五年级奥数题及答案:旋转木马(中等难度)_题型归纳

合集下载

小学五年级各类题型奥数题及答案

小学五年级各类题型奥数题及答案

小学五年级各类题型奥数及答案面积计算(五年级奥数题)1、(05年三帆中学考题)右图中AB=3厘米,CD=12厘米,ED=8厘米,AF=7厘米.四边形ABDE的面积是( )平方厘米.2、如图,已知每个小正方形格的面积是1平方厘米,则不规则图形的面积是______.面积计算(答案)1、(05年三帆中学考题)右图中AB=3厘米,CD=12厘米,ED=8厘米,AF=7厘米.四边形ABDE的面积是( )平方厘米.解:阴影面积=1/2×ED×AF+1/2×AB×CD=1/2×8×7+1/2×3×12=28+18=46。

2、如图,已知每个小正方形格的面积是1平方厘米,则不规则图形的面积是______.解答:基本的格点面积的求解,可以用解答种这样的方法求解,当然也可以用格点面积公式来做,内部点有16个,周边点有8个,所以面积为16+8÷2-1=19图形面积(一)(五年级奥数题)1、(06年清华附中考题)如图,在三角形ABC中,D为BC的中点,E为AB上的一点,且BE=1 /3AB,已知四边形EDCA的面积是35,求三角形ABC的面积.2、正方形ABFD的面积为100平方厘米,直角三角形ABC的面积,比直角三角形(CDE的面积大30平方厘米,求DE的长是多少? 04.jpg图形面积(一)(答案)1、(06年清华附中考题)如图,在三角形ABC中,D为BC的中点,E为AB上的一点,且BE=1 /3AB,已知四边形EDCA的面积是35,求三角形ABC的面积.解答:根据定理:所以四边形ACDE的面积就是6-1=5份,这样三角形35÷5×6=42。

2、正方形ABFD的面积为100平方厘米,直角三角形ABC的面积,比直角三角形(CDE的面积大30平方厘米,求DE的长是多少?解:公共部分的运用,三角形ABC面积-三角形CDE的面积=30,两部分都加上公共部分(四边形BCDF),正方形ABFD-三角形BFE=30,所以三角形BFE的面积为70,所以FE的长为70×2÷10=14,所以DE=4。

小学五年级下册奥数题型分类讲义(附答案)

小学五年级下册奥数题型分类讲义(附答案)

小学五年级下册奥数题型分类讲义(附答案)图形问题专题1长方形、正方形的周长一、专题解析同学们都知道,长方形的周长=(长+宽)×2,正方形的周长=边长×4.长方形、正方形的周长公式只能用来计算标准的长方形和正方形的周长。

那么如何应用所学知识巧求表面上看起来不是长方形或正方形的图形的周长呢?还需同学们灵活应用已学知识,掌握转化的思考方法,把复杂的图形转化为标准的图形,以便计算它们的周长。

二、精讲精练例题1】有5张同样大小的纸如下图(a)重叠着,每张纸都是边长6厘米的正方形,重叠的部分为边长的一半,求重叠后图形的周长。

思路导航】根据题意,我们可以把每个正方形的边长的一半同时向左、右、上、下平移(如图b),转化成一个大正方形,这个大正方形的周长和原来5个小正方形重叠后的图形的周长相等。

因此,所求周长是18×4=72厘米。

操演11、右图由8个边长都是2厘米的正方形组成,求这个图形的周长。

2、右图由1个正方形和2个长方形组成,下方长方形长为50cm,求这个图形的周长。

3、有6块边长是1厘米的正方形,如例题中所说的这样重叠着,求重叠后图形的周长。

1例题2】一块长方形木板,沿着它的长度不同的两条边各截去4厘米,截掉的面积为192平方厘米。

现在这块木板的周长是多少厘米?思路导航】把截掉的192平方厘米分红A、B、C三块(如图),个中AB的面积是192-4×4=176(平方厘米)。

把A和B移到一同拼成一个宽4厘米的长方形,而此长方形的长就是这块木板剩下部分的周长的一半。

176÷4=44(厘米),现在这块木板的周长是44×2=88(厘米)。

练21、有一个长方形,如果长减少4米,宽减少2米,面积就比原来减少44平方米,且剩下部分恰好是一个正方形。

求这个正方形的周长。

2、有两个相同的长方形,长是8厘米,宽是3厘米,如果按下图叠放在一起,这个图形的周长是几何?3、有一块长方形广场,沿着它不同的两条边各划出2米做绿化带,剩下的部分仍是长方形。

五年级奥数几何专项十二 包含与排除和旋转对称(二)

五年级奥数几何专项十二   包含与排除和旋转对称(二)

捆地球的绳子假设地球上即无山,又无海,完全像一个大圆球,现在想用一根很长很长的绳子,沿着赤道用绳子捆上一圈,问绳长多少?如果绳长加上1米,绳子围成一个大圆圈之后,就要离开赤道一段距离,形成围绕地球的一个等距离的圆环,问圆环和地球之间的间隔有多大?(已知地球半径约为6400千米,π取3.14)答案提示:地球赤道长:22 3.14640040192rπ=⨯⨯=(千米),所以绳长40192千米;一般我们会想对于4万多千米来说,仅仅延长1米,会有多大的间隔?即使有间隔,恐怕也只能在显微镜下才能看见!让我们来计算一下吧!假如绳长加上1米变为40192001米,则有:40192001264000000.159π÷-≈(米),大约为16厘米,差不多有一支铅笔长。

简直不可思议!圆的知识:1. 当一条线段绕着它的一个端点O 在平面上旋转一周时,它的另一端点所画成的封闭曲线叫做圆,点O 叫做这个圆的圆心.2. 连结一个圆的圆心和圆周上任一点的线段叫做圆的半径.3. 连结圆上任意两点的线段叫做圆的弦;过圆心的弦叫做圆的直径.4. 圆的周长与直径的比叫做圆周率;圆周上任意两点间的部分叫做弧.5. 圆周长=直径×π=半径×2π 圆面积=π×半径2扇形的知识:课前预习知识框架专项十二 包含与排除和旋转对称(二)1. 扇形是圆的一部分,它是由圆心角的两条半径和圆心角所对的弧组成的图形.顶点在圆心的角叫做圆心角. 2. 我们经常说的12圆、14圆、16圆等等其实都是扇形,而这个几分之几表示的其实是这个扇形的圆心角占这个圆周角的几分之几.那么一般的求法是什么呢?关键是360n. 3. 扇形中的弧长= 180r n π.扇形的周长= 180r n π+2r.扇形的面积=3602r n π =.弓形的知识:弦与它所对的弧所组成的图形叫做弓形。

【一般来说,弓形面积=扇形面积-三角形面积.(除了半圆)】常用方法:1. 常用的思想方法:①转化思想(复杂转化为简单,不熟悉的转化为熟悉的) ②等积变形(割补、平移、旋转等) ③借来还去(加减法)④外围入手(从会求的图形或者能求的图形入手,看与要求的部分之间的”关系”) 2. 包含与排除法:重叠想减就是应用了包含与排除的思想,用包含与排除求面积时,关键是考虑重叠部分的面积如何正确处理,应该加上还是减去,要仔细思考,正确选择。

五年级中环杯必考十道题型分析.

五年级中环杯必考十道题型分析.

例:两个整数A、B的最大公约数是C,最小公倍数是D, 并且已知C不等于1,也不等于A或B,C+D=187,那么A+B等于多少?
九、抽屉、容斥、加乘原理
考点: 抽屉原理:抽屉和苹果的构造、倒霉蛋原理 容斥原理:A B C A B C A B B C A C A B C 加乘原理:加法分类,乘法分步 三大原理为初等代数的重点。从小学到高中都 会学。
六、立体几何
考点:比较简单的立体图形的展开图、三 视图、简单体积的计算。题目难度都不大, 但需要一定的空间想象能力!
例:一个长方体被切成如图形状,求它的体积。
10
6
2
2
七、同余定理、中国剩余定理
考点:多为小题目。和的余数等于余数的 和;积的余数等于余数的积。
常见题型:求尾数、求末两位(除以100的余数)、末三位(除以1000的余数)
二、定义新运算
考点一:含有未知数的定义新运算
例:对于任意的两个自然数a和b,规定一种新运算“*”: a*b=a(a+1)(a+2)……(a+b-1)。如果(x*3)*2=3660,那么x=() 解题要点:是新运算和解方程的综合题,难度不大。
考点二:需要自己找规律的定义新运算
例:已知a*b=c,当a=2,b=8时,c=6;当a=5,b=10时,c=10; 当a=7,b=12时,c=13;当a=6,c=12时,b=( ) 解题要点:先猜想,再验证。
解题技巧: 流水行船问题:流水行船中的相遇追及和水速无关! 火车的相遇追及问题(错车):可假设其中一辆静止! 发车间隔:车间距永远不变! 今年特别注意:钟面上的相遇和追及问题! 例、小文在6点多一点的时候出去了,这时分针和时针的夹角为110度。 在7点不到的时候,小文回来了,此时分针和时针刚好又成110度角。 小文出去了多长时间?

小学5年级中级难度奥数题答案

小学5年级中级难度奥数题答案

1概率答案:连续扔两次硬币可能出现的情况有(正,正);(正,反);(反,正);(反,反)共四种情况。

约翰扔的话,两种情况记1分,两种情况记0分;汤姆扔的话三种情况记1分,一种情况记0分。

所以汤姆赢得的可能性大。

2长方体答案:设长方体的长宽高分别为a、b、c ,则有ab 、bc 、ca 的值分别为6,8,12。

可得长方体的体积的平方为,所以此长方体的体积为24。

3脚印答案:爸爸走3步和小龙走4步距离一样长,也就是说他们一共走7步,但却只会留下6个脚印,也就是说每216厘米会有6个脚印,那么有60个脚印说明总长度是厘米,也就是21.6米。

4倍数答案:(1)3个数都是3的倍数,有1种情况(2)3个数除以3都余1,有1种情况(3)3个数除以3都余2,有1种情况(4)一个除以3余1,一个除以3余2,一个是3的倍数,有:3×3×3=27种情况所以,一共有1+1+1+27=30种不同取法。

5计算答案:原式=7.816×(1.45+1.69)+3.14×2.184=7.186×3.14+3.14×2.184=31.46数字答案:在900个三位数中,三位数各不相同的有9×9×8=648(个),三位数全相同的有9个,恰有两位数相同的有900-648-9=243(个)。

7公倍数答案:6,7,8。

提示:相邻两个自然数必互质,其最小公倍数就等于这两个数的乘积。

而相邻三个自然数,若其中只有一个偶数,则其最小公倍数等于这三个数的乘积;若其中有两个偶数,则其最小公倍数等于这三个数乘积的一半。

8行程答案:因为小红的速度不变,相遇地点不变,所以小红两次从出发到相遇的时间相同。

也就是说,小强第二次比第一次少走4分。

由(70×4)÷(90-70)=14(分)可知,小强第二次走了14分,推知第一次走了18分,两人的家相距(52+70)×18=2196(米)。

北师大版最新小学五年级数学奥数测试题及答案图文百度文库

北师大版最新小学五年级数学奥数测试题及答案图文百度文库

北师大版最新小学五年级数学奥数测试题及答案图文百度文库一、拓展提优试题1.同时掷4个相同的小正方体(小正方体的六个面上分别写有数字1、2、3、4、5、6,则朝上一面的4个数字的和有种.2.若2副网球拍和7个网球一共220元,且1副网球拍比1个网球贵83元.求网球的单价.3.甲、乙两人进行射击比赛,约定每中一发得20分,脱靶一发扣12分,两人各打10分,共得208分,最后甲比乙多得64分,乙打中发.4.(1)数一数图1中有个三角形.(2)数一数图2中有个正方形.5.(8分)有四个人甲、乙、丙、丁,乙欠甲1元,丙欠乙2元,丁欠丙3元,甲欠丁4元.要想把他们之间的欠款结清,只因要甲拿出元.6.对于自然数N,如果在1﹣9这九个自然数中至少有七个数是N的因数,则称N是一个“七星数”,则在大于2000的自然数中,最小的“七星数”是.7.如图,在梯形ABCD中,若AB=8,DC=10,S△AMD=10,S△BCM=15,则梯形ABCD的面积是.8.如图,若长方形S长方形ABCD=60平方米,S长方形XYZR=4平方米,则四边形S四边=平方米.形EFGH9.小胖和小亚两人在生日都是在五月份,而且都是星期三.小胖的生日晚,又知两人的生日日期之和是38,小胖的生日是5月日.10.(8分)6个同学约好周六上午8:00﹣11:30去体育馆打乒乓球,他们租了两个球桌进行单打比赛每段时间都有4 个人打球,另外两人当裁判,如此轮换到最后,发现每人都打了相同的时间,请问:每人打了分钟.11.请从1、2、3、…、9、10中选出若干个数,使得1、2、3、…、19、20这20个数中的每个数都等于某个选出的数或某两个选出的数(可以相等)的和.那么,至少需要选出个数.12.大于0的自然数n是3的倍数,3n是5的倍数,则n的最小值是.13.观察下表中的数的规律,可知第8行中,从左向右第5个数是.14.如图,魔术师在一个转盘上的16个位置写下来了1﹣16共16个数,四名观众甲、乙、丙、丁参与魔术表演.魔术师闭上眼,然后甲从转盘中选一个数,乙、丙、丁按照顺时针方向依次选取下一个数,图示是一种可能的选取方式,魔术师睁开眼,说:“选到偶数的观众请举手.”,这时候,只有甲和丁举手,这时候魔术师就大喝一声:“我知道你们选的数了!”.你认为甲和丁选的数的乘积是.15.(8分)有一个特殊的计算器,当输入一个数后,计算器先将这个数乘以3,然后将其结果是数字逆序排列,接着再加2后显示最后的结果,小明输入了一个四位数后,显示结果是2015,那么小明输入的四位数是.16.(8分)一个大于1的正整数加1能被2整除,加2能被3整除,加3能被4整除,加4能被5整除,这个正整数最小是.17.如图六角星的6个顶点恰好是一个正六边形的6个顶点,那么阴影部分面积是空白部分面积的倍.18.观察下面数表中的规律,可知x=.19.(7分)如图,按此规律,图4中的小方块应为个.20.如图,将一个等腰三角形ABC沿EF对折,顶点A与底边的中点D重合,若△ABC的周长是16厘米,四边形BCEF的周长是10厘米,则BC=厘米.21.如图,从A到B,有条不同的路线.(不能重复经过同一个点)22.(12分)甲、乙两人从A地步行去B地.乙早上6:00出发,匀速步行前往;甲早上8:00才出发,也是匀速步行.甲的速度是乙的速度的2.5倍,但甲每行进半小时都需要休息半小时.甲出发后经过分钟才能追上乙.23.(15分)一个自然数恰有9个互不相同的约数,其中3个约数A,B,C满足:①A+B+C=79②A×A=B×C那么,这个自然数是.∆的面积等于5平方24.如图所示,P为平行四边形ABDC外一点。

小学五年级奥数题分类集锦及答案

小学五年级奥数题分类集锦及答案
二、解答题
1、173□是个四位数字 . 数学老师说:“我在这个□中先后填入 3 个数字 , 所得到的 3 个四位数 , 依次可被 9、11、6 整除. ”问:数学老师先后填入的 3 个数字的和是多少?
12、在 1992 后面补上三个数字,组成一个七位数,使它们分别能被 11 整除,这个七位数最小值是多少?
五年级奥数试题集锦
1
1.1 小的巧算(一)
年级

姓名
得分
一、填空题
1、计算 1.135+3.346+5.557+7.768+9.979=_____. 2、计算 1.996+19.97+199.8=_____. 3、计算 9.8+99.8+999.8+9999.8+99999.8=_____. 4、计算 6.11+9.22+8.33+7.44+5.55+4.56+3.67+2.78 +1.89=_____. 5、计算
二、解答题
11、计算 172.4 6.2+2724 0.38
12、计算 0.00 , 0181 0.00 , 011
963
个 0 1028 个 0
13、计算 12.34+23.45+34.56+45.67+56.78+67.89+78.91+89.12+91.23
14、下面有两个小数 : a=0.00 , 0105
12、把 7、14、20、21、28、30 分成两组,每三个数相乘,使两组数的乘积相等 .
13、学生 1430 人参加团体操 , 分成人数相等的若干队 , 每队人数在 100 至 200 之 间, 问哪几种分法 ?

五年级奥数题及答案

五年级奥数题及答案

五年级奥数题及答案题目一:数字排列小明在玩一个数字排列游戏,他有数字1到9的卡片各一张,现在他想将这些卡片排列成一个三位数,使得这个三位数的每一位数字都不相同。

请问小明有多少种不同的排列方式?答案:这是一个排列组合问题。

对于三位数,我们有9个选择来放置第一位数字(不能是0),剩下的8个数字中选择一个来放置第二位,最后7个数字中选择一个来放置第三位。

因此,总的排列方式是9×8×7=504种。

题目二:图形计数在一个5×5的方格中,有多少种不同的路径可以从左上角走到右下角,只能向下或向右移动?答案:这是一个组合问题,我们可以通过计算到达右下角的路径数来解决。

在5×5的方格中,到达右下角需要向右移动4次和向下移动4次,总共8步。

我们需要从这8步中选择4步是向下的,剩下的4步是向右的。

这可以通过组合公式C(8,4)来计算,即8!/(4!4!)=70种不同的路径。

题目三:分数问题如果1/2 + 1/3 + 1/4 + ... + 1/100的和是一个整数,那么这个整数是多少?答案:首先我们需要找到一个通项公式来表示这个序列。

这个序列是1/n,其中n从2到100。

我们需要找到一个公共的分母,使得所有的分数相加后能够简化为一个整数。

这个公共分母是2到100的所有整数的乘积。

将每个分数转换为这个公共分母后,我们可以看到分子是1到100的和,即(1+2+3+...+100)。

这是一个等差数列的和,公式为n(n+1)/2,代入n=100,我们得到51×101=5151。

因此,这个整数是5151。

题目四:逻辑推理有五个盒子,每个盒子里都装有不同的糖果数量,分别是2、3、5、7和11个。

现在有五个人,每个人从每个盒子里拿走了不同数量的糖果。

第一个人拿走了总数的一半,第二个人拿走了剩下的一半,依此类推。

最后,每个盒子里都剩下1个糖果。

问每个人分别从每个盒子里拿走了多少糖果?答案:这是一个逆向思维问题。

小学奥数类型题解析及专项训练(中等难度)

小学奥数类型题解析及专项训练(中等难度)

小学奥数类型题解析及专项训练(中等难度)一. 算术题:某学校有120个学生参加了足球比赛,他们分成4个班级参赛。

每个班级参赛人数相同。

请问每个班级有多少学生参赛?解析:假设每个班级有x个学生参赛,根据题意可以得到方程:4x = 120。

解这个方程可以得到x = 30。

所以每个班级有30个学生参赛。

算术题专项练习应用题:某商店有40个相同的玩具,要分给4个学生,要求每个学生分得的玩具个数相同。

1.请问每个学生最多能分得几个玩具?2.请问每个学生最少能分得几个玩具?3.如果要求每个学生分得的玩具个数大于等于10,最多能分几个玩具?4.如果要求每个学生分得的玩具个数小于等于5,最少能分几个玩具?5.如果要求每个学生分得的玩具个数是奇数,最多能分几个玩具?二. 概率题:一个袋子里有3个红球,2个蓝球和1个黄球,小明从袋子里随机取出一个球,问他取出红球的概率是多少?解析:总共有6个球,取出红球的可能性有3个,所以取出红球的概率是3/6,即1/2。

概率题专项练习应用题:一个骰子有六个面,上面的数字是1、2、3、4、5、6。

小明随机掷了一次骰子,请问掷出的数字是偶数的概率是多少?一个扑克牌有52张,其中红心牌有13张。

小红随机从扑克牌里抽取一张牌,请问她抽到红心牌的概率是多少?一个骰子有六个面,上面的数字是1、2、3、4、5、6。

小明随机掷了两次骰子,请问两次都出现1的概率是多少?一个扑克牌有52张,其中梅花牌有13张。

小芳随机从扑克牌里抽取两张牌,请问她抽到两张梅花牌的概率是多少?一个骰子有六个面,上面的数字是1、2、3、4、5、6。

小明随机掷了三次骰子,请问至少掷出一次6的概率是多少?三. 逻辑题:一个班级有30个学生,其中有20人是男生。

小明是这个班级的学生,问他是男生的概率是多少?解析:总共有30个学生,20人是男生,所以小明是男生的可能性有20个,所以他是男生的概率是20/30,即2/3。

逻辑题专项练习应用题:一个班级有35个学生,其中有25人是女生。

小学五年级中等难度奥数题:行程

小学五年级中等难度奥数题:行程

小学五年级中等难度奥数题:行程
教案是教师为顺利而有效地开展教学活动,根据课程标准,教学大纲和教科书要求及学生的实际情况,以课时或课题为单位,对教学内容、教学步骤、教学方法等进行的具体设计和安排的一种实用性教学文书,包括教材简析和学生分析、教学目的、重难点、教学准备、教学过程及练习设计等,下面是由小编为大家整理的范文模板,仅供参考,欢迎大家阅读.
行程:(中等难度)
小红和小强同时从家里出发相向而行。

小红每分走52米,小强每分走70米,二人在途中的A处相遇。

若小红提前4分出发,且速度不变,小强每分走90米,则两人仍在A处相遇。

小红和小强两人的家相距多少米?
答案:
因为小红的速度不变,相遇地点不变,所以小红两次从出发到相遇的时间相同。

也就是说,小强第二次比第一次少走4分。

由(70_4)÷(90-70)=_(分)可知,小强第二次走了_分,推知第一次走了_分,两人的家相距(52+70)__=2_6(米)。

小学五年级中等难度奥数题:行程.到电脑,方便收藏和打印:。

小学五年级奥数题及解答

小学五年级奥数题及解答

小学五年级奥数题及解答小学五年级奥数题及解答篇一解:设第二组有x个数,则63+11x=8×(9+x),解得x=3。

2.小明参加了六次测验,第三、第四次的平均分比前两次的平均分多2分,比后两次的平均分少2分。

如果后三次平均分比前三次平均分多3分,那么第四次比第三次多得几分?解:第三、四次的成绩和比前两次的成绩和多4分,比后两次的成绩和少4分,推知后两次的成绩和比前两次的成绩和多8分。

因为后三次的成绩和比前三次的成绩和多9分,所以第四次比第三次多9-8=1(分)。

3.妈妈每4天要去一次副食商店,每5天要去一次百货商店。

妈妈平均每星期去这两个商店几次?(用小数表示)解:每20天去9次,9÷20×7=3.15(次)。

4.乙、丙两数的平均数与甲数之比是13∶7,求甲、乙、丙三数的平均数与甲数之比。

解:以甲数为7份,则乙、丙两数共13×2=26(份)所以甲乙丙的平均数是(26+7)/3=11(份)因此甲乙丙三数的平均数与甲数之比是11:7。

5.五年级同学参加校办工厂糊纸盒劳动,平均每人糊了76个。

已知每人至少糊了70个,并且其中有一个同学糊了88个,如果不把这个同学计算在内,那么平均每人糊74个。

糊得最快的同学最多糊了多少个? 解:当把糊了88个纸盒的同学计算在内时,因为他比其余同学的平均数多88-74=14(个),而使大家的平均数增加了76-74=2(个),说明总人数是14÷2=7(人)。

因此糊得最快的同学最多糊了74×6-70×5=94(个)。

6.甲、乙两班进行越野行军比赛,甲班以4.5千米/时的速度走了路程的一半,又以5.5千米/时的速度走完了另一半;乙班在比赛过程中,一半时间以4.5千米/时的速度行进,另一半时间以5.5千米/时的速度行进。

问:甲、乙两班谁将获胜?解:快速行走的路程越长,所用时间越短。

甲班快、慢速行走的路程相同,乙班快速行走的路程比慢速行走的路程长,所以乙班获胜。

小学五年级奥数题及答案完整版.doc

小学五年级奥数题及答案完整版.doc

小学五年级奥数题一、工程问题1.甲乙两个水管单独开,注满一池水,分别需要20小时,16小时.丙水管单独开,排一池水要10小时,若水池没水,同时打开甲乙两水管,5小时后,再打开排水管丙,问水池注满还是要多少小时?2.修一条水渠,单独修,甲队需要20天完成,乙队需要30天完成。

如果两队合作,由于彼此施工有影响,他们的工作效率就要降低,甲队的工作效率是原来的五分之四,乙队工作效率只有原来的十分之九。

现在计划16天修完这条水渠,且要求两队合作的天数尽可能少,那么两队要合作几天?六.抽屉原理、奇偶性问题1.一只布袋中装有大小相同但颜色不同的手套,颜色有黑、红、蓝、黄四种,问最少要摸出几只手套才能保证有3副同色的?2.有四种颜色的积木若干,每人可任取1-2件,至少有几个人去取,才能保证有3人能取得完全一样?3.某盒子内装50只球,其中10只是红色,10只是绿色,10只是黄色,10只是蓝色,其余是白球和黑球,为了确保取出的球中至少包含有7只同色的球,问:最少必须从袋中取出多少只球?七.路程问题1.狗跑5步的时间马跑3步,马跑4步的距离狗跑7步,现在狗已跑出30米,马开始追它。

问:狗再跑多远,马可以追上它?2.甲乙辆车同时从a b两地相对开出,几小时后再距中点40千米处相遇?已知,甲车行完全程要8小时,乙车行完全程要10小时,求a b 两地相距多少千米?3.在一个600米的环形跑道上,兄两人同时从同一个起点按顺时针方向跑步,两人每隔12分钟相遇一次,若两个人速度不变,还是在原来出发点同时出发,哥哥改为按逆时针方向跑,则两人每隔4分钟相遇一次,两人跑一圈各要多少分钟?11.快车和慢车同时从甲乙两地相对开出,快车每小时行33千米,相遇是已行了全程的七分之四,已知慢车行完全程需要8小时,求甲乙两地的路程。

八.比例问题1.甲乙两人在河边钓鱼,甲钓了三条,乙钓了两条,正准备吃,有一个人请求跟他们一起吃,于是三人将五条鱼平分了,为了表示感谢,过路人留下10元,甲、乙怎么分?快快快2.一种商品,今年的成本比去年增加了10分之1,但仍保持原售价,因此,每份利润下降了5分之2,那么,今年这种商品的成本占售价的几分之几?小学六年级奥数题答案一、工程问题1、解:1/20+1/16=9/80表示甲乙的工作效率9/80×5=45/80表示5小时后进水量1-45/80=35/80表示还要的进水量35/80÷(9/80-1/10)=35表示还要35小时注满答:5小时后还要35小时就能将水池注满。

的五年级奥数题及参考答案

的五年级奥数题及参考答案

的五年级奥数题及参考答案
的五年级奥数题及参考答案
交叉的梯子
在两栋房屋之间的巷道里有两个梯子靠在墙上。

AB长8m,CD长10m。

两个梯子的交叉点距地面4m。

请问这两栋房屋相距多远?
分析与解答:
根据勾股定理,可得
AC2=102-a2=82-b2
因此a2-b2=36(1)
利用相似三角形的`特性,可得:
重新整理(2)式得:
将b代入(1)式得:
整理之后得到下列四次方程式:
a4-8a3-36a2+288a-576=0
用试误法,或是更复杂的数值分析法,可以得到:
9.25
因此AC≈3.8m
还有一个类似的问题,也是听起来简单,但实际去做却相当困难:用一条绳子把一只羊拴在一块圆形草地边缘的木桩上。

如果羊只能
吃到一半草地的草,绳子长度是多少?。

奥数题十道及答案五年级

奥数题十道及答案五年级

奥数题十道及答案五年级1. 问题:一个数列的前三项是1,3,6,求第10项是多少?答案:这是一个等差数列的立方,即1^3=1,2^3=8,3^3=27。

第10项是10^3=1000。

2. 问题:一个水池,打开进水管需4小时注满,打开排水管需6小时排空。

如果同时打开进水管和排水管,需要多少时间才能注满水池?答案:设水池的容量为C。

进水管每小时注水量为C/4,排水管每小时排水量为C/6。

同时打开时,每小时净注水量为C/4 - C/6 = 2C/12 = C/6。

因此,注满水池需要6小时。

3. 问题:一个长方体的长、宽、高分别是10厘米、8厘米和6厘米,求它的表面积。

答案:长方体的表面积由六个面组成,分别是两个长宽面、两个长高面和两个宽高面。

计算公式为:2(长×宽 + 长×高 + 宽×高)。

代入数值得:2(10×8 + 10×6 + 8×6) = 2(80 + 60 + 48) = 2×188 = 376平方厘米。

4. 问题:一个正方形的边长增加10%,它的面积增加了多少百分比?答案:设原正方形边长为a,面积为a^2。

边长增加10%后,新边长为1.1a,新面积为(1.1a)^2 = 1.21a^2。

面积增加了(1.21a^2 - a^2) / a^2 = 0.21a^2 / a^2 = 21%。

5. 问题:小明有100元钱,他花了一部分钱买了书,剩下的钱用来买零食。

如果买书花了x元,买零食花了y元,已知x+y=100,x:y=1:2,求x和y各是多少?答案:根据题意,x:y=1:2,可以设x=k,y=2k。

代入x+y=100,得k+2k=3k=100,解得k=33.33。

所以x=33.33元,y=66.67元。

6. 问题:在一个圆形花坛周围种了40棵花,每两棵花之间的距离相等,求花坛的周长。

答案:假设每两棵花之间的距离为d,花坛的周长为C。

人教版【精选】小学五年级下册数学奥数题带答案

人教版【精选】小学五年级下册数学奥数题带答案

人教版【精选】小学五年级下册数学奥数题带答案一、拓展提优试题1.如图,魔术师在一个转盘上的16个位置写下来了1﹣16共16个数,四名观众甲、乙、丙、丁参与魔术表演.魔术师闭上眼,然后甲从转盘中选一个数,乙、丙、丁按照顺时针方向依次选取下一个数,图示是一种可能的选取方式,魔术师睁开眼,说:“选到偶数的观众请举手.”,这时候,只有甲和丁举手,这时候魔术师就大喝一声:“我知道你们选的数了!”.你认为甲和丁选的数的乘积是.2.松鼠A、B、C共有松果若干,松鼠A原有松果26颗,从中拿出10颗平分给B、C,然后松鼠B拿出自己的18颗松果平均分给A、C,最后松鼠C把自己现有松果的一半平分给A、B,此时3只松鼠的松果数量相同,则松鼠C原有松果颗.3.如图,若长方形S长方形ABCD=60平方米,S长方形XYZR=4平方米,则四边形S四边=平方米.形EFGH4.李双骑车以320米分钟的速度从A地驶向B地,途中因自行车故障推车继续向前步行5分钟到距B地1800米的某地修车,15分钟后以原来骑车速度的1.5倍继续向前驶向B地,到达B地时,比预计时间多用17分钟,则李双推车步行的速度是米/分钟.5.解放军战士在洪水不断冲毁大坝的过程中要修好大坝,若10人需45分钟,20人需要20分钟,则14人修好大坝需分钟.6.四位数的所有因数中,有3个是质数,其它39个不是质数.那么,四位数有个因数.7.对于自然数N,如果1﹣9这九个自然数中至少有六个数可以整除N,则称N是一个“六合数”,则在大于2000的自然数中,最小的“六合数”是.8.一次数学竞赛中,某小组10个人的平均分是84分,其中小明得93分,则其他9个人的平均分是分.9.两个数的最大公约数和最小公倍数分别是3和135,求这两个数的差最小是.10.(15分)甲、乙两船顺流每小时行8千米,逆流每小时行4千米,若甲船顺流而下,然后返回;乙船逆流而上,然后返回,两船同时出发,经过3小时同时回到各自的出发点,在这3小时中有多长时间甲、乙两船同向航行?11.如图,在梯形ABCD中,若AB=8,DC=10,S△AMD=10,S△BCM=15,则梯形ABCD的面积是.12.(8分)有一个特殊的计算器,当输入一个数后,计算器先将这个数乘以3,然后将其结果是数字逆序排列,接着再加2后显示最后的结果,小明输入了一个四位数后,显示结果是2015,那么小明输入的四位数是.13.定义新运算:θa=,则(θ3)+(θ5)+(θ7)(+θ9)+(θ11)的计算结果化成最简真分数后,分子与分母的和是.14.如图六角星的6个顶点恰好是一个正六边形的6个顶点,那么阴影部分面积是空白部分面积的倍.15.小明准备和面包饺子,他在1.5千克面粉中加入了5千克的水,发现面和得太稀了,奶奶告诉他,包饺子的面需要按照3份面,2份水和面,于是小明分三次加入相同分量的面粉,终于将面按按要求和好了,那么他每次加入了千克面粉.16.(8分)小胖把这个月的工资都用来买了一支股票.第一天该股票价格上涨,第二天下跌,第三天上涨,第四天下跌,此时他的股票价值刚好5000元,那么小胖这个月的工资是元.17.A、B两桶水同样重,若从A桶中倒2.5千克水到B桶中,则B桶中水的重量是A桶中水的重量的6倍,那么B桶中原来有水千克.18.同学们去春游,带水壶的有80人,带水果的有70人,两样都没带的有6人.若既带水壶又带水果的人数是所有参加春游人数的一半,则参加春游的同学共有人.19.如图,在△ABC中,D、E分别是AB、AC的中点,且图中两个阴影部分(甲和乙)的面积差是5.04,则S△ABC=.20.从1、2、3、4、5中任取3个组成一个三位数,其中不能被3整除的三位数有个.21.有白球和红球共300个,纸盒100个.每个纸盒里都放3个球,其中放1个白球的纸盒有27个,放2个或3个红球的纸盒共有42个,放3个白球和3个红球的纸盒数量相同.那么,白球共有个.22.如图所示,P为平行四边形ABDC外一点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

五年级奥数题及答案:旋转木马(中等难度)_题型归纳
旋转木马:(中等难度)
睿睿和丹丹超爱吃糖果。

她们俩一共有64颗糖果,而且,她俩糖果数目的积可以整除4875。

已知丹丹的糖果比睿睿多,那么丹丹比睿睿多多少糖果呢?
旋转木马答案:玻璃花色中间部分尽心那个翻转可以有以下变换:
白色部分恰好为小正方形,小正方形的面积为大正方形的一半,所以,非白色部分的面积也未大正方形的一半,即
平方厘米。

对于较为复杂的图形,转化和旋转是常用的思路。

相关文档
最新文档