素养.6.如图,在长方体中,M,N分别是棱BB1,B1C1的中点,假设∠CMN=90°,那么异面直线AD1和DM所成角为〔〕A. 30°B. 45°C. 60°D. 90°【答案(dá àn)】D【解析】【分析】建立空间直角坐标系,结合,求出的坐标,利用向量夹角公式可求. 【详解】以为坐标原点,所在直线分别为轴,建立空间直角坐标系,如图,设,那么,,,因为90CMN ∠=︒,所以,即有.因为,所以,即异面直线和所成角为.应选:D.【点睛】此题主要考察异面直线所成角的求解,异面直线所成角主要利用几何法和向量法,几何法侧重于把异面直线所成角平移到同一个三角形内,结合三角形知识求解;向量法侧重于构建坐标系,利用向量夹角公式求解.M ,N 在圆x 2+y 2+kx -2y =0上,且关于(guānyú)直线y =kx +1对称,那么k =〔 〕A. 0B. 1C. 2D. 3【答案】A【解析】 【分析】根据圆的对称性可知,直线y =kx +1一定经过圆心,从而可求. 【详解】由题意可知圆心,因为点M ,N 在圆x 2+y 2+kx -2y =0上,且关于直线y =kx +1对称,所以直线y =kx +1一定经过圆心,所以有,即.应选:A.【点睛】此题主要考察利用圆的性质求解参数,假设圆上的两点关于某直线对称,那么直线一定经过圆心,侧重考察直观想象和数学运算的核心素养. ,是两个不同的平面,l ,是两条不同的直线,且,〔 〕A. 假设,那么B. 假设αβ⊥,那么C. 假设,那么D. 假设//αβ,那么【答案】A 【解析】试题分析:由面面垂直的断定定理:假如一个平面经过另一平面的一条垂线,那么两面垂直,可得l β⊥,l α⊂ 可得αβ⊥考点:空间线面平行垂直的断定与性质P 到点A (6,0)的间隔(jiàn gé) 是到点B (2,0)的间隔 的倍,那么动点P 的轨迹方程为〔 〕A. (x+2)2+y2=32B. x2+y2=16C. (x-1)2+y2=16D. x2+(y-1)2=16【答案】A【解析】【分析】先设出动点P的坐标,根据条件列出等量关系,化简可得.【详解】设,那么由题意可得,即,化简可得.应选:A.【点睛】此题主要考察轨迹方程的求法,建系,设点,列式,化简是这类问题的常用求解步骤,侧重考察数学运算的核心素养.与曲线有公一共点,那么b的取值范围是〔〕A.B.C.D.【答案】B【解析(jiě xī)】【分析】先作出曲线234y x x =--的图形,结合图形可求b 的取值范围. 【详解】因为234y x x =--,所以,如图,观察图形可得,直线过点及与半圆相切时可得b 的临界值,由22(2)(3)4-+-=x y 与2y x b =+相切可得,所以b 的取值范围是[125,3]--. 应选:B.【点睛】此题主要考察利用直线与圆的位置关系求解参数,准确作图是求解此题的关键,注意曲线是半圆,侧重考察直观想象和数学运算的核心素养.二、填空题(本大题一一共7小题,单空题每一小题4分,多空题每一小题6分,一共36分),直线.假设直线的倾斜角为,那么a =_________;假设,那么1l ,之间的间隔 为_____.【答案】 (1). 1 (2).【解析】 【分析】利用(lìyòng)直线1l 的倾斜角和斜率的关系可求a ;根据两条直线平行可得a ,再结合平行直线间的间隔 公式可求. 【详解】因为直线1l 的倾斜角为4π,所以所以它的斜率为1,即;因为12l l //,所以,即,所以1l ,2l 之间的间隔 为.故答案为:1;22.【点睛】此题主要考察直线的倾斜角与方程的关系,平行直线间的间隔 ,明确斜率和直线倾斜角的关系是求解的关键,两条直线平行的条件使用是考虑的方向,侧重考察数学运算的核心素养.C :x 2+y 2-8x -2y =0的圆心坐标是____;关于直线l :y =x -1对称的圆C '的方程为_.【答案】 (1). (4,1) (2). (x -2)2+(y -3)2=17 【解析】 【分析】根据圆的一般式方程和圆心的关系可求,先求解对称圆的圆心,结合对称性,圆的半径不变可得对称圆的方程.【详解】由圆的一般式方程可得圆心坐标,半径;设(4,1)关于直线l 的对称点为,那么,解得,所以圆关于直线l 对称的圆的方程为.故答案为:(4,1);22(2)(3)17x y -+-=.【点睛】此题主要考察利用圆的一般式方程求解圆心,半径;点关于直线(zhíxiàn)对称的问题一般是利用垂直关系和中点公式建立方程组求解,侧重考察数学运算的核心素养.xOy 中,直线l :mx -y -2m -1=0(m ∈R )过定点__,以点(1,0)为圆心且与l 相切的所有圆中,半径最大的圆的HY 方程为_.【答案】 (1). (2,-1) (2). (x -1)2+y 2=2 【解析】 【分析】先整理直线的方程为,由可得定点;由于直线过定点,所以点(1,0)为圆心且与l 相切的所有圆中,最大半径就是两点间的间隔 .【详解】因为,由2010x y -=⎧⎨+=⎩可得,所以直线l 经过定点(2,1)-;以点为圆心且与l 相切的所有圆中,最大圆的半径为,所以所求圆的HY 方程为.故答案为:(2,1)-;22(1)2x y -+=.【点睛】此题主要考察直线过定点问题和圆的方程求解,直线恒过定点问题一般是整理方程为,由且0ax by c可求.x ,y 满足约束条件,那么目的函数的最小值为_____ ;假设目的函数z =ax +2y 仅在点(1,0)处获得最小值,那么a 的取值范围是_.【答案(dá àn)】 (1). (2).【解析】【分析】作出可行域,平移目的函数,可得最小值;根据可行域形状,结合目的函数仅在点(1,0)处获得最小值可得a的取值范围.【详解】作出可行域,如图,由图可知,平移〔图中虚线〕,12z x y=-在点处取到最小值,联立可得,所以12z x y=-的最小值为52-.当时,如图,由图可知,当斜率时,即时,符合要求;当时,显然符合要求;当时,如图,由图可知(kě zhī),当斜率时,即时,符合要求;综上可得,a 的取值范围是42a -<<. 故答案为:52-;42a -<<. 【点睛】此题主要考察线性规划求解最值和利用最值点求解参数,准确作出可行域是求解的关键,侧重考察直观想象和数学运算的核心素养.15.正方体ABCD -A 1B 1C 1D 1中,截面A 1BD 与底面ABCD 所成二面角A 1-BD -A 的正切值等于 【答案】2【解析】 如图,连接交于点,连接.因为1111ABCD A B C D -是正方体,所以面,从而可得,所以面,从而有,所以是二面角的平面角.设正方体的边长为1,那么,所以在中有m ,n 是两条不同的直线,α,,是三个不同的平面,给出如下命题:①假设α⊥β,m //α,那么m ⊥β;②假设(jiǎshè)α⊥γ,β⊥γ,那么α//β;③假设α⊥β,m⊥β,,那么m//α;④假设α⊥β,α∩β=m,,n⊥m,那么n⊥β.其中正确的选项是_.【答案】③④【解析】【分析】⊄,那么m//α;对于①②,结合反例可得不正确;对于③,假设α⊥β,m⊥β,mα对于④,由面面垂直的性质定理可得正确.详解】对于①, α⊥β,m//α,可得直线m可能与平面β平行,相交,故不正确;对于②,α⊥γ,β⊥γ,可得平面可能平行和相交,故不正确;对于③,α⊥β,m⊥β,可得直线m可能与平面α平行或者者直线m在平面内,由于⊄,所以,故正确;mα对于④,由面面垂直的性质定理可得正确.故答案为:③④.【点睛】此题主要考察空间位置关系的断定,构建模型是求解此类问题的关键,考虑不全面是易错点,侧重考察直观想象和逻辑推理的核心素养.17.将一张坐标纸折叠一次,使得点P(1,2)与点Q(-2,1)重合,那么直线y=x+4关于折痕对称的直线为_.【答案】x+7y-20=0【解析】【分析】根据(gēnjù)点P (1,2)与点Q (-2,1)重合可得折痕所在直线的方程,然后结合直线关于直线对称可求.【详解】因为点P (1,2)与点Q (-2,1)重合,所以折痕所在直线是的中垂线,其方程为; 联立可得交点. 在直线取一点,设(0,4)A 关于折痕的对称点为, 那么,解得; 由直线两点式方程可得,整理得.故答案为:7200x y +-=.【点睛】此题主要考察直线关于直线的对称问题,相交直线的对称问题一般转化为点关于直线的对称问题,利用垂直关系和中点公式可求,侧重考察数学运算的核心素养.三、解答题(本大题一一共5小题,一共74分,解容许写出文字说明,证明过程或者演算步骤)l 在两坐标轴上的截距相等,且点P (2,3)到直线l 的间隔 为2,求直线l 的方程.【答案】直线l 的方程为5x -12y =0或者x +y -5+2=0或者x +y -5-22【解析】【分析】分为直线经过原点和直线不过原点两种情况分别求解,可以采用待定系数法,结合点到直线的间隔 可求.【详解(xiánɡ jiě)】解:由题意知,假设截距为0,可设直线1的方程为y=kx.由题意知,解得k=.假设截距不为0,设所求直线l的方程为x+y-a=0.由题意知,解得a=5-22或者a=5+22.故所求直线l的方程为5x-12y=0,x+y-5+22=0或者x+y-5-22=0【点睛】此题主要考察直线方程的求解,求解直线方程时一般是选择适宜的方程形式,利用待定系数法建立方程〔组〕进展求解,侧重考察数学运算的核心素养.19.在平面直角坐标系中,点A(-4,2)是Rt△的直角顶点,点O是坐标原点,点B在x轴上.(1)求直线AB的方程;(2)求△OAB的外接圆的方程.【答案】〔1〕2x-y+10=0.〔2〕x2+y2+5x=0.【解析】【分析】(1)利用可得的斜率,结合点斜式可求方程;(2)先确定B(-5,0),结合直角三角形的特征可知△OAB的外接圆是以为直径的圆,易求圆心和半径得到方程.【详解】解:(1)∵点A(-4,2)是的直角顶点,∴OA⊥AB,又,,∴直线(zhíxiàn)AB的方程为y-2=2(x+4),即2x-y+10=0.(2)由(1)知B(-5,0),的直角顶点,∵点A(-4,2)是Rt OAB∴△OAB的外接圆是以OB中点为圆心,为半径的圆,又OB中点坐标为,∴所求外接圆方程是,即x2+y2+5x=0.【点睛】此题主要考察利用直线垂直求解直线方程和求解圆的方程,圆的方程求解的关键是确定圆心和半径,侧重考察数学运算的核心素养.20.如图,边长为4的正方形ABCD所在平面与正△PAD所在平面互相垂直,M,Q分别为PC,AD的中点.(1)求证:PA//平面MBD.(2)试问:在线段AB上是否存在一点N,使得平面PCN⊥平面PQB?假设存在,试指出点N的位置,并证明你的结论;假设不存在,请说明理由.【答案】〔1〕证明见解析(jiě xī);〔2〕存在点N,当N为AB中点时,平面PQB⊥平面PNC,证明见解析.【解析】【分析】(1) 连接AC交BD于点O,证明MO//PA,可得PA//平面MBD;(2)先利用正方形ABCD所在平面与正△PAD所在平面互相垂直可得PQ⊥平面ABCD,结合PQ⊥NC,可得NC⊥平面PQB.【详解】解:(1)证明:连接AC交BD于点O,连接MO,.由正方形ABCD知O为AC的中点,∵M为PC的中点,∴MO//PA.∵平面MBD,平面MBD,∴PA//平面MBD.(2)存在点N,当N为AB中点时,平面PQB⊥平面PNC,证明如下:∵四边形ABCD是正方形,Q为AD的中点,∴BQ⊥NC.∵Q为AD的中点,△PAD为正三角形(zhènɡ sān jiǎo xínɡ),∴PQ⊥AD又∵平面PAD⊥平面ABCD,且面PAD∩面ABCD=AD,平面PAD∴PQ⊥平面ABCD.又∵平面ABCD,∴.PQ⊥NC.又,∴NC⊥平面PQB.∵NC 平面PCN,∴平面PCN⊥平面PQB.【点睛】此题主要考察线面平行的断定和探究平面与平面垂直,线面平行一般转化为线线平行或者者面面平行来证明,面面垂直一般转化为线面垂直来证明,侧重考察直观想象和逻辑推理的核心素养.M:x2+y2-2y-4=0与圆N:x2+y2-4x+2y=0.(1)求证:两圆相交;(2)求两圆公一共弦所在的直线方程及公一共弦长;(3)在平面上找一点P,过点P引两圆的切线并使它们的长都等于1.【答案】〔1〕证明见解析;〔2〕直线方程x-y-1=0,公一共弦长为;〔3〕点P坐标为2,2)或者2,-2).【解析】【分析】(1)先求两圆的圆心距和半径,结合圆心距与半径间的关系可证;(2)联立两圆方程可得两圆公一共弦所在的直线(zhíxiàn)方程,结合勾股定理可得公一共弦长;(3)结合切线长与半径可得点到圆心的间隔,建立方程组可求P的坐标. 【详解】解:(1)由己知得圆M:x2+(y-1)2=5,圆N:(x-2)2+(y+1)2=5,圆心距,∴,∴两圆相交.(2)联立两圆的方程得方程组两式相减得x-y-1=0,此为两圆公一共弦所在直线的方程.法一:设两圆相交于点A,B,那么A,B两点满足方程组2222240420 x y yx y x y⎧+--=⎨+-+=⎩解得或者所以,即公一共弦长为23. 法二:,得x2+(y-1)2=5,其圆心坐标为(0,1),半径长r=,圆心到直线x-y-1=0的间隔为设公一共弦长为2l,由勾股定理得,即,解得,故公一共弦长.(3)∵两圆半径均为5,过P点所引的两条切线长均为1,∴点P到两圆心的间隔,设P点坐标(zuòbiāo)为(x,y),那么解得或者.点P坐标为或者.【点睛】此题主要考察两圆的位置关系及公一共弦的问题,两圆位置关系的断定主要是根据圆心距和两圆半径间的关系,公一共弦长通常利用勾股定理求解,侧重考察逻辑推理和数学运算的核心素养.22.如图,在四棱锥P-ABCD中,底面为直角梯形,AD∥BC,∠BAD=90°,PA⊥底面ABCD,且PA=AD=AB=2BC,M、N分别为PC、PB的中点.〔1〕求证:PB⊥D M;〔2〕求CD与平面ADMN所成角的正弦值.【答案】〔1〕证明见解析;〔2〕【解析】【详解】〔1〕证明:建立坐标系,如图设BC=1P〔0,0,2〕 B〔2,0,0〕 D〔0,2,0〕 C〔2,1,0〕 M〔1,12,1〕∴PB⊥DM〔2〕设平面(píngmiàn)ADMN的法向量取z=-1 ,设直线CD与平面ADMN成角为θ内容总结(1)〔2〕直线方程x-y-1=0,公一共弦长为。
高二上学期数学期中试题(含答案)
高二(上)期中数学试卷第Ⅰ卷(选择题)一、选择题(每小题4分,共12小题,共48分)1.已知数列{n a }的通项公式是n a =252+n n (n ∈*N ),则数列的第5项为( ) A.110 B.16 C.15 D.12 2.在△ABC 中,a b c 、、分别是三内角A B C 、、的对边, ︒=︒=45,75C A ,2b =,则此三角形的最小边长为( )A .46B .322C .362D . 42 3(理).在等差数列{n a }中,已知,21=a ,1332=+a a 则654a a a ++等于( )A.40B.42C.43D.453(文).已知等差数列a n 中,a 2+a 4=6,则a 1+a 2+a 3+a 4+a 5=( ) A . 30 B . 15 C . D .4. 下列说法中正确的是( )A .若ac >bc ,则a >bB .若a 2>b 2,则a >bC .若1a >1b ,则a <bD .若a <b ,则a <b5. 在ABC ∆中,A,B,C 的对边分别为a,b,c ,已知bc c b a ++=222,则A 等于( )A. 120B. 60C. 45D. 306.已知等差数列{}n a 的前n 项和为n S ,若5418a a -=,则8S 等于( )A .36B .54C .72D .187(理). 不等式0442>-+-x x 的解集是( )A.RB.ΦC.),0(+∞D.)0,(-∞7(文).不等式x (2﹣x )≤0的解集为( )A . {x|0≤x≤2}B . {x|x≤0,或x≥2}C . {x|x≤2}D .{x|x≥0} 8. 在等比数列{n a }中,若2101-=⋅a a ,则74a a ⋅的值为( )A.-4B.-2C.4D.29. 已知等比数列{a n }的公比为2,前4项的和是1,则前8项的和为( )A .15B .17C .19D .2110.在一座20m 高的观测台测得对面一水塔塔顶得仰角为 60,塔底的俯角为 45,那么这座水塔的高度是( )mA.)331(20+ B.)26(20+ C.)26(10+ D. )31(20+ 11(理). 下列函数中最小值为4的是 ( )A. x x y 4+= B.x x y sin 4sin += (0﹤x ﹤π) C. x x y -⋅+=343 D.10log 4lg x x y += 11(文).设x >1,则x+的最小值是( ) A . 4 B . 5 C . 6 D . 712.设x ,y ∈R 且,则z=x+2y 的最小值等于( )A . 2B . 3C . 5D .9第Ⅱ卷(非选择题)二、填空题(每小题4分,共4小题,共16分)13(理).在等差数列{}n a 中,11=a ,2=d ,9=n S ,则项数n=13(文).在等差数列{a n }中,a 3=7,a 5=a 2+6,则a 6=14.在等比数列{a n }中,若a 3=2,a 6=2,则公比q= .15. 在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .若a =2,b =2,sin B+cos B =2,则角A 的大小为________16.若角α、β满足,则α﹣β的取值范围是三、解答题(共5小题,共56分)17. (理、10分)在ABC ∆中,A B 、为锐角,角A B C 、、所对的边分别为a b c 、、,且21a b -=-,510sin ,sin 510A B == (1)求b a ,的值;(2)求角C 和边c 的值。
高二上学期期中考试数学试题(带答案)
高二上学期期中考试数学试题(带答案)高二上学期期中考试数学试题(带答案)注:题号后(A)表示1-7班必做,(B)表示8班必做。
)完卷时间:120分钟,总分:150分)一、选择题:(本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
)1.设$a,b,c\in R$,且$a>b$,则()A.$ac>bc$B.$\frac{1}{a}<\frac{1}{b}$C.$a^2>b^2$D.$a^3>b^3$2.已知数列$\{a_n\}$是公差为2的等差数列,且$a_1,a_2,a_5$成等比数列,则$a_2=$()A.$-2$B.$-3$C.$2$D.$3$3.已知集合$A=\{x\in R|x^2-4x-12<0\},B=\{x\in R|x<2\}$,则$A\cap B=$()A.$\{x|x<6\}$B.$\{x|-2<x<2\}$C.$\{x|x>-2\}$D.$\{x|2\leq x<6\}$4.若变量$x,y$满足约束条件$\begin{cases}x+y\leq 4\\x\geq 1\end{cases}$,则$z=2x+y$的最大值和最小值分别为()A.4和3B.4和2C.3和2D.2和55.已知等比数列$\{a_n\}$的前三项依次为$a-1,a+1,a+4$,则$a_n=$A.$4\cdot (\frac{3}{2})^{n-1}$B.$4\cdot (\frac{2}{3})^{n-1}$C.$4\cdot (\frac{3}{2})^{n-2}$D.$4\cdot (\frac{2}{3})^{n-2}$6.在$\triangle ABC$中,边$a,b,c$的对角分别为$A,B,C$,且$\sin^2 A+\sin^2 C-\sin A\sin C=\sin^2 B$。
高二数学上学期期中测试.doc
高二数学上学期期中测试时量:100分钟 满分:100分一、选择题(每小题4分,共28分)1.设}{n a 为等差数列,其中===10155,39,9a a a 则 ( ) A.24 B. 27 C.30 D. 332. 设}{n a 为等比数列,其中==652143,5a a a a a a 则 ( )A.25B. 10C.-25D. -103.ABC ∆中,若ab c b a 3)(22=-+,则C= ( ) A.︒60 B.︒120 C.︒30 D.︒454.在锐角ABC ∆中,若2,1==b a ,则第三边c 应满足的条件是 ( ) A.50<<c B.51<<c C.53<<c D.31<<c5.在ABC ∆中,若C B A sin cos 2sin =,则ABC ∆是 ( )A.正三角形B.等腰三角形C.直角三角形D.等腰直角三角形6.已知y x z x y xx +=≤≤<<,22,106,则必有 ( ) A.309≤≤z B.3015<<z C.189≤<z D.309<<z7.某林场原有木材存量为a ,木材每年以25%的增长率生长,而每年要砍掉的木材量为x ,为了实现经过两年达到木材存量的1.5倍,则=x ( )A. 40aB. 38aC. 37aD. 36a8.在ABC ∆中,若AB BC A 2,60=︒=,则=C sin _____________________.9.不等式022≤--x x 的解集是 .10.若xx x 4,0+>则 的最小值是 . 11.在等差数列}{n a 中,===d S a 则公差,0,163.12.设x 、y 满足约束条件5,3212,03,0 4.x y x y x y +≤⎧⎪+≤⎪⎨≤≤⎪⎪≤≤⎩ 则目标函数65z x y =+的最大值是 .学校_____________班级_______________座号________________姓名______________统考考号__________13.已知数列}{n a 的前n 项和32-=n n a S ,则}{n a 的通项公式为 . 三、解答题(第14、15题9分,16~18题每题10分,共48分)14.设}{n a 为等差数列,公差432432,1,,15,0a a a a a a d -=++>又已知成等比数列,求1a 和d .15.在ABC ∆中,若32,2,30==︒=c b B ,试求ABC ∆的面积.16.已知数列}{n a 的前n 项和22n n S n +=, (1)求证:}{n a 为等差数列;(2)求数列⎭⎬⎫⎩⎨⎧n S 1的前n 项和n T .17.在数列}{n a 中,已知)1(18,111>+==-n a a a n n ,求5432,,,a a a a 和一个通项公式.18. (1)已知关于x 的不等式)1)((x a a x ---<1的解集为R,求实数a 的取值范围.(2)设,0,0>>y x 且1=+y x ,求yx S 42+=的最小值,并求S 取得最小值的y x ,的值.高二数学上学期期中测试(参考答案)时量:100分钟 满分:100分一、选择题答案:二、填空题(每小题4分,共24分)8.46 9. {}21|≤≤-x x 10、4 11., -2 .12、27 .13、123-⋅=n n a 三、解答题(第14、15题9分,16~18题每题10分,共48分)14、解:由题设,得53=a ,从而⎩⎨⎧-=⋅=+24242)15(10a a a a …………………………………..(4分) 解得),8(2322舍去a a a >==…………………………………………………(7分)由此得32523=-=-=a a d …………………………………………………(8分)故13221-=-=-=d a a ……………………………………………………..(9分)15、解:由正弦定理,得2330sin 232sin sin =︒==B b c C …………………… .(2分) 从而︒=︒=120,60C C 或…………………………………………………… (3分)于是︒=︒=30,90A A 或……………………………………………………. .(4分)由三角形面积公式,得A A bc S ABCsin 32221sin 21⨯⨯==∆………… .(6分) 当32,90=︒=∆ABC S A 时;………………………………………………. (7分) 当3,30=︒=∆ABC S A 时…………………………………………………. (8分) 故ABC ∆的面积是332或…………………………………………….. (9分)16、解:(1)当1>n 时,12])1()1(2[2221+=-+--+=-=-n n n n n S S a n n n ……(2分).当1=n 时,3112211=+⨯==S a 也满足上式……………………………………(3分)学校_____________班级_______________座号________________姓名______________统考考号__________所以12+=n a n ………………………………………………………………………(4分) 因为2]1)1(2[121=+--+=--n n a a n n …………………………………………(6分) 所以}{n a 为以3为首项2为公差的等差数列………………………………………(7分)(2)因为)211(212112+-=+=n n n n S n 所以nn n S S S S S T 111111321++⋅⋅⋅+++=- =)211(21)1111(21)5131(21)4121(21)311(21+-++--+⋅⋅⋅+-+-+-n n n n =)2111211(21+-+-+n n =812449322++++n n n n ……………………………….(10分)17、解:11=a , 91812=+=∴a a , 731823=+=a a , 5851834=+=a a ,46811845=+=a a …………………………………………………………..(4分)当2≥n 时, 18,111+==-n n a a a 1)18(82++=-n a)18(822++=-n a)188(8233+++=-n a……. )1888(83211+⋅⋅⋅+++=---n n n a18888321+⋅⋅⋅+++=---n n n 718-=n ………………………………………………(8分)当1=n 时, 11=a 也满足上式………………………………………………..(9分) 故数列}{n a 的通项公式是=n a 718-n ……………………………………….(10分)或解一: 当2≥n 时, 由181+=+n n a a 及181+=-n n a a两式相减,得: )(811-+-=-n n n n a a a a ……………………………………….(6分) 所以数列}{1n n a a -+是首项为8171811112=+=-+=-a a a a a 公比为8的等比数列.所以nn n n a a 88811=⨯=--+…………………………………………………(7分)将181+=+n n a a 代入上式,并整理得718-=n n a …………………………..(8分)当1=n 时, 11=a 也满足上式………………………………………………..(9分) 故数列}{n a 的通项公式是=n a 718-n ……………………………………….(10分)或解二: 当2≥n 时, 由181+=+n n a a 得)71(8711+=++n n a a ………….(6分) 所以数列}71{+n a 是首项为78711=+a 公比为8的等比数列 所以78878711nn n a =⨯=+-…………………………………………………(7分)所以718-=n n a ……………………………………………………………….(8分)当1=n 时, 11=a 也满足上式………………………………………………..(9分) 故数列}{n a 的通项公式是=n a 718-n (10)18、解: )1)((x a a x ---<1,整理,得0122>++--a a x x …………………………………………………(1分) 依题,得0<∆,即0)1(14)1(22<++-⨯⨯--a a整理,得03442<--a a ………………………………………………………..(3分)解得2321<<-a ………………………………………………………………….(5分) 因此实数a 的取值范围是2321<<-a ………………………………………….(6分)(2)设,0,0>>y x 且1=+y x ,求yx S 42+=的最小值,并求S 取得最小值的y x ,的值.解: y x S 42+=)42(y x +=2462426246)(+=⨯+≥++=+x y y x x y y x y x 当xy y x 24=,又1=+y x ,即22,12-=-=y x 时,等号成立……………..(9分)因此S 取得最小值是246+…………………………………………………….(10分)。
高二数学上学期期中试题含解析 试题_1 3(共16页)
师大附中2021-2021学年(xuénián)高二〔上〕期中数学试卷一、选择题〔本大题一一共12小题,一共分〕>0,函数的最小值是〔〕A. 2B. 4C. 6D. 8 【答案】C【解析】【分析】利用根本不等式的性质即可得出.【详解】解:∵x>0,∴函数,当且仅当x=3时取等号,∴y的最小值是6.应选:C.【点睛】此题考察了根本不等式的性质,考察了推理才能与计算才能,属于根底题.2.在数列{}中,,n∈N*,那么的值是〔〕A. 49B. 50C. 89D. 99 【答案】A【解析】【分析】利用等差数列的通项公式即可得出.【详解】解:∵,〔〕,∴数列(shùliè){}是等差数列,那么.应选:A.【点睛】此题考察了等差数列的通项公式及性质,考察了推理才能与计算才能,属于根底题.3.命题p:,,那么命题p的否认为〔〕A. ,B. ,C. ,D. ,【答案】D【解析】【分析】直接利用特称命题的否认是全称命题写出结果即可.【详解】解:因为特称命题的否认是全称命题,所以命题p:∃R,否认是:∀R,.应选:D.【点睛】此题考察命题的否认、特称命题与全称命题的否认关系,根本知识的考察.4.不等式的解集为〔〕A. B.C. D.【答案】C【解析(jiě xī)】【分析】把不等式化为,求出解集即可.【详解】解:不等式可化为,解得,所以不等式的解集为〔4,3〕.应选:C.【点睛】此题考察了不等式的解法与应用问题,是根底题.5.数列{}是等差数列,,那么其前13项的和是〔〕A. 45B. 56C. 65D. 78 【答案】D【解析】【分析】由等差数列的等差中项得a7=6,再由求和公式和性质可得S13=13a7即可.【详解】∵在等差数列{a n}中,a5+a7+a9=18,∴a5+a7+a9=3a7=18,解得a7=6,∴该数列的前13项之和:S13=×〔a1+a13〕=13a7=13×6=78.应选:D.【点睛】此题考察等差数列的前n项和,利用等差数列的性质和的公式是解题的关键,属于根底题.6.关于(guānyú)x的不等式的解集是〔2,+∞〕,那么关于x的不等式的解集是〔〕A. B.C. D.【答案】B【解析】【分析】由不等式ax﹣b<0的解集知a<0且=2,代入关于x的不等式〔ax+b〕〔x﹣3〕<0中求解即可.【详解】∵关于x的不等式ax﹣b<0的解集是〔2,+∞〕,∴a<0,且=2,那么b=2a;∴关于x的不等式〔ax+b〕〔x﹣3〕<0,可化为〔ax+2a〕〔x﹣3〕<0,因为a<0,即〔x+2〕〔x﹣3〕>0,解得x>3或者x<-2,∴所求不等式的解集应选:A.【点睛】此题考察了一元二次不等式的解集,利用一元一次不等式的解集得到a与b的等式是关键,注意一元二次不等式的开口方向,属于根底题.7.假如a<b<0,那么以下不等式成立的是〔〕A. B. C. D.【答案(dá àn)】D【解析】对于选项A,因为,所以,所以即,所以选项A 错误;对于选项B,,所以,选项B错误;对于选项C,,当时,,当,,应选项C错误;对于选项D,,所以,又,所以,所以,选D.8.假设不等式对任意恒成立,那么实数的取值范围是〔〕A. B.C. D.【答案】C【解析】分析:直接利用判别式不小于零列不等式求解即可.详解:因为不等式对任意恒成立,所以,,解得,即实数的取值范围是,应选C.点睛:此题主要考察一元二次不等式恒成立问题,属于简单题.一元二次不等式在实数集上恒成立问题,一定要注意二次项系数的符号.9.a∈R,那么(nà me)“a<1”是“〞的〔〕A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分又不必要条件【答案】B【解析】【分析】根据a<1,不一定能得到〔如a=-1时〕;但当,一定能推出a<1,从而得到答案.【详解】解:由a<1,不一定能得到〔如a=-1时〕;但当时,有0<a<1,从而一定能推出a<1,那么“a<1”是“〞的必要不充分条件,应选:B.【点睛】此题考察充分条件、必要条件的定义,通过给变量取特殊值,举反例来说明某个命题不正确,是一种简单有效的方法.10.设,,假设是与的等比中项,那么的最大值为〔〕A. B. C. D.【答案】C【解析】【分析】先由等比中项化简得2x+y=1,进一步利用均值不等式求出结果.【详解】因为x>0.y>0,假设是9x与3y的等比中项,那么(nà me):,即:2x+y=1,由1=2x+y.〔当且仅当2x=y=等号成立〕即xy应选:C.【点睛】此题考察的是由根本不等式求最大值问题,也利用了等比数列的性质,属根底题.11.数列{}的前n项和为,,〔〕,那么〔〕A. 32B. 64C. 128D. 256 【答案】B【解析】【分析】由数列递推式构造等比数列{1},求其通项公式得到,再由求解.【详解】解:由,得,又,∴,∴,即数列{1}是以1为首项,以2为公比的等比数列,那么,那么.∴.应选:B.【点睛】此题考察数列递推式,考察利用构造法求数列的通项公式,是中档题.12.设[x]表示(biǎoshì)不超过x的最大整数,如[-3.14]=-4,[3.14]=3.数列{}满足:,〔〕,那么〔〕A. 1B. 2C. 3D. 4 【答案】A【解析】【分析】把数列递推式变形,利用累加法求数列的通项公式,再由裂项相消法求和,那么答案可求.【详解】解:由,得〔〕,又,∴.那么.∴.应选:A.【点睛】此题考察数列递推式、利用累加法求数列的通项公式以及裂项相消法求数列的前n项和,是中档题.二、填空题〔本大题一一共4小题,一共分〕13.不等式的解集为____________.【答案】〔-∞,0〕∪〔4,+∞〕【解析(jiě xī)】【分析】由分式不等式的解法得:可变形为x〔x-4〕>0,解得:x>4或者x<0,得解【详解】解:可变形为〔 -4〕>0,解得:>4或者<0,故答案为:〔-∞,0〕∪〔4,+∞〕【点睛】此题考察了分式不等式的解法,属简单题14.数列的前项和〔〕,那么此数列的通项公式为__________.【答案】【解析】【分析】由数列的前n项和得,再由a n=S n﹣S n﹣1〔n≥2〕求得a n,验证即可.【详解】由S n=n2,得a1=S1=1,当n≥2时,a n=S n﹣S n﹣1=n2﹣〔n﹣1〕2=2n-1.当n=1时=1代入上式成立,∴a n=2n-1.故答案为:2n-1.【点睛】此题考察了由数列的前n项和求数列的通项公式的问题,应用a n=S n﹣S n﹣1〔n≥2〕是关键,属于根底题.15.关于x的方程有两个正实数根,那么实数m的取值范围是____________.【答案(dá àn)】【解析】【分析】根据实根分布列不等式,解得m范围【详解】解:方程有两个正实数根,设为,,那么,解得m≤4,故填:.【点睛】此题考察了方程的根和函数的零点,根与系数的关系等知识,属于根底题.16.在等差数列{}中,满足>0,且,那么的最小值为____________.【答案】【解析】【分析】由等差数列的性质得:,再根据根本不等式求最值.【详解】解:因为等差数列{}中,满足>0,且,所以且>0,>0,那么,故答案为:.【点睛】此题考察等差数列的性质及根本不等式,属中档题.三、解答题〔本大题一一共6小题,一共分〕17.为等差数列,且,.〔1〕求的通项公式(gōngshì);〔2〕假设等比数列满足,,求数列的前项和公式.【答案】(1);(2).【解析】本试题主要是考察了等差数列的通项公式的求解和数列的前n项和的综合运用。
高二数学上学期期中试题含解析2(共23页)
季延中学2021-2021学年高二数学上学期期中试题(shìtí)〔含解析〕一、单项选择题〔本大题一一共12小题,每一小题5分,一共60分.〕,且,那么以下不等式一定成立的是〔〕A. B. C. D.【答案】D【解析】试题分析:A、B、C三个选项的关系无法判断或者错误,而所以,应选D。
考点:比大小〔或者者不等式证明〕。
+=1的离心率为,那么k的值是〔〕A. -21B. 21C. -或者21D. 或者21【答案】C【解析】试题分析:当焦点在轴时,当焦点在轴时,应选C考点:椭圆方程及性质3. 以下命题中,真命题是A. ,使得B.C.D. 是的充分不必要条件【答案(dá àn)】D【解析】A.的值域为,所以“,使得〞是假命题;B.,当且仅当,即成立〔而〕,所以“〞为假命题;C.当时,,所以“〞为假命题;D.当,由不等式的性质,得;而满足,不满足,所以“是的充分不必要条件〞是假命题;应选D.考点:命题的断定.x,不等式恒成立,那么正整数k的值是〔〕A. 1B. 2C. 3D. 4【答案】A【解析】【分析】先判断,原不等式转化为,结合二次函数图象,利用判别式小于零,考虑为正整数,从而可得结果.【详解】因为恒成立,且,,设函数(hánshù),即恒小于0,,解得,又因为为正整数,,应选A.【点睛】此题主要考察全称命题的定义,以及一元二次不等式恒成立问题,属于简单题. 一元二次不等式恒成立问题主要方法:〔1〕假设实数集上恒成立,考虑判别式小于零即可;〔2〕假设在给定区间上恒成立,那么考虑运用“别离参数法〞转化为求最值问题.5.是正项等比数列的前n项积,且满足,那么以下结论正确的选项是〔〕A. B. C. D.【答案】C【解析】试题分析:,,与1的大小关系不确定,应选C考点:等比数列性质及单调性【方法点睛】此题综合考察了数列的单调性及常用性质:在等比数列中假设有,那么有,求解时首先由数列各项为正数且可知,由可知数列前7项都大于1,从第8项开场都小于1,因此A,B项中比拟大小只需考虑两者间所差的项与1的大小关系即可求解,C,D项中断定乘积为1的大小关系,主要是看能否利用等比数列性质将其转化为前7项来表示,,因此可借助于范围求得范围〔含边界(biānjiè)〕如下图,其中,假设使目的函数获得最大值的最优解有无穷多个,那么的值是〔〕A. B. C. D.【答案】B【解析】【分析】由图可得,假设使目的函数获得最大值的最优解有无穷多个,那么直线的斜率与边界的斜率相等,利用斜率公式可得结果.【详解】目的函数,,故目的函数是直线的截距,由图可知,当直线的斜率与边界的斜率相等时,目的函数获得最大值的最优解有无数多个,此时,,即 ,应选B.【点睛】目的函数的最优解有无数多个,处理方法一般是:①将目的函数的解析式进展变形,化成斜截式;②分析与截距的关系,是符号一样,还是相反;③根据分析结果,结合图形做出结论;④根据斜率相等求出参数.,,假设该数列(shùliè)是递减数列,那么实数λ的取值范围是( ) A. (-∞,6) B. (-∞,4] C. (-∞,5) D. (-∞,3]【答案】B【解析】数列{a n}的通项公式是关于n(n∈N*)的二次函数,假设数列是递减数列,那么,即λ≤4.此题选择B选项.满足,是等差数列,那么数列的前10项的和〔〕A. 220B. 110C. 99D. 55【答案】B【解析】设等差数列的公差为,那么,将值和等量关系代入,计算得,所以,所以,选B.点睛:此题主要考察求数列通项公式和裂项相消法求和,属于中档题。
(必考题)数学高二上期中经典练习题(含答案解析)
一、选择题1.(0分)[ID :13012]如图所示,墙上挂有边长为a 的正方形木板,它的四个角的空白部分都是以正方形的顶点为圆心,半径为2a的圆弧,某人向此板投镖,假设每次都能击中木板,且击中木板上每个点的可能性都一样,则它击中阴影部分的概率是 ( )A .18π-B .4π C .14π-D .与a 的值有关联2.(0分)[ID :13000]“三个臭皮匠,赛过诸葛亮”,这是我们常说的口头禅,主要是说集体智慧的强大. 假设李某智商较高,他独自一人解决项目M 的概率为10.3P =;同时,有n 个水平相同的人也在研究项目M ,他们各自独立地解决项目M 的概率都是0.1.现在李某单独研究项目M ,且这n 个人组成的团队也同时研究项目M ,设这个n 人团队解决项目M 的概率为2P ,若21P P ≥,则n 的最小值是( ) A .3B .4C .5D .63.(0分)[ID :12995]在区间上随机取两个数,x y ,记1p 为事件“12x y +≥”的概率,2p 为事件“12x y -≤”的概率,3p 为事件“12xy ≤”的概率,则 ( ) A .123p p p << B .231p p p << C .312p p p << D .321p p p <<4.(0分)[ID :12988]甲、乙两名射击运动员分别进行了5次射击训练,成绩(单位:环)如下:甲:7,8,8,8,9 乙:6,6,7,7,10;若甲、乙两名运动员的平均成绩分别用12,x x 表示,方差分别为2212,S S 表示,则( )A .221212,x x s s >> B .221212,x x s s >< C .221212,x x s s << D .221212,x x s s <> 5.(0分)[ID :12984]某学校10位同学组成的志愿者组织分别由李老师和张老师负责,每次献爱心活动均需该组织4位同学参加.假设李老师和张老师分别将各自活动通知的信息独立,随机地发给4位同学,且所发信息都能收到.则甲同学收到李老师或张老师所发活动通知的信息的概率为( )A .25B .1225C .1625D .456.(0分)[ID :12971]我国数学家陈景润在哥德巴赫猜想的研究中做出了重大贡献,哥德巴赫猜想是:“任一大于2的偶数都可以写成两个质数之和”,如32=13+19.在不超过32的质数中,随机选取两个不同的数,其和等于30的概率为( ) A .111B .211C .355D .4557.(0分)[ID :12969]某城市2017年的空气质量状况如下表所示: 污染指数T 3060100110130140概率P110 16 13 730 215 130其中污染指数50T ≤时,空气质量为优;50100T <≤时,空气质量为良;100150T <≤时,空气质量为轻微污染,该城市2017年空气质量达到良或优的概率为( )A .35B .1180C .119D .568.(0分)[ID :12965]微信中有个“微信运动”,记录一天行走的步数,小王的“微信步数排行榜”里有120个人,今天,他发现步数最少的有0.85万步,最多的有1.79万步.于是,他做了个统计,作出下表,请问这天大家平均走了多少万步?( )A .1.19B .1.23C .1.26D .1.319.(0分)[ID :12950]下列命题:①对立事件一定是互斥事件;②若A ,B 为两个随机事件,则P(A∪B)=P(A)+P(B);③若事件A ,B ,C 彼此互斥,则P(A)+P(B)+P(C)=1;④若事件A ,B 满足P(A)+P(B)=1,则A 与B 是对立事件. 其中正确命题的个数是( ) A .1 B .2C .3D .410.(0分)[ID :12934]某程序框图如图所示,若输出的结果是126,则判断框中可以是( )A .6?i >B .7?i >C .6?i ≥D .5?i ≥11.(0分)[ID :12930]某厂家为了解销售轿车台数与广告宣传费之间的关系,得到如表统计数据表:根据数据表可得回归直线方程y bx a =+,其中ˆ 2.4b=,a y bx =-,据此模型预测广告费用为9万元时,销售轿车台数为( ) 广告费用x (万元) 2 3 4 5 6 销售轿车y (台数)3461012A .17B .18C .19D .2012.(0分)[ID :13016]同时掷三枚硬币,至少有1枚正面向上的概率是( ) A .78B .58C .38D .1813.(0分)[ID :13025]执行右面的程序框图,若输入的,,a b k 分别为1,2,3,则输出的M =( )A .203B .72C .165D .15814.(0分)[ID :12972]《九章算术》是我国古代内容极为丰富的一部数学专著,书中有如下问题:今有女子善织,日增等尺,七日织28尺,第二日,第五日,第八日所织之和为15尺,则第十五日所织尺数为( )A .13B .14C .15D .1615.(0分)[ID :13023]为了解某社区居民的家庭年收入所年支出的关系,随机调查了该社区5户家庭,得到如下统计数据表: 收入x (万元)8.28.610.011.311.9支出y (万元)6.27.58.0 8.59.8根据上表可得回归直线方程ˆˆˆybx a =+,其中ˆˆˆ0.76,b a y bx ==-,据此估计,该社区一户收入为15万元家庭年支出为( ) A .11.4万元B .11.8万元C .12.0万元D .12.2万元二、填空题16.(0分)[ID :13120]判断大小a =log 30.5,b =log 32,c =log 52,d =log 0.50.25,则a 、b 、c 、d 大小关系为_____________.17.(0分)[ID :13119]下列说法正确的个数有_________(1)已知变量x 和y 满足关系23y x =-+,则x 与y 正相关;(2)线性回归直线必过点(),x y ;(3)对于分类变量A 与B 的随机变量2k ,2k 越大说明“A 与B 有关系”的可信度越大 (4)在刻画回归模型的拟合效果时,残差平方和越小,相关指数2R 的值越大,说明拟合的效果越好.18.(0分)[ID :13112]某人向边长分别为5,12,13的三角形区域内随机丢一粒芝麻,假设芝麻落在区域内的任意一点是等可能的,则其恰落在离三个顶点距离都大于2的地方的概率为__ .19.(0分)[ID :13107]连续抛掷一颗骰子2次,则掷出的点数之和不超过9的概率为______.20.(0分)[ID :13081]执行如图所示的算法流程图,则输出x 的值为__________.21.(0分)[ID :13073]某单位为了了解用电量y (度)与气温x (℃之间的关系,随机统计了某4天的用电量与当天气温(如表),并求得线性回归方程ˆ360yx =-为: x c9 14 -1y 184830d不小心丢失表中数据c ,d ,那么由现有数据知3c d -____________.22.(0分)[ID :13051]执行如图所示的程序框图,如果输出3s =,则正整数M 为__________.23.(0分)[ID :13049]执行如图所示的程序框图,如果输出1320s =,则正整数M 为__________.24.(0分)[ID :13048]计算机执行如图所示的程序后,输出的结果是__________.25.(0分)[ID :13046]某路公共汽车每5分钟发车一次,某乘客到乘车点的时刻是随机的,则他候车时间不超过3分钟的概率是_______.三、解答题26.(0分)[ID :13220]为保护农民种粮收益,促进粮食生产,确保国家粮食安全,调动广大农民生产粮食的积极性,从2014年开始,国家实施了对种粮农民直接补贴的政策通过对2014~2018年的数据进行调查,发现某地区发放粮食补贴额x (单位:亿元)与该地区粮食产量y (单位:万亿吨)之间存在着线性相关关系,统计数据如下表: 年份 2014 2015 2016 2017 2018 补贴额x /亿元 9 10 12 11 8 粮食产量y /万亿2526313721(1)请根据上表所给的数据,求出y 关于x 的线性回归直线方程ˆˆybx a =+; (2)通过对该地区粮食产量的分析研究,计划2019年在该地区发放粮食补贴7亿元,请根据(1)中所得到的线性回归直线方程,预测2019年该地区的粮食产量.参考公式:()()()121ˆniii nii x x y y bx x ==--=-∑∑,ˆˆay bx =-.27.(0分)[ID:13207]如图,从参加环保知识竞赛的学生中抽出60名,将其成绩(均为整数)整理后画出的频率分布直方图如下,观察图形,回答下列问题:(1)79.589.5这一组的频数、频率分别是多少?(2)估计这次环保知识竞赛的及格率(60分及以上为及格)和平均数?28.(0分)[ID:13185]现将甲、乙两个学生在高二的6次数学测试的成绩(百分制)制成如图所示的茎叶图,进入高三后,由于改进了学习方法,甲、乙这两个学生的考试成绩预计同时有了大的提升:若甲(乙)的高二任意一次考试成绩为x,则甲(乙)的高三对应x .的考试成绩预计为4(1)试预测:高三6次测试后,甲、乙两个学生的平均成绩分别为多少?谁的成绩更稳定?(2)若已知甲、乙两个学生的高二6次考试成绩分别由低到高进步的,定义y为高三的任意一次考试后甲、乙两个学生的当次成绩之差的绝对值,求y的平均值.29.(0分)[ID:13155]从某校期中考试数学试卷中,抽取样本,考察成绩分布,将样本分成5组,绘成频率分布直方图,图中各小组的长方形面积之比从左至右依次为1:3:6:4:2,第一组的频数是4.(1)求样本容量及各组对应的频率;(2)根据频率分布直方图估计成绩的平均分和中位数(结果保留两位小数).30.(0分)[ID:13135]某校举行书法比赛,下图为甲乙两人近期8次参加比赛的成绩的茎叶图。
高二数学上学期期中试题含解析_1 4(共19页)
HYHY自治区地区库车县乌尊镇中学2021-2021学年高二数学上学期期中(qī zhōnɡ)试题〔含解析〕一. 选择题:〔本大题一一共12小题,每一小题5分,一共60分〕1.一个地区某月前两周从星期一至五各天的最低气温依次为和,假设第一周的平均最低气温为6,那么第二周的平均最低气温为〔〕A. 6o CB. 7o CC. 8o CD. 9o C 【答案】D【解析】【分析】直接根据均值定义计算.【详解】由题意,∴=,应选D.【点睛】此题考察均值定义,属于根底题.2.甲、乙两名同学在五次数学测验中的得分如下:甲:85,91,90,89,95;乙:95,80,98,82,95;那么甲、乙两名同学数学学习成绩〔〕A. 甲比乙稳定B. 甲、乙稳定程度一样C. 乙比甲稳定(wěndìng)D. 无法确定【答案】A【解析】【分析】分别计算出两人成绩的均值和方差.【详解】由,=,,=,∵,∴甲较稳定.应选A.【点睛】此题考察样本数据特征,考察方差与均值.一般方差反响数据的稳定性,方差越小越稳定.3.如图框图,当x1=6,x2=9,p=8.5时,x3等于〔〕A. 7B. 8C. 10D. 11【答案(dá àn)】B【解析】的值.试题分析:从程序框图中得到求p的解析式;列出方程,求出x3解:∵∴解得x=83应选B点评:此题考察通过程序框图能判断出框图的功能.【此处有视频,请去附件查看】4.比拟甲、乙两台机器的性能,以下情况中,甲比乙好的应是〔〕A. B.C. D.【答案】A【解析】【分析】比拟均值与方差的大小可得.【详解】甲均值大于乙均值,而且方差较小,稳定性好.应选A.【点睛】此题考察样本数据特征,数据的好坏一般用这组数据的均值和方差来衡量.方差反响了数据的稳定性.5.线性回归方程表示的直线(zhíxiàn)必经过的一个定点是〔〕.A. B. C. D.【答案】A【解析】分析】是回归直线中的平衡点.【详解】回归直线一定过它的平衡点(,)x y,应选A.【点睛】此题考察线性回归直线方程,考察回归直线的性质.属于根底题.6.一袋中装有大小一样的四个球,编号分别为1,2,3,4,现从中有放回地每次取一个球,一共取2次记“获得两个球的编号和大于或者等于6”为事件A,那么P(A)等于()A. B. C. D.【答案】C【解析】【分析】有放回取球,两次取到球的方法数一样,都是4.可用列举法列出事件A所含的根本领件.【详解】有放回地取球,两次取球一共有4×4=16种可能,两个(liǎnɡ ɡè)球编号和大于或者等于6的事件有24,33,34,42,43,44一共6种,因此概率为.应选C.【点睛】此题考察古典概型,解题时可用列举法写出所有的根本领件,得所含根本领件的数量,从而可计算概率.,时,图中程序运行后输出结果为〔〕A. 3; 43B. 43;3C. -18;16D. 16;-18【答案】A【解析】试题分析:输入,根据IF语句那么完毕IF语句,输出选A考点:IF语句8. 有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性一样且互不相干,那么这两位同学恰参加同一兴趣小组的概率为( )A. B. C. D.【答案(dá àn)】B【解析】试题分析:由题意知此题是一个古典概型,试验发生包含的事件数是3×3=9种结果,满足条件的事件是这两位同学参加同一个兴趣小组有3种结果,根据古典概型概率公式得到P=,应选B.考点:此题主要考察古典概型概率的计算。
高二数学上学期期中试题理含解析试题(共19页)
内蒙古北方重工业集团第三中学2021-2021学年高二数学上学期期中(qī zhōnɡ)试题理〔含解析〕考试时间是是:2018年11月14日满分是:150分考试时长:150分钟一、选择题:〔每一小题5分,一共60分〕1.以下图是某公司10个销售店某月销售某产品数量(单位:台)的茎叶图,那么数据落在区间[22,30)内的概率为()A. 0.2B. 0.4【答案】B【解析】区间[22,30)内的数据一共有4个,总的数据一共有10个,所以频率为0.4,应选B.2.x,y的取值如表所示,假如y与x呈线性相关,且线性回归方程为,那么b=〔〕A. B. C. D. 【答案】A【解析】因为样本中心一定在回归直线上,代入回归方程得到故答案(dá àn)选A.3. 将5封信投入3个邮筒,不同的投法有〔〕A. 种B. 种C. 3种D. 15种【答案】B【解析】【分析】此题是一个分步计数问题,首先第一封信有3种不同的投法,第二封信也有3种不同的投法,以此类推每一封信都有3种结果,根据分步计数原理得到结果.【详解】:由题意知此题是一个分步计数问题,首先第一封信有3种不同的投法,第二封信也有3种不同的投法,以此类推每一封信都有3种结果,∴根据分步计数原理知一共有35种结果,应选:B.4.根据右边程序框图,假设输出的值是4,那么输入的实数的值是 ( )A. B. C. 1或者(huòzhě) D. 1或者2-【答案】D【解析】假设,又,得;;假设,得,不满足,满足.综上知实数值为1或者2-.应选D.5.假设,那么等于〔〕A. 3或者4B. 4C. 5或者6D. 8 【答案】D【解析】分析】根据排列数和组合数公式,化简,即可求出n.【详解】解:由题意,根据排列数、组合数的公式,可得,,那么,且,解得:.应选:D.【点睛】此题考察排列数和组合数公式的应用,以及对排列组合的理解,属于计算题.6.四位二进制数能表示的最大十进制数为〔〕A. 8B. 15C. 64D. 127 【答案(dá àn)】B【解析】【分析】先将满足条件的二进制数表示出来,根据二进制与十进制的转换方法计算即可【详解】解:.应选:.【点睛】此题考察二进制转换为十进制的方法,是依次累加各位数字上的数该数位的权重.7.如图,将一个长与宽不等的长方形沿对角线分成四个区域,涂上四种颜色,中间装个指针可以自由转动,对指针停留的可能性,以下说法中正确的选项是〔〕A. 一样大B. 蓝黑区域大C. 红黄区域大D. 由指针转动的圈数确定【答案】B【解析】【分析】根据矩形的性质和题意得出蓝颜色和黑颜色所占区域的角较大,再根据几何概率即可得出答案.【详解(xiánɡ jiě)】解:一个长与宽不等的长方形,沿对角线分成四个区域中蓝颜色和黑颜色的角较大,指针指向蓝黑区域的可能性大;应选:B.【点睛】此题考察了几何概率,用到的知识点为:矩形的性质和概率公式,考察学生对题目的的理解和辨析才能.8.期中考试以后,班长算出了全班40人数学成绩的平均分为M,假如把M当成一个同学的分数,与原来的40个分数一起,算出这41个分数的平均值为N,那么M∶N的值是〔〕A. B. 1 C. D. 2 【答案】B【解析】【详解】试题分析:利用平均数计算公式算出这41个分数的平均值为N ,M∶N的值是1,应选B.考点:此题考察了平均数的概念及计算.点评:运用求平均数公式:.9.为参加运动会,某班要从甲,乙,丙,丁四位女同学中随机选出两位同学担任护旗手,那么甲同学被选中的概率是〔〕A. B. C. 12D.【答案】C【解析】【分析(fēnxī)】求出从甲、乙、丙、丁4位女同学中随机选出2位同学担任护旗手的根本领件,甲被选中的根本领件,即可求出甲被选中的概率.【详解】解:从甲、乙、丙、丁4位同学中随机选出2位担任护旗手,一共有种方法,甲被选中,一共有3种方法,甲被选中的概率是.应选:C.【点睛】此题考察通过组合的应用求根本领件和古典概型求概率,考察学生的计算才能,比拟根底.10.圆的方程为,那么点的位置是〔〕A. 在圆内B. 在圆上C. 在圆外D. 不能确定【解析】【分析】求出圆心和半径,利用圆心到的间隔与半径比拟可得位置关系.【详解】解:圆的方程为的圆心,半径为圆心到点(1,1)--的间隔的平方为:,应选(yīnɡ xuǎn):.【点睛】此题考察点与圆的位置关系,利用了两点间的间隔公式,考察计算才能,是根底题.11. 用辗转相除法求294与84的最大公约数时,需要做除法的次数是:A. 1B. 2C. 3D. 4 【答案】B【解析】【详解】解:294="3"⨯84="42,84=42"⨯2+0,因此最大公约数为42,只需要做两次除法运算即可,余数为零那么终止.应选B12.用三种不同的颜色填涂如图3×3方格中的9个区域,要求每行、每列的三个区域都不同色,那么不同的填涂方法种数一共有〔〕A. 48B. 24C. 12D. 6【解析】【分析】由题意知用三种不同颜色为9个区域涂色,第一步为第一行涂色,有A33种方法;第二步用与1号区域不同色的两种颜色为4、7两个区域涂色,有A22种方法;剩余区域只有一种涂法,根据分步计数原理得到结果.【详解】可将9个区域标号如图:用三种(sān zhǒnɡ)不同颜色为9个区域涂色,可分步解决:第一步,为第一行涂色,有A33=6种方法;第二步,用与1号区域不同色的两种颜色为4、7两个区域涂色,有A22=2种方法;剩余区域只有一种涂法,综上由分步乘法计数原理可知一共有6×2=12种涂法.应选:C.第二局部二、填空题〔每一小题5分,一共20分〕13.在频率分布直方图中一共有11个小矩形,其中中间小矩形的面积是其余小矩形面积之和的4倍,假设样本容量为220,那么中间小矩形对应组的频数是______.【答案】176【分析】由题意中间一个小矩形的面积等于其余10个小矩形面积之和的4倍,可得出中间小矩形的面积是总面积的,即中间一组的频率是45,由此频数易求. 【详解】解:由题意中间一个小矩形的面积等于其余10个小矩形面积之和的45, 可得出中间小矩形的面积是总面积的45,即中间一组的频率是45, 又样本容量为220,∴中间(zhōngjiān)一组的频数是.故答案为:176.【点睛】此题考察频率分布直方图,求解此题的关键是纯熟掌握频率分布直方图的构造,理解其功能及作用,尤其是小矩形的面积与频率的对应. 14.,那么等于______.【答案】180 【解析】 【分析】根据二项式定理可知,8a 是的系数,根据二项展开式的通项公式进展运算即可得出.【详解】解:因为()10210012102x a a x a x a x -=+++⋅⋅⋅+, 所以8a 是8x 的系数, 二项展开式的通项公式为:,当时,,故答案为:180.【点睛】此题考察二项式定理的运用:求指定项的系数和以及二项式展开式的通项公式,属于根底题.15.直线与圆心为C的圆相交于,B两点,且,那么实数的值是_____.【答案】0或者6【解析(jiě xī)】圆C:,因为AC BC,所以C到直线AB间隔为因此16.某公司的班车在7:30,8:00,8:30发车,小明在7:50到8:30之间到达发车站的时刻是随机的,那么他等车的时间是不超过10分钟的概率是______.【答案】1 2【解析】【分析】求出小明等车时间是不超过10分钟的时间是长度,代入几何概型概率计算公式,可得答案.【详解】解:设小明到达时间是为y,当y在至,或者至时,小明等车时间是不超过10分钟,故,故答案为:12.【点睛】此题考察的知识点是几何概型,属于长度型几何概型,难度不大,属于根底题.三、解答题〔一共70分〕17.〔1〕3个人坐在有八个座位的一排椅子上,假设每个人的左右两边都要有空位,那么不同坐法的种数为多少?〔2〕某高校(gāoxiào)现有10个保送上大学的名额分配给7所高中,假设每所高中至少有1个名额,那么名额分配的方法一共有多少种?【答案】〔1〕24;〔2〕84【解析】【分析】〔1〕根据题意,使用插空法,把3个人看成是坐在座位上的人,往5个空座的空档插,由组合知识,分析可得答案;〔2〕分析题意,可将原问题转化为10个元素之间有9个间隔,要求分成7份,每份不空,使用插空法,相当于用6块档板插在9个间隔中,计算可得答案.【详解】解:〔1〕由题意知有5个座位都是空的,我们把3个人看成是坐在座位上的人,往5个空座的空档插,由于这5个空座位之间一共有4个空,3个人去插,一共有〔种.〔2〕根据题意,将10个名额,分配给7所,每校至少有1个名额,可以转化为10个元素之间有9个间隔,要求分成7份,每份不空;相当于用6块档板插在9个间隔中,一共有种不同方法.所以名额分配的方法一共有84种.【点睛】此题考察排列、组合的综合运用,要求学生会一些特殊方法的使用,如插空法、倍分法等;但首先应该会转化为对应问题的模型.18.〔1〕,求的值.〔2〕的展开式中,各项的系数(xìshù)和比各项的二项式系数和大992.求展开式中系数最大的项.【答案】〔1〕-13;〔2〕【解析】【分析】〔1〕可令,,两式相减,计算即可得到所求和;〔2〕由题意可得,求得,设第项的系数最大,那么有,解得.再由,可得的值.【详解】解:〔1〕,令1x=可得,可令1x=-可得,两式相减可得,;〔2〕令1x =可得各项系数和为,二项式系数和为,由题意可得42992n n -=,即,解得〔舍去〕,解得5n =.设第1r +项的系数最大,那么有11551155·3?3·3?3r r r r r r r r C C C C --++⎧⎨⎩,解得7922r . 再由r N ∈,可得.故系数最大的项为.【点睛(diǎn jīnɡ)】此题考察二项式定理的运用:求指定项的系数和,注意运用赋值法,同时考察二项式展开式的通项公式,二项式系数的性质,考察运算才能,属于中档题.19.一个盒子里装有三张卡片,分别标记有数字1,2,,这三张卡片除标记的数字外完全一样.随机有放回地抽取3次,每次抽取1张,将抽取的卡片上的数字依次记为a ,,. 〔Ⅰ〕求“抽取的卡片上的数字满足〞的概率;〔Ⅱ〕求“抽取的卡片上的数字a ,b ,c 不完全一样〞的概率. 【答案】〔1〕;〔2〕. 【解析】试题分析:〔1〕所有的可能结果一共有种,而满足a b c +=的(,,)a b c 一共计3个,由此求得“抽取的卡片上的数字满足a b c +=〞的概率;〔2〕所有的可能结果(,,)a b c 一共有33327⨯⨯=种,用列举法求得满足“抽取的卡片上的数字a 、b 、c 完全一样〞的(,,)a b c 一共计三个,由此求得“抽取的卡片上的数字a 、b 、c 完全一样〞的概率,再用1减去此概率,即得所求.试题解析:〔1〕 所有的可能结果(,,)a b c 一共有33327⨯⨯=种, 而满足a b c +=的(,,)a b c 有、、一共计3个故“抽取的卡片上的数字满足a b c +=〞的概率为〔2〕 所有的可能结果(,,)a b c 一共有33327⨯⨯=种满足“抽取的卡片上的数字a 、b 、c 完全一样〞的(,,)a b c 有、、一共计三个故“抽取(chōu qǔ)的卡片上的数字a 、b 、c 完全一样〞的概率为31279= 所以“抽取的卡片上的数字a 、b 、c 不完全一样〞的概率为考点:HY 事件的概率.【方法点睛】求复杂事件的概率通常有两种方法:一是将所求事件转化成彼此互斥的事件的和;二是先求其对立事件的概率,然后再应用公式求解.假如采用方法一,一定要将事件拆分成假设干个互斥事件,不能重复和遗漏;假如采用方法二,一定要找准其对立事件,否那么容易出现错误.20.某中学团委组织了“纪念HY 战争成功73周年〞的知识竞赛,从参加竞赛的学生中抽出60名学生,将其成绩〔均为整数〕分成六段,,…,后,画出如下图的局部频率分布直方图.观察图形给出的信息,答复以下问题:〔1〕求第四组的频率,并补全这个频率分布直方图;〔2〕估计这次竞赛的及格率〔60分及以上为及格〕和平均分〔同一组中的数据用该组区间的中点值代表〕【答案】〔1〕0.3 〔2〕;71【解析】【分析】〔1〕利用频率(pínlǜ)分布直方图中的各组的频率和等于1,求出第四小组的频率,求出纵坐标,补全这个频率分布直方图即可.〔2〕求出60及以上的分数所在的第三、四、五、六组的频率和;利用组中值估算抽样学生的平均值为各组的中点乘以各组的频率和为平均值.【详解】解:〔1〕因为各组的频率和等于1,故第四组的频率:,频率分布直方图第四小组的纵坐标是:,那么频率分布直方图如以下图所示:〔2〕依题意,60及以上的分数所在的第三、四、五、六组,频率和为,所以,抽样学生成绩的合格率是75%,利用组中值估算抽样学生的平均分为:,所以估计这次考试的平均分是71.【点睛(diǎn jīnɡ)】此题考察频率分布直方图、等可能事件的概率等.在频率分布直方图中,数据的平均值等于各组的中点乘以各组的频率之和;频率等于纵坐标乘以组距;属于根底题.21.实数,y满足,求:〔1〕的最大值与最小值;〔2〕的最大值与最小值.【答案】〔1〕;〔2〕;【解析】【分析】〔1〕令,那么是过和的直线的斜率,利用直线和圆有公一共点,所以圆心到直线间隔 小于等于半径,可得结论.〔2〕根据题意得:()()2234x y -+-的几何意义为与定点的间隔 的平方,利用圆的性质以及两点间的间隔 ,即可求出结果. 【详解】解:〔1〕22430x y x +++=可化为.令21y k x -=-,那么k 是过(,)A x y 和(1,2)B 的直线的斜率,可化为,所以直线AB 和圆有公一共点,所以圆心(2,0)C -到直线间隔 小于等于半径1r =,所以, 所以,所以(suǒyǐ)21y x --的最大值与最小值分别是33+,33-.〔2〕()()2234x y -+-表示圆上点(),M x y 与点()3,4A 的间隔 的平方, 点()3,4A 到圆心(2,0)C -的间隔 为:,而的最大值为:,最小值为:,所以()()2234x y -+-的最大值为:,最小值为:.【点睛】此题考察直线与圆的位置关系,以及点到直线的间隔公式的应用,两点间的间隔公式的应用还涉及配方法求圆的HY方程、圆心和半径,同时考察学生的转化思想和计算才能.,圆.〔1〕过A的直线截圆B所得的弦长为,求该直线L的斜率;〔2〕动圆同时平分圆A与圆B的周长.①求动圆圆心P的轨迹方程;②问动圆P是否过定点,假设经过,那么求定点坐标;假设不经过,那么说明理由.【答案】〔1〕或者34;〔2〕①,②. 【解析】试题分析(fēnxī):〔1〕设出直线L的方程,根据勾股定理和弦长65得到圆心A到直线L的间隔为45,利用点到直线的间隔公式即得直线L斜率的值;〔2〕①由于圆A与圆B半径相等,要使得圆P都平分它们,必有,知P在AB的中垂线上,求AB的垂直平分线方程即得点P的轨迹;②根据AB 的轨迹方程设出P的坐标,由勾股定理得,从而得到圆P的方程,别离参数,解方程组即得圆P经过的定点.试题解析:〔1〕设直线为,由弦长可得圆心B到直线L的间隔为45,点到直线L 的间隔 为,化简得:,解得43k =,或者34〔2〕①作出图形可证,知P 在AB 的中垂线上,求得30x y +-=,②设,作出图形知, 圆P 的方程:,得两个定点为32323232(2,1),(2,1)++--,考点:直线方程、圆的方程及直线与圆的位置关系的应用.【方法点晴】此题主要考察了直线与圆相交关系的应用,解决这类问题的关键是通过勾股定理(ɡōu ɡǔ dìnɡ lǐ)建立半径、半弦与弦心距三者之间的关系,此题中第〔1〕问、第〔2〕问中的②都用到了这一关系;同时解答此题的难点是对“动圆P 同时平分圆A 与圆B 的周长〞这一条件的处理,解答时应结合图形分析出其本质还是点P 到两点的间隔 相等,进而得到点P 的轨迹.内容总结(1)第二步用与1号区域不同色的两种颜色为4、7两个区域涂色,有A22种方法。
高二上册数学期中试卷及答案精选
高二上册数学期中试卷及答案精选学生的时代只有课本、作业、同学和试卷,单纯却美好。
下面小编整理了高二上册数学期中试卷及答案精选,欢迎阅读参考。
高二上册数学期中试卷及答案精选(一)一、单项选择(注释)1、在△ABC中,已知60°,如果△ABC 两组解,则x的取值范围是 ( )A.(1,2)B. (3,+∞)C.( 2,+∞)D.( 1,+∞)2、已知函数,若则实数的取值范围是 ( )A.(1,+∞)B. (1,-∞)C. (+∞,2)D.(-∞,2)3、设函数则不等式的解集是( )A.(1,2) (3,+∞)B.(1,2) (2,+∞)C. (1,2) (3,-∞)D.(1,2) (2,-∞)4、已知正数满足 , ,则的取值范围是______ .5、已知实数满足则的最大值是( )A.4B.5C. 7D.46、设f(x)= 则不等式f(x)>2的解集为( )A.(1,2) (3,+∞)B.( ,+∞)C.(1,2) ( ,+∞)D.(1,2)7、下列不等式(1)m-3>m-5;(2)5-m>3-m;(3)5m>3m ;(4)5+m>5-m其中正确的有( )(A)1个 (B)2个(C)3个 (D)4个8、已知等差数列的前项和为,,,取得最小值时的值为( )A. B. C. D.9、设等差数列的前项和为 ,若 ,则等于( )A.18B.36C.45D.6010、S={1,2,…,2003},A是S的三元子集,满足:A中的所有元素可以组成等差数列.那么,这样的三元子集A的个数是( )A. B.C. D.11、设等差数列满足: ,则 ( )A.14B.21C.28D.3512、在中,,,分别是,,的对边,已知,,成等比数列,且,则的值为( )A. 4B.2C. 1D.5评卷人得分二、填空题(注释)13、已知 ,若恒成立,则实数的取值范围_________14、已知不等式(x+y) 对任意正实数x,y恒成立,则正实数a的最小值为__________15、在△ 中,若,则△ 的形状是16、在△ABC中,已知(b+c)∶(c+a)∶(a+b)=4∶5∶6,则sinA∶sinB∶sinC=________.评卷人得分三、解答题(注释)17、设数列满足下列关系:为常数), ;数列满足关系: .(1)求证:(2)证明数列是等差数列.18、已知集合A={x|x2<4},B={x|1< }.(1)求集合A∩B;(2)若不等式2x2+ax+b<0的解集为B,求a、b的值.19、已知数列的各项均为正整数,且 ,设集合 .性质1 若对于 ,存在唯一一组 ( )使成立,则称数列为完备数列,当k取最大值时称数列为k阶完备数列.性质2 若记 ,且对于任意 , ,都有成立,则称数列为完整数列,当k取最大值时称数列为k阶完整数列.性质3 若数列同时具有性质1及性质2,则称此数列为完美数列,当取最大值时称为阶完美数列;(Ⅰ)若数列的通项公式为 ,求集合 ,并指出分别为几阶完备数列,几阶完整数列,几阶完美数列;(Ⅱ)若数列的通项公式为 ,求证:数列为阶完备数列,并求出集合中所有元素的和 .(Ⅲ)若数列为阶完美数列,试写出集合 ,并求数列通项公式.20、已知数列为等差数列,公差 ,其中恰为等比数列,若 , , ,⑴求等比数列的公比⑵试求数列的前n项和21、已知是各项均为正数的等比数列,且 ,;(1)求的通项公式;(2)设 ,求数列的前项和 .22、在数列中, .(1)证明数列是等比数列;(2)设是数列的前项和,求使的最小值.参考答案一、单项选择1、【答案】C2、【答案】C【解析】由题知在上是增函数,由题得,解得,故选择C。
高二数学上学期期中试题(含解析).doc
2019学年第一学期期中试卷高二数学第一卷一、填空题:本大题共14小题,每小题5分,共70分.请把答案填写在答题卷相应位置上.........1. 已知直线的斜率为,则它的倾斜角为__________.【答案】【解析】斜率为,设倾斜角为,则,有.2. 已知圆的方程为,则它的圆心坐标为__________.【答案】【解析】,圆心坐标为.3. 若直线和平面平行,且直线,则两直线和的位置关系为__________.【答案】平行或异面【解析】若直线和平面平行,且直线,则两直线和的位置关系为平行或异面.4. 已知直线:和:垂直,则实数的值为_________.【答案】【解析】当时,,两条直线不垂直;当时,,两条直线垂直,则,.综上:.5. 已知直线和坐标轴交于、两点,为原点,则经过,,三点的圆的方程为_________.【答案】【解析】直线和坐标轴交于、两点,则,设圆的方程为:,则,解得,圆的方程为,即.6. 一个圆锥的侧面展开图是半径为,圆心角为的扇形,则这个圆锥的高为_________.【答案】【解析】由题得扇形得面积为:,根据题意圆锥的侧面展开图是半径为3即为圆锥的母线,由圆锥侧面积计算公式:所以圆锥的高为7. 已知,分别为直线和上的动点,则的最小值为_________.【答案】【解析】由于两条直线平行,所以两点的最小值为两条平行线间的距离.8. 已知,是空间两条不同的直线,,是两个不同的平面,下面说法正确的有_________.①若,,则;②若,,,则;③若,,,则;④若,,,则.【答案】①④【解析】①若,,符合面面垂直的判定定理,则真确;②若,,,则可能平行,也可能相交,故②不正确;③若,,,则可能平行,也可能异面;③不正确;④若,,,符合线面平行的性质定理,则.正确;填①④.9. 直线关于直线对称的直线方程为_________.【答案】【解析】由于点关于直线的对称点位,直线关于直线对称的直线方程为,即.10. 已知底面边长为,侧棱长为的正四棱柱,其各顶点均在同一个球面上,则该球的体积为_________.【答案】【解析】∵正四棱柱的底面边长为1,侧棱长为,∴正四棱柱体对角线的长为,又∵正四棱柱的顶点在同一球面上,∴正四棱柱体对角线恰好是球的一条直径,得球半径,根据球的体积公式,得此球的体积为,故答案为.点睛:本题给出球内接正四棱柱的底面边长和侧棱长,求该球的体积,考查了正四棱柱的性质、长方体对角线公式和球的体积公式等知识,属于基础题;由长方体的对角线公式,算出正四棱柱体对角线的长,从而得到球直径长,得球半径,最后根据球的体积公式,可算出此球的体积.11. 若直线:和:将圆分成长度相同的四段弧,则_________.【答案】【解析】两条直线:和:平行,把直线方程化为一般式:和,圆的直径为,半径,直线被圆所截的弦所对的圆心角为直角,只需两条平行线间的距离为4,圆心到直线的距离为2,圆心到则的距离为,若,则,同样,则,则.12. 已知正三棱锥的体积为,高为,则它的侧面积为_________.【答案】【解析】设正三棱锥底面三角形的边长为,则,底面等边三角形的高为,底面中心到一边的距离为,侧面的斜高为,.13. 已知,,若圆()上恰有两点,,使得和的面积均为,则的范围是_________.【答案】【解析】,使得和的面积均为,只需到直线的距离为2,直线的方程为,圆心到直线的距离为1,当时,圆()上恰有一点到AB的距离为2,不合题意;若时,圆()上恰有三个点到AB的距离为2,不合题意;当时,圆()上恰有两个点到AB的距离为2,符合题意,则................14. 已知线段的长为2,动点满足(为常数,),且点始终不在以为圆心为半径的圆内,则的范围是_________.【答案】第二卷二、解答题:本大题共6小题,共90分.请在答题卷指定区域内作答,...........解答应写出文字说明、证明过程或演算步骤.15. 四棱锥中,,底面为直角梯形,,,,点为的中点.(1)求证:平面;(2)求证:.【答案】(1)见解析(2)见解析【解析】试题分析:证明线面可以利用线面平行的判定定理,借助证明平行四边形,寻求线线平行,进而证明线面平行;证明线线垂直,首先利用线面垂直的判定定理,借助题目所提供的线线垂直条件,证明一条直线与平面内两条相交直线垂直,达成线面垂直,根据线面垂直的定义,然后证明线线垂直.试题解析:证:(1)四边形为平行四边形(2)【点睛】证明线面平行有两种思路:第一寻求线线平行,利用线面平行的判定定理.第二寻求面面平行,本题借助平行四边形和三角形中位线定理可以得到线线平行,进而证明线面平行;证明线线垂直,首先利用线面垂直的判定定理,借助题目所提供的线线垂直条件,证明一条直线与平面内两条相交直线垂直,达成线面垂直,根据线面垂直的定义,然后证明线线垂直.16. 已知平行四边形的三个顶点的坐标为,,.(1)求平行四边形的顶点的坐标;(2)在中,求边上的高所在直线方程;(3)求四边形的面积.【答案】(1)(2)(3)20【解析】试题分析:首先根据平行四边形对边平行且相等,得出向量相等的条件,根据向量的坐标运算,得出向量相等的条件要求,求出点的坐标,求高线方程采用点斜式,利用垂直关系求斜率,球平行四边形的面积可利用两条平行线间的距离也可利用两点间的距离求边长,再根据余弦定理求角,再利用三角形面积公式求面积.试题解析:(1)方法(一):设,,,∴,,即.法二:中点为,该点也为中点,设,则可得;(2)∵,∴边上的高的斜率为,∴边上的高所在的直线方程为:;(3)法一::,∴到的距离为,又,∴四边形的面积为.法二:∵,,∴由余弦定理得∴∴四边形的面积为。
【必考题】高二数学上期中试题(及答案)
(Ⅱ)对数据作出如下处理:令 , ,得到相关统计量的值如下表:
根据(Ⅰ)的判断结果及表中数据,求 关于 的回归方程;
(Ⅲ)已知企业年利润 (单位:千万元)与 , 的关系为 (其中 ),根据(Ⅱ)的结果,要使得该企业下一年的年利润最大,预计下一年应投入多少研发费用?
【详解】
总的可选答案有:AB,AC,AD,BC,BD,CD,
ABC,ABD,ACD,BCD,ABCD,共11个,
而正确的答案只有1个,
即得5分的概率为 .
故选:C.
【点睛】
本题考查了古典概型的基本知识,关键是弄清一共有多少个备选答案,属于中档题.
3.B
解析:B
【解析】
【分析】
根据随机模拟试验的的性质以及几何概型概率公式列方程求解即可.
A. B. C. D.
9.执行如图所示的程序框图,若输出的结果为 ,则输入 的值可以为
A. B. C. D.
10.已知甲盒中仅有1个球且为红球,乙盒中有 个红球和 个篮球 ,从乙盒中随机抽取 个球放入甲盒中.
(a)放入 个球后,甲盒中含有红球的个数记为 ;
(b)放入 个球后,从甲盒中取1个球是红球的概率记为 .
第一循环: ;
第二循环: ;
第三循环: ,
要使的输出的结果为48,根据选项可知 ,故选C.
【点睛】
本题主要考查了循环结构的计算与输出问题,其中解答中正确理解循环结构的程序框图的计算功能,逐次准确计算是解答的关键,着重考查了运算与求解能力,属于基础题.
10.A
解析:A
高二上学期期中考试数学试卷含答案(共5套)
高二上学期期中考试数学试题本卷分Ⅰ(选择题)、Ⅱ卷(非选择题)两部分,其中Ⅰ卷1至2页,第二卷2至4页,共150分,考试时间120分钟。
第Ⅰ卷(选择题,共60分)一、单选题:本题共12个小题,每小题5分1.“”是“”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件2.有下列四个命题:(1)“若,则,互为倒数”的逆命题;(2)“面积相等的三角形全等”的否命题;(3)“若,则有实数解”的逆否命题;(4)“若,则”的逆否命题.其中真命题为()A.(1)(2)B.(2)(3)C.(4)D.(1)(2)(3)3.若则为()A.等边三角形 B.等腰直角三角形C.有一个内角为30°的直角三角形 D.有一个内角为30°的等腰三角形4.已知.若“”是真命题,则实数a的取值范围是A.(1,+∞)B.(-∞,3)C.(1,3)D.5.的内角,,的对边分别为,,,若,,,则的面积为A.B.C.D.6.已知中,,则等于()A.B.或C.D.或7.等差数列的前项和为,若,则等于()A.58B.54C.56D.528.已知等比数列中,,,则()A.2B.C.D.49.已知,则z=22x+y的最小值是A.1 B.16 C.8 D.410.若关于的不等式的解集为,则的取值范围是()A.B.C.D.11.当a>0,关于代数式,下列说法正确的是()A.有最小值无最大值B.有最大值无最小值C.有最小值也有最大值D.无最小值也无最大值12.在△ABC中,AB=2,C=,则AC+BC的最大值为A.B.3C.4D.2第Ⅱ卷(非选择题,共90分)二、填空题:共4个小题,每小题5分,共20分13.命题的否定是______________.14.已知的三边长构成公差为2的等差数列,且最大角的正弦值为,则这个三角形的周长为________.15.已知数列{a n}的前n项和为S n,a1=1,当n≥2时,a n+2S n-1=n,则S2 017的值____ ___ 16.已知变量满足约束条件若目标函数的最小值为2,则的最小值为__________.三、解答题:共6题,共70分,解答应写出必要的文字说明、证明过程或演算步骤。
(必考题)数学高二上期中经典习题(含答案解析)
一、选择题1.(0分)[ID :13007]函数()log a x x f x x=(01a <<)的图象大致形状是( )A .B .C .D .2.(0分)[ID :12992]从区间[]0,2随机抽取4n 个数1232,,,...,n x x x x ,1232,,,...,n y y y y 构成2n 个数对()11,x y ,()22,x y ,…,()22,n n x y ,其中两数的平方和小于4的数对有m 个,则用随机模拟的方法得到的圆周率疋的近似值为( ) A .2m nB .2mnC .4m nD .16m n3.(0分)[ID :12990]如图1为某省2019年1~4月快递义务量统计图,图2是该省2019年1~4月快递业务收入统计图,下列对统计图理解错误的是( )A .2019年1~4月的业务量,3月最高,2月最低,差值接近2000万件B .2019年1~4月的业务量同比增长率超过50%,在3月最高C .从两图来看2019年1~4月中的同一个月快递业务量与收入的同比增长率并不完全一致D .从1~4月来看,该省在2019年快递业务收入同比增长率逐月增长4.(0分)[ID :12966]用秦九韶算法求多项式()54227532f x x x x x x =+++++在2x =的值时,令05v a =,105v v x =+,…,542v v x =+,则3v 的值为( ) A .83B .82C .166D .1675.(0分)[ID :12965]微信中有个“微信运动”,记录一天行走的步数,小王的“微信步数排行榜”里有120个人,今天,他发现步数最少的有0.85万步,最多的有1.79万步.于是,他做了个统计,作出下表,请问这天大家平均走了多少万步?( )A.1.19B.1.23C.1.26D.1.316.(0分)[ID:12960]我国明朝数学家程大位著的《算法统宗》里有一道闻名世界的题目:“一百馒头一百僧,大僧三个更无争.小僧三人分一个,大小和尚各几丁?”.如右图所示的程序框图反映了对此问题的一个求解算法,则输出n的值为()A.20B.25C.30D.357.(0分)[ID:12959]为计算11111123499100S=-+-++-…,设计了下面的程序框图,则在空白框中应填入A .1i i =+B .2i i =+C .3i i =+D .4i i =+8.(0分)[ID :12931]已知函数()cos3xf x π=,根据下列框图,输出S 的值为( )A .670B .16702C .671D .6729.(0分)[ID :13024]已知平面区域()20,4y x y y x ⎧⎫≥⎧⎪⎪Ω=⎨⎨≤-⎪⎪⎩⎩,直线2y mx m =+和曲线24y x =-M ,向区域Ω上随机投一点A ,点A 落在区域M 内的概率为()P M .若01m ≤≤,则()P M 的取值范围为( ) A .202,π-⎛⎤⎥π⎝⎦B .202,π+⎛⎤⎥π⎝⎦C .212,π+⎡⎤⎢⎥π⎣⎦D .212,π-⎡⎤⎢⎥π⎣⎦10.(0分)[ID :13022]在发生某公共卫生事件期间,有专业机构认为该事件在一段时间没有发生在规模群体感染的标志为“连续10天,每天新增疑似病例不超过7人”.根据过去10天甲、乙、丙、丁四地新增疑似病例数据,一定符合该标志的是 A .甲地:总体均值为3,中位数为4 B .乙地:总体均值为1,总体方差大于0 C .丙地:中位数为2,众数为3D .丁地:总体均值为2,总体方差为311.(0分)[ID :13018]采用系统抽样方法从960人中抽取32人做问卷调查,为此将他们随机编号为1,2,...,960,分组后某组抽到的号码为41.抽到的32人中,编号落入区间[]401,755 的人数为( ) A .10B .11C .12D .1312.(0分)[ID :13013]已知P 是△ABC 所在平面内﹣点,20PB PC PA ++=,现将一粒黄豆随机撒在△ABC 内,则黄豆落在△PBC 内的概率是( ) A .23B .12C .13D .1413.(0分)[ID :13009]一个盒子里装有大小相同的10个黑球、12个红球、4个白球,从中任取2个,其中白球的个数记为X,则下列概率等于11222422226C C C C +的是 ( ) A .P(0<X≤2) B .P(X≤1) C .P(X=1)D .P(X=2)14.(0分)[ID :13006]右边程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”.执行该程序框图,若输入,a b 分别为14,18,则输出的a =( )A .0B .2C .4D .1415.(0分)[ID :12980]某单位有职工750人,其中青年职工350人,中年职工250人,老年职工150人,为了了解该单位职工的健康情况,用分层抽样的方法从中抽取样本 . 若样本中的青年职工为7人,则样本容量为 A .7B .15C .25D .35二、填空题16.(0分)[ID :13118]古代“五行”学说认为:“物质分金、木、水、火、土五种属性,金克木,木克土,土克水,水克火,火克金”,从五种不同属性的物质中随机抽取两种,则抽取的两种物质不相克的概率为_________17.(0分)[ID :13117]已知直线l 的极坐标方程为2sin()24πρθ-=A 的极坐标为7)4π,则点A到直线l的距离为____.18.(0分)[ID:13099]从某居民区随机抽取10个家庭,获得第i个家庭的月收入x i(单位:千元)与月储蓄y i(单位:千元)的数据资料,算得101iix=∑=80,101iiy=∑=20,110ii ix y=∑=184,1210iix=∑=720.则家庭的月储蓄y对月收入x的线性回归方程为__________.附:线性回归方程y=bx+a中,1221ni iiniix y nxybx nx==-=-∑∑,a=y-b x,其中x,y为样本平均值.线性回归方程也可写为ˆy=ˆb x+ˆa.19.(0分)[ID:13088]假设在5秒内的任何时刻,两条不相关的短信机会均等地进入同一部手机,若这两条短信进入手机的时间之差小于2秒,手机就会受到干扰,则手机受到干扰的概率为_________________20.(0分)[ID:13083]用秦九韶算法计算多项式f(x)=2x4-x3+3x2+7,在求x=2时对应的值时,v3的值为___.21.(0分)[ID:13075]已知样本数据12345,,,,a a a a a的方差222222123451(20)5s a a a a a=++++-,则样本数据1234521,21,21,21,21a a a a a+++++的平均数为__________.22.(0分)[ID:13065]已知一组数据分别是,10,2,5,2,4,2x,若这组数据的平均数、中位数、众数成等差数列,则数据x的所有可能值为__________.23.(0分)[ID:13055]从2个黄球,3个红球中随机取出两个球,则两球颜色不同的概率是______.24.(0分)[ID:13034]在—次对人体脂肪百分比和年龄关系的研究中,研究人员获得如下一组样本数据:由表中数据求得y关于x的线性回归方程为0.6ˆˆy x a=+,若年龄x的值为50,则y的估计值为.25.(0分)[ID:13104]在长为10cm的线段AB上任取一点P,并以线段AP为边作正方形,这个正方形的面积介于225cm与249cm之间的概率为__________.三、解答题26.(0分)[ID :13221]画出解关于x 的不等式0ax b +<的程序框图,并用语句描述. 27.(0分)[ID :13214]现从某医院中随机抽取了7位医护人员的关爱患者考核分数(患者考核:10分制),用相关的特征量y 表示;医护专业知识考核分数(试卷考试:100分制),用相关的特征量x 表示,数据如下表:x9888 96 91 90 92 96y 9.98.6 9.59.0 9.1 9.29.8(1)求y 关于x 的线性回归方程(计算结果精确到0.01);(2)利用(1)中的线性回归方程,分析医护专业考核分数的变化对关爱患者考核分数的影响,并估计当某医护人员的医护专业知识考核分数为95分时,他的关爱患者考核分数(精确到0.1).参考公式及数据:回归直线方程ˆˆˆybx a =+中斜率和截距的最小二乘法估计公式分别为 121(x x)(y y)ˆˆˆ,(x x)niii nii ba y bx ==--==--∑∑,其中72193,9.3,()()9.9i ii x y x x y y ===--=∑. 28.(0分)[ID :13175]端午节吃粽子是我国的传统习俗,设一盘中装有10个粽子,其中豆沙粽2个,肉粽3个,白粽5个,这三种粽子的外观完全相同,从中任意选取3个. (1)求三种粽子各取到1个的概率.(2)设X 表示取到的豆沙粽个数,求X 的分布列与数学期望.29.(0分)[ID :13170]某保险公司有一款保险产品的历史收益率(收益率=利润÷保费收入)的频率分布直方图如图所示:(1)试估计这款保险产品的收益率的平均值;(2)设每份保单的保费在20元的基础上每增加x 元,对应的销量为y (万份).从历史销售记录中抽样得到如下5组x 与y 的对应数据:x 元25 30 38 45 52 销量为y (万份)7.57.16.05.64.8由上表,知x 与y 有较强的线性相关关系,且据此计算出的回归方程为10.0ˆybx =-.(ⅰ)求参数b 的值;(ⅱ)若把回归方程10.0ˆybx =-当作y 与x 的线性关系,用(1)中求出的收益率的平均值作为此产品的收益率,试问每份保单的保费定为多少元时此产品可获得最大利润,并求出最大利润.注:保险产品的保费收入=每份保单的保费⨯销量.30.(0分)[ID :13143]某学校随机抽取部分学生调查其上学路上所需时间(单位:分钟),并将所得数据制成频率分布直方图(如图),若上学路上所需时间的范围为[]0,100,样本数据分组为[)0,20,[)20,40,[)40,60,[)60,80,[]80,100.(1)求直方图中a 的值;(2)如果上学路上所需时间不少于40分钟的学生可申请在学校住宿,若招收学生1200人,请估计所招学生中有多少人可以申请住宿; (3)求该校学生上学路上所需的平均时间.【参考答案】2016-2017年度第*次考试试卷 参考答案**科目模拟测试一、选择题 1.C 2.B 3.D 4.A 5.C 6.B 7.B 8.C10.D11.C12.B13.B14.B15.B二、填空题16.【解析】五种抽出两种的抽法有种相克的种数有5种故不相克的种数有5种故五种不同属性的物质中随机抽取两种则抽取的两种物质不相克的概率是故答案为17.【解析】直线的直角坐标方程为点的直角坐标为所以点到直线的距离为18.y=03x-04【解析】由题意知又由此得故所求回归方程为故答案为19.【解析】【分析】根据几何概型的概率公式求出对应的测度即可得到结论【详解】分别设两个互相独立的短信收到的时间为xy则所有事件集可表示为0≤x≤50≤y≤5由题目得如果手机受则到干扰的事件发生必有|x20.【解析】f(x)=2x4-x3+3x2+7=(((2x-1)x+3)x)x+7∴v0=2v1=2×2-1=3v2=3×2+3=9v3=9×2=18故答案为:1821.或【解析】设样本数据的平均数为则方差:结合可得:即样本数据的平均数为2或-2则样本数据的平均数为:或故答案为或点睛:平均数与方差都是重要的数字特征是对总体的一种简明的描述它们所反映的情况有着重要的实22.-11或3或17【解析】分析:设出未知数根据这组数的平均数中位数众数依次成等差数列列出关系式因为所写出的结果对于x的值不同所得的结果不同所以要讨论x的三种不同情况详解:由题得这组数据的平均数为众数是23.【解析】两球颜色不同的概率是24.【解析】【分析】【详解】试题分析:由题意可得将代入解得所以线性回归方程为再将代入得故答案为考点:回归分析及线性回归方程25.【解析】若以线段为边的正方形的面积介于与之间则线段的长介于与之间满足条件的点对应的线段长为而线段的总长度为故正方形的面积介于与之间的概率故答案为:三、解答题27.28.29.30.2016-2017年度第*次考试试卷参考解析【参考解析】**科目模拟测试一、选择题1.C解析:C【解析】【分析】确定函数是奇函数,图象关于原点对称,x>0时,f(x)=log a x(0<a<1)是单调减函数,即可得出结论.【详解】由题意,f(﹣x)=﹣f(x),所以函数是奇函数,图象关于原点对称,排除B、D;x>0时,f(x)=log a x(0<a<1)是单调减函数,排除A.故选C.【点睛】本题考查函数的图象,考查函数的奇偶性、单调性,正确分析函数的性质是关键.2.B解析:B【解析】【分析】根据随机模拟试验的的性质以及几何概型概率公式列方程求解即可.【详解】如下图:由题意,从区间[]0,2随机抽取的2n 个数对()11,x y ,()22,x y ,…,()22,n n x y ,落在面积为4的正方形内,两数的平方和小于4对应的区域为半径为2的圆内,满足条件的区域面积为2124ππ⋅=,所以由几何概型可知42π=m n ,所以2π=m n. 故选:B【点睛】本题主要考查几何概型,属于中档题.3.D解析:D 【解析】 【分析】由题意结合所给的统计图确定选项中的说法是否正确即可. 【详解】对于选项A : 2018年1~4月的业务量,3月最高,2月最低, 差值为439724111986-=,接近2000万件,所以A 是正确的;对于选项B : 2018年1~4月的业务量同比增长率分别为55%,53%,62%,58%,均超过50%,在3月最高,所以B 是正确的;对于选项C :2月份业务量同比增长率为53%,而收入的同比增长率为30%,所以C 是正确的;对于选项D ,1,2,3,4月收入的同比增长率分别为55%,30%,60%,42%,并不是逐月增长,D 错误. 本题选择D 选项. 【点睛】本题主要考查统计图及其应用,新知识的应用等知识,意在考查学生的转化能力和计算求解能力.4.A解析:A 【解析】 【分析】利用秦九韶算法,求解即可. 【详解】利用秦九韶算法,把多项式改写为如下形式:()((((75)3)1)1)2f x x x x x =+++++按照从里到外的顺序,依次计算一次多项式当2x =时的值:07v =172519v =⨯+=2192341v =⨯+=3412183v =⨯+=故选:A【点睛】本题主要考查了秦九韶算法的应用,属于中档题.5.C解析:C【解析】【分析】根据频率分布直方图中平均数的计算方法求解即可.【详解】由题,区间[)[)[)[)0.8,1.0,1.0,1.2,1.2,1.4,1.6,1.8所占频率分别为:0.20.50.1,0.2 1.250.25,0.2 2.250.45,0.20.250.05,⨯=⨯=⨯=⨯=故区间[)1.4,1.6所占频率为10.10.250.450.050.15----=. 故0.90.1 1.10.25 1.30.45 1.50.15 1.70.05 1.26x =⨯+⨯+⨯+⨯+⨯=.故选:C【点睛】本题主要考查了补全频率分布直方图的方法以及根据频率分布直方图计算平均数的问题.属于中档题.6.B解析:B【解析】【分析】模拟执行程序框图,只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可得到输出的n 的值.【详解】输出20,80,100n m s ==≠;21,79,100n m s ==≠;22,78,100n m s ==≠;23,77,100n m s ==≠;24,76,100n m s ==≠;25,75,100n m s ===,退出循环,输出25n =,故选B.【点睛】本题主要考查程序框图的循环结构流程图,属于中档题. 解决程序框图问题时一定注意以下几点:(1) 不要混淆处理框和输入框;(2) 注意区分程序框图是条件分支结构还是循环结构;(3) 注意区分当型循环结构和直到型循环结构;(4) 处理循环结构的问题时一定要正确控制循环次数;(5) 要注意各个框的顺序,(6)在给出程序框图求解输出结果的试题中只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可.7.B解析:B【解析】分析:根据程序框图可知先对奇数项累加,偶数项累加,最后再相减.因此累加量为隔项. 详解:由11111123499100S =-+-+⋯+-得程序框图先对奇数项累加,偶数项累加,最后再相减.因此在空白框中应填入2i i =+,选B. 点睛:算法与流程图的考查,侧重于对流程图循环结构的考查.先明晰算法及流程图的相关概念,包括选择结构、循环结构、伪代码,其次要重视循环起点条件、循环次数、循环终止条件,更要通过循环规律,明确流程图研究的数学问题,是求和还是求项.8.C解析:C【解析】【分析】根据框图的流程,依次计算前六次的运算结果,判断终止运行的n 值,再根据余弦函数的周期性计算即可.【详解】由程序框图知:第一次运行()11cos32f π==,10.1122S n =+=+=; 第二次运行()212cos 32f π==-,12S =,213n =+=, 第三次运行()3cos 1f π==-,12S =,314n =+=, 第四次运行()414cos32f π==-,12S =,415n =+=, 第五次运行()515cos 32f π==,1S =,6n =, 第六次运行()6cos21f π==,2S =,7n =,直到2016n =时,程序运行终止, 函数cos 3n y π=是以6为周期的周期函数,201563355=⨯+,又()()2016cos336cos 21381f ππ==⨯=,∴若程序运行2016次时,输出2336672S =⨯=,∴程序运行2015次时,输出33621671S =⨯-=.故选C .【点睛】本题考查了循环结构的程序框图,根据框图的流程判断算法的功能是解答本题的关键.9.D解析:D【解析】【分析】判断平面区域,利用特殊值法排除选项,然后利用特殊法,即可求解相应概率的范围,得到答案.【详解】由题意知,平面区域()20,4y x y y x ⎧⎫≥⎧⎪⎪⎪Ω=⎨⎨⎬≤-⎪⎪⎪⎩⎩⎭,表示的图形是半圆是半圆以及内部点的集合,如图所示,又由直线2y mx m =+过半圆24y x =-上一点(2,0)-,当0m =时直线与x 轴重合,此时()1P M =,故可排除,A B ,若1m =,如图所示,可求得2()2P M ππ-=, 所以()P M 的取值范围为212,π-⎡⎤⎢⎥π⎣⎦.【点睛】本题主要考查了集合概型的应用,其中解答中判断平面区域,利用特殊值法排除选项,然后利用特殊法,求解相应概率的范围是解答的关键,着重考查了分析问题和解答问题的能力,属于中档试题.10.D解析:D【解析】试题分析:由于甲地总体均值为,中位数为,即中间两个数(第天)人数的平均数为,因此后面的人数可以大于,故甲地不符合.乙地中总体均值为,因此这天的感染人数总数为,又由于方差大于,故这天中不可能每天都是,可以有一天大于,故乙地不符合,丙地中中位数为,众数为,出现的最多,并且可以出现,故丙地不符合,故丁地符合.考点:众数、中位数、平均数、方差11.C解析:C【解析】【分析】由题意可得抽到的号码构成以11为首项、以30为公差的等差数列,求得此等差数列的通项公式为a n=30n﹣19,由401≤30n﹣21≤755,求得正整数n的个数,即可得出结论.【详解】∵960÷32=30,∴每组30人,∴由题意可得抽到的号码构成以30为公差的等差数列,又某组抽到的号码为41,可知第一组抽到的号码为11,∴由题意可得抽到的号码构成以11为首项、以30为公差的等差数列,∴等差数列的通项公式为a n=11+(n﹣1)30=30n﹣19,由401≤30n﹣19≤755,n为正整数可得14≤n≤25,∴做问卷C的人数为25﹣14+1=12,故选C.【点睛】本题主要考查等差数列的通项公式,系统抽样的定义和方法,根据系统抽样的定义转化为等差数列是解决本题的关键,比较基础.12.B解析:B【解析】【分析】推导出点P到BC的距离等于A到BC的距离的12.从而S△PBC=12S△ABC.由此能求出将一粒黄豆随机撒在△ABC内,黄豆落在△PBC内的概率.【详解】以PB、PC为邻边作平行四边形PBDC,则PB PC+=PD,∵20PB PC PA++=,∴2PB PC PA+=-,∴2PD PA=-,∴P是△ABC边BC上的中线AO的中点,∴点P到BC的距离等于A到BC的距离的12.∴S△PBC=12S△ABC.∴将一粒黄豆随机撒在△ABC内,黄豆落在△PBC内的概率为:P=PBC ABC S S =12. 故选B .【点睛】本题考查概率的求法,考查几何概型等基础知识,考运算求解能力,考查化归与转化思想、函数与方程思想,考查创新意识、应用意识,是中档题.13.B解析:B【解析】【分析】由题意知本题是一个古典概型,由古典概型公式分别求得P (X=1)和P (X=0),即可判断等式表示的意义. 【详解】由题意可知112224222226261,0C C C P X P X C C ⋅====:()() , ∴11222422225C C C C +表示选1个白球或者一个白球都没有取得即P (X≤1), 故选B .【点睛】本题是一个古典概型问题,这种问题在高考时可以作为文科的一道解答题,古典概型要求能够列举出所有事件和发生事件的个数,本题可以用组合数表示出所有事件数.14.B解析:B【解析】【分析】【详解】由a=14,b=18,a <b ,则b 变为18﹣14=4,由a >b ,则a 变为14﹣4=10,由a >b ,则a 变为10﹣4=6,由a >b ,则a 变为6﹣4=2,由a <b ,则b 变为4﹣2=2,由a=b=2,则输出的a=2.故选B .15.B解析:B【解析】试题分析:抽样比是,所以样本容量是.考点:分层抽样二、填空题 16.【解析】五种抽出两种的抽法有种相克的种数有5种故不相克的种数有5种故五种不同属性的物质中随机抽取两种则抽取的两种物质不相克的概率是故答案为 解析:12【解析】五种抽出两种的抽法有2510C =种,相克的种数有5种,故不相克的种数有5种,故五种不同属性的物质中随机抽取两种,则抽取的两种物质不相克的概率是12,故答案为12. 17.【解析】直线的直角坐标方程为点的直角坐标为所以点到直线的距离为 解析:522【解析】直线l 的直角坐标方程为1y x -= ,点A 的直角坐标为(2,2)- ,所以点A 到直线l 的距2215222++=. 18.y =03x -04【解析】由题意知又由此得故所求回归方程为故答案为 解析:y =0.3x -0.4【解析】 由题意知1118012010,8,21010n n i i i i n x x y y n n =========∑∑, 又222172010880n i i xnx =-=-⨯=∑,1184108224ni i i x y nxy =-=-⨯⨯=∑, 由此得240.3ˆˆˆ,20.380.480b a y bx ===-=-⨯=-,故所求回归方程为ˆy 0.30.4x =-,故答案为ˆy0.30.4x =-. 19.【解析】【分析】根据几何概型的概率公式求出对应的测度即可得到结论【详解】分别设两个互相独立的短信收到的时间为xy 则所有事件集可表示为0≤x≤50≤y≤5由题目得如果手机受则到干扰的事件发生必有|x 解析:1625【解析】【分析】根据几何概型的概率公式求出对应的测度,即可得到结论.【详解】分别设两个互相独立的短信收到的时间为x ,y .则所有事件集可表示为0≤x≤5,0≤y≤5.由题目得,如果手机受则到干扰的事件发生,必有|x-y|≤2.三个不等式联立,则该事件即为x-y=2和y-x=2在0≤x≤5,0≤y≤5的正方形中围起来的图形即图中阴影区域而所有事件的集合即为正方型面积52=25, 阴影部分的面积2125252162-⨯-=() , 所以阴影区域面积和正方形面积比值即为手机受到干扰的概率为1625. 【点睛】本题主要考查几何概型的概率的计算,分别求出对应区域的面积是解决本题的关键,比较基础. 20.【解析】f(x)=2x4-x3+3x2+7=(((2x-1)x+3)x)x+7∴v0=2v1=2×2-1=3v2=3×2+3=9v3=9×2=18故答案为:18解析:【解析】f (x )=2x 4-x 3+3x 2+7=(((2x -1)x +3)x )x +7,∴v 0=2,v 1=2×2-1=3,v 2=3×2+3=9,v 3=9×2=18.故答案为:18.21.或【解析】设样本数据的平均数为则方差:结合可得:即样本数据的平均数为2或-2则样本数据的平均数为:或故答案为或点睛:平均数与方差都是重要的数字特征是对总体的一种简明的描述它们所反映的情况有着重要的实 解析:5或3-【解析】设样本数据的平均数为a ,则方差:()()522152215522115221522115125125512555155i i i i i i i i i i i i i s a a a aa a a a a a a a a a a a =======-=-+⎛⎫=-+ ⎪⎝⎭⎛⎫=-⨯+ ⎪⎝⎭⎛⎫=- ⎪⎝⎭∑∑∑∑∑∑ 结合()222222123451205s a a a a a =++++-可得:2520,2a a =∴=±, 即样本数据12345,,,,a a a a a 的平均数为2或-2,则样本数据1234521,21,21,21,21a a a a a +++++的平均数为:2215⨯+=或()2213⨯-+=-.故答案为5或3-.点睛:平均数与方差都是重要的数字特征,是对总体的一种简明的描述,它们所反映的情况有着重要的实际意义,平均数、中位数、众数描述其集中趋势,方差和标准差描述其波动大小.要注意其区别与联系.22.-11或3或17【解析】分析:设出未知数根据这组数的平均数中位数众数依次成等差数列列出关系式因为所写出的结果对于x 的值不同所得的结果不同所以要讨论x 的三种不同情况详解:由题得这组数据的平均数为众数是解析:-11或3或17【解析】分析:设出未知数,根据这组数的平均数、中位数、众数依次成等差数列,列出关系式,因为所写出的结果对于x 的值不同所得的结果不同,所以要讨论x 的三种不同情况. 详解:由题得这组数据的平均数为10252422577x x +++++++=,众数是2, 若x ≤2,则中位数为2,此时x=﹣11, 若2<x <4,则中位数为x ,此时2x=2527x ++,x=3, 若x ≥4,则中位数为4,2×4=2527x ++,x=17, 所有可能值为﹣11,3,17.故填 -11或3或17.点睛:本题考查众数,中位数,平均数,考查等差数列的性质,考查未知数的分类讨论,是一个综合题目,这是一个易错题目.在求数列的中位数时,必须分类讨论,不能不分类讨论.23.【解析】两球颜色不同的概率是 解析:35【解析】 两球颜色不同的概率是252363105C ⨯== 24.【解析】【分析】【详解】试题分析:由题意可得将代入解得所以线性回归方程为再将代入得故答案为考点:回归分析及线性回归方程解析:32【解析】【分析】【详解】试题分析: 由题意可得30,20x y ==将()30,20代入0.6ˆˆyx a =+解得ˆ2a =,所以线性回归方程为0.62ˆyx =+,再将50x =代入0.62ˆy x =+得ˆ32y =,故答案为32. 考点: 回归分析及线性回归方程.25.【解析】若以线段为边的正方形的面积介于与之间则线段的长介于与之间满足条件的点对应的线段长为而线段的总长度为故正方形的面积介于与之间的概率故答案为: 解析:15【解析】若以线段AP 为边的正方形的面积介于225cm 与249cm 之间,则线段AP 的长介于5cm 与7cm 之间,满足条件的P 点对应的线段长为2cm ,而线段AB 的总长度为10cm ,故正方形的面积介于225cm 与249cm 之间的概率21105P ==. 故答案为:15.三、解答题26.见解析【解析】【分析】【详解】解:流程图如下:程序如下:INPUT a ,bIF a =0 THENIF b <0 THENPRINT “任意实数”ELSEPRINT “无解”ELSEIF a >0 THENPRINT “x <“;﹣b /aELSEPRINT “x >“;﹣b /aENDIFENDIFENDIFEND点睛:解决算法问题的关键是读懂程序框图,明晰顺序结构、条件结构、循环结构的真正含义,本题巧妙而自然地将算法、不等式、交汇在一起,用条件结构来进行考查.这类问题可能出现的错误:①读不懂程序框图;②条件出错;③计算出错.27.(1) ˆ0.12 1.93yx =-. (2) 随着医护专业知识的提高,个人的关爱患者的心态会变得更温和,耐心。
高二第一学期数学期中考试题(含答案解析)
高二第一学期期中测试数学试题(总分150分 时间150分钟)一、单选题:(本大题一共10道小题,每题只有一个正确答案,每题4分,共40分)1、数列3,6,11,20L 的一个通项公式为( ) A 、3n a n =B 、()2n a n n =+C 、2nn a n =+D 、21n a n =+2、在等差数列{}an 中,31340a a +=,则7891011a a a a a ++++=( ) A .40B .60C .80D .1003、已知3x >,13y x x =+-,则y 的最小值为( ) A .2B .3C .4D .54、已知:12P x +>,2:56q x x ->,则P 是q 的( ) A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件5、已知n S 为等差数列{}n a 的前n 项之和,且315S =,648S =,则S 的值为( ) A .63B .81C .99D .1086、若关于x 的不等式240x x a -->在14x <<内有解,则实数a 的取值范围( ) A .3a <-B .0a ≤C .4a <-D .4a ≤-7、已知数列3,y ,x ,9是等差数列,数列1,a ,b ,c ,4是等比数列,则bx y=+( ) A .16B .16±C .512D .512±8、《算法统综》是中国古代数学名著,由明代数学家程大位编著,它对我国民间普及珠算和数学知识起到了很大的作用,是东方古代数学的名著,在这部著作中,许多数学问题都是以歌诀形式呈现的“九问甲歌”就是其中一首:一个公公九个儿,若问生年总不知,自长排来差三岁,共年二百又零七,借问小几多少岁?试问这位公公年龄最小的儿子年龄为( ) A 、8岁B 、11岁C 、20岁D 、35岁9、已知点()2,1A 在直线10ax by +-=()0,0a b >>上,若存在满足该条件的a ,b 使得不等式2122m m a b+≤+成立,则实数m 的取值范围是( ) A .(,4][2,)-∞-+∞UB .(,2][4,)-∞-+∞UC .(,6][4,)-∞-+∞UD .(,4][6,)-∞-+∞U10、已知等比数列{}n a 的公比为q ,且1q <,数列{}n b 满足1n n b a =-,若数列{}n b 有连续四项在集合{}28,19,13,7,17,23---中,则q =( )A .23-B .23C .13-D .13二、多选题:(本大题一共3道小题,每题4分,共12分,每题漏选得2分,错选或多选不得分)11、给出下面四个推段,其中正确的为( )A .若a ,(0,)b ∈+∞,则2b aa b+≥; B .若x ,(0,)y ∈+∞则lg lg x y +≥C .若a R ∈,0a ≠,则44a a+≥; D .若x ,y R ∈,0xy <,则2x yy x+≤-. 12、下列命题的是真命题的是( ) A .若a b >,则11a b<; B .若x y >,m n >,则x n y m ->-C .若x y >,m n >,则xm yn > D .若22ac bc >,则a b >13、在公比q 为整数的等比数列{}n a 中,n S 是数列{}n a 的前n 项和,若1432a a ⋅=,2312a a +=,则下列说法正确的是( ) A .2q = B .数列{}2n S +是等比数列C .8510S =D .数列{}lg n a 是公差为2的等差数列三、填空题:(本大题一共4道小题,每题4分,共16分)14、已知命题:p “x ∃∈R ,10x e x --≤”,命题p 的否定为______________.15、在数列{}n a 中,22a =,51a =,数列11n a ⎧⎫⎨⎬+⎩⎭是等差数列,则8a =_________.16、已知实数0x >,0y >,且31x y +=,则212x y y++的最小值为___________.17、已知函数()2f x x =,()2x g x m =-,m R ∈,若1[1,2]x ∀∈-,2[0,2]x ∃∈都有()()21f x g x ≥则实数m 的取值范围是________________.四、解答题:(本大题一共6道题,共82分)18、记n S 为等差数列{}n a 的前n 项和,已知120a =-,348S =-. (1)求{}n a 的通项公式;(2)求n S ,并指出当n S 的取得最小值时对应的n 的值.19、已知:函数2()lg 6(4)f x kx kx k ⎡⎤=-++⎣⎦ (1)当1k =时,求函数()y f x =的定义域.(2)当函数()y f x =的定义域为R 时,求实数k 的取值范围.20、如图,有一壁画,最高点A 处离地面6米,最低点B 处离地面3米.若从离地高2米的C 处观赏它,视角为θ(1)若3tan 4θ=时,求C 点到墙壁的距离.(2)当C 点离墙壁多远时,视角θ最大?21、记n S 为正项等比数列{}n a 的前n 项和,1266363780S S S S S S ---⋅-=. (1)求数列{}n a 的公比q 的值.(2)若516a =,设2n S 为该数列的前2n 项的和,n T 为为数列{}2na 的前n 项和,若2nn StT =,试求实数t 的值.22、记n S 为等差数列{}n a 的前n 项和,满足2n n S a n =+(*)n N ∈ (1)证明数列{}1n a -是等比数列,并求出通项公式n a .(2)数列{}n na 的前n 项和n T23、已知函数2()f x x ax b a =++-(,)a b R ∈(1)设4a =-,若不等式2()3f x b b >-对于任意的x 都成立,求实数b 的取值范围;(2)设3b =,解关于x 的不等式组()01f x x >⎧⎨>⎩参考答案一、单项选择题:1-5:CDDBC6-10:BABAA二、多项选择题11.AD12.BD13.ABC三、填空题:14、x R ∀∈,10x e x -->15、1216、3+ 17、0m ≥四、解答题:18.解:(1)设数列{}n a 的公差为d ,则1(1)2n n n S na d -=+Q ,120a =- 33(31)3(20)482S d -∴=⋅-+=- 解之得:4d =1(1)20(1)4424n a a n d n n ∴=+-=-+-⋅=-221()111212222()222n n n a a S n n n +==-=-+ (2)法1)由于*n N ∈,所以5n =或者6时,n S 有最小值60-. 法2)由4240n a n =-≤ 解得6n ≤,且60a =于是,当n 取值5或6时,n S 取最小值5660S S ==- 19.解:(1)当1k =时,函数为2()lg(65)f x x x =-+由2650x x -+>得5x >或1x <所以,此函数的定义域为(,1)(5,)-∞+∞U(2)当0k =时,26(4)4kx kx k -++=大于0恒成立. 当0k ≠时,必有0k >且0∆<既有2(6)4(4)0k k k k >⎧⎨--+<⎩ 解之得102k <<综上所述:实数k 的取值范围是10,2⎡⎫⎪⎢⎣⎭20、解:(1)设ACD α∠=,BCD β∠=,侧视角θαβ=-, 设C 点到墙壁的距离为x 米,则有4tan x α=,1tan xβ= 所以241tan tan 3tan tan()411tan tan 41x x x x x xαβθαβαβ--=-===+⋅++⋅ 当3tan 4θ=时,解得2x = (2)由(1)知2333tan 444x x x xθ==≤++(当且仅当4x x=即2x =时等号成立) 所以,当2x =视角θ达到最大 答:当3tan 4θ=时,C 点到墙壁距离为2米,此时视角θ达到最大. 21、解:(1)经检验当1q =时,1266363780s s s ss s ---⋅-≠,故1q ≠ 1266363780s s s ss s --∴-⋅-= 61263720s s s S --= 126116311(1)(1)11720(1)(1)11a q a q q qa q a q q q------=----化简得:63780q q --= 解之得:2q =,1q =-2q ∴=(2)在等比数列{}n a 中:2q =,45116a a q ==所以11a = 所以212(1)1441112n n n na q S q --===---易知数列{}2na 是首项为1公比为4的等比数列所以1(14)1(41)143n nn T -==-- 由2n n S tT =,故3t = 22、解(1)2n n S a n =+Q ,∴当1n =时,1121a a =+,所以11a =-;∴当2n ≥时,()()111221221n n n n n n n a S S a n a n a a ---=-=+-+-=-+,即121n n a a -=-()1121n n a a --=-,所以1121n n a a --=-,2n ≥∴数列{}1n a -是等比数列112a -=-,1122n n a --=-⋅,即12n n a =-.综上,数列{}n a 的通项公式为12nn a =-()*n N ∈(2)因为2nn na n n =-⋅所以()123(123)222322n n T n n =++++-+⋅+⋅++⋅L L . (1)2n n n D +=-.()123222322n n D n =+⋅+⋅++⋅L 由123222322n n D n =+⋅+⋅++⋅L 得,23412222322n n D n +=+⋅+⋅++⋅L .两式作差得,()231121222222212n n n n n D n n ++--=++++-⋅=-⋅-L ,即1(1)22n n D n +=-⋅+故1(1)(1)(1)2222n n n n n n n T D n +++=-=--⋅-. 23解:(1)当4a =-时,22443x x b b b -++>-恒成立,即22444x x b b -+>-恒成立. 因为2244(2)0x x x -+=-≥, 所以240b b -<,解之得04b <<, 所以实数b 的取值范()0,4.(2)当3b =时,2()3f x x ax a =++-,()f x 的图象的对称轴为2ax =-. (ⅰ)当0∆<,即62a -<<时,由()01f x x >⎧⎨>⎩,得1x >,(ⅱ)当0∆=,即2a =或6-时①当2a =时,由()01f x x >⎧⎨>⎩,得22101x x x ⎧++>⎨>⎩,所以1x >,②当6a =-时,由()01f x x >⎧⎨>⎩,得26901x x x ⎧-+>⎨>⎩,所以13x <<或3x >,(ⅲ)当0∆>,即6a <-或2a >时,方程()0f x =的两个根为1x =,2x =①当6a <-时,由(1)032f a >⎧⎪⎨->⎪⎩知121x x <<,所以()01f x x >⎧⎨>⎩的解为11x x <<或2x x >,②当2a >时,由(1)012f a >⎧⎪⎨-<-⎪⎩知121x x <<,所以()01f x x >⎧⎨>⎩的解为1x >,综上所述:当6a ≤-时,不等式组的解集为1,22a a ⎛⎛⎫---++∞⎪ ⎪ ⎪⎝⎭⎝⎭U , 当6a >-时,不等式组的解集为()1,+∞.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【必考题】高二数学上期中试题(附答案)一、选择题1.一个盒子里装有大小相同的10个黑球、12个红球、4个白球,从中任取2个,其中白球的个数记为X,则下列概率等于11222422226C C C C +的是 ( ) A .P(0<X≤2) B .P(X≤1) C .P(X=1)D .P(X=2)2.为研究某种细菌在特定环境下,随时间变化的繁殖情况,得到如下实验数据:天数x (天) 3 4 56 繁殖个数y (千个)2.5344.5由最小二乘法得y 与x 的线性回归方程为ˆˆ0.7yx a =+,则当7x =时,繁殖个数y 的预测值为( ) A .4.9 B .5.25 C .5.95D .6.153.右边程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”.执行该程序框图,若输入,a b 分别为14,18,则输出的a =( )A .0B .2C .4D .144.有5支彩笔(除颜色外无差别),颜色分别为红、黄、蓝、绿、紫.从这5支彩笔中任取2支不同颜色的彩笔,则取出的2支彩笔中含有红色彩笔的概率为 A .45 B .35C .25 D .155.从甲、乙、丙三人中任选两名代表,甲被选中的概率是( ) . A .12B .13C .23D .16.某城市2017年的空气质量状况如下表所示: 污染指数T 3060100110130140概率P110 16 13 730 215 130其中污染指数50T ≤时,空气质量为优;50100T <≤时,空气质量为良;100150T <≤时,空气质量为轻微污染,该城市2017年空气质量达到良或优的概率为( )A .35B .1180C .119D .567.将20名学生任意分成甲、乙两组,每组10人,其中2名学生干部恰好被分在不同组内的概率为( )A .192181020C C C B .1921810202C C C C .1921910202C C C D .192191020C C C 8.我国古代名著《庄子天下篇》中有一句名言“一尺之棰,日取其半,万世不竭”,其意思为:一尺的木棍,每天截取一半,永远都截不完.现将该木棍依此规律截取,如图所示的程序框图的功能就是计算截取7天后所剩木棍的长度(单位:尺),则①②③处可分别填入的是( )A .17?,,+1i s s i i i≤=-= B .1128?,,2i s s i i i≤=-= C .17?,,+12i s s i i i ≤=-= D .1128?,,22i s s i i i≤=-= 9.下列说法正确的是( )A .若残差平方和越小,则相关指数2R 越小B .将一组数据中每一个数据都加上或减去同一常数,方差不变C .若2K 的观测值越大,则判断两个分类变量有关系的把握程度越小D .若所有样本点均落在回归直线上,则相关系数1r =10.某厂家为了解销售轿车台数与广告宣传费之间的关系,得到如表统计数据表:根据数据表可得回归直线方程y bx a =+,其中ˆ 2.4b=,a y bx =-,据此模型预测广告费用为9万元时,销售轿车台数为( ) 广告费用x (万元) 2 3 4 5 6 销售轿车y (台数)3461012A .17B .18C .19D .2011.在发生某公共卫生事件期间,有专业机构认为该事件在一段时间没有发生在规模群体感染的标志为“连续10天,每天新增疑似病例不超过7人”.根据过去10天甲、乙、丙、丁四地新增疑似病例数据,一定符合该标志的是 A .甲地:总体均值为3,中位数为4 B .乙地:总体均值为1,总体方差大于0 C .丙地:中位数为2,众数为3D .丁地:总体均值为2,总体方差为312.已知P 是△ABC 所在平面内﹣点,20PB PC PA ++=,现将一粒黄豆随机撒在△ABC 内,则黄豆落在△PBC 内的概率是( ) A .23B .12C .13D .14二、填空题13.下列说法正确的个数有_________(1)已知变量x 和y 满足关系23y x =-+,则x 与y 正相关;(2)线性回归直线必过点(),x y ;(3)对于分类变量A 与B 的随机变量2k ,2k 越大说明“A 与B 有关系”的可信度越大 (4)在刻画回归模型的拟合效果时,残差平方和越小,相关指数2R 的值越大,说明拟合的效果越好.14.某校高一年级有600个学生,高二年级有550个学生,高三年级有650个学生,为调查学生的视力情况,用分层抽样的方法抽取一个样本,若在高二、高三共抽取了48个学生,则应在高一年级抽取学生______个 15.如图,四边形ABCD 为矩形,3AB =,1BC =,以A 为圆心,1为半径作四分之一个圆弧DE ,在DAB ∠内任作射线AP ,则射线AP 与线段BC 有公共点的概率为________.16.集合{|64,1,2,3,4,5,6}A y y n n ==-=,集合1{|2,1,2,3,4,5,6}n B y y n -===,若任意A∪B 中的元素a ,则a ∈A∩B 的概率是________。
17.为了对某课题进行研究,用分层抽样方法从三所高校,,A B C 的相关人员中,抽取若干人组成研究小组,有关数据见表(单位:人)若从高校,B C 抽取的人中选2人作专题发言,则这2人都来自高校C 的概率P =__________.18.执行如图所示的程序框图,如果输出3s =,则正整数M 为__________.19.执行如图所示的流程图,则输出的x 值为______.20.已知,x y 之间的一组数据不小心丢失一个,但已知回归直线过点()1.5,4,则丢失的数据是__________.x 0 1 2 3y135三、解答题21.某高校为调查学生喜欢“应用统计”课程是否与性别有关,随机抽取了选修课程的60名学生,得到数据如下表:喜欢统计课程不喜欢统计课程合计男生201030女生102030合计303060(1)判断是否有99.5%的把握认为喜欢“应用统计”课程与性别有关?(2)用分层抽样的方法从喜欢统计课程的学生中抽取6名学生作进一步调查,将这6名学生作为一个样本,从中任选3人,求恰有2个男生和1个女生的概率.下面的临界值表供参考:0.050.0250.0100.0050.0013.841 5.024 6.6357.87910.828(参考公式:22()()()()()n ad bcKa b c d a c b d-=++++,其中n a b c d=+++)22.某车间为了规定工时额定,需要确定加工零件所花费的时间,为此作了6次试验,得到数据如下:零件数x/个102030405060加工时间y/min647077829097(1)试对上述变量x与y的关系进行相关性检验,如果x与y具有线性相关关系,求出y对x的回归直线方程;(2)根据(1)的结论,你认为每小时加工零件的数量额定为多少(四舍五入为整数)比较合理?附:相关性检验的临界值表()()nniii ix x y y x y nx yr---==∑∑()()()1122211n niii ii i nniii i x x y y x y nx yb x x xnx====---==--∑∑∑∑,y a bx =+42.0≈27.5≈23.现从某医院中随机抽取了7位医护人员的关爱患者考核分数(患者考核:10分制),用相关的特征量y 表示;医护专业知识考核分数(试卷考试:100分制),用相关的特征量x 表示,数据如下表:(1)求y 关于x 的线性回归方程(计算结果精确到0.01);(2)利用(1)中的线性回归方程,分析医护专业考核分数的变化对关爱患者考核分数的影响,并估计当某医护人员的医护专业知识考核分数为95分时,他的关爱患者考核分数(精确到0.1).参考公式及数据:回归直线方程ˆˆˆybx a =+中斜率和截距的最小二乘法估计公式分别为 121(x x)(y y)ˆˆˆ,(x x)niii nii ba y bx ==--==--∑∑,其中72193,9.3,()()9.9i ii x y x x y y ===--=∑. 24.如图是某地区2012年至2018年生活垃圾无害化处理量(单位:万吨)的折线图.注:年份代码17~分别表示对应年份20122018~.(1)由折线图看出,可用线性回归模型拟合y 与t 的关系,请用相关系数r (0.75r >线性相关较强)加以说明;(2)建立y 与t 的回归方程(系数精确到0.01),预测2019年该区生活垃圾无害化处理量. (参考数据)719.32ii y==∑,()()71 2.89i i i t ty y =--≈∑()7210.55i i y y =-≈∑,()7212 2.646i i t t =-≈⨯∑,()72128i i t t =-≈∑,2.890.992 2.6460.55≈⨯⨯,2.890.10328≈.(参考公式)相关系数()()()()12211niii nniii i t t y y r t t y y ===--=--∑∑∑,在回归方程y bt a =+中斜率和截距的最小二乘估计公式分别为:()()()121niii nii tty y b tt==--=-∑∑,a y bt =-.25.某小卖部为了研究气温对热饮销售的影响,经过统计,得到一个卖出的热饮杯数y 与当天气温(平均温度)/℃x 的对比表:x0 1 3 4 y 140136129125(1)请在图中画出上表数据的散点图;(2)请根据上表提供的数据,用最小二乘法求出y 关于x 的线性回归方程ˆˆˆybx a =+; (3)如果某天的气温是5℃,试根据(2)求出的线性回归方程预测这天大约可以卖出的热饮杯数.参考公式:最小二乘法求线性回归方程系数公式:1221ˆ==-=-∑∑ni ii nii x ynxybxnx ,ˆˆ=-ay bx . 参考数据:01401136312941251023,(140136129125)4132.5⨯+⨯+⨯+⨯=+++÷=.26.有编号为1210,,,A A A 的10个零件,测量其直径(单位:cm ),得到下面数据: 编号1A2A3A4A5A6A7A8A9A10A直径 1.51 1.491.491.511.491.511.471.461.531.47其中直径在区间[]1.48,1.52内的零件为一等品.(1)上述10个零件中,随机抽取1个,求这个零件为一等品的概率. (2)从一等品零件中,随机抽取2个; ①用零件的编号列出所有可能的抽取结果; ②求这2个零件直径相等的概率.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】 【分析】由题意知本题是一个古典概型,由古典概型公式分别求得P (X=1)和P (X=0),即可判断等式表示的意义. 【详解】由题意可知112224222226261,0C C C P X P X C C ⋅====:()() , ∴11222422225C C C C +表示选1个白球或者一个白球都没有取得即P (X≤1), 故选B . 【点睛】本题是一个古典概型问题,这种问题在高考时可以作为文科的一道解答题,古典概型要求能够列举出所有事件和发生事件的个数,本题可以用组合数表示出所有事件数.2.B解析:B 【解析】 【分析】根据表格中的数据,求得样本中心为97(,)22,代入回归直线方程,求得ˆ0.35a =,得到回归直线的方程为ˆ0.70.35yx =+,即可作出预测,得到答案. 【详解】由题意,根据表格中的数据,可得34569 2.534 4.57,4242x y ++++++====, 即样本中心为97(,)22,代入回归直线方程ˆˆ0.7yx a =+,即79ˆ0.722a=⨯+, 解得ˆ0.35a=,即回归直线的方程为ˆ0.70.35y x =+, 当7x =时,ˆ0.770.35 5.25y=⨯+=,故选B . 【点睛】本题主要考查了回归直线方程的应用,其中解答中熟记回归直线方程的特征,求得回归直线的方程是解答的关键,着重考查了运算与求解能力,属于基础题.3.B解析:B 【解析】 【分析】 【详解】由a=14,b=18,a <b , 则b 变为18﹣14=4, 由a >b ,则a 变为14﹣4=10, 由a >b ,则a 变为10﹣4=6, 由a >b ,则a 变为6﹣4=2, 由a <b ,则b 变为4﹣2=2, 由a=b=2, 则输出的a=2.故选B .4.C解析:C 【解析】选取两支彩笔的方法有25C 种,含有红色彩笔的选法为14C 种,由古典概型公式,满足题意的概率值为142542105C p C ===. 本题选择C 选项. 考点:古典概型名师点睛:对于古典概型问题主要把握基本事件的种数和符合要求的事件种数,基本事件的种数要注意区别是排列问题还是组合问题,看抽取时是有、无顺序,本题从这5支彩笔中任取2支不同颜色的彩笔,是组合问题,当然简单问题建议采取列举法更直观一些.5.C解析:C 【解析】 【分析】 【详解】解:甲,乙,丙三人中任选两名代表有233C =种选法,甲被选中的情况有两种,所以甲被选中的概率23223P C ==,故选C. 6.A解析:A 【解析】 【分析】根据互斥事件的和的概率公式求解即可. 【详解】由表知空气质量为优的概率是110, 由互斥事件的和的概率公式知,空气质量为良的概率为111632+=, 所以该城市2017年空气质量达到良或优的概率1131025P =+=, 故选:A 【点睛】本题主要考查了互斥事件,互斥事件和的概率公式,属于中档题.7.A解析:A 【解析】由题意知本题是一个古典概型,先求出事件发生的总个数,再求出满足要求的事件个数,再根据古典概型的概率公式即可得出结果.【详解】由题意知本题是一个古典概型,试验发生的所有事件是20名学生平均分成两组共有1020C种结果,而满足条件的事件是2名学生干部恰好被分在不同组内共有19218C C中结果,根据古典概型的概率公式得192181020=C CPC.故选:A.【点睛】本题主要考查古典概型和组合问题,属于基础题.8.B解析:B【解析】【分析】分析程序中各变量的作用,再根据流程图所示的顺序,可得该程序的作用是累加并输出S 的值,由此可得到结论.【详解】由题意,执行程序框图,可得:第1次循环:11,42S i=-=;第2次循环:111,824S i=--=;第3次循环:1111,16248S i=--==;依次类推,第7次循环:11111,256241288S i=----==,此时不满足条件,推出循环,其中判断框①应填入的条件为:128?i≤,执行框②应填入:1S Si=-,③应填入:2i i=.故选:B.【点睛】本题主要考查了循环结构的程序框图的应用,其中解答中正确理解程序框图的含义是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.9.B解析:B【分析】由残差平方和越小,模型的拟合效果越好,可判断A ;由方差的性质可判断B ;由的随机变量2K 的观测值的大小可判断C ;由相关系数r 的绝对值趋近于1,相关性越强,可判断D .【详解】对于A ,可用残差平方和判断模型的拟合效果,残差平方和越小,模型的拟合效果越好,相关指数2R 越大,故A 错误;对于B ,将一组数据的每一个数据都加上或减去同一常数后,由方差的性质可得方差不变,故B 正确;对于C ,对分类变量X 与Y ,它们的随机变量2K 的观测值越大,“X 与Y 有关系”的把握程度越大,故C 错误;对于D ,若所有样本点均落在回归直线上,则相关系数1r =,故D 错误. 故选:B. 【点睛】本题考查命题的真假判断,主要是线性回归直线的特点和线性相关性的强弱、样本数据的特征值和模型的拟合度,考查判断能力,属于基础题.10.C解析:C 【解析】 由题意4,7, 2.4,7 2.44 2.6,9,ˆˆˆˆˆˆ 2.49 2.619x y ba y bx x y bx a ===∴=-=-⨯=-∴==+=⨯-=,故选C.11.D解析:D 【解析】试题分析:由于甲地总体均值为,中位数为,即中间两个数(第天)人数的平均数为,因此后面的人数可以大于,故甲地不符合.乙地中总体均值为,因此这天的感染人数总数为,又由于方差大于,故这天中不可能每天都是,可以有一天大于,故乙地不符合,丙地中中位数为,众数为,出现的最多,并且可以出现,故丙地不符合,故丁地符合.考点:众数、中位数、平均数、方差12.B解析:B 【解析】 【分析】推导出点P 到BC 的距离等于A 到BC 的距离的12.从而S △PBC =12S △ABC .由此能求出将一粒黄豆随机撒在△ABC 内,黄豆落在△PBC 内的概率. 【详解】以PB 、PC 为邻边作平行四边形PBDC , 则PB PC +=PD ,∵20PB PC PA ++=,∴2PB PC PA +=-, ∴2PD PA =-,∴P 是△ABC 边BC 上的中线AO 的中点, ∴点P 到BC 的距离等于A 到BC 的距离的12. ∴S △PBC =12S △ABC . ∴将一粒黄豆随机撒在△ABC 内,黄豆落在△PBC 内的概率为: P=PBC ABCS S=12. 故选B . 【点睛】本题考查概率的求法,考查几何概型等基础知识,考运算求解能力,考查化归与转化思想、函数与方程思想,考查创新意识、应用意识,是中档题.二、填空题13.3个【解析】【分析】直接利用线性回归直线的相关理论知识的应用求出结果【详解】(1)已知变量x 和y 满足关系y=-2x+3则x 与y 正相关;应该是:x 与y 负相关故错误(2)线性回归直线必过点线性回归直线解析:3个 【解析】 【分析】直接利用线性回归直线的相关理论知识的应用求出结果. 【详解】(1)已知变量x 和y 满足关系y=-2x+3,则x 与y 正相关;应该是:x 与y 负相关.故错误. (2)线性回归直线必过点(),x y ,线性回归直线必过中心点.故正确.(3)对于分类变量A 与B 的随机变量2k ,2k 越大说明“A 与B 有关系”的可信度越大. 根据课本上有原句,故正确.(4)在刻画回归模型的拟合效果时,残差平方和越小,相关指数R 2的值越大,说明拟合的效果越好.故正确,根据课本上有原句. 故填3个. 【点睛】本题主要考查了线性回归直线的应用,学生对知识的记忆能力,主要考查学生的运算能力和转换能力,属于中档题.14.24【解析】【分析】设应在高一年级抽取学生数为n首先求出高一年级人数占总人数的百分比然后通过分层抽样的性质由此能求出应在高一年级抽取学生数【详解】设应在高一年级抽取学生数为n因为某校高一年级有600解析:24【解析】【分析】设应在高一年级抽取学生数为,首先求出高一年级人数占总人数的百分比,然后通过分层抽样的性质,由此能求出应在高一年级抽取学生数。