六年级奥数.杂题.抽屉原理(ABC级).学生版
小学六年级数学思维能力(奥数)《抽屉原理》训练题(二)
小学六年级数学思维能力(奥数)《抽屉原理》训练题(二)1、礼堂里有253人开会,这253人中至少有多少人的属相相同?2、一兴趣小组有10名学生,他们都订阅甲、乙两种杂志中的一种或两种。
问:至少有多少名学生订阅的杂志种类相同?3、把130件玩具分给幼儿园小朋友,如果不管怎样分,都至少有一位小朋友分得4件或4件以上的玩具,那么这个幼儿园最多有多少个小朋友?5、体育组有足球、篮球和排球,上体育课前,老师让一班的41名同学往操场拿球,每人最多拿两个。
问:至少有几名同学拿球的情况完全一样?5、口袋里放有足够多的红、白两种颜色的球,有若干人轮流从袋中取球,每人取三个球。
要保证有4人取出的球的颜色完全相同,至少应有多少人取球?6、10个足球队之间共赛了11场,赛得最多的球队至少赛了几场?7、抽屉里有4枝红铅笔和3枝蓝铅笔,如果闭着眼睛摸,一次必须拿多少枝才能才能保证至少有1枝蓝色铅笔?8、盒子里有5个红球,6个蓝球和7个白球,一次拿出多少个球才能保证至少有1个白球?9、有红、黄、蓝、白四色球各10个,一次摸出5个球,至少有多少个球的颜色是相同的?10、有红、黄、蓝3种颜色的小珠子各4颗混放在口袋里,为了保证一次能取出2颗颜色相同的珠子,一次至少取多少颗?11、一只袋子里有许多规格相同但颜色不同的玻璃球,颜色有红黄绿三种,至少取出多少个球才能保证有2个球的颜色相同?12、某班学生去买语文书、数学书和英语书。
买书的情况是:有买一本的,有买两本的,有买三本的,至少要去多少人才能保证一定有两位同学买到相同的书?(每种书最多买一本)13、某班学生去买数学书、语文书、美术书、自然书,买书的情况是:有买一本的、两本的、三本的和四本的。
至少去多少人才能保证一定有两人买的书是相同的。
(每种书最多买一本)14、学校图书室有历史、文艺、科普三种图书。
每个学生从中任意借两本,至少要多少个同学才能保证一定有两人所借的图书属于同一种?15、学校买来红、黄、蓝、绿四种颜色的球,每个学生最多只能借2个球,至少要有多少个学生借球,才能保证其中必然有两个学生所借的球一样?16、某班学生去买书,A、B、C、D四种,每人可买一本,二本,三本或四本.至少有( )位同学才能保证一定有两位同学买到相同的书?(每种书最多买一本)。
六年级奥数分册:第29 周 抽屉原理
第二十九周抽屜原理(一)專題簡析:如果給你5盒餅乾,讓你把它們放到4個抽屜裏,那麼可以肯定有一個抽屜裏至少有2盒餅乾。
如果把4封信投到3個郵箱中,那麼可以肯定有一個郵箱中至少有2封信。
如果把3本聯練習冊分給兩位同學,那麼可以肯定其中有一位同學至少分到2本練習冊。
這些簡單內的例子就是數學中的“抽屜原理”。
基本的抽屜原理有兩條:(1)如果把x+k(k≥1)個元素放到x個抽屜裏,那麼至少有一個抽屜裏含有2個或2個以上的元素。
(2)如果把m×x×k(x>k≥1)個元素放到x個抽屜裏,那麼至少有一個抽屜裏含有m+1個或更多個元素。
利用抽屜原理解題時要注意區分哪些是“抽屜”?哪些是“元素”?然後按以下步驟解答:a、構造抽屜,指出元素。
b、把元素放入(或取出)抽屜。
C、說明理由,得出結論。
本周我們先來學習第(1)條原理及其應用。
例題1:某校六年級有學生367人,請問有沒有兩個學生的生日是同一天?為什麼?把一年中的天數看成是抽屜,把學生人數看成是元素。
把367個元素放到366個抽屜中,至少有一個抽屜中有2個元素,即至少有兩個學生的生日是同一天。
平年一年有365天,閏年一年有366天。
把天數看做抽屜,共366個抽屜。
把367個人分別放入366個抽屜中,至少在一個抽屜裏有兩個人,因此,肯定有兩個學生的生日是同一天。
練習1:1、某校有370名1992年出生的學生,其中至少有2個學生的生日是同一天,為什麼?2、某校有30名學生是2月份出生的,能否至少有兩個學生生日是在同一天?3、15個小朋友中,至少有幾個小朋友在同一個月出生?例題2:某班學生去買語文書、數學書、外語書。
買書的情況是:有買一本的、二本的、也有三本的,問至少要去幾位學生才能保證一定有兩位同學買到相同的書(每種書最多買一本)?首先考慮買書的幾種可能性,買一本、二半、三本共有7種類型,把7種類型看成7個抽屜,去的人數看成元素。
要保證至少有一個抽屜裏有2人,那麼去的人數應大於抽屜數。
小学奥数之抽屉原理
小学奥数之抽屉原理在小学奥数中,抽屉原理是一个非常重要的概念。
它是数学中的一种思维方法,能够帮助我们解决一些看似很难的问题。
抽屉原理也被称为鸽巢原理,它的具体含义是:如果有n+1个物体放进n个抽屉,那么必定有一个抽屉里会放至少两个物体。
抽屉原理常常在解决一些排列组合和概率问题中应用。
下面我们一起来了解一下抽屉原理在小学奥数中的具体应用吧。
首先,我们来看一个经典的例子。
假设有10个苹果放在9个抽屉里,那么根据抽屉原理,必定有一个抽屉里会放至少两个苹果。
为什么会这样呢?我们可以这样来理解,假设每个抽屉最多只放一个苹果,那么最多只能放9个苹果,而实际上有10个苹果,所以必定会有一个抽屉里放至少两个苹果。
接下来,我们来看一个稍微复杂一些的例子。
假设有5个红球和4个蓝球,需要将它们放进4个抽屉里。
根据抽屉原理,必定有一个抽屉里会放至少两个球。
为什么会这样呢?我们可以这样来理解,在最坏的情况下,每个抽屉最多只能放一个球,那么最多只能放4个球,而实际上有9个球,所以必定会有一个抽屉里放至少两个球。
抽屉原理的应用并不仅限于上面两个例子,它在解决一些看似很难的问题时往往能起到关键的作用。
比如,我们可以用抽屉原理解决下面的问题:假设有9个整数,它们的和是10,那么必定存在至少一对数的和是2、我们可以将这个问题转化成将9个整数放进8个抽屉的问题,根据抽屉原理,必定会有一个抽屉里放至少两个整数,它们的和就是2除了上述的应用外,抽屉原理还可以帮助我们解决一些类似的问题。
比如,假设有12个整数,它们的和是31,那么必定存在至少一对数的和是7、我们可以将这个问题转化成将12个整数放进11个抽屉的问题,根据抽屉原理,必定会有一个抽屉里放至少两个整数,它们的和就是7从以上的例子可以看出,抽屉原理在解决一些看似很难的问题时可以起到非常关键的作用。
通过运用抽屉原理,我们能够将一个复杂的问题简化为一个更简单的问题,从而更好地解决问题。
六年级奥数-26抽屉原理(二)
抽屉原理(二)1.知识目标:初步了解抽屉原理,会用抽屉原理解决简单的实际问题.2.能力目标:经历抽屉原理的探究过程,通过实践操作发展学生的类推能力,形成比较抽象的数学思维.3.情感目标:通过“抽屉原理”的灵活应用感受到数学的魅力.重点:1.经历抽屉原理的探究过程,了解掌握抽屉原理难点:1.区分哪些是“抽屉”?哪些是“元素”2.按步骤解答:a、构造抽屉,指出元素b、把元素放入(或取出)抽屉C、说明理由,得出结论1.“任意放”的意思是不限制把物品放进笼子里的方法,不规定每个笼子中都要放物品,即有些笼子可以是空的,也不限制每个笼子放物品的个数。
2.抽屉原理只能用来解决存在性问题,“至少有一个”的意思就是存在,满足要求的笼子可能有多个,但这里只需保证存在一个达到要求的笼子就够了。
知识点1最不利原则例1.红、黄、蓝、绿、白、紫6种不同的颜色的小球各1个,至少取出_____个小球,就能保证其中一定有1个白色的小球?练习1.小东玩掷骰子的游戏,要保证掷出的数至少有两次是相同的,小东至少应____次.例2.5种颜色不相同的小球各3个,至少取出______个小球,就能保证其中一定有2个小球的颜色相同?练习1.4种颜色不相同的小球各5个,至少取出______个小球,就能保证其中一定有2个小球的颜色相同?例3.有黑、白、黄三种颜色的小棒各8根,混放在一起,从这些小棒中,至少取出_______根,才能保证有4根颜色是相同的?练习1.有黑、白、绿、黄四种颜色的袜子各6只,混放在一起,从这些袜子中,至少取出_______只,才能保证有4只颜色相同的袜子?此类型题要考虑最倒霉,最不利的情况,从最坏的情况入手.知识点2抽屉原理(二)利用抽屉原理解题时要注意区分哪些是“抽屉”?哪些是“元素”?然后按以下步骤解答:a、构造抽屉,指出元素。
b、把元素放入(或取出)抽屉。
C、说明理由,得出结论。
在抽屉原理的第(2)条原则中,抽屉中的元素个数随着元素总数的增加而增加,当元素总数达到抽屉数的若干倍后,可用抽屉数除元素总数,写成下面的等式:m÷n=a……b(m>n>1)把m个物体放进n个抽屉里(m>n>1),不管怎么放总有一个抽屉至少放进(a+1)个物体。
六年级奥数分册:第30周 抽屉原理
第三十周抽屜原理(二)專題簡析:在抽屜原理的第(2)條原則中,抽屜中的元素個數隨著元素總數的增加而增加,當元素總數達到抽屜數的若干倍後,可用抽屜數除元素總數,寫成下麵的等式:元素總數=商×抽屜數+餘數如果餘數不是0,則最小數=商+1;如果餘數正好是0,則最小數=商。
例題1:幼稚園裏有120個小朋友,各種玩具有364件。
把這些玩具分給小朋友,是否有人會得到4件或4件以上的玩具?把120個小朋友看做是120個抽屜,把玩具件數看做是元素。
則364=120×3+4,4<120。
根據抽屜原理的第(2)條規則:如果把m×x×k(x>k≥1)個元素放到x個抽屜裏,那麼至少有一個抽屜裏含有m+1個或更多個元素。
可知至少有一個抽屜裏有3+1=4個元素,即有人會得到4件或4件以上的玩具。
練習1:1、一個幼稚園大班有40個小朋友,班裏有各種玩具125件。
把這些玩具分給小朋友,是否有人會得到4件或4件以上的玩具?2、把16枝鉛筆放入三個筆盒裏,至少有一個筆盒裏的筆不少於6枝。
這是為什麼?3、把25個球最多放在幾個盒子裏,才能至少有一個盒子裏有7個球?例題2:布袋裏有4種不同顏色的球,每種都有10個。
最少取出多少個球,才能保證其中一定有3個球的顏色一樣?把4種不同顏色看做4個抽屜,把布袋中的球看做元素。
根據抽屜原理第(2)條,要使其中一個抽屜裏至少有3個顏色一樣的球,那麼取出的球的個數應比抽屜個數的2倍多1。
即2×4+1=9(個)球。
列算式為(3—1)×4+1=9(個)練習2:1、布袋裏有組都多的5種不同顏色的球。
最少取出多少個球才能保證其中一定有3個顏色一樣的球?2、一個容器裏放有10塊紅木塊、10塊白木塊、10塊藍木塊,它們的形狀、大小都一樣。
當你被蒙上眼睛去容器中取出木塊時,為確保取出的木塊中至少有4塊顏色相同,應至少取出多少塊木塊?3、一副撲克牌共54張,其中1—13點各有4張,還有兩張王的撲克牌。
小学奥数:抽屉原理(含答案)
小学奥数:抽屉原理(含答案)教案抽屉原理1、概念解析把3个苹果任意放到两个抽屉里,可以有哪些放置的方法呢?一个抽屉放一个,另一个抽屉放两个;或3个苹果放在某一个抽屉里.尽管放苹果的方式有所不同,但是总有一个共同的规律:至少有一个抽屉里有两个或两个以上的苹果.如果把5个苹果任意放到4个抽屉里,放置的方法更多了,但仍有这样的结果.由此我们可以想到,只要XXX的个数多于抽屉的个数,就一定能保证至少有一个抽屉里有两个或两个以上的苹果.道理很简单:如果每个抽屉里的苹果都不到两个(也就是至多有1个),那么所有抽屉里的苹果数的和就比总数少了.由此得到:抽屉原理:把多于n个的苹果放进n个抽屉里,那么至少有一个抽屉里有两个或两个以上的苹果。
如果把苹果换成了鸽子,把抽屉换成了笼子,同样有类似的结论,所以有时也把抽屉原理叫做鸽笼原理.不要小看这个“原理”,利用它可以解决一些表面看来似乎很难的数学问题。
比如,我们从街上随便找来13人,便可以断定他们中至少有两个人属相(指鼠、牛、虎、兔、…等十二种生肖)相同.怎样证实这个结论是正确的呢?只要利用抽屉原理就很简单把道理讲清楚.事实上,因为人数(13)比属相数(12)多,因而至少有两个人属相相同(在这里,把13人算作13个“苹果”,把12种属相算作12个“抽屉”)。
应用抽屉原理要注意识别“抽屉”和“苹果”,XXX的数目一定要大于抽屉的个数。
2、例题讲解例1有5个小朋友,每人都从装有许多是非围棋子的布袋中随便摸出3枚棋子.请你证实,这5个人中至少有两个小朋友摸出的棋子的颜色的配组是一样的。
例2一副扑克牌(去掉两张王牌),每人随意摸两张牌,至少有多少人才能保证他们当中一定有两人所摸两张牌的花色情况是相同的?例3从2、4、6、…、30这15个偶数中,任取9个数,证明其中一定有两个数之和是34。
例4从1、2、3、4、…、19、20这20个自然数中,至少任选几个数,就可以保证其中一定包括两个数,它们的差是12。
六年级奥数抽屉原理含答案
抽屉原理知识框架一、 知识点介绍抽屉原理有时也被称为鸽笼原理,它由德国数学家狄利克雷首先明确提出来并用来证明一些数论中的问题,因此,也被称为狄利克雷原则.抽屉原理是组合数学中一个重要而又基本的数学原理,利用它可以解决很多有趣的问题,并且常常能够起到令人惊奇的作用.许多看起来相当复杂,甚至无从下手的问题,在利用抽屉原则后,能很快使问题得到解决.二、 抽屉原理的定义(1)举例桌上有十个苹果,要把这十个苹果放到九个抽屉里,无论怎样放,有的抽屉可以放一个,有的可以放两个,有的可以放五个,但最终我们会发现至少我们可以找到一个抽屉里面至少放两个苹果。
(2)定义一般情况下,把n +1或多于n +1个苹果放到n 个抽屉里,其中必定至少有一个抽屉里至少有两个苹果。
我们称这种现象为抽屉原理。
三、 抽屉原理的解题方案(一)、利用公式进行解题 苹果÷抽屉=商……余数余数:(1)余数=1, 结论:至少有(商+1)个苹果在同一个抽屉里 (2)余数=x ()()11xn -, 结论:至少有(商+1)个苹果在同一个抽屉里(3)余数=0, 结论:至少有“商”个苹果在同一个抽屉里 (二)、利用最值原理解题将题目中没有阐明的量进行极限讨论,将复杂的题目变得非常简单,也就是常说的极限思想“任我意”方法、特殊值方法.重难点抽屉原理是一种特殊的思维方法,不但可以根据它来做出许多有趣的推理和判断,同时能够帮助同学证明很多看似复杂的问题。
本讲的主要教学目标是: (1) 理解抽屉原理的基本概念、基本用法; (2) 掌握用抽屉原理解题的基本过程; (3) 能够构造抽屉进行解题;(4)利用最不利原则进行解题;(5)利用抽屉原理与最不利原则解释并证明一些结论及生活中的一些问题。
例题精讲(一)、直接利用公式进行解题(1)求结论【例 1】6只鸽子要飞进5个笼子,每个笼子里都必须有1只,一定有一个笼子里有2只鸽子.对吗?【考点】抽屉原理【难度】1星【题型】解答【解析】6只鸽子要飞进5个笼子,如果每个笼子装1只,这样还剩下1只鸽子.这只鸽子可以任意飞进其中的一个笼子,这样至少有一个笼子里有2只鸽子.所以这句话是正确的.利用刚刚学习过的抽屉原理来解释这个问题,把鸽笼看作“抽屉”,把鸽子看作“苹果”,6511÷=,112+=(只)把6个苹果放到5个抽屉中,每个抽屉中都要有1个苹果,那么肯定有一个抽屉中有两个苹果,也就是一定有一个笼子里有2只鸽子.【答案】对【巩固】年级一班学雷锋小组有13人.教数学的张老师说:“你们这个小组至少有2个人在同一月过生日.”你知道张老师为什么这样说吗?【考点】抽屉原理【难度】1星【题型】解答【解析】略.【总结】题目中并没有说明什么是“抽屉”,什么是“物品”,解题的关键是制造“抽屉”,确定假设的“物品”,根据“抽屉少,物品多”转化为抽屉原理来解.【答案】从题目可以看出,这道题显然与月份有关.我们知道,一年有12个月,把这12个月看成12个抽屉,这道题就相当于把13个苹果放入12个抽屉中.根据抽屉原理,至少有一个抽屉放了两个苹果.因此至少有两个同学在同一个月过生日.【例 2】人的头发平均有12万根,如果最多不超过20万根,那么13亿中国人中至少有人的头发的根数相同。
小学六年级奥数题:抽屉原理
十八 抽屉原理(2)一、填空题1.半步桥小学六年级(一)班有42人开展读书活动.他们从学校图书馆借了212本图书,那么其中至少有一人借 本书.2.今天参加数学竞赛的210名同学中至少有 名同学是同一个月出生的.3.学校五(一)班40名学生中,年龄最大的是13岁,最小的是11岁,那么其中必有 名学生是同年同月出生的.4.有红、黄、蓝、白四色小球各10个,混合放在一个暗盒里,一次至少摸出 个,才能保证有2个小球是同色的.5.有红、黄、蓝、白四色小球各10个,混合放在一个暗盒中,一次至少摸出 个,才能保证有6个小球是同色的.6.布袋中有60个形状、大小相同的木块,每6块编上相同的号码,那么一次至少取出 块,才能保证其中至少有三块号码相同.7.某商店有126箱苹果,每箱至少有120个苹果,至多有144个苹果.现将苹果个数相同的箱子算作一类.设其中箱子数最多的一类有n 个箱子,则n 的最小值为 .8.有形状、大小、材料完全相同的黑筷、白筷、红筷各4双,混杂在一起,要求闭着眼睛,保证从中摸出不同颜色的2双筷子,则至少要摸出 根.9.袋子里装有红色球80只,蓝色球70只,黄色球60只,白色球50只.它们的大小与质量都一样,不许看只许用手摸取,要保证摸出10对同色球,至少应摸出 只.10.有红笔、蓝笔、黄笔、绿笔各2支,让一位小朋友随便抓2支,这位小朋友至少抓 次才能确保他至少有两次抓到的笔的种类完全相同.(每抓一次后又放回再抓另一次)二、解答题11.某游旅团一行50人,随意游览甲、乙、丙三地,问至少有多少人浏览的地方完全相同.12.从一列数1,5,9,13,…,93,97中,任取14个数.证明:其中必有两个数的和等于102.13.在一个边长为1的正三角形内,任给5个点,证明:其中必有两个点之间的距离不大于1/2.14.设,,21x x …,12x 是任意互异的12个整数,试证明其中一定存在8个整数,,21x x …,8x ,使得:)()()()(87654321x x x x x x x x -⨯-⨯-⨯-恰是1155的倍数.———————————————答 案——————————————————————1. 6将42名同学看成42个抽屉,因为212=5⨯42+1,故至少有一个抽屉中有6本或6本以上的书.2. 18因210=17⨯12+16,故一定有18个或18个以上同学在同一月出生. 3. 2这40名同学的年龄最多相差36个月(三年)因40=1⨯36+4,故必有2人是同年、同月出生的.4. 5从极端考虑:即使先取走取的4个球都是不同色的,那么取第5个球时就必有二球同色了.5. 21将球按颜色分成4类,每次各取5个时,也无6球同色,故应取(6-1)⨯4+1=21(个)球,才能保证一定有6球同色. 6. 21将布袋中的木块按编号分成60÷6=10(类)要保证其中某一类至少有三个,至少应拿出(3-1)⨯10+1=21(块).7. 6每箱数目是120~144,共有25种可能.因126=5⨯25+1,故至少有5+1=6(个)装相同苹果数的箱子,即n 最小为6.8. 11当摸出10根时,可能是8根黑筷,白筷,红筷各一根,没有“不同颜色的二双”.当摸出11根时,至多有8根属于同一颜色,那么另3根中至少有二根是同色的.9. 23当摸出22只球时,可能有9对同色球,但剩余四球分别为红、蓝、黄、白各一只,达不到10对,另一方面,每摸出5个球,就会出现一对同色球,将这一对挪开,再摸出两个球,就必然会又出现一对红色球,如此下去,摸出23只球就能保证有10对同色球.10. 11两支笔的种类可分为同色与异色.同色的有4种,异色的有3+2+1=6种,为了保证至少有两次抓到笔的种类完全相同,至少要抓1⨯10+1=11(次).11. 浏览一个地方的,有3种,浏览二个地方的,有3种,浏览三个地方的,有1种,一个地方也不去的,有1种,共有8种方式.故至少有718150=+⎥⎦⎤⎢⎣⎡-(人).浏览的地方是完全相同的.12. 给出的数是一个等差数列,它一共有25个数,将这25个组分成13组:{}{}{}{}{}{}53,49,57,45,,89,13,93,9,97,5,1 . 在这25个数中任取14个数来,必有二数属于上述13组中的同一组,故这一组二数之和是102.13. 如图,将三角形三边中点连结起来,就将原三角形分成了四个小三角形, 其边长均为21,在原三角形内,任意给5个点,其中至少有两点在同一个小三角形内,这两点的距离小于小三角形的边长21.14. 对1155分解质因数得1155=3⨯5⨯7⨯11.在所给的12数中,必有2数除以11,余数相同,设这2数为x 1,x 2,则(x 1-x 2)是11的倍数.在剩下的数中,必有2数除以7,余数相同,设这2数为x 3,x 4,则(x 3-x 4)是7的倍数.在剩下的8数中,必有2数除以5,余数相同,设这2数为x 5,x 6,则(x 5-x 6)是5的倍数.在剩下的6数中,必有2数除以3,余数相同,设这二数为x 7,x 8,则(x 7-x 8)是3的倍数.故存在8个数x 1,x 2,…x 8,使(x 1-x 2) (x 3-x 4) (x 5-x 6) (x 7-x 8)是1155的倍数.阴影部分面积专题练习(单位:厘米)1、2、下图中长方形的长是6厘米,宽是5厘米,求阴影部分的面积。
小学奥数——抽屉原理(学生版)
抽屉原理
1.箱子中有质地、型号完全相同的红、黄、白三种颜色的袜子各8只。
至少拿出()只,可
以保证凑成两双颜色不相同的袜子。
A.5
B.8
C.10
D.11
2.盒子里有同样大小的黄乒乓球和白兵乓球各6个,要想摸出的乒乓球有2个同色的,至少
要摸出()个乒乓球。
3.把9只红色、5只黄色和4只白色抹子混在一起,如果闭上眼睛,每次最少摸出()只才能
保证有2双不同色的袜子。
(指一双袜子为其中一种颜色,另一双袜子为另一种颜色)
4.56位阿姨在广场上跳舞,她们至少有()个人是同一个月出生的。
5.把10个苹果放进4个盘子里,总有一个盘子里至少放()个苹果。
6.有一个布袋中有5种不同颜色的球,每种都有20个,问:一次至少要取出多少个小球,才
能保证其中至少有3个小球的颜色相同?
7.从1、2、3、4、…、19、20这20个自然数中,至少任选几个数,就可以保证其中一定包括两
个数,它们的差是12。
8.某班有16名学生,每个月教师把学生分成两个小组。
问最少要经过几个月,才能使该班
的任意两个学生总有某个月份是分在不同的小组里?
9.在一只口袋中有红色、黄色、蓝色球若干个,小聪明和其他六个小朋友一起做游戏,每人可
以从口袋中随意取出2个球,那么不管怎样挑选,总有两个小朋友取出的两个球的颜色完全一样。
你能说明这是为什么吗?
10.将400本书随意分给若干同学,但是每个人不许超过11本,问:至少有多少个同学分到的
书的本数相同?。
小学奥数抽屉原理
小学奥数抽屉原理小学奥数是小学生学习数学的一项重要内容,其中抽屉原理是一个非常有趣且实用的数学概念。
抽屉原理是指如果有n+1个物品放入n个抽屉中,那么至少有一个抽屉中至少有两个物品。
这个简单的原理在解决一些实际问题时非常有用,下面我们就来详细了解一下小学奥数中的抽屉原理。
首先,我们来看一个简单的例子。
假设有5个苹果和4个篮子,我们要把这些苹果放进篮子里,那么根据抽屉原理,至少有一个篮子里会有至少两个苹果。
这是因为5个苹果分别放入4个篮子,必然会有至少一个篮子里有两个或以上的苹果。
抽屉原理在解决实际问题时非常有用。
比如,在一个班级里,学生们的生日是随机分布的,如果班级有31个学生,那么根据抽屉原理,至少有两个学生会有相同的生日。
这是因为一年有365天,而学生的数量只有31个,必然会有至少两个学生生日在同一天。
除了生日问题,抽屉原理还可以应用在许多其它实际问题中。
比如在一副扑克牌中,如果抽出了5张牌,那么根据抽屉原理,至少会有一种花色的牌有两张或以上。
这是因为一副扑克牌只有4种花色,而抽出的牌有5张,必然会有至少一种花色的牌有两张或以上。
在小学奥数中,抽屉原理可以帮助学生更好地理解和解决一些问题。
通过抽屉原理,学生们可以培养逻辑思维能力,提高解决问题的能力。
同时,抽屉原理也可以帮助学生更好地理解数学知识,为他们打下坚实的数学基础。
总之,抽屉原理是小学奥数中非常重要的一个概念,它不仅能够帮助学生更好地理解数学知识,还能够在解决实际问题时发挥重要作用。
通过学习抽屉原理,学生们可以培养逻辑思维能力,提高解决问题的能力,为将来的学习打下坚实的基础。
希望学生们能够认真学习抽屉原理,将其运用到实际生活中,发挥出更大的作用。
小学六年级奥数抽屉原理含答案
小学六年级奥数抽屉原理含答案Pleasure Group Office【T985AB-B866SYT-B182C-BS682T-STT18】抽屉原理知识要点1.抽屉原理的一般表述(1)假设有3个苹果放入2个抽屉中,必然有一个抽屉中至少有2个苹果。
它的一般表述为:第一抽屉原理:(mn+1)个物体放入n个抽屉,其中必有一个抽屉中至少有(m+1)个物体。
(2)若把3个苹果放入4个抽屉中,则必然有一个抽屉空着。
它的一般表述为:第二抽屉原理:(mn-1)个物体放入n个抽屉,其中必有一个抽屉中至多有(m-1)个物体。
2.构造抽屉的方法常见的构造抽屉的方法有:数的分组、染色分类、图形的分割、剩余类等等。
例1自制的一副玩具牌共计52张(含四种牌:红桃、红方、黑桃、黑梅,每种牌都有1点,2点,……13点牌各一张),洗好后背面朝上放。
一次至少抽取张牌,才能保证其中必定有2张牌的点数和颜色都相同。
如果要求一次抽出的牌中必定有3张牌的点数是相邻的(不计颜色),那么至少要取张牌。
点拨对于第一问,最不利的情况是两种颜色都取了1~13点各一张,此时再抽一张,这张牌必与已抽取的某张牌的颜色与点数都相同。
点拨对于第二问,最不利的情况是:先抽取了1,2,4,5,7,8,10,11,13各4张,此时再取一张,这张牌的点数是3,6,9,12中的一张,在已抽取的牌中必有3张的点数相邻。
解(1)13×2+1=27(张) (2)9×4+1=37(张)例2 证明:37人中,(1)至少有4人属相相同;(2)要保证有5人属相相同,但不保证有6人属相相同,那么人的总数应在什么范围内点拨可以把12个属相看做12个抽屉,根据第一抽屉原理即可解决。
解 (1)因为37÷12=3……1,所以,根据第一抽屉原理,至少有3+1=4(人)属相相同。
(2)要保证有5人的属相相同的最少人数为4×12+1=49(人)不保证有6人属相相同的最多人数为5×12=60(人)所以,总人数应在49人到60人的范围内。
小学奥数—抽屉原理
小学奥数-抽屉原理(一) 先了解一下抽屉原理的概念,然后结合一些较复杂的抽屉原理问题,讨论如何构造抽屉。
抽屉原理1将多于n件物品任意放到n个抽屉中,那么至少有一个抽屉中的物品不少于2件。
抽屉原理2将多于m×n件物品任意放到到n个抽屉中,那么至少有一个抽屉中的物品不少于(m+1)件。
理解抽屉原理要注意几点:(1)抽屉原理是讨论物品与抽屉的关系,要求物品数比抽屉数或抽屉数的倍数多,至于多多少,这倒无妨。
(2)“任意放”的意思是不限制把物品放进抽屉里的方法,不规定每个抽屉中都要放物品,即有些抽屉可以是空的,也不限制每个抽屉放物品的个数。
(3)抽屉原理只能用来解决存在性问题,“至少有一个”的意思就是存在,满足要求的抽屉可能有多个,但这里只需保证存在一个达到要求的抽屉就够了。
(4)将a件物品放入n个抽屉中,如果a÷n= m……b,其中b是自然数,那么由抽屉原理2就可得到,至少有一个抽屉中的物品数不少于(m+1)件。
例1 五年级有47名学生参加一次数学竞赛,成绩都是整数,满分是100分。
已知3名学生的成绩在60分以下,其余学生的成绩均在75~95分之间。
问:至少有几名学生的成绩相同?分析与解:关键是构造合适的抽屉。
既然是问“至少有几名学生的成绩相同”,说明应以成绩为抽屉,学生为物品。
除3名成绩在60分以下的学生外,其余成绩均在75~95分之间,75~95共有21个不同分数,将这21个分数作为21个抽屉,把47-3=44(个)学生作为物品。
例2 夏令营组织2000名营员活动,其中有爬山、参观博物馆和到海滩游玩三个项目。
规定每人必须参加一项或两项活动。
那么至少有几名营员参加的活动项目完全相同?分析与解:本题的抽屉不是那么明显,因为问的是“至少有几名营员参加的活动项目完全相同”,所以应该把活动项目当成抽屉,营员当成物品。
营员数已经有了,现在的问题是应当搞清有多少个抽屉。
例3把125本书分给五(2)班学生,如果其中至少有1人分到至少4本书,那么,这个班最多有多少人?分析与解:这道题一下子不容易理解,我们将它变变形式。
2024最新小学奥数抽屉原理
2024最新小学奥数抽屉原理小学生奥数中的抽屉原理是指一种将物品分配到有限的空间中的方法。
这个原理是由数学家所提出的,因为它的应用广泛,并且在解决问题中非常有用。
抽屉原理简单来说就是:如果你有独立的n个抽屉,并且有n+1个物品要放入这些抽屉中,那么必然存在一个抽屉里至少放了两个物品。
这个原理的证明也很简单。
假设每个抽屉里最多只能放一个物品,那么最多只能放n个物品,因为有n个抽屉。
但是题目中说有n+1个物品要放入这些抽屉,所以最少会有一个抽屉里放了两个物品。
抽屉原理的应用非常广泛,包括组合数学、概率论等领域。
在小学奥数中,它通常用于解决物品分配、排列组合等问题。
以下是一些抽屉原理在小学奥数中的具体应用举例:1.分配问题:假设有10个苹果要分给5个人吃,那么必然有至少一个人吃到的苹果数量大于等于2个。
这是因为10个苹果无法平均分给5个人,所以必然有人会多吃一些。
2.字母出现次数问题:假设一个字符串中有11个字母,那么至少有两个字母出现的次数相同。
这是因为只有26个字母,无论如何排列,最多只能给每个字母分配到一个位置,所以肯定有至少两个字母分配到了同一个位置。
3.图形排列问题:假设有10个正方形图案要排列在5个位置上,那么必然有至少一个位置上排列了两个图案。
这是因为10个图案无法完全填满5个位置,所以必然会有至少一个位置上放置了两个图案。
总结起来,抽屉原理告诉我们,在一些有限的情况下,物品的分配不可能完全均匀,必然会有一些位置或者人会多分配到一些物品。
这个原理在解决问题时可以帮助我们快速找到可能的解答,避免不必要的计算和尝试。
所以,在小学奥数中,掌握抽屉原理可以帮助学生更好地理解和解决各种问题,提高问题解决能力和思维逻辑能力。
希望以上内容对您有所帮助。
六年级奥数:抽屉原理(附答案详解)
六年级奥数:抽屉原理(附答案详解)一、填空题1.一个联欢会有100人参加,每个人在这个会上至少有一个朋友.那么这100人中至少有个人的朋友数目相同.2.在明年(即1999年)出生的1000个孩子中,请你预测:(1)同在某月某日生的孩子至少有个.(2)至少有个孩子将来不单独过生日.3.一个口袋里有四种不同颜色的小球.每次摸出2个,要保证有10次所摸的结果是一样的,至少要摸次.4.有红、黄、蓝三种颜色的小珠子各4颗混放在口袋里,为了保证一次能取到2颗颜色相同的珠子,一次至少要取颗.如果要保证一次取到两种不同颜色的珠子各2颗,那么一定至少要取出颗.5.从1,2,3…,12这十二个数字中,任意取出7个数,其中两个数之差是6的至少有对.6.某省有4千万人口,每个人的头发根数不超过15万根,那么该省中至少有人的头发根数一样多.7.在一行九个方格的图中,把每个小方格涂上黑、白两种颜色中的一种,那么涂色相同的小方格至少有个.8.一付扑克牌共有54张(包括大王、小王),至少从中取张牌,才能保证其中必有3种花色.9.五个同学在一起练习投蓝,共投进了41个球,那么至少有一个人投进了个球.10.某班有37名小学生,他们都订阅了《小朋友》、《儿童时代》、《少年报》中的一种或几种,那么其中至少有名学生订的报刊种类完全相同.二、解答题11.任给7个不同的整数,求证其中必有两个整数,它们的和或差是10的倍数.12.在边长为1的正方形内任取51个点,求证:一定可以从中找出3点,以它们为顶点的三角形的面积不大于1/50.13.某幼儿园有50个小朋友,现在拿出420本连环画分给他们,试证明:至少有4个小朋友分到连环画一样多(每个小朋友都要分到连环画).14.能否在88的棋盘上的每一个空格中分别填入数字1,或2,或3,要使每行、每列及两条对角线上的各个数字之和互不相同?请说明理由.1.2因为每个人至少有1个朋友,至多有99个朋友,将有1个朋友的人,2个朋友的人,…,99个朋友的人分成99类,在100个人中,总有两个人属于同一类,他们的朋友个数相同.2.(1)3;(2)636因为1999年有365天,故在1999年出生的孩子至少有(个)孩子的生日相同;又因为1000-(365-1)=363,即至少有363个孩子将来不单独过生日.3.91当摸出的2个球颜色相同时,可以有4种不同的结果;当摸出的2个球颜色不同时,最多可以有3+2+1=6(种)不同结果.一共有10种不同结果.将这10种不同结果看作10个抽屉,因为要求10次摸出结果相同,故至少要摸910+1=91(次).4.4;7将三种不同颜色看作3个抽屉,对于第一问中为保证一次取到2颗相同颜色的珠子,一次至少要取13+1=4(颗)珠子.对于第二问为了保证一次取到两种不同颜色珠子各2颗,一次至少要取4+(12+1)=7(颗)珠子.5.1将1~12这十二个数组成这六对两数差为6的数组.任取7个数,必定有两个数差在同一组中,这一对数的差为6.6.267将4千万人按头发的根数进行分类:0根,1根,2根…,150000根共150001类.因为40000000=(266150001)+99743 266150001,故至少有一类中的人数不少于266+1=267(个),即该省至少有267个人的头发根数一样多.7.7将每10块颜色相同的木块算作一类,共3类.把这三类看作三个抽屉,而现在要保证至少有三块同色木块在同一抽屉中,那么至少要有23+1=7(块).8.29将4种花色看作4个抽屉,为了保证取出3张同色花,那么应取尽2个抽屉由的213张牌及大、小王与一张另一种花色牌.计共取213+2+1=29(张)才行.9.9将5个同学投进的球作为抽屉,将41个球放入抽屉中,至少有一个抽屉中放了9个球,(否则最多只能进58=40个球).10.6订阅报刊的种类共有7种:单订一份3种,订二份3种,订三分1种.将37名学生依他们订的报刊分成7类,至少有6人属于同一类,否则最多只有66=36(人).11.将整数的末位数字(0~9)分成6类:在所给的7个整数中,若存在两个数,其末位数字相同,则其差是10的倍数;若此7数末位数字不同,则它们中必有两个属于上述6类中的某一类,其和是10的倍数.A BC EF GH 12.将边长为1的正方形分成25个边条为的正方形,在51个点中,一定有(个)点属于同一个小正方形.不妨设A、B、C三点边长为的小正方形EFGH内,由于三角形ABC 的面积不大于小正方形面积EFGH的,又EFGH的面积为.故三角形ABC 的面积不大于.13.考虑最极端的情况,有3个小朋友分到1本,有3个小朋友分到2本,…,有3个小朋友分到16本,最后两个小朋友分到17本,那么一共至少要3(1+2+3+…+16)+217=442(本),而442 420,故一定有4个小朋友分了同样多的书.14.注意到8行、8列及两对角线共有18条"线",每条线上有8个数字,要使每条线上的数字和不同,也就是需要每条线上的数字和有18种以上的可能.但我们填入的数只有1、2、3三种,因此在每条线上的8个数字中,其和最小是8,最大是24,只有24-8+1=17(种).故不可能使得每行,每列及两条对角线上的各个数字之和互不相等.。
六年级奥数第30讲抽屉原理
抽屉原理是数学中一个非常重要的概念,也被称为鸽巢原理。
它的含义是:如果有n+1个物体放入n个容器中,那么至少有一个容器中会有两个或两个以上的物体。
这个概念有时候在解决问题中起到了非常重要的作用。
现在我们来看一个具体的例子。
问题:小明有7双袜子,每双袜子的颜色都不同。
他忘记了每双袜子的颜色,但他想知道他至少要在袜子抽屉中拿出几只袜子,才能确保他至少拿到一双相同颜色的袜子?解答:根据抽屉原理,我们知道如果小明至少要拿出8只袜子,那么他肯定能拿到一双相同颜色的袜子,因为他只有7种颜色的袜子,但有8只袜子。
如果小明只拿出7只袜子,那么可能出现以下情况:(1)他一直拿的是不同颜色的袜子,直到拿完7只,这种情况下他没有拿到一双相同颜色的袜子;(2)他拿到了两只相同颜色的袜子,这种情况下他拿到了一双相同颜色的袜子。
通过这个例子,我们可以看到抽屉原理的应用。
抽屉原理告诉我们,当我们将一些物体放入一些容器中时,如果物体的数量超过了容器的数量,那么就一定存在至少一个容器中有两个或两个以上的物体。
这个原理可以帮助我们解决很多有关排列和组合的问题。
现在我们来应用抽屉原理解决一个稍微复杂一些的问题。
问题:有9本不同的书放在3个抽屉里,每个抽屉至少有一本书,问一共有多少种放法?解答:根据题目的要求,我们可以知道每个抽屉至少有一本书,所以第一个抽屉必须放书,我们把第一个抽屉放好书的情况列举出来:(1)第一个抽屉放1本书,剩下8本书放在剩下的两个抽屉中;(2)第一个抽屉放2本书,剩下7本书放在剩下的两个抽屉中;(3)第一个抽屉放3本书,剩下6本书放在剩下的两个抽屉中;(4)第一个抽屉放4本书,剩下5本书放在剩下的两个抽屉中;(5)第一个抽屉放5本书,剩下4本书放在剩下的两个抽屉中;根据抽屉原理,我们知道在剩下的两个抽屉中至少有一个抽屉中有两本及以上的书。
所以这个问题就变成了,把剩下的书放入两个抽屉的问题。
(1)第二个抽屉放1本书,剩下3本书放在第三个抽屉中;(2)第二个抽屉放2本书,剩下2本书放在第三个抽屉中;(3)第二个抽屉放3本书,剩下1本书放在第三个抽屉中;根据抽屉原理,我们知道在剩下的第三个抽屉中至少有一本书。
小学六年级奥数-抽屉原理(含答案)
抽屉原理学问要点1.抽屉原理的一般表述(1)假设有3个苹果放入2个抽屉中,必定有一个抽屉中至少有2个苹果。
它的一般表述为:第一抽屉原理:(mn+1)个物体放入n个抽屉,其中必有一个抽屉中至少有(m+1)个物体。
(2)若把3个苹果放入4个抽屉中,则必定有一个抽屉空着。
它的一般表述为:第二抽屉原理:(mn-1)个物体放入n个抽屉,其中必有一个抽屉中至多有(m-1)个物体。
2.构造抽屉的方法常见的构造抽屉的方法有:数的分组、染色分类、图形的分割、剩余类等等。
例1自制的一副玩具牌共计52张(含四种牌:红桃、红方、黑桃、黑梅,每种牌都有1点,2点,……13点牌各一张),洗好后反面朝上放。
一次至少抽取张牌,才能保证其中必定有2张牌的点数与颜色都一样。
假如要求一次抽出的牌中必定有3张牌的点数是相邻的(不计颜色),那么至少要取张牌。
点拨对于第一问,最不利的状况是两种颜色都取了1~13点各一张,此时再抽一张,这张牌必与已抽取的某张牌的颜色与点数都一样。
点拨对于第二问,最不利的状况是:先抽取了1,2,4,5,7,8,10,11,13各4张,此时再取一张,这张牌的点数是3,6,9,12中的一张,在已抽取的牌中必有3张的点数相邻。
解(1)13×2+1=27(张) (2)9×4+1=37(张)例2 证明:37人中,(1)至少有4人属相一样;(2)要保证有5人属相一样,但不保证有6人属相一样,那么人的总数应在什么范围内?点拨可以把12个属相看做12个抽屉,依据第一抽屉原理即可解决。
解(1)因为37÷12=3……1,所以,依据第一抽屉原理,至少有3+1=4(人)属相一样。
(2)要保证有5人的属相一样的最少人数为4×12+1=49(人)不保证有6人属相一样的最多人数为5×12=60(人)所以,总人数应在49人到60人的范围内。
例3有一副扑克牌共54张,问:至少摸出多少张才能保证:(1)其中有4张花色一样?(2)四种花色都有?点拨首先我们要弄清晰一副扑克牌有2张王牌,四种花色,每种有13张。
六年级奥数-抽屉原理
抽屉原理(一)专题简析:如果给你5盒饼干,让你把它们放到4个抽屉里,那末可以肯定有一个抽屉里至少有2盒饼干。
如果把4封信投到3个邮箱中,那末可以肯定有一个邮箱中至少有2封信。
如果把3本联练习册分给两位同学,那末可以肯定其中有一位同学至少分到2本练习册。
这些简单内的例子就是数学中的“抽屉原理”。
基本的抽屉原理有两条:(1)如果把x+k(k≥1)个元素放到x个抽屉里,那末至少有一个抽屉里含有2个或者2个以上的元素。
(2)如果把m×x×k(x>k ≥1)个元素放到x个抽屉里,那末至少有一个抽屉里含有m+1个或者更多个元素。
利用抽屉原理解题时要注意区分哪些是“抽屉”?哪些是“元素”?然后按以下步骤解答:a、构造抽屉,指出元素。
b、把元素放入(或者取出)抽屉。
C、说明理由,得出结论。
本周我们先来学习第(1)条原理及其应用。
例题1:某校六年级有学生367人,请问有没有两个学生的生日是同一天?为什么?把一年中的天数看成是抽屉,把学生人数看成是元素。
把367个元素放到366个抽屉中,至少有一个抽屉中有2个元素,即至少有两个学生的生日是同一天。
平年一年有365天,闰年一年有366天。
把天数看做抽屉,共366个抽屉。
把367个人分别放入366个抽屉中,至少在一个抽屉里有两个人,因此,肯定有两个学生的生日是同一天。
练习1:1、某校有370名1992年出生的学生,其中至少有2个学生的生日是同一天,为什么?2、某校有30名学生是2月份出生的,能否至少有两个学生生日是在同一天?3、15个小朋友中,至少有几个小朋友在同一个月出生?例题2:某班学生去买语文书、数学书、外语书。
买书的情况是:有买一本的、二本的、也有三本的,问至少要去几位学生才干保证一定有两位同学买到相同的书(每种书最多买一本)?首先考虑买书的几种可能性,买一本、二半、三本共有7种类型,把7种类型看成7个抽屉,去的人数看成元素。
要保证至少有一个抽屉里有2人,那末去的人数应大于抽屉数。
六年级奥数题答案解析:抽屉原理
六年级奥数题答案解析:抽屉原理
教案是教师为顺利而有效地开展教学活动,根据课程标准,教学大纲和教科书要求及学生的实际情况,以课时或课题为单位,对教学内容、教学步骤、教学方法等进行的具体设计和安排的一种实用性教学文书,包括教材简析和学生分析、教学目的、重难点、教学准备、教学过程及练习设计等,下面是由小编为大家整理的范文模板,仅供参考,欢迎大家阅读.
抽屉原理:(高等难度)
一副扑克牌(去掉两张王牌),每人随意摸两张牌,至少有多少人才能保证他们当中一定有两人所摸两张牌的花色情况是相同的?
抽屉原理答案:
扑克牌中有方块、梅花、黑桃、红桃4种花色,2张牌的花色可以有:2张方块,2张梅花,2张红桃,2张黑桃,1张方块1 张梅花,1张方块1张黑桃,1张方块1张红桃,1张梅花1张黑桃,1张梅花1张红桃,1张黑桃1张红桃共计_种情况.把这_种花色配组看作_个抽屉,只要苹果的个数比抽屉的个数多1个就可以有题目所要的结果.所以至少有_个人。
六年级奥数题答案解析:抽屉原理.到电脑,方便收藏和打印:。
抽屉原理小学奥数
抽屉原理小学奥数抽屉原理是数学中的一个重要概念,也是小学奥数中的常见考点。
它的基本思想是,如果要把10个苹果放进9个抽屉里,那么至少有一个抽屉里会有两个苹果。
在日常生活中,我们也可以通过抽屉原理来解决一些问题,比如在一群人中找出至少两个生日相同的人。
本文将从小学生的角度出发,简单介绍抽屉原理的概念和应用。
首先,我们来了解一下抽屉原理的基本概念。
抽屉原理又称鸽巢原理,它是由意大利数学家拉蒙·罗利在19世纪提出的。
抽屉原理的内容很简单,如果有n+1个物品要放到n个抽屉里,那么至少有一个抽屉里会有两个或两个以上的物品。
这个原理听起来可能有些抽象,但实际上它非常容易理解和应用。
接下来,我们来看一个具体的例子,以便更好地理解抽屉原理。
假设有10个苹果要放到9个抽屉里,按照抽屉原理,至少会有一个抽屉里有两个苹果。
这是因为如果每个抽屉里最多放一个苹果,那么只能放进去9个苹果,而剩下的一个苹果无处可放。
因此,至少会有一个抽屉里有两个苹果。
这个例子很好地说明了抽屉原理的基本原理和应用方法。
除了上面的例子,抽屉原理在日常生活中还有很多应用。
比如,在一群人中找出至少两个生日相同的人,这就是一个典型的抽屉原理问题。
假设有365个人,每个人的生日都在不同的日子,那么按照抽屉原理,至少会有一个抽屉里有两个人,他们的生日相同。
这是因为365个人要放到365天里,必然会有至少一个抽屉里有两个人。
这个例子也很好地说明了抽屉原理在实际问题中的应用。
综上所述,抽屉原理是数学中的一个重要概念,也是小学奥数中的常见考点。
它的基本思想是,如果要把n+1个物品放进n个抽屉里,那么至少会有一个抽屉里有两个或两个以上的物品。
通过简单的例子,我们可以更好地理解和应用抽屉原理,从而在解决实际问题时更加得心应手。
希望本文对大家理解抽屉原理有所帮助,也希望大家能在学习和生活中灵活运用抽屉原理,解决各种有趣的问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、 知识点介绍
抽屉原理有时也被称为鸽笼原理,它由德国数学家狄利克雷首先明确提出来并用来证明一些数论中的问题,因此,也被称为狄利克雷原则.抽屉原理是组合数学中一个重要而又基本的数学原理,利用它可以解决很多有趣的问题,并且常常能够起到令人惊奇的作用.许多看起来相当复杂,甚至无从下手的问题,在利用抽屉原则后,能很快使问题得到解决.
二、 抽屉原理的定义
(1)举例
桌上有十个苹果,要把这十个苹果放到九个抽屉里,无论怎样放,有的抽屉可以放一个,有的可以放两个,有的可以放五个,但最终我们会发现至少我们可以找到一个抽屉里面至少放两个苹果。
(2)定义
一般情况下,把n +1或多于n +1个苹果放到n 个抽屉里,其中必定至少有一个抽屉里至少有两个苹果。
我们称这种现象为抽屉原理。
三、 抽屉原理的解题方案
(一)、利用公式进行解题 苹果÷抽屉=商……余数
余数:(1)余数=1, 结论:至少有(商+1)个苹果在同一个抽屉里 (2)余数=x ()()1
1x
n -, 结论:至少有(商+1)个苹果在同一个抽屉里
(3)余数=0, 结论:至少有“商”个苹果在同一个抽屉里 (二)、利用最值原理解题
将题目中没有阐明的量进行极限讨论,将复杂的题目变得非常简单,也就是常说的极限思想“任我意”方法、特殊值方法.
知识框架
抽屉原理
重难点
抽屉原理是一种特殊的思维方法,不但可以根据它来做出许多有趣的推理和判断,同时能够帮助同学证明很多看似复杂的问题。
本讲的主要教学目标是:
(1)理解抽屉原理的基本概念、基本用法;
(2)掌握用抽屉原理解题的基本过程;
(3)能够构造抽屉进行解题;
(4)利用最不利原则进行解题;
(5)利用抽屉原理与最不利原则解释并证明一些结论及生活中的一些问题。
例题精讲
(一)、直接利用公式进行解题
(1)求结论
【例 1】6只鸽子要飞进5个笼子,每个笼子里都必须有1只,一定有一个笼子里有2只鸽子.对吗
【巩固】年级一班学雷锋小组有13人.教数学的张老师说:“你们这个小组至少有2个人在同一月过生日.”你知道张老师为什么这样说吗
【例 2】人的头发平均有12万根,如果最多不超过20万根,那么13亿中国人中至少有人的头发的根数相同。
图8
【巩固】向阳小学有730个学生,问:至少有几个学生的生日是同一天
【例 3】五年级数学小组共有20名同学,他们在数学小组中都有一些朋友,请你说明:至少有两名同学,他们的朋友人数一样多.
【巩固】“六一”儿童节,很多小朋友到公园游玩,在公园里他们各自遇到了许多熟人.试说明:在游园的小朋友中,至少有两个小朋友遇到的熟人数目相等.
【例 4】在任意的四个自然数中,是否其中必有两个数,它们的差能被3整除
【巩固】四个连续的自然数分别被3除后,必有两个余数相同,请说明理由.
【例 5】求证:可以找到一个各位数字都是4的自然数,它是1996的倍数.
【巩固】求证:对于任意的8个自然数,一定能从中找到6个数a,b,c,d,e,f,使得()()()
---
a b c d e f
是105的倍数.
(2)求抽屉
【例 6】某班有16名学生,每个月教师把学生分成两个小组.问最少要经过几个月,才能使该班的任意两个学生总有某个月份是分在不同的小组里
【巩固】100个苹果最多分给多少个学生,能保证至少有一个学生所拥有的苹果数不少于12个.
(3)求苹果
【例 7】一次数学竞赛出了10道选择题,评分标准为:基础分10分,每道题答对得3分,答错扣 1分,不答不得分。
问:要保证至少有4人得分相同,至少需要多少人参加竞赛
【巩固】一次测验共有10道问答题,每题的评分标准是:回答完全正确,得5分;回答不完全正确,得3分,回答完全错误或不回答,得0分.至少____人参加这次测验,才能保证至少有3人得得分相同.
(二)、构造抽屉利用公式进行解题
【例 8】在一只口袋中有红色、黄色、蓝色球若干个,小聪明和其他六个小朋友一起做游戏,每人可以从口袋中随意取出2个球,那么不管怎样挑选,总有两个小朋友取出的两个球的颜色完全一
样.你能说明这是为什么吗
【巩固】幼儿园买来许多牛、马、羊、狗塑料玩具,每个小朋友任意选择两件,但不能是同样的,问:至少有多少个小朋友去拿,才能保证有两人所拿玩具相同
【例 9】从2、4、6、8、、50这25个偶数中至少任意取出多少个数,才能保证有2个数的和是52【巩固】请证明:在1,4,7,10,…,100中任选20个数,其中至少有不同的两组数其和都等于104.
【例 10】从1,2,3……,2010,2011这些自然数中,最多可以取出多少个数,使得其中每两个数的差不等于4
【巩固】从1至2013这2013个自然数中最多能取出多少个数,使得其中任意的两数都不连续且差不等于4
【例 11】从1、2、3、4、5、6、7、8、9、10、11和12中至多选出个数,使得在选出的数中,每一个数都不是另一个数的2倍.
【巩固】从1到20这20个数中,任取11个不同的数,必有两个数其中一个是另一个数的倍数.
【例 12】有苹果和桔子若干个,任意分成5堆,能否找到这样两堆,使苹果的总数与桔子的总数都是偶数
【巩固】在20米长的水泥阳台上放12盆花,随便怎样摆放,请你说明至少有两盆花它们之间的距离小于2米.
【例 13】时钟的表盘上按标准的方式标着1,2,3,…,11,12这12个数,在其上任意做n个120°的扇形,每一个都恰好覆盖4个数,每两个覆盖的数不全相同.如果从这任做的n个扇形中总能
恰好取出3个覆盖整个钟面的全部12个数,求n的最小值.
【巩固】如图,在时钟的表盘上任意作9个120°的扇形,使得每一个扇形都恰好覆盖4个数,且每两个扇形覆盖的数不全相同,求证:一定可以找到3个扇形,恰好覆盖整个表盘上的数.并举一个反例说明,作8个扇形将不能保证上述结论成立.
【例 14】从1,2,3,……,49,50这50个数中取出若干个数,使其中任意两个数的和都不能被7整除,则最多能取出多少个数
(三)、最不利原则
【例 15】“走美”主试委员会为三~八年级准备决赛试题.每个年级12道题,并且至少有8道题与其他各年级都不同.如果每道题出现在不同年级,最多只能出现3次.本届活动至少要准备道
决赛试题.
【巩固】一个口袋中装有500粒珠子,共有5种颜色,每种颜色各100粒。
如果你闭上眼睛,至少取出多少粒珠子才能保证其中有5粒颜色相同
【例 16】有红、黄、蓝、白4色的小球各10个,混合放在一个布袋里.一次摸出小球8个,其中至少有几个小球的颜色是相同的
【巩固】在100张卡片上不重复地编写上1~100,请问至少要随意抽出几张卡片才能保证所抽出卡片上的数相乘后之乘积可被4整除
【例 17】一个口袋里分别有红、黄、黑球4,7,8个,为保证取出的球中有6个同色,则至少要取小球______个。
【巩固】一幅扑克牌有54张,最少要抽取几张牌,方能保证其中至少有2张牌有相同的点数
【综合题】从1,2,3,4,5,……,99,100这100个数中任意选出51个数,证明:(1)在这51个数中,一定有两个数互质;
(2)在这51个数中,一定有两个数的差等于50;
(3)在这51个数中,一定存在9个数,他们的最大公约数大于1.
课堂检测
【随练1】把9条金鱼任意放在8个鱼缸里面,请你说明至少有一个鱼缸放有两条或两条以上金鱼.
【随练2】证明:任取8个自然数,必有两个数的差是7的倍数.
【随练3】把十只小兔放进至多几个笼子里,才能保证至少有一个笼里有两只或两只以上的小兔
家庭作业
【作业1】用五种颜色给正方体各面涂色(每面只涂一种色),请你说明:至少会有两个面涂色相同.
【作业2】证明:任取6个自然数,必有两个数的差是5的倍数。
【作业3】袋中有外形安全一样的红、黄、蓝三种颜色的小球各10个,每个小朋友只能从中摸出1个小球,至少有______个小朋友摸球,才能保证一定有两个人摸的球颜色一样.
【作业4】班上有50名小朋友,老师至少拿几本书,随意分给小朋友,才能保证至少有一个小朋友能得到不少于两本书
【作业5】11名学生到老师家借书,老师的书房中有文学、科技、天文、历史四类书,每名学生最多可借两本不同类的书,最少借一本.试说明:必有两个学生所借的书的类型相同.
【作业6】有红、黄、白三种颜色的小球各10个,混合放在一个布袋中,一次至少摸出个,才能保证有5个小球是同色的
【作业7】班上有28名小朋友,老师至少拿几本书,随意分给小朋友,才能保证至少有一个小朋友能得到不少于两本书
【作业8】篮子里有苹果、梨、桃和桔子,现有若干个小朋友,如果每个小朋友都从中任意拿两个水果,那么至少有多少个小朋友才能保证有两个小朋友拿的水果是相同的
【作业9】黑、白、黄三种颜色的筷子各有很多根,在黑暗处至少拿出几根筷子就能保证有一双是相同颜色的筷子
教学反馈
学生对本次课的评价
○特别满意○满意○一般
家长意见及建议
家长签字:。