桩基沉降计算表
桩基沉降计算表
基对应力计算点
产生的附加应力
0
m等于3时桩基对应力计算点
产生的附加应力
0
m等于4时桩基对应力计算点
桩 产生的附加应力
19.65766
m等于5时桩基对应力计算点
产生的附加应力 m等于6时桩基对应力计算点
0端
产生的附加应力
0下
j=1
m等于7时桩基对应力计算点
产生的附加应力 m等于8时桩基对应力计算点
1.765586 括号外
计算点离第K根桩身轴线的水平距离r =
0 n=
0 分项一
计算点离承台底面的竖向距离z =
14.16 A=
0.765586 分项二
桩长Lj=
8.02 B=
2.765586 分项三
准永久组合荷载Qj
1372 F=
1.765586 分项四
各桩基对应力计算点产生的附加应力 8.518574
基本参数 计算点处地基土的泊松比ν= 计算点离第K根桩身轴线的水平距离r = 计算点离承台底面的竖向距离z = 桩长Lj= 准永久组合荷载Qj 各桩基对应力计算点产生的附加应力
中间参数
Ip=
0.35 m=
1.778894 括号外
3.45 n=
0.433417 分项一
14.16 A=
0.891362 分项二
各桩基对应力计算点产生的附加应力 6.248785
分项五 -0.63324 分项六 1.50763
基本参数 计算点处地基土的泊松比ν= 计算点离第K根桩身轴线的水平距离r = 计算点离承台底面的竖向距离z = 桩长Lj= 准永久组合荷载Qj 各桩基对应力计算点产生的附加应力
中间参数
Ip=
0.35 m=
(完整版)桩中心距不大于6倍桩径基础沉降计算
桩? 距径比 Sa/d:
长径比L/d:
短边布桩数 nb: C0:
C1:
C2: 桩基等效沉 降系数ψe: 平均压缩模
量Es:
8000 KN
500 Kpa
4m 4m 16.00 m2 1.00 4 20 m 2.40 m 是 3.0 25.0 2 0.055 1.542 8.741 0.152 19.1 Mpa
16
4
2
9 1.00 2.00
0.1746
0.698
0.248
20
6
2
9 1.00 3.00
0.1369
0.821
0.123
22
8
2
9 1.00 4.00
0.1114
0.891
0.070
43
18
10
9 1.00 9.00
0.0554
0.997
0.106
110.80 Mpa 122.40 Mpa
OK
0.0554
编号
桩端底土层名 称
0
0
1
粘土
2
粘土
3
粘土
4
粘土
5
粘土
sum
附加应力
σz:
自重应力
0.2σc:
沉降计算长度 Zn判断:
桩基沉降计 算经验系数
ψ:
桩基中心点 沉降量S:
0.697 11.10 mm
注:1、对 于采用后注 浆施工工艺 的灌注桩, 桩基沉降计 算经验系数 应根据桩端 持力土层类 别,乘以 0.7(砂、 砾、卵石) ~0.8(黏 性土、粉 土)折减系 数; 2、饱和土 中采用预制 桩(不含复 打、复压、 引孔沉桩) 时, 应根据桩距 、土质、沉 桩速率和顺 序等因素, 乘以1.3~ 1.8 挤土效 应系数, 土的渗透性 低,桩距 小,桩数 多,沉降速 率快时取大 值。
桩基桩长及内力的计算
桥梁桩基是桥梁构造的 最基础也是最重要的 部位之一, 着至为关健的 作用。
桥梁所有荷载最终传递给桩基承受。
梁整体建设意义重大。
桩基设计的 准确对桥梁稳定性起 把握好桩基的 设计和施 工质量对桥一、桩基的 类别针对界溪段桥梁下部构造施 工图中存在两类桩:端承桩和摩擦桩。
端承桩:桩基自身重及桩顶以上荷载由桩端持力层承受。
摩擦桩:桩基自身重及及桩顶以上荷载由桩基周身与岩土摩擦阻力承受。
二、单桩基桩长理论计算公式及相关参数表(一)单桩桩基竖向承载力计算单桩竖向承载力应由土对桩的 承载能力、 桩身材料强度以及上部结构所容许的 桩定沉降三方面控制。
1、摩擦桩单桩土对桩的 承载力容许值计算公式:l +[Ra]=(1/2)* u*∑Qik* i Ap*Qr Qr= m 0*K*[ f ao]+k2*R*(h-3)式中: [Ra] ——单桩轴向受压承载力容许值(时置换土重也计入浮力)的 差值作为荷载考虑; u ——桩身周长( m ) KN ),桩身自重与置换土重(当自重计入浮力Ap ——桩端截面面积(㎡)n ——土的 层数(注:公式中未写出)Li ——承台底面或局部冲刷线以下各土层的 厚度( m ),扩孔部分不计;Qik ——与 Li 对应的 各土层与桩侧的 摩阻力标准值 无实验条件时按表 5.3.3-1选用; ( kPa ),宜采用单桩摩阻力实验确定, 当Qr ——桩端处土的 承载力基本容许值 (kPa ),当持力层为砂石、碎石土时,若计算值超过下列值,宜采用:粉砂1000kP ;细砂 1150kP ;中砂、粗砂、砾砂 1450kP ;碎石土 2750kP ;f[ ao]——桩端处土的 承载力基本容许值(kPa ),按《公路桥涵地基及基础设计规范》第 3.3.3 条确定;h ——桩端的 埋置深度( m ),对于有冲刷的 桩基,埋深由一般冲刷线起算;对无冲刷的 桩基, 埋深由天然地面线或实际开挖后的 地面线算起; h 的 计算值不大于 40m ,当大于 40m 时,按40m 计算;k2 ——容许承载力随深度的 修正系数, 规范》 3.3.4选用;根据桩端处持力层土类按《公路桥涵地基及基础设计 K ——桩端以上各土层的 加权平均重度(kN/m3),若持力层在水位以下且不透水时,不论桩端以上土层的 透水性如何,一律取饱和重度;当持力层透水时,则水中部分土层取浮重度; R ——修正系数,按表 5.3.3-2选用; m0——清底系数,按表 5.3.3-3选用。
建筑讲座:桩基础沉降的计算
13
桩侧负摩阻力的危害
• 可见,桩侧负摩阻力的发生, 将使桩侧土的部分重力和地面 荷载通过负摩阻力传递给桩, 因此,桩的负摩阻力非但不 能成 为桩承载力的一部分.反而相 当于是施加于桩上的外荷载, 这就必然导致桩的承载力相对 降低、桩基沉降加大。
14
二、负摩阻力的计算
1.单桩负摩阻力的计算
(1)中性点的位置 中性点的位置取决于桩与桩侧土的相对 位移,原则上应根据桩沉降与桩周土沉降相 等的条件确定。 要精确计算中性点的位置是比较困难的, 目前多采用近似的估算方法,工程实 测表明,在可压缩土层 L0 的范围内, 中性点的稳定深度Ln是随桩端持力层 的强度和刚度的增大而增加的,其深 度比 Ln / L0 可按下表的经验取用。
18
(3) 下拉荷载的计算
下拉荷载 Fn为中性点深度 Ln 范围内 负摩阻力的累计值,可按下式计 算:
Fn u p lni ni
i 1
n
19
2 .群桩负摩阻力的计算
对于桩距较小的群桩,群桩所发生的负摩阻力因 群桩效应而降低,即小于相应的单桩值,这种 群桩效应可按等效圆法计算
群桩中任一单桩的下拉荷载:
28
(3)“m”法:假定kx随深度 成正比地增加,即是 kx=mz。我国铁道部门 首先采用这一方法,近 年来也在建筑工程和公 路桥涵的桩基设计中逐 渐推广。
桩基沉降计算
桩基沉降计算5.5.6~5.5.9 桩距小于和等于6 倍桩径的群桩基础,在工作荷载下的沉降计算方法,目前有两大类。
一类是按实体深基础计算模型,采用弹性半空间表面荷载下Boussinesq 应力解计算附加应力,用分层总和法计算沉降;另一类是以半无限弹性体内部集中力作用下的Mindlin 解为基础计算沉降。
后者主要分为两种,一种是Poulos 提出的相互作用因子法;第二种是Geddes 对Mindlin 公式积分而导出集中力作用于弹性半空间内部的应力解,按叠加原理,求得群桩桩端平面下各单桩附加应力和,按分层总和法计算群桩沉降。
上述方法存在如下缺陷:(1)实体深基础法,其附加应力按Boussinesq 解计算与实际不符(计算应力偏大),且实体深基础模型不能反映桩的长径比、距径比等的影响;(2)相互作用因子法不能反映压缩层范围内土的成层性;(3)Geddes 应力叠加―分层总和法对于大桩群不能手算,且要求假定侧阻力分布,并给出桩端荷载分担比。
针对以上问题,本规范给出等效作用分层总和法。
1 运用弹性半无限体内作用力的Mindlin 位移解,基于桩、土位移协调条件,略去桩身弹性压缩,给出匀质土中不同距径比、长径比、桩数、基础长宽比条件下刚性承台群桩的沉降数值解:3 两种沉降解之比:相同基础平面尺寸条件下,对于按不同几何参数刚性承台群桩Mindlin 位移解沉降计算值W与不考虑群桩侧面剪应力和应力不M二者之比为等效沉降系数ψe 。
按实体深基础Boussinesq 解分层总和法计算沉扩散实体深基础Boussinesq 解沉降计算值WB降W,乘以等B效沉降系数ψe,实质上纳入了按Mindlin 位移解计算桩基础沉降时,附加应力及桩群几何参数的影响,称此为等效作用分层总和法。
5.5.11 关于桩基沉降计算经验系数ψ。
本次规范修编时,收集了软土地区上海、天津,一般第四纪土地区北京、沈阳,黄土地区西安等共计150 份已建桩基工程的沉降观测资料,由实测沉降与计算沉降之比ψ与沉降计算深度范围内压缩模量当量值关于预制桩沉桩挤土效应对桩基沉降的影响问题。
桩沉降计算(新桩基规范法)
桩基沉降计算
桩形状:圆形
桩直径d或边长b:0.70m
桩面积Ap:0.385m2
下承台底的平均附加压力F:270450KN
天然地基平均附加应力P0:601Kpa
地上层数32地下层数1
实际承台长度Lc:30m
实际承台宽度Bc:15m
承台总面积A:450.00m2
基础长宽比Lc/Bc: 2.00
总桩数n:70
桩长L:50m
桩距Sa: 3.00m
是否规则布桩?是附加应力σz:距径比Sa/d: 4.3自重应力0.2σc:
长径比L/d:71.4沉降计算长度Zn判断:短边布桩数nb:6
C0:0.063
C1: 1.811
C2:10.381
桩基等效沉降系数ψe:0.320
平均压缩模量Es:25.2Mpa
桩基沉降计算经验系数ψ:0.598
桩基中心点沉降量S:35.93mm
注:1、对于采用后注浆施工工艺的灌注桩,桩基沉降计算经验系数
应根据桩端持力土层类别,乘以0.7(砂、砾、卵石)~0.8(黏性土、粉土)折减系数;
2、饱和土中采用预制桩(不含复打、复压、引孔沉桩)时,
应根据桩距、土质、沉桩速率和顺序等因素,乘以1.3~1.8 挤土效应系数,
土的渗透性低,桩距小,桩数多,沉降速率快时取大值。
土层沉降计算表格
162.75Mpa
162.83Mpa
OK
(z。
桩基沉降计算
即上部结构荷载327.8250.174各圆环内的桩数kIpIsαki Ip(1-α) ki Isσz121.3 3.367 3.70622.781142019.386 3.0400014.888 2.9200010.159 2.51402 6.506 2.117 2.264088 3.4972841 4.084 1.7720.710616 1.4636722 2.586 1.4480.899928 2.3920962 1.127 1.0780.392196 1.78085640.5710.8130.397416 2.68615280.1970.4630.274224 3.05950490.1230.3040.192618 2.25993680.0970.2170.135024 1.433936240.0830.1640.346608 3.251136300.0640.1010.33408 2.50278420.0490.0650.358092 2.25498290.0360.0430.181656 1.03002210.1927530.393521.28667即上部结构荷载327.8250.174各圆环内的桩数kIpIsαki Ip(1-α) ki Isσz1 5.395 1.4870.938731.2282620 5.269 1.471000 4.912 1.427000 4.391 1.35902 3.787 1.274 1.317876 2.1046481 3.174 1.180.5522760.974682 2.605 1.0830.90654 1.7891162 1.6910.8980.588468 1.4834964 1.0840.7390.754464 2.441656单桩沉降计算荷载 Q ( 取长期效应作用下的单桩平均附加荷附加应力计算表 μ=0.4桩侧摩阻力沿桩身线性增m = 1.2 (m = z / L ,L 为桩长 , z 为自承台底算起的计算点的深度 )桩端阻力比α单桩沉降计算荷载 Q ( 取长期效应作用下的单桩平均附加荷载)L桩端阻力比α桩基沉降计算m = 1.1 (m = z / L ,L 为桩长 , z 为自承台底算起的计算点的深度 )L单桩沉降计算荷载 Q ( 取长期效应作用下的单桩平均附加荷载)80.4030.4670.560976 3.08593690.1990.3160.311634 2.34914480.1280.2270.178176 1.500016240.0960.1710.400896 3.389904300.0670.1060.34974 2.62668420.050.0690.3654 2.393748290.0370.0460.186702 1.1018847.41187826.4691717.76993即上部结构荷载327.8250.174各圆环内的桩数kIpIsαki Ip(1-α) ki Isσz1 2.440.9040.424560.7467040 2.4150.899000 2.3420.886000 2.2260.86602 2.0770.8380.722796 1.3843761 1.9070.8050.3318180.664932 1.7250.7680.6003 1.2687362 1.3650.6890.47502 1.1382284 1.0470.6080.728712 2.00883280.5210.4340.725232 2.86787290.2780.3120.435348 2.31940880.170.2310.23664 1.526448240.1180.1760.492768 3.489024300.0730.110.38106 2.7258420.0520.0720.380016 2.497824290.0390.0490.196794 1.1737466.13106423.8119315.7045即上部结构荷载327.8250.174各圆环内的桩数kIpIsαki Ip(1-α) ki Isσz1 1.4020.6290.2439480.5195540 1.3940.627000 1.370.622000 1.3320.613002 1.2810.6010.4457880.9928521 1.220.5870.212280.484862m = 1.3 (m = z / L ,L 为桩长 , z 为自承台底算起的计算点的深度 )单桩沉降计算荷载 Q ( 取长期效应作用下的单桩平均附加荷载)L桩端阻力比αm = 1.4 (m = z / L ,L 为桩长 , z 为自承台底算起的计算点的深度 )单桩沉降计算荷载 Q ( 取长期效应作用下的单桩平均附加荷载)L桩端阻力比α2 1.150.570.40020.9416420.9990.5320.3476520.87886440.8450.4890.58812 1.61565680.5220.3830.726624 2.53086490.3180.2930.497988 2.17816280.2040.2260.283968 1.493408240.140.1770.58464 3.508848300.0820.1130.42804 2.80014420.0560.0750.409248 2.6019290.040.0520.20184 1.2456085.37033621.7923614.24629即上部结构荷载792.8240.16各圆环内的桩数kIpIsαki Ip(1-α) ki Isσz10.9180.4720.146880.3964800.9150.4710000.9050.4690000.8890.4640000.8680.4580000.8410.4510020.810.4420.25920.7425620.7380.4210.236160.7072860.660.3970.6336 2.0008880.4690.3310.60032 2.22432140.320.2680.7168 3.15168150.220.2150.528 2.709260.1560.1730.64896 3.77832300.090.1140.432 2.8728370.060.0770.3552 2.39316370.0430.0540.25456 1.678324.8116822.654837.80456即上部结构荷载792.8240.16各圆环内的桩数kIpIsαki Ip(1-α) ki Isσz10.6540.3720.104640.3124800.6520.3710000.6470.3700m = 1.6 (m = z / L ,L 为桩长 , z 为自承台底算起的计算点的深度 )L桩端阻力比αm = 1.5 (m = z / L ,L 为桩长 , z 为自承台底算起的计算点的深度 )单桩沉降计算荷载 Q ( 取长期效应作用下的单桩平均附加荷载)L桩端阻力比α单桩沉降计算荷载 Q ( 取长期效应作用下的单桩平均附加荷载)00.6390.3680000.6290.3640000.6150.360020.5990.3550.191680.596420.5620.3430.179840.5762460.5190.3280.49824 1.6531280.4040.2850.51712 1.9152140.3010.2410.67424 2.83416150.2210.20.5304 2.52260.1640.1650.68224 3.6036300.0970.1130.4656 2.8476370.0640.0790.37888 2.45532370.0450.0560.2664 1.740484.4892821.054635.15831即上部结构荷载792.8240.16各圆环内的桩数kIpIsαki Ip(1-α) ki Isσz10.4920.3030.078720.2545200.4910.3030000.4890.3020000.4850.30000.4790.2990000.4710.2960020.4620.2930.147840.4922420.4410.2850.141120.478860.4160.2750.39936 1.38680.3440.2470.44032 1.65984140.2730.2150.61152 2.5284150.2120.1840.5088 2.3184260.1640.1560.68224 3.40704300.1020.1110.4896 2.7972370.0680.0790.40256 2.45532370.0480.0570.28416 1.771564.1862419.5493232.66936即上部结构荷载792.8240.16L桩端阻力比αm = 1.8 (m = z / L ,L 为桩长 , z 为自承台底算起的计算点的深度 )单桩沉降计算荷载 Q ( 取长期效应作用下的单桩平均附加荷载)L桩端阻力比αm = 1.7 (m = z / L ,L 为桩长 , z 为自承台底算起的计算点的深度 )单桩沉降计算荷载 Q ( 取长期效应作用下的单桩平均附加荷载)各圆环内的桩数k Ip Is αki Ip (1-α) ki Isσz10.3860.2530.061760.2125200.3860.2530000.3840.2530000.3820.2520000.3780.250000.3740.2490020.3690.2460.118080.4132820.3560.2410.113920.4048860.340.2350.3264 1.184480.2930.2150.37504 1.4448140.2440.1920.54656 2.25792150.1980.1680.4752 2.1168260.1590.1450.66144 3.1668300.1040.1070.4992 2.6964370.070.0780.4144 2.42424370.050.0570.296 1.771563.88818.093630.25523即上部结构荷载792.8240.16各圆环内的桩数kIpIsαki Ip(1-α) ki Isσz10.3130.2160.050080.1814400.3120.2160000.3120.2150000.310.2140000.3080.2140000.3050.2120020.3020.2110.096640.3544820.2930.2070.093760.3477660.2830.2030.27168 1.0231280.2520.1890.32256 1.27008140.2170.1710.48608 2.01096150.1820.1530.4368 1.9278260.1510.1350.62816 2.9484300.1030.1030.4944 2.5956370.0720.0770.42624 2.39316370.0520.0580.30784 1.802643.6142416.8554428.17424即上部结构荷载792.8m = 1.9 (m = z / L ,L 为桩长 , z 为自承台底算起的计算点的深度 )单桩沉降计算荷载 Q ( 取长期效应作用下的单桩平均附加荷载)单桩沉降计算荷载 Q ( 取长期效应作用下的单桩平均附加荷载)L桩端阻力比α240.16各圆环内的桩数kIpIsαki Ip(1-α) ki Isσz10.2590.1860.041440.1562400.2590.1860000.2590.1860000.2580.1860000.2560.1850000.2540.1840020.2520.1830.080640.3074420.2460.180.078720.302460.2390.1770.229440.8920880.2180.1670.27904 1.12224140.1920.1540.43008 1.81104150.1660.1390.3984 1.7514260.1420.1250.59072 2.73300.1010.0980.4848 2.4696370.0720.0750.42624 2.331370.0530.0570.31376 1.771563.3532815.64526.14902m = 2.0 (m = z / L ,L 为桩长 , z 为自承台底算起的计算点的深度 )桩端阻力比αL即上部结构荷载842.8240.16各圆环内的桩数kIpIsαki Ip(1-α) ki Isσz10.2190.1630.035040.1369200.2190.1630000.2190.1630000.2180.1630000.2170.1620000.2160.1610020.2140.1610.068480.2704820.210.1590.06720.2671260.2050.1560.19680.7862480.190.1480.24320.99456140.1710.1380.38304 1.62288150.1510.1270.3624 1.6002260.1320.1150.54912 2.5116300.0980.0930.4704 2.3436370.0720.0730.42624 2.26884370.0530.0560.31376 1.740483.1156814.5429225.83797即上部结构荷载842.8240.16各圆环内的桩数kIpIsαki Ip(1-α) ki Isσz10.1880.1440.030080.1209600.1880.1440000.1880.1440000.1880.1440000.1870.1430000.1860.1430020.1850.1420.05920.2385620.1820.1410.058240.2368860.1780.1390.170880.70056m = 2.2 (m = z / L ,L 为桩长 , z 为自承台底算起的计算点的深度 )取长期效应作用下的单桩平均附加荷载)表 μ=0.4线性增长分布单桩沉降计算荷载 Q ( 取长期效应作用下的单桩平均附加荷载)L桩端阻力比αm = 2.1 (m = z / L ,L 为桩长 , z 为自承台底算起的计算点的深度 )单桩沉降计算荷载 Q ( 取长期效应作用下的单桩平均附加荷载)L桩端阻力比α降计算80.1670.1330.213760.89376140.1530.1250.34272 1.47150.1380.1160.3312 1.4616260.1220.1070.50752 2.33688300.0940.0870.4512 2.1924370.0710.070.42032 2.1756370.0540.0550.31968 1.70942.904813.536624.05697即上部结构荷载842.8240.16各圆环内的桩数kIpIsαki Ip(1-α) ki Isσz10.1640.1290.026240.1083600.1640.1290000.1640.1280000.1630.1280000.1630.1280000.1620.1280020.1610.1270.051520.2133620.1590.1260.050880.2116860.1570.1250.150720.6380.1480.120.189440.8064140.1370.1140.30688 1.34064150.1250.1060.3 1.3356260.1130.0990.47008 2.16216300.0890.0820.4272 2.0664370.0690.0670.40848 2.08236370.0530.0540.31376 1.678322.695212.6352822.43147即上部结构荷载842.8240.16各圆环内的桩数kIpIsαki Ip(1-α) ki Isσz10.1440.1160.023040.0974400.1440.1150000.1440.1150000.1440.1150000.1430.1150000.1430.11500单桩沉降计算荷载 Q ( 取长期效应作用下的单桩平均附加荷载)L桩端阻力比αm = 2.4 (m = z / L ,L 为桩长 , z 为自承台底算起的计算点的深度 )L桩端阻力比αm = 2.3 (m = z / L ,L 为桩长 , z 为自承台底算起的计算点的深度 )单桩沉降计算荷载 Q ( 取长期效应作用下的单桩平均附加荷载)20.1420.1140.045440.1915220.1410.1140.045120.1915260.1390.1120.133440.5644880.1320.1090.168960.73248140.1240.1040.27776 1.22304150.1140.0980.2736 1.2348260.1040.0910.43264 1.98744300.0840.0780.4032 1.9656370.0670.0640.39664 1.98912370.0520.0520.30784 1.616162.5076811.793620.92555即上部结构荷载792.8240.16各圆环内的桩数kIpIsαki Ip(1-α) ki Isσz10.1280.1040.020480.0873600.1280.1040000.1280.1040000.1280.1040000.1270.1040000.1270.1040020.1260.1030.040320.1730420.1250.1030.040.1730460.1240.1020.119040.5140880.1190.0990.152320.66528140.1120.0950.25088 1.1172150.1040.090.2496 1.134260.0960.0840.39936 1.83456300.080.0730.384 1.8396370.0640.0610.37888 1.89588370.0510.0510.30192 1.585082.336811.0191218.38294即上部结构荷载792.8240.16各圆环内的桩数kIpIsαki Ip(1-α) ki Isσz10.1150.0950.01840.079800.1150.0950000.1150.09500单桩沉降计算荷载 Q ( 取长期效应作用下的单桩平均附加荷载)桩端阻力比αm = 2.6 (m = z / L ,L 为桩长 , z 为自承台底算起的计算点的深度 )L桩端阻力比αm = 2.5 (m = z / L ,L 为桩长 , z 为自承台底算起的计算点的深度 )单桩沉降计算荷载 Q ( 取长期效应作用下的单桩平均附加荷载)L00.1140.0950000.1140.0950000.1140.0940020.1130.0940.036160.1579220.1120.0940.035840.1579260.1110.0930.106560.4687280.1070.090.136960.6048140.1020.0870.22848 1.02312150.0960.0830.2304 1.0458260.0890.0780.37024 1.70352300.0750.0690.36 1.7388370.0620.0580.36704 1.80264370.050.0490.296 1.522922.1860810.3059617.19391即上部结构荷载792.8240.16各圆环内的桩数kIpIsαki Ip(1-α) ki Isσz10.1030.0870.016480.0730800.1030.0870000.1030.0870000.1030.0860000.1030.0860000.1030.0860020.1020.0860.032640.1444820.1020.0860.032640.1444860.1010.0850.096960.428480.0970.0830.124160.55776140.0930.080.208320.9408150.0880.0770.21120.9702260.0820.0730.34112 1.59432300.0710.0640.3408 1.6128370.0590.0580.34928 1.80264370.0490.0470.29008 1.460762.043689.7297216.20478即上部结构荷载792.8240.16桩端阻力比αm = 2.8 (m = z / L ,L 为桩长 , z 为自承台底算起的计算点的深度 )单桩沉降计算荷载 Q ( 取长期效应作用下的单桩平均附加荷载)LL桩端阻力比αm = 2.7 (m = z / L ,L 为桩长 , z 为自承台底算起的计算点的深度 )单桩沉降计算荷载 Q ( 取长期效应作用下的单桩平均附加荷载)各圆环内的桩数k Ip Is αki Ip (1-α) ki Isσz10.0940.080.015040.067200.0940.080000.0940.080000.0930.0790000.0930.080000.0930.0790020.0930.0790.029760.1327220.0920.0790.029440.1327260.0910.0780.087360.3931280.0890.0760.113920.51072140.0850.0740.19040.87024150.0810.0710.19440.8946260.0770.0680.32032 1.48512300.0670.0610.3216 1.5372370.0560.0530.33152 1.64724370.0470.0450.27824 1.39861.9129.0694815.11479即上部结构荷载792.8240.16各圆环内的桩数kIpIsαki Ip(1-α) ki Isσz10.0850.0730.01360.0613200.0850.0730000.0850.0730000.0850.0730000.0850.0730000.0850.0730020.0850.0730.02720.1226420.0840.0730.026880.1226460.0840.0720.080640.3628880.0810.0710.103680.47712140.0790.0690.176960.81144150.0750.0660.180.8316260.0710.0630.29536 1.37592300.0630.0570.3024 1.4364370.0540.050.31968 1.554370.0460.0440.27232 1.367521.798728.5234814.20736即上部结构荷载792.8单桩沉降计算荷载 Q ( 取长期效应作用下的单桩平均附加荷载)L桩端阻力比αm = 2.9 (m = z / L ,L 为桩长 , z 为自承台底算起的计算点的深度 )单桩沉降计算荷载 Q ( 取长期效应作用下的单桩平均附加荷载)240.16各圆环内的桩数kIpIsαki Ip(1-α) ki Isσz10.0780.0680.012480.0571200.0780.0680000.0780.0680000.0780.0680000.0780.0680000.0780.0680020.0780.0670.024960.1125620.0770.0670.024640.1125660.0770.0670.073920.3376880.0750.0650.0960.4368140.0730.0640.163520.75264150.070.0620.1680.7812260.0660.0590.27456 1.28856300.0590.0540.2832 1.3608370.0510.0480.30192 1.49184370.0440.0420.26048 1.305361.683688.0371213.3796桩端阻力比αm = 3.0 (m = z / L ,L 为桩长 , z 为自承台底算起的计算点的深度 )L。
桩沉降计算(新桩基规范法)
桩基沉降计算
桩形状:圆形
桩直径d或边长b:0.70m
桩面积Ap:0.385m2
下承台底的平均附加压力F:270450KN
天然地基平均附加应力P0:601Kpa
地上层数32地下层数1
实际承台长度Lc:30m
实际承台宽度Bc:15m
承台总面积A:450.00m2
基础长宽比Lc/Bc: 2.00
总桩数n:70
桩长L:50m
桩距Sa: 3.00m
是否规则布桩?是附加应力σz:距径比Sa/d: 4.3自重应力0.2σc:
长径比L/d:71.4沉降计算长度Zn判断:短边布桩数nb:6
C0:0.063
C1: 1.811
C2:10.381
桩基等效沉降系数ψe:0.320
平均压缩模量Es:25.2Mpa
桩基沉降计算经验系数ψ:0.598
桩基中心点沉降量S:35.93mm
注:1、对于采用后注浆施工工艺的灌注桩,桩基沉降计算经验系数
应根据桩端持力土层类别,乘以0.7(砂、砾、卵石)~0.8(黏性土、粉土)折减系数;
2、饱和土中采用预制桩(不含复打、复压、引孔沉桩)时,
应根据桩距、土质、沉桩速率和顺序等因素,乘以1.3~1.8 挤土效应系数,
土的渗透性低,桩距小,桩数多,沉降速率快时取大值。
土层沉降计算表格
162.75Mpa
162.83Mpa
OK
(z。
附录R:桩基础最终沉降量计算
附录R 桩基础最终沉降量计算R.0.1 桩基础最终沉降量的计算采用单向压缩分层总和法:∑∑==∆=mj n i isj ij i j p jE h s 11,,,σψ (R.0.1)式中:s ——桩基最终计算沉降量(mm);m ——桩端平面以下压缩层范围内土层总数;E sj,i ——桩端平面下第j 层土第i 个分层在自重应力至自重应力加附加应力作用段的压缩模量(MPa);n j ——桩端平面下第j 层土的计算分层数;Δh j,i ——桩端平面下第j 层土的第i 个分层厚度(m);σj,i ——桩端平面下第j 层土第i 个分层的竖向附加应力(kPa),可分别按本附录第R.0.2条或第R.0.4条的规定计算;ψp ——桩基沉降计算经验系数,各地区应根据当地的工程实测资料统计对比确定。
R.0.2 采用实体深基础计算桩基础最终沉降量时,采用单向压缩分层总和法按本规范第5.3.5条~第5.3.8条的有关公式计算。
R.0.3 本规范公式(5.3.5)中附加压力计算,应为桩底平面处的附加压力。
实体基础的支承面积可按图R.0.3采用。
实体深基础桩基沉降计算经验系数ψps 应根据地区桩基础沉降观测资料及经验统计确定。
在不具备条件时,ψps 值可按表R.0.3选用。
注:表内数值可以内插。
图R.0.3 实体深基础的底面积R.0.4 采用明德林应力公式方法进行桩基础沉降计算时,应符合下列规定:1,采用明德林应力公式计算地基中的某点的竖向附加应力值时,可将各根桩在该点所产生的附加应力,逐根叠加按下式计算:()∑=+=nk k zs k zp i j 1,,,σσσ (R.0.4-1)式中:σzp,k ——第k 根桩的端阻力在深度z 处产生的应力(kPa):σzs,k ——第k 根桩的侧摩阻力在深度z 处产生的应力(kPa)。
2,第k 根桩的端阻力在深度z 处产生的应力可按下式计算;k p k zp I l Q,2,ασ=(R.0.4-2)式中:Q ——相应于作用的准永久组合时,轴心竖向力作用下单桩的附加荷载(kN);由桩端阻力Q p 和桩侧摩阻力Q s 共同承担,且Q p =αQ ,α是桩端阻力比;桩的端阻力假定为集中力,桩侧摩阻力可假定为沿桩身均匀分布和沿桩身线性增长分布两种形式组成,其值分别为βQ 和(1-α-β)Q ,如图R.0.4所示; l ——桩长(m);I p,k ——应力影响系数,可用对明德林应力公式进行积分的方式推导得出。
桩基沉降计算
14. 【答案】(B) 【解析】桩端带井字隔板,n=9
【点评】
5.3.8 预应力管桩单桩竖向极限承载力确定
空心管桩
5.3.9 嵌岩桩承载力计算
某嵌岩桩,桩径d=0.6m,桩长13m,桩端入软岩(frk=2.5MPa)5m,土层 分布:0~3m填土,qsik=35kPa,;3~8.0m粉土,qsik=55kPa,8m以下为 软岩,计算单桩极限承载力。
桩平面位置如图5.5-8,单柱荷载效应标准值FK=19300kN,准永久值F=17400 kN。试计 算0±1桩的最终沉降量。
桩端平面以下附加应力计算
Z
zci
(m)
l/b z/b
4 i
σzi
l/dd m=z/l
(kPa)
Ip
0 1.3 0
1.0
67.6 15
0
15.06 1.3 4.4 0.116 7.84 15 1.004 139.2
压缩模量当量
Es
h i
Ai
Ai /Esi
0.902 0.8840.5972
16 11
0.902 8.4710,查表 5.5.1桩1基沉降经验系 1.2数
0.0520.054
s4.4e si' 1.20.22944.1412.13mm
5.5.14 疏桩基础沉降计算(框筒结构周围框架部分)
5.5.14 疏桩基础沉降计算(框筒结构周围框架部分)
n
Quk u siqsikli pqpkAp 1
粘 土 : si (0.8/d)1/5(0.8/0.9)1/50.977
粉 砂 、 砾 砂 :
桩基沉降计算
桩基沉降计算(13轴交L~G轴 8-CT2G)执行规范:《混凝土结构设计规范》(GB 50010-2010), 本文简称《混凝土规范》《建筑地基基础设计规范》(GB 50007-2011), 本文简称《地基规范》《建筑桩基技术规范》(JGJ 94-2008), 本文简称《桩基规范》-----------------------------------------------------------------------1. 设计资料1.1 桩平面布置图1.2 已知条件(1) 桩参数桩身材料与施工工艺泥浆护壁钻(冲)孔桩桩身混凝土强度等级 C30承载力性状端承摩擦桩截面形状圆形直径(mm) 1600桩长(m) 30.000(2) 计算内容参数(3) 土层参数(m)高(m)(kN/m3)(kN/m3)(MPa)征值(kPa)1.3 计算内容2 计算过程及计算结果2.1 沉降计算方法根据《桩基规范》5.5.6及5.5.14单排桩,应按明德林法计算2.2 计算附加压力(1) 承台底应力承台底面积 : A = 2.200×6.200 = 13.640(m2)承台底埋深 : h = 5.350(m)承台及承台以上土重 : G = γ×h×A = 12.000×5.350×13.640 = 875.688(kN)承台底自重应力 : σc0 = 71.955(kPa)承台底应力 : σ = (N+G)/A = (15183.000+875.688)/13.640 = 1177.323(kPa)(2) 承台底均布压力地基承载力特征值 : f ak = 300.000(kPa) (《桩基规范》5.2.5)承台底均布压力 : P c = ηc×f ak = 0.180×300.000 = 54.000(kPa)(3) 桩顶附加荷载桩身截面积 A p = 2.011(m2)承台净面积 : A净 = A - n×A p = 13.640-2×2.011 = 9.619(m2)各桩桩顶荷载 : Q i = (σ×A-P c×A净)/n = (1177.323×13.640-54.000×9.619)/2 = 7769.637(kN) 各桩桩顶附加荷载 : Q ci = Q i-σc0×A p = 7769.637-71.955×2.011 = 7624.963(kN)2.3 沉降计算(1) 沉降计算公式根据《桩基规范》5.5.15 计算桩基沉降计算深度Z n=+z zc0.20c式中:σz——计算深度处由桩引起的附加应力,按《桩基规范》附录F 采用明德林法计算σzc——计算深度处由承台土压力引起的附加应力,按《桩基规范》附录D 采用角点法计算σc——计算深度处土的自重应力根据《桩基规范》5.5.14 计算沉降(承台底土分担荷载)=∑n=i)+zi zci z iE si= zij Q j(j I p,ij(-1jl2j= zci∑u=k1kip c,ks eeQ E c式中:s ——桩基最终沉降量(mm)m ——以沉降计算点为圆心,0.6 倍桩长为半径的水平面影响范围内的基桩数n ——沉降计算深度范围内土层的计算分层数;分层数应结合土层性质,分层厚度不应超过计算深度的0.3倍σzi——水平面影响范围内各基桩对应力计算点桩端平面以下第i 层土1/2厚度处产生的附加竖向应力之和;应力计算点应取与沉降计算点最近的桩中心点Δz i——第i计算土层厚度(m)E si——第i计算土层的压缩模量(MPa),采用土的自重压力至土的自重压力加附加压力作用时的压缩模量Q j——第j桩在荷载效应准永久组合作用下(对于复合桩基应扣除承台底土分担荷载),桩顶的附加荷载(kN);当地下室埋深超过5m时,取荷载效应准永久组合作用下的总荷载为考虑回弹再压缩的等代附加荷载l j——第j桩桩长(m)A ps——桩身截面面积αj——第j桩总桩端阻力与桩顶荷载之比,近似取极限总端阻力与单桩极限承载力之比I p,ij,I s,ij——分别为第j桩的桩端阻力和桩侧阻力对计算轴线第i计算土层1/2厚度处的应力影响系数,可按《桩基规范》附录F 确定E c——桩身混凝土的弹性模量σzci——承台压力对应力计算点桩端平面以下第i计算土层1/2厚度处产生的应力;可将承台板划分为u个矩形块,可《桩基规范》附录D 采用角点法计算p c,k——第k块承台底均布压力,可按p c,k=ηc,k f ak取值,其中ηc,k为第k块承台底板的承台效应系数,按《桩基规范》表5.2.5 确定;f ak为承台底地基承载力特征值αki——第k块承台底角点处,桩端平面以下第i计算土层1/2 厚度处的附加应力系数,可按《桩基规范》附录D 确定s e——计算桩身压缩ξe——桩身压缩系数,端承型桩取1.0;摩擦型桩,当l/d≤30时,取2/3;l/d≥50时,取1/2;介于两者之间可线性插值ψ——桩基沉降计算经验系数,无当地经验时,可取1.0沉降计算点位置(x,y,z)(m) :(0.000,0.000,-36.800)沉降计算深度z n(m) :9.500沉降计算点附加应力(kPa) :78.431桩端以下各压缩土层(沉降未乘系数) :层号厚度(m) Es(Mpa) 本层沉降(mm)=============================================1 9.191 18.500 32.12 0.310 10.000 0.7=============================================∑ 9.501 32.8沉降计算点土层压缩沉降量(mm) :16.7桩身压缩s e(mm) :2.5沉降计算点最终沉降量(mm) :16.7(3) 角点沉降计算点(x,y,z) 土压缩沉降(mm) 桩身压缩(mm) 最终沉降(mm) 结论 (0.000,-2.000,-6.800) 35.16 2.53 37.69 满足 (0.000,-2.000,-6.800) 35.16 2.53 37.69 满足 (0.000,2.000,-6.800) 35.16 2.53 37.69 满足 (0.000,2.000,-6.800) 35.16 2.53 37.69 满足 (0.000,2.000,-6.800) 35.16 2.53 37.69 满足(0.000,0.000,-6.800) 16.72 2.53 19.25 满足(4) 沉降计算点结果简图-----------------------------------------------------------------------【理正结构设计工具箱软件6.5PB3】计算日期: 2014-11-19 11:27:47。
桩基沉降计算
(3)等效矩形
实际工程的建筑平面十分复杂,完全矩形截面 很难遇到。下图为工程中的几个实际平面: 从计算上看,换算截面的长宽比对计算结果影响 较大。 德州A区1l1号,形状如图1。 基础尺寸44 x l5m,面积换算正方形Bc=25.4。 按照矩形L/B=3,l/d=78,Sa/d=3.8,nb=8.5 计算, ψe=0.38,沉降S=146mm; 按照正方形形L/B=1,l/d=78,Sa/d=3.8, nb=8.5计算,
(4)计算沉降点 JGJ94—94给出了桩基础角点和中心点计 算沉降方法。本次工程统计资料98%均为 桩箱、桩筏基础,且未标明是中心还是角 点沉降,因此根据对规范的理解,本次计 算,所有结果均为矩形基础中点最终沉降 量,资料与之对应的是,总沉降量或者是 实测沉降的最大值。
4 桩基沉降经验系数ψ说明 (1)回弹再压缩与桩身压缩 桩基沉降计算经验系数是大量实测数据统 计的结果,在沉降观测资料里,已经包含 了回弹再压缩与桩身压缩因素,因此,不 再单独列出二者对桩基沉降计算的影响结 果。
1 等效系数ψe 运用弹性半无限体内作用力的Mindlin位移解, 基于桩、土位移协调条件,略去桩身弹性压缩, 给出匀质土中不同距径比、长径比、桩数、基础 长宽比条件下刚性承台群桩的沉降数值解:
Q一群桩中各桩的平均荷载; Es一均质土的压缩模量; d一桩径; wM_一Mindlin解群桩沉降系数,随群桩的距径比、 长径比、桩数、基础长宽比而变。
(2) 运用弹性半无限体表面均布荷载下的 Boussinesq解,不计实体深基础侧阻力和应 力扩散,求得实体深基础的沉降:
m一矩形基础的长宽比;m=a/b; P一矩形基础上的均布荷载之和。
桩基承载力计算
第一个算例-桩基承载力及沉降计算算例简图(规范桩基例题)工程地质地层参数单桩竖向承载力设计值计算本工程采用C30级,φ.6米×22米混凝土灌注桩,桩周长为1.88米,截面积为.28平方米;1. 按规范第6.2.6条按桩身结构强度确定桩竖向承载力设计值: 灌注桩:R d ≤0.60f c A p =2544.69kN ;2. 按规范第6.2.4条按地基土对桩的支承力确定桩竖向承载力设计值: 桩侧总极限摩阻力标准值: R sk =U p Σf si l I =830.32kN ; 桩端极限阻力标准值:R pk =f p A P =197.92kN ; 则桩端阻比:ρp =R pk /(R sk +R pk )=0.1925;由端阻比按规范表6.4.2-2插值得分项系数 γs =1.784,γp =1.114; 故单桩竖向承载力设计值: R d =R sk /γs +R pk /γp =643.1kN ;综合1、2的计算,单桩竖向承载力设计值设计值可取为643.1kN 。
桩基最终沉降量及竖向承载力计算 一、 工程概况:本工程拟采用桩基,承台埋深1.2米,地下水位-0.7米,承台总面积为A =136.58平方米;桩长为22米,桩截面边长(桩径)为0.6米,总桩数为181根;上部结构荷载设计值为F d =99000kN ,上部结构荷载准永久值为78636.26kN ,底层附加荷载设计值为0kN ,底层附加荷载准永久值为0kN 。
本工程无地下室。
二、 单桩基本计算参数的确定: 根据前述单桩承载力计算:单桩承载力设计值(用户调整系数为1)取为:R d =643.1kN ; 单桩扣除水浮力后自重标准值G pk =93.31kN ; 端阻力R p =197.92kN ,侧阻力R s =830.32kN ; 单桩端阻比α= R p /(R p +R s )=0.1925;三、最终沉降量计算:1.计算点座标(默认值为群桩形心,AutoCAD-WCS座标系,否则为用户指定):X c = 45312.29,Yc= 57120.9;2.单桩沉降计算Q取准永久值效应作用下的单桩平均附加荷载(计入单桩Gpk):经计算群桩顶部附加荷载准永久值效应组合值Fl=78950.39kN;故Q=Fl /n+Gpk=78950.39/181+93.31=529.5kN;3.压缩层厚度计算:按Mindlin解,考虑桩侧摩阻力为线性增加(Geddes积分解)模式:⑴地基中应力计算一览表:应力计算式:桩尖以下深度z(m) 土中附加应力(kPa)自重应力(kPa)应力比.0 175.75 182.70 0.9621.0 81.65 191.40 0.4272.0 65.99 200.10 0.3303.0 63.48 208.80 0.3044.0 61.24 217.50 0.2825.0 58.61 226.20 0.2596.0 55.81 234.90 0.2387.0 53.02 243.60 0.2188.0 50.33 252.60 0.1999.0 47.77 261.60 0.18310.0 45.35 270.60 0.16811.0 43.08 279.60 0.15412.0 40.96 288.60 0.14213.0 38.97 297.60 0.13114.0 37.10 306.60 0.12115.0 35.36 315.60 0.11216.0 33.73 324.60 0.10417.0 32.19 333.60 0.097⑵根据以上计算表搜索压缩层厚度:当桩以下16.52米时:自重应力为329.29kPa,附加应力为32.91kPa,应力比为0.100,故压缩层厚度16.52米。
群桩沉降及周围土体沉降的计算
群桩沉降及周围土体沉降的计算群桩沉降及周围土体沉降的计算群桩基础是目前较为普遍使用的复合地基处理方式之一,由于其具有结构承载能力强、适应性广、可长期稳定等优点,因而在土建工程中被广泛应用。
然而,在工程实践中,群桩基础也存在一些问题,其中最典型的问题就是群桩之间的相互作用和周围土体沉降问题。
因此,如何准确地计算群桩沉降及周围土体沉降,对于保证工程的安全、稳定起着至关重要的作用。
本文将对群桩沉降及周围土体沉降的计算方法进行简单介绍和分析。
一、群桩沉降的计算方法1.排列方式对计算影响群桩沉降的计算方法一般分为两种,即单桩计算法和组合力法。
在单桩计算法中,假定每个桩的受力状态相同,按照单桩沉降曲线进行计算。
组合力法则是将多个桩的受力状态同时考虑,采用较为复杂的组合力学方法进行计算。
然而,在实际工程中,群桩之间的排列也会对计算结果产生影响。
当桩排布的中心线距离相对比较小时,桩之间的互相作用会使桩的受力状态发生变化,产生相互扰动。
在这种情况下,单桩计算法对于计算结果的准确性会有较大影响。
2.单桩计算法单桩计算法是最为简单、直接的计算方法,适用于单桩或者桩排布距离比较大的情况。
计算方法可以采用半经验公式进行,根据桩顶荷载、桩身周长等数据计算单桩的沉降变形。
其中,单桩沉降公式通常采用人工挖孔法或动探等方法采集的土质力学参数,可以采用约束模量法和弹塑性方法等进行计算,按照单桩受荷的弹性、弹塑性和塑性状态计算。
需要注意的是,单桩方法计算时,桩头和桩身沉降不能完全分开,必须在两者之间建立连接。
3.组合力法组合力法是将整个群桩看做一个整体,采用力平衡实现对整个体系的计算。
这种方法计算的准确性相对较高,适用于桩与桩之间距离较小、联合作用明显的情况。
在组合力法中,桩排布的形式和土层的性质对计算过程影响较大。
二、周围土体沉降的计算方法周围土体沉降是群桩基础中的另一个问题,其计算方法主要分为两种,即有限元法和碟形法。
1.有限元法有限元法是目前较为广泛采用的计算方法之一,基于理论分析,将土壤划分为有限的单元,采用有限元的计算方法进行分析和研究。
JGJ94-2008《建筑桩基技术规范》
3.1.3 桩基应根据具体条件分别进行下列承载能力计算和稳定性验算:1 应根据桩基的使用功能和受力特征分别进行桩基的竖向承载力计算和水平承载力计算;2 应对桩身和承台结构承载力进行计算;对于桩侧土不排水抗剪强度小于10kPa 、且长径比大于50的桩应进行桩身压屈验算;对于混凝土预制桩应按吊装、运输和锤击作用进行桩身承载力验算;对于钢管桩应进行局部压屈验算;3 当桩端平面以下存在软弱下卧层时,应进行软弱下卧层承载力验算;4 对位于坡地、岸边的桩基应进行整体稳定性验算;5 对于抗浮、抗拔桩基,应进行基桩和群桩的抗拔承载力计算;6 对于抗震设防区的桩基应进行抗震承载力验算。
3.1.4 下列建筑桩基应进行沉降计算:1 设计等级为甲级的非嵌岩桩和非深厚坚硬持力层的建筑桩基;2 设计等级为乙级的体型复杂、荷载分布显著不均匀或桩端平面以下存在软弱土层的 建筑桩基;3 软土地基多层建筑减沉复合疏桩基础。
5.2.1 桩基竖向承载力计算应符合下列要求: 1 荷载效应标准组合: 轴心竖向力作用下R N k ≤ (5.2.1-1) 偏心竖向力作用下除满足上式外,尚应满足下式的要求:R N k 2.1max ≤ (5.2.1-2)2 地震作用效应和荷载效应标准组合: 轴心竖向力作用下R N Ek 25.1≤ (5.2.1-3) 偏心竖向力作用下,除满足上式外,尚应满足下式的要求:R N Ek 5.1max ≤ (5.2.1-4)式中 k N ——荷载效应标准组合轴心竖向力作用下,基桩或复合基桩的平均竖向力;max k N ——荷载效应标准组合偏心竖向力作用下,桩顶最大竖向力;Ek N ——地震作用效应和荷载效应标准组合下,基桩或复合基桩的平均竖向力; max Ek N ——地震作用效应和荷载效应标准组合下,基桩或复合基桩的最大竖向力; R ——基桩或复合基桩竖向承载力特征值。
5.5.1建筑桩基沉降变形计算值不应大于桩基沉降变形允许值。
基础沉降
5.桩基沉降计算采用长期效应组合的荷载标准值进行桩基础的沉降计算。
由于桩基础的桩中心距小于6d ,所以可以采用分层总和法计算最终沉降量。
在荷载效应准永久组合下承台底 竖向荷载设计值kN F 4360= 基底处压力kpa A G F p 3965.35.32025.35.34360=⨯⨯⨯⨯+=+=基底自重压力20 2.040.0d kpa γ=⨯=基底处的附加应力kpa d p p 356403960=-=-=γ 桩端处的附加应力kpa d p p 3560=-=γ桩端平面下的土的自重应力c σ和附加应力z σ(04p z ασ=)计算如下: ①.在z=0时: 18.8218.9919.60.95c i ih σγ==⨯+⨯+⨯∑=226.32kPakpa p bzb l z 35635625.044,25.0,215.0,10=⨯⨯=====ασα ②.在m z 0.1=时:kPa h ii c 245.9219.60.1226.32=⨯+==∑γσ kpa p bzb l z 16.306356215.044,215.0,0,10=⨯⨯=====ασα ③.在m z 2.0=时:kPa h i i c 265.5219.61.0254.92=⨯+==∑γσkpa p bzb l z 16.3513562466.044,2466.0,43.0,10=⨯⨯=====ασα ④.在m z 3.0=时265.52 1.019.6285.12c i ih kPa σγ==+⨯=∑kpap bzb l z 61.3423562406.044,2406.0,645.0,10=⨯⨯=====ασα ⑤.在m z 4.0=时kPa h i i c 304.7219.61.0285.12=⨯+==∑γσkpap bzb l z 94.3293562317.044,2317.0,86.0,10=⨯⨯=====ασα ⑥.在m z 5.0=时kPa h i i c 324.3219.61.0304.72=⨯+==∑γσkpap bzb l z 85.3143562211.044,2211.0,08.1,10=⨯⨯=====ασα ⑦.在m z 6.0=时kPa h i i c 343.9219.61.0324.32=⨯+==∑γσkpap bzb l z 04.29935621.044,21.0,29.1,10=⨯⨯=====ασα ⑧.在m z 7.0=时kPa h i i c 363.5219.61.0343.92=⨯+==∑γσkpap bzb l z 52.2833561991.044,1991.0,5.1,10=⨯⨯=====ασα ⑨.在m z 8.0=时kPa h i i c 383.1219.61.0363.52=⨯+==∑γσkpap bzb l z 42.2683561885.044,1885.0,72.1,10=⨯⨯=====ασα ⑩.在m z 9.0=时kPa h i i c 402.7219.61.0383.12=⨯+==∑γσkpa p bzb l z 32.25635618.044,18.0,94.1,10=⨯⨯=====ασα计算如下表:Z(mm)blbzi α)(mm z i i α1---∑z i i i z z αα)(mPa E si )110(4---⨯=∆i i i i z z Ei p Si αα 0 10.25 01000 1 0.215 0.2494 997.6 997.6 7.0 33.54 2000 1 0.43 0.2466 1972.8 957.2 7.0 32.45 300010.6450.24062887.2914.48.226.514000 1 0.86 0.2317 3707.2 820 8.223.785000 11.080.2211 4422 714.88.220.736000 1 1.29 0.21 5040 618 8.217.917000 1 1.5 0.1991 5774.8 734.8 8.221.308000 1 1.72 0.1885 6032 257.8 8.27.489000 1 2.07 0.18 6480 448 8.212.98'S =196.95mm沉降经验系数 1.5=ψ。