系统结构图及等效变换梅森公式

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

R(s)
Hale Waihona Puke Baidu
C(s)
± G(s)
后移:
F(s)
R(s)
C(s)
G±(s) G(s)±
F(s)
C(s)=[R(s)±F(s)]G(s)
F(s) FG(s()s) C(s)
数学关G系(s)不变!
第四节 控制系统的结构图及其等效变换
3)引出点相对方框的移动
R(s) G(s)
C(s)
C(s)
前移:
R(s)
C(s)
U1(s)
UC(s)
第四节 控制系统的结构图及其等效变换
二、 动态结构图的等效变换与化简
系统的动态结构图直观地反映了系统内部各 变量之间的动态关系。将复杂的动态结构图进行 化简可求出传递函数。
1.动态结构图的等效变换
等效变换: 被变换部分的输入量和输出量 之间的数学关系,在变换前后 保持不变。
第四节 控制系统的结构图及其等效变换
(3)根据信号在系统中的流向,依次将各 方框连接起来。
第四节 控制系统的结构图及其等效变换
例 画出图所示电路的动态结构图。
+
R1
U1(s) R2
+
i1
i2
ur
C1 i1-i2 C2 uc
-
-
解:
Ur(s) _
I1(s) 1
I_2(s) 1
U1(s)
R1
C1S
_
1
1 UC(s)
R2 I2(s) C2S
一、系统的开环传递函数 二、系统的闭环传递函数 三、系统的误差传递函数
第五节 反馈控制系统的传递函数
一、系统的开环传递函数
闭环控制 R(s) 系统的典型
结构:
开环传递函数:
E(s)
_ G1(s)
B(s)
aa±±cb±±bc ±
bc cb
引出点之间的交换: b
aa
不改变数学关系
a
a
aa
综合点与引出点之间不能交换!
第四节 控制系统的结构图及其等效变换
2)综合点相对方框的移动
R(s) G(s)
C(s) ±
前移: R(s)
G±(s)
C(s) G(s)±
F(s)
C(s)=R(s)G(s)±F(s)
C(s)G1(s) F(s)F(s) ±
(1)串联
R(s)
两个F(环s) 节串C联(s) 的R等(s)效变换:
C1(s) C(s)
G1(s)
RG(s2()GsG)11((ss))GC2(1s()s)CG(Gs2()s1)(s)C(s) G2(s)
不是串C联1(s!)=R(s)G1(s也) 不是串联!
C(s)=C1(s)G2(s) =R(s)G(s)1G2(s)
自动控制理论
第二章 自动控制系统的数学模型
第四节 控制系统的结构图及其等效变换
动态结构图是系统数学模型的另一种形 式,它表示出系统中各变量之间的数学关 系及信号的传递过程。
一、建立动态结构图的一般方法
二、动态结构图的等效变换与化简
第四节 控制系统的结构图及其等效变换
一、 建立动态结构图的一般方法
以电设流一作R为C电路如U图r(s:)
初输始出微:分 ur=Ri+uc -
取方拉程氏组变换综:合i=点c方ddUu框t cc(s)
R
+ 1 I(s)
+
R
1ur
i 引C 出点uc
C-S
信号线-
系系UI统(统rs(动)s动=)态=C态RS结结UI(构cs构()图s+图)U将由c(各四s)变种量基之本UU间符rc((的ss号))R–=数构UI学(成cs()s关:·)C=系1SI(用s)结
表 组构意示合两图为变表量:示之出U间来r(s的,) 传将U-递c结(s)函构R1数图。I简(s)化C1,SI(可sU) c方(sC)1S便地Uc(求s) 出任
第四节 控制系统的结构图及其等效变换
绘制动态结构图的一般步骤:
(1)确定系统中各元件或环节的传递函数。
(2)绘出各环节的方框,方框中标出其传 递函数、输入量和输出量。
的传递函数乘积之和。
Δ = 1 – ΣΣ Lii +ΣΣ Li Lj –ΣΣ LLiiLLjjLLzz + ···
第四节 控制系统的结构图及其等效变换
例 系统的动态结构图如图所示,求
闭环传递函数。
R(s)
_ _ G1
_
L1
G4
L4
G2
G3
L2
L5 H2
+ C(s)
H1
L3
解将L1Δ3+:△==GL系、11–1G+PΣ统PG=G12kHΔ11=–有LGG、11i=GG2+△25LHGG11k1个j1GG代3=2+G22回01GG入H32H路3G12L梅G324H,3+逊=+2G+各G–公G1ΣL1G回1G式2G21P4GL=2路2G得Δi34–=L3+2的+传=jGGGGL传1L21递11zGGGG5=递34函4=4+0H+函G–G数24G4H数H:42H为2 2
G(s)
G(s) C(s)C(s)
后移: C(s)
R(s)
C(s)
G(s)
R(s)
R(s)
C(s) G(s)
R(s)
1 R(s) G(s)
被移动的支路中串入适当R的(s传) 递函数。
第四节 控制系统的结构图及其等效变换
2.梅逊公式
n
梅逊公式: Φ(s)=
Σk=1Pk Δk
Δ
Pk回Σ—路Li传第k—递条函各前数回向:路通道传的递传函递数函之数和。。 函△k数Σ的—回L乘i的路将L积j回内△中—路。前与所两 递向第在两 函通项k互 数道条去不 乘前和掉向相 积之反通后接 之馈道的触 和通相剩回。道接余路触传部的递传 Σ△Li—Lj分特L,z 征—称式所为余有子三式个。互不相接触回路
G(s)=
C(s) R(s)
=G1(s)G2(s)
等效
n个环节串联
n
G(s) =Πi=1Gi (s)
第四节 控制系统的结构图及其等效变换
(3)反馈连接
环节的反馈连接等效变换:
R(s) E(s)
C(s)
G(s)
R(s)
G(s)
C(s)
±
B(s)
1±G(s)H(s)
H(s)
根据框图得: E(s)=R(s) +–B(s)
第二章 自动控制系统的数学模型
第二章 总 结
自动控制 解析法 建立微分 拉氏变换
系统
方程
系统传递 函数
拉氏变换
建立动态 结构图
等效变换 梅逊公式
Ф(s)=
C(s) R(s)
第三章 第四章 第五章 第六章
时域法 根轨迹法
频率法 性能校正
分析系统 性能
第二章 自动控制系统的数学模型
第五节 反馈控制系统的传递函数
E(s)=1±GR((ss))H(s) C (s)=E(s)G(s)
=R(s) +– E(s)G(s)H(s)
RC((ss))=1±GG((ss))H(s) 等效
第四节 控制系统的结构图及其等效变换
(4)综合点和引出点的移动
1) 综合点之间或引出点之间的位置交换
综合点之间交换: 不改变数学关系
a ±
相关文档
最新文档