外文文献翻译

合集下载

浙江大学本科毕业论文外文文献翻译

浙江大学本科毕业论文外文文献翻译

核准通过,归档资料。

未经允许,请勿外传!浙江大学本科毕业论文外文文献翻译The influence of political connections on the firm value of small and medium-sized enterprises in China政治关联在中国对中小型企业价值的影响1摘要中小型企业的价值受很多因素的影响,比如股东、现金流以及政治关联等.这篇文章调查的正是在中国政治关联对中小型企业价值的影响。

通过实验数据来分析政治关联对企业价值效益的影响.结果表明政府关联是关键的因素并且在中国对中小型企业的价值具有负面影响。

2重要内容翻译2。

1引言在商业界,有越来越多关于政治关联的影响的经济研究。

它们发现政治关联能够帮助企业确保有利的规章条件以及成功获得资源,比如能够最终提高企业价值或是提升绩效的银行贷款,这种政治关联的影响在不同的经济条件下呈现不同的效果。

在高腐败和法律制度薄弱的国家,政治关联对企业价值具有决定性因素1的作用.中国由高度集权的计划经济向市场经济转变,政府对市场具有较强的控制作用,而且有大量的上市企业具有政治关联。

中小型企业发展的很迅速,他们已经在全球经济环境中变得越来越重要。

从90年代起, 政治因素对中国的任何规模的企业来说都变得越来越重要,尤其是中小型企业的价值。

和其他的部门相比较,中小型企业只有较小的现金流,不稳定的现金流且高负债率.一方面,中小型企业改变更加灵活;另一方面,中小型企业在由于企业规模以及对银行来说没有可以抵押的资产,在筹资方面较为困难。

企业如何应对微观经济环境和政策去保证正常的企业活动,并且政治关联如何影响企业价值?这篇论文调查政治关联和企业价值之间的联系,并且试图去研究企业是否可以从政治关联中获利提升企业价值。

2.2定义这些中小型企业之所以叫中小型企业,是和管理规模有关。

对这些小企业来说,雇员很少,营业额较低,资金一般由较少的人提供,因此,通常由这些业主直接管理企业。

外文文献翻译(图片版)

外文文献翻译(图片版)

本科毕业论文外文参考文献译文及原文学院经济与贸易学院专业经济学(贸易方向)年级班别2007级 1 班学号3207004154学生姓名欧阳倩指导教师童雪晖2010 年 6 月 3 日目录1 外文文献译文(一)中国银行业的改革和盈利能力(第1、2、4部分) (1)2 外文文献原文(一)CHINA’S BANKING REFORM AND PROFITABILITY(Part 1、2、4) (9)1概述世界银行(1997年)曾声称,中国的金融业是其经济的软肋。

当一国的经济增长的可持续性岌岌可危的时候,金融业的改革一直被认为是提高资金使用效率和消费型经济增长重新走向平衡的必要(Lardy,1998年,Prasad,2007年)。

事实上,不久前,中国的国有银行被视为“技术上破产”,它们的生存需要依靠充裕的国家流动资金。

但是,在银行改革开展以来,最近,强劲的盈利能力已恢复到国有商业银行的水平。

但自从中国的国有银行在不久之前已经走上了改革的道路,它可能过早宣布银行业的改革尚未取得完全的胜利。

此外,其坚实的财务表现虽然强劲,但不可持续增长。

随着经济增长在2008年全球经济衰退得带动下已经开始软化,银行预计将在一个比以前更加困难的经济形势下探索。

本文的目的不是要评价银行业改革对银行业绩的影响,这在一个完整的信贷周期后更好解决。

相反,我们的目标是通过审查改革的进展和银行改革战略,并分析其近期改革后的强劲的财务表现,但是这不能完全从迄今所进行的改革努力分离。

本文有三个部分。

在第二节中,我们回顾了中国的大型国有银行改革的战略,以及其执行情况,这是中国银行业改革的主要目标。

第三节中分析了2007年的财务表现集中在那些在市场上拥有浮动股份的四大国有商业银行:中国工商银行(工商银行),中国建设银行(建行),对中国银行(中银)和交通银行(交通银行)。

引人注目的是中国农业银行,它仍然处于重组上市过程中得适当时候的后期。

第四节总结一个对银行绩效评估。

物联网毕业论文外文文献翻译.doc

物联网毕业论文外文文献翻译.doc

Internet of Things1 .the definition of connotationThe English name of the Internet of Things The Internet of Things, referred to as: the IOT.Internet of Things through the pass,radio frequency identification technology,global positioning system technology, real-time acquisition of any monitoring, connectivity, interactive objects or processes, collecting their sound, light,heat, electricity,mechanics, chemistry, biology, the location of a variety of the information you need network access through a variety of possible things and things, objects and people in the Pan-link intelligent perception of items and processes,identification and management. The Internet of Things IntelliSense recognition technology and pervasive computing, ubiquitous network integration application,known as the third wave of the world’s information industry development following the computer,the Internet. Not so much the Internet of Things is a network, as Internet of Things services and applications,Internet of Things is also seen as Internet application development. Therefore,the application of innovation is the core of the development of Internet of Things,and 2.0 of the user experience as the core innovation is the soul of Things.2.The meaning of ’’material”Where the ’’objects” to meet the following conditions can be included in the scope of the "Internet of Things":1.Receiver have the appropriate information;2.Have a data transmission path;3.Have a certain storage capabilities;4.To have the CPU;5.To have the operating system;6.Have specialized applications;7.Have a data transmitter;8.Follow the communication protocol of Things;9.World Network,a unique number that can be identified.3."Chinese style" as defined inInternet of Things (Internet of Things) refers to is the ubiquitous (Ubiquitous) terminal equipment (Devices) and facilities (Facilities), including with the "inner intelligence" sensors,mobile terminals, industrial systems,floor control system,the family of Intelligentfacilities,video surveillance systems,and external can "(Enabled),such as RFID,a variety of assets (the Assets),personal and vehicle carrying the wireless terminal” intelligent objects or animals n or” smart dust ’’(the Mote),through a variety of wireless and/or cable over long distances and/or short-range communication networks to achieve interoperability (M2M),application integration (the Grand Integration),and based on cloud computing,SaaS operation mode,in internal network (intranet),private network (extranet), and / or the Internet (Internet) environment, the use of appropriate information security mechanisms to provide a safe,controlled and even personalized real-time online monitoring,retrospective positioning,alarm linkage, command and control plan management, remote control,security,remote repair and maintenance, online upgrades,statistical reporting, decision support,the leadership of the desktop (showcase of the Cockpit Dashboard) management and service functions,’’Everything,” ’’efficient,energy saving, security environmental protection/"’ possession,control,Camp integration [1].4.EU definitionIn September 2009,the Internet of Things and enterprise environments held in Beijing,China-EU Seminar on the European Commission and Social Media Division RFID Division is responsible for Dr. Lorent Ferderix,given the EU’s definition of things: the Internet of Things is a dynamic global network infrastructure, it has a standards-based and interoperable communication protocols, self-organizing capabilities, including physical and virtual "objects” of identity, physical attributes,virtual features and smart interface and seamless integration of information networks . Internet of Things Internet and media,the Internet and business Internet one,constitute the future of the Internet.5.changeThe Internet of Things (Internet of Things) the word universally recognized at home and abroad Ashton, Professor of the MIT Auto-ID Center in 1999 first proposed to study RFID. The report of thesame name released in 2005, the International Telecommunication Union (ITU), the definition and scope of the Internet of Things has been a change in the coverage of a larger expansion, no longer refers only to the Internet of Things based on RFID technology.Since August 2009, Premier Wen Jiabao put forward the "Experience China” Internet of Things was officially listed as a national one of the five emerging strategic industries,to write the •’Government Work Report’1 Internet of Things in China has been the great concern of the society as a whole degree of concern is unparalleled in the United States,European Union, as well as other countries.The concept of Internet of Things is not so much a foreign concept, as it has been the concept of a "Made in China' his coverage of the times,has gone beyond the scope of the 1999 Ashton professor and the 2005 ITU report referred to, Internet of Things has been labeled a "Chinese style" label.6.BackgroundThe concept of Internet of Things in 1999. Internet-based, RFID technology and EPC standards,on the basis of the computer Internet,the use of radio frequency identification technology, wireless data communication technology, a global items of information to real-time sharing of the physical Internet ’’Internet of things” (referred to as the Internet of Things),which is also the basis of the first round of the China Internet of Things boom set off in 2003.The sensor network is built up based on sensing technology network. Chinese Academy of Sciences in 1999 on the start sensor network research and has made some achievements in scientific research,the establishment of applicable sensor network. 1999, held in the United States,mobile computing and networking International Conference, "The sensor network is a development opportunity facing humanity in the next century. In 2003, the United States,"Technology Review” propo sed sensor network technology will be future changes ten people’s lives first.November 17, 2005, the WSIS held in Tunis (WSIS),the International Telecommunication Union released ITU Internet Report 2005: Internet of Things ”,citing the concept of the” Int ernet of things "• The report pointed out that the ubiquitous ’’Internet of Things" communication era is approaching, all the objects in the world, from tires to toothbrushes, from housing to the tissue via the Internet, take the initiative to be exchanged. Radio Frequency Identification (RFID),sensortechnology, nanotechnology,intelligent embedded technology will be more widely used.According to the description of the ITU, the era of things,a short-range mobile transceivers embedded in a variety of daily necessities,human beings in the world of information and communication will receive a new communication dimension, from any time communication between people of the place of connection extended to the communication connection between persons and things and things and things. The Internet of Things concept of the rise,largely due to the International Telecommunication Union (ITU), the title of Internet of Things 2005 annual Internet Report. However,the ITU report the lack of a clear definition of Things.Domestic Internet of Things is also there is no single standard definition, but the Internet of Things In essence,the Internet of Things is a polymer application of modern information technology to a certain stage of development and technological upgrading of various sensing technology modern network technology and artificial intelligence and automation technology aggregation and integration of applications,so that the human and material wisdom of dialogue to create a world of wisdom. Because the development of the Internet of Things technology,involving almost all aspects of IT,innovative application and development of a polymer, systematic, and therefore be called revolutionary innovation of information industry. Summed up the nature of the Internet of Things is mainly reflected in three aspects: First, the Internet features that need to be networked objects must be able to achieve the interoperability of the Internet; identification and communication features,that is included in the Internet of Things "objects" must to have the functions of automatic identification and physical objects communication (M2M); intelligent features,the network system should have automated,self-feedback and intelligent control featuresJanuary 28, 2009, Obama became the President of the United States,held with U.S. business leaders a "round table’’,as one of the only two representatives,IBM CEO Sam Palmisano for the first time that H the wisdom of the Earth” this concept, it is recommended that the new government to invest in a new generation of intelligent infrastructure.February 24,2009 news,IBM Greater China CEO money crowd called "Smarter Planet” strategy announced in the forum 2009IBM.This concept was put forth, that is the great concern of the United States from all walks of life,and even analysts believe that IBM’s vision is very likely to rise to U.S. national strategy,and caused a sensation in the world. IBM believes that the industry, the next phase of the mission is to make full use of the new generation of IT technology in all walks of life among specifically,is the embedded sensors and equipment to the power grid,railways,bridges,tunnels, highways, buildings, water supply systems dams,oil and gas pipelines and other objects,and is generally connected to the formation of Things.Strategy conference, IBM, and implant the concept of ’’wisdom” in the implementation of the infrastructure,strong,not only in the short term to stimulate the economy,promote employment,and in a short period of time for China to build a mature wisdom infrastructure platform.IBM n Smarter Planet” strategy will set off again after the wave of Internet technology industrial revolution. Former IBM CEO Lou Gerstner has raised an important point of view, every 15 years,a revolution in computing model. This judgment is the same as Moore’s Law accurately call it a n15-year cycle Law' Before and after 1965, changes to the mainframe as a symbol,1980 marked by the popularization of personal computers,1995, the Internet revolution. Each such technological change are caused by the enterprise, industry and even the national competitive landscape of major upheaval and change. To a certain extent in the Internet revolution is ripening by the ”information superhighway” strategy. 1990s,the Clinton administration plan for 20 years, $ 200 billion to -4000 billion,construction of the U.S. National Information Infrastructure,to create a huge economic and social benefits.Today, the H Smarter Planet" strategy by many Americans that there are many similarities with the "informa tion superhighway”,the same they revive the economy,a key strategy for competitive advantage. The strategy can be set off, not only for the United States, such as the Internet revolution was the wave of technological and economic concern, more attention from the world.H Internet of Things prospects are very bright,it will dramatically change our current way of life.’’ Demonstration director of the Center of Nanjing University of Aeronautics and Astronautics,National Electrical and Electronic Zhao Guoan said. Industry experts said that the Internet of things to our life personification of the things became a kind of human.Goods (goods) in the world of physicalobjects associated with each other "exchange' without the need for human intervention. The Internet of Things using radio frequency identification (RFID) technology, to achieve the interconnection and sharing of the automatic identification of goods (products) and information through the computer Internet. It can be said that the Internet of Things depict the world is full of intelligent. In the world of Internet of Things, material objects connected to the dragnet.The second session,held at Peking University in November 2008, China Mobile Government Seminar H Knowledge Society and Innovation 2.0n,the experts made the mobile technology, the Internet of Things technology led to the development of economic and social form, innovative forms of change,and promote the The next generation of innovation for the knowledge society as the core of user experience (innovative 2.0) the formation of innovation and development of the form to pay more attention to the user to focus on people-oriented. Research institutions is expected to 10 years,the Internet of Things may be mass adoption of this technology will develop into one of thousands of yuan-scale high-tech market,the industry than the Internet 30 times.It is learned that the things industry chain can be broken down into the identity,perception,processing and information transfer,four links, each link of the key technologies for the wireless transmission network of RFID, sensors,smart chip and telecom operators. EPOSS in the ’’Internet of Things in 2020” report,an analysis predicted that the future development of the Internet of Things will go through four stages, 2010, RFID is widely used in the field of logistics,retail and pharmaceutical objects interconnect 2010 to 2015,2015 〜In 2020,the object into the semi-intelligent, intelligent objects into 2020.As the vanguard of the Internet of Things,RFID has become the most concerned about the technology market. The data show that the global RFID market size in 2008 from $ 4.93 billion in 2007 rose to $ 5.29 billion,this figure covers all aspects of the RFID market,including tags, readers and other infrastructure, software and services. RFID card and card-related infrastructure will account for 57.3 percent of the market, reaching $ 3.03 billion. Application from financial and security industries will drive the market growth of RFID cards. Analysys International forecasts,the Chinese RFID market size in 2009 will reach 5.0 billion, a CAGR of 33%, in which the electronic tag is morethan 3.8 billion yuan,the reader close to 700 million yuan, software and services market to reach 500 million yuan pattern.MEMS is the abbreviation of the micro-electromechanical systems,MEMS technology is built on the basis of micro / nano, the market prospect is broad. The main advantage of the MEMS sensor is the small size,large-scale mass production cost reduction,mainly used in two major areas of automotive and consumer electronics. Under ICInsight the latest report is expected in 2007-2012, global sales of semiconductor sensors and actuators based on MEMS will reach 19 percent compound annual growth rate (CAGR), compared with $ 4.1 billion in 2007 to five years will achieve $ 9.7 billion in annual sales.7.PrincipleInternet of Things is on the basis of the computer Internet, RFID, wireless data communications technology, to construct a cover everything in the world’s ’’Internet of Things' In this network, the goods (products) to each other ’’exchange”,without the need for human intervention. Its essence is the use of radio frequency identification (RFID) technology to achieve the interconnection and sharing of the automatic identification of goods (products) and information through the computer Internet.The Internet of Things is a very important technology is radio frequency identification (RFID) technology. RFID is radio frequency identification (Radio Frequency Identification) technology abbreviation,is an automatic identification technology in the 1990s began to rise,the more advanced a non-contact identification technology. The development of RFID technology based on a simple RFID system, combined with existing network technology, database technology, middleware technology, to build a one composed by a large number of networked readers and numerous mobile label, much larger than the Internet of Things trend.RFID,It is able to let items "speak” a technique. In the "Internet of Things” con cept,RFID tags are stored in the specification and interoperability information collected automatically by wireless data communications network to a central information system,to achieve the identification of goods (products), and then through the open computer network for information exchange and sharing, items "transparent” management.The information technology revolution in the Internet of Things is referred to as IT mobile Pan of a specific application. Internet of Things through IntelliSense,identification technology andpervasive computing, ubiquitous network convergence applications,breaking the conventional thinking before,human beings can achieve ubiquitous computing and network connectivity [3]. The traditional thinking has been the separation of physical infrastructure and IT infrastructure: on the one hand,airports,roads,buildings,while on the other hand,the data center,PC,broadband. In the era of the ’’Internet of Things’’,reinforced concrete,cable with the chip,broadband integration into a unified infrastructure, in this sense, the infrastructure is more like a new site of the Earth, the world really works it, which including economic management, production operation, social and even personal life. H Internet of Things” makes it much more refined and dynamic management of production and life, to manage the future of the city to achieve the status of "wisdom” to improve resource utilization and productivity levels,and improve the relationship between man and nature.8.Agency1,institution-buildingAs the first national Internet of Things industry community organizations - the application of professional Committee of China Electronic Chamber of Things technology products (referred to as: ’’objects of the IPCC n),the Ministry of Civil Affairs in June 2010,preliminary approved by the Ministry of August being reported that the Ministry of Civil Affairs for final approval.2, the main taskServe as a bridge between business and government to assist the Government of the industry guidance,coordination,consultation and services to help members to reflect the business requirements to the Government; coordinate the relationship between enterprises to strengthen technical cooperation, product distribution, the elimination of vicious competition ; supervision of members the correct implementation of national laws and regulations,to regulate the industry; member of information communication technology products, cooperation,resource sharing, capital operation, and promote the application of Internet of Things technologies and products,and promote the Internet of Things industrial scale,co-development.9.ConstructionInternet of Things in the practical application to carry out requires the involvement of all walks of life,and need the guidance of the national government as well as related regulations and policies toassist the launching of the Internet of Things has the scale,broad participation,management, technical,and material properties,etc. other features,the technical problem is the most crucial issues of Things billion Bo logistics consulting, Internet of Things technology is an integrated technology, a system not yet which company has overall responsibility for network planning and construction of the entire system, theoretical studies have commenced in all walks of life and the practical application is limited to within the industry. The key is on the planning and design and research and development of the Internet of Things research in the field of RFID,sensors,embedded software, and transmission of data calculation. In general,to carry out the steps of the Internet of things mainly as follows:(1)identified the object attributes,properties, including static and dynamic properties of the static property can be stored directly in the label,the dynamic properties need to start with sensors to detect real-time;(2)the need to identify the equipment to complete the reading of object attributes,and information into a data format suitable for network transmission;(3)the object of information transmitted over the network to the information processing center (processing center may be distributed,such as home computers or mobile phones,may also be centralized,such as China Mobile IDC) by the processing center to complete the object communication calculation.10.key areasInternet of Things 4 key areas:(1)RFID;(2)sensor network;(3)The M2M;(4)integration of the two.11 .TrendIndustry experts believe that the Internet of things on the one hand can improve economic efficiency and significant cost savings; the other hand,can provide technical impetus to global economic recovery. Currently,the United States,the European Union are all invested heavilyin-depth study to explore the Internet of Things. The country is also highly concerned about the emphasis of Things,Industry and Information Technology Ministry in conjunction with the relevant departments are conducting research in a new generation of IT to the formation of policies and measures to support the development of a new generation of IT.China Mobile CEO Wang Jianzhou has repeatedly mentioned the Internet of Things will become the focus of future development of China Mobile. He will be invited to Taiwan to produce RFID,sensors and bar code manufacturers and China Mobile. According to him,the use of the Internet of Things technology,Shanghai Mobile has a number of industrial customers tailor the data collection,transmission,processing and business management in one set of wireless application solutions. The latest data show that Shanghai Mobile has more than 100,000 chips mounted on a taxi,bus,various forms of matter networking applications in all walks of prowess, to ensure the orderly operation of the city. During the Shanghai World Expo, ’’the bus services through’’ will be fully applied to the Shanghai public transport system, the smooth flow traffic to the most advanced technology to protect Expo area; for logistics transportation management,e-logistics n,will provide users with real-time accurate information of Cargo, vehicle tracking and positioning, the transport path selection, logistics network design and optimization services greatly enhance the comprehensive competitiveness of logistics enterprises.In addition,the popularization of the n Internet of Things” for the number of animals,plants and machinery,sensors and RFID tags of items and related interface devices will greatly exceed the number of mobile phones. The promotion of the Internet of Things will become a drive to promote economic development for the industry to open up a potential development opportunities. According to the current demand on the Internet of Things,in recent years, billions of sensors and electronic tags,which will greatly promote the production of IT components,while increasing the number of job opportunities.According to reports, it is necessary to truly build an effective Internet of things, there are two important factors. First, the scale, only with the scale to make the items of intelligence play a role. For example, a city of one million vehicles,if we only 10000 vehicles installed on the smart system, it is impossible to form an intelligent transportation system; two mobility items are usually not static,but in the state of the movement,we must maintain the items in the state of motion,and even high-speed motion state can at any time for dialogue.FORRESTER of the authority of the U.S. advisory body predicted that 2020, the world ofbusiness of the Internet of Things,compared with the business of interpersonal communication,will reach 30 to 1,so the ’’Internet of Things’1 is known to be the next one trillion communications services.Internet of Things heat wave Why is rapidly growing in China? Internet of Things in China rapid rise thanks to the several advantages of our country in terms of things.In the early 1999 launched the Internet of Things core sensor network technology research, R & D level in the world; the second,sensor network field in the world,China is the standard one of the dominant country, the patent owner; third China is one of the countries to achieve a complete industrial chain of Things; F ourth, China’s wireless communications network and broadband coverage provides a solid infrastructure to support the development of the Internet of Things; Fifth, China has become the world’s first the three major economies,with strong economic strength to support the development of the Internet of Things.12.MythThe current understanding of the Internet of things there are a lot of misunderstanding,which is also a direct impact on our understanding of Things on the development of the logistics industry, it is necessary first to distinguish errors, clarify our thinking.One sensor networks or RFID network equivalent of Things. The fact that sensor technology,or RFID technology,or are simply one of the information collection technology. In addition to the sensor technology and RFID technology,GPS, video recognition,infrared,laser,scanning can be achieved automatically identify physical objects to communicate technical information collection technology can become the Internet of Things. Sensor networks or RFID network is just an application of Things,but not all of Things.Second,the Internet of Things as a myriad of unlimited extension of the Internet of Things as a completely open for all things,all of the interconnections,all shared Internet platform.In fact,the Internet of Things is not simple infinite extension of the global sharing of the Internet. Even if the Internet is also not only refers to we typically think of the international sharing computer network,Internet,WAN and LAN. Internet of Things can be both an extension of our usual sense of theInternet to the matter; LAN,professional can also be based on real needs and industrial applications. The reality is not necessary and can not make all the items networking; no need to make professional,LAN must be connected to the global Internet sharing platform. Of things in the future the Internet will be very different from the professional network of similar smart logistics, smart transportation,smart grid; the intelligence community and other local area network is the largest use of space.Ter, that the ubiquitous network of the Internet of Things Internet of Things, and therefore the Internet of Things is a castle in the air, is difficult to achieve the technology. In fact the Internet of things are real,many of the primary Internet of Things applications already for our services. The Internet of Things concept is introduced in many real-world applications based on polymeric integrated innovation,pre-existing network with the Internet of Things, intelligent,automated system, summarized and upgrading it upgraded from a higher perspective our knowledge.Four of Things as a basket,and everything installed inside; based on self-awareness, and only be able to interact, communication products as the Internet of Things applications. For example, just embedded some of the sensors,to become the so-called Internet of Things appliances; products labeled with RFID tags, became the Internet of Things applications.esThings widely used throughout the intelligent transportation, environmental protection,government,public safety, peace at home, smart fire, industrial monitoring, environmental monitoring, elderly care,personal health,floriculture,water monitoring,food traceability,enemydetection and intelligence collection and other fields.International Telecommunication Union in 2005, a report has portrayed the picture of the era of the "Internet of Things": car when the driver operational errors will automatically alarm; briefcase will remind the owner forgot somet hing; clothes will ’’tell” washing machine color and water temperature requirements. Billion Bo logistics consulting vivid introduction of Things in the logistics field,for example, a logistics company,application of Things truck,when loading overweight,the car will automatically tell you overloaded and overload how many, but the space remaining,the severity of。

毕业设计论文外文文献翻译

毕业设计论文外文文献翻译

毕业设计(论文)外文文献翻译院系:财务与会计学院年级专业:201*级财务管理姓名:学号:132148***附件: 财务风险管理【Abstract】Although financial risk has increased significantly in recent years risk and risk management are not contemporary issues。

The result of increasingly global markets is that risk may originate with events thousands of miles away that have nothing to do with the domestic market。

Information is available instantaneously which means that change and subsequent market reactions occur very quickly。

The economic climate and markets can be affected very quickly by changes in exchange rates interest rates and commodity prices。

Counterparties can rapidly become problematic。

As a result it is important to ensure financial risks are identified and managed appropriately. Preparation is a key component of risk management。

【Key Words】Financial risk,Risk management,YieldsI. Financial risks arising1.1What Is Risk1.1.1The concept of riskRisk provides the basis for opportunity. The terms risk and exposure have subtle differences in their meaning. Risk refers to the probability of loss while exposure is the possibility of loss although they are often used interchangeably。

外文文献及翻译

外文文献及翻译

外文文献及翻译1. 文献:"The Effects of Exercise on Mental Health"翻译:运动对心理健康的影响Abstract: This article explores the effects of exercise on mental health. The author discusses various studies that have been conducted on this topic, and presents evidence to support the claim that exercise can have positive impacts on mental well-being. The article also examines the mechanisms through which exercise affects mental health, such as the release of endorphins and the reduction of stress hormones. Overall, the author concludes that exercise is an effective strategy for improving mental health and recommends incorporating physical activity into daily routines.摘要:本文探讨了运动对心理健康的影响。

作者讨论了在这个主题上进行的各种研究,并提出证据支持运动对心理健康有积极影响的观点。

该文章还探讨了运动如何影响心理健康的机制,如内啡肽的释放和压力激素的减少。

总的来说,作者得出结论,运动是改善心理健康的有效策略,并建议将体育活动纳入日常生活。

2. 文献: "The Benefits of Bilingualism"翻译:双语能力的好处Abstract: This paper examines the benefits of bilingualism. The author presents research findings that demonstrate the cognitiveadvantages of being bilingual, such as enhanced problem-solving skills and improved attention control. The article also explores the social and cultural benefits of bilingualism, such as increased cultural awareness and the ability to communicate with people from different backgrounds. Additionally, the author discusses the positive effects of bilingualism on mental health, highlighting its role in delaying the onset of cognitive decline and in providing a buffer against age-related memory loss. Overall, the author concludes that bilingualism offers a range of advantages and recommends promoting bilingual education and language learning. 摘要:本文研究了双语能力的好处。

外文文献翻译译稿

外文文献翻译译稿

外文文献翻译译稿1可用性和期望值来自Willliam S.Green, Patrick W.Jordan.产品的愉悦:超越可用性根据人机工程学会(HFES)的观点,人机工程学着眼于“发现和共享可用于各种系统和设备设计的、关于人的特点的知识”。

人们通常只是把它作为生物力学和人体测量所关注的内容,实际上它是从更广泛的意义上的一种对人(产品用户)的全面和综合的理解。

HFES从二战中有军方从事的系统分析中发展而来。

其中的三种主要研究的是人体测量、复杂信息的解释和管理,以及在部队和装备调配中应用的系统分析。

系统分析在尺度和复杂性方面跨度很大,大的系统分析有类似于诺曼底登陆准备的大型系统规划,小到去理解如何从合理性和规模的角度才最佳的布置和装备人员。

诺曼底登陆是20世纪最复杂的事件之一。

他要求建立一个在战斗开始之前还不确定的庞大的人员和物资的合理分配系统。

在更小的规模上,装备和军事人物的布置意味着如何去组织、训练和安排战士,最大限度的发挥他们的长处。

士兵必须迅速地接受训练,并且能够有效地使用和维护在二战中发展起来的一系列技术装备。

其中,对于飞行员、潜艇人员和坦克驾驶员有神采的限制。

复杂的新装备的开发要求找到最好的税收、密码便医院、破译人员、雷达和声纳操作员、轰炸机驾驶员和机组人员。

在战后,随着公司及其产品在尺度、领域和复杂性方面的增长,很多系统分析人员在商用领域找到了发展机会。

尽管是战后的发展才导致了1957年人机工程协会(HFES)的建立,但人机研究的起源可以追溯到大批量生产方式的成型阶段,是当时提高生产效率的要求。

随着工作方式从手工生产和农业生产中的转移,新的工厂工作的概念逐步发展起来。

福特的流水生产线和泰勒的效率理论开始对生产的规划和教育产生影响。

即使在家庭生活中,妇女们也开始接受了现代家庭管理理论,并运用这些理论来组织和规划家庭。

在20世纪末,一种涵盖面更广的人机工程正在发展之中。

新的人机工程学是为了适应已经被广泛意识到的对用户行为模式更深入的需求而诞生的,它开始应用定型研究方法,并探索人的情感和认知因素。

外文文献及翻译

外文文献及翻译

Yunnan Ethnic pattern in Packaging DesignAbstract: Art is a folk Mother of the arts,is the source of the new art, From which to draw a strong tradition of high—grade Nutrition。

The persons belonging to national folk arts Ethnic patterns,are folk arts Intraoperative a gem, its development Research,and with the means of modern art,art wind Grid,professional skills combine to form a unique Style and features a modern design There are important applications,this paper focuses on Minority Folk pattern in modern packaging design Meter applications are discussed.Keywords: Yunnan Ethnic. Pattern。

Packaging Design.IntroductionYunnan is a multi-ethnic province, Here multiply survive the Han, Yi, Bai More than twenty families, Zhuang, Miao, Dai, etc。

Nation. Long history of various ethnic groups in Yunnan Province, the source is far Long, creating a rich and colorful Folk art。

外文参考文献(带中文翻译)

外文参考文献(带中文翻译)

外文资料原文涂敏之会计学 8051208076Title:Future of SME finance(c)Background – the environment for SME finance has changedFuture economic recovery will depend on the possibility of Crafts, Trades and SMEs to exploit their potential for growth and employment creation.SMEs make a major contribution to growth and employment in the EU and are at the heart of the Lisbon Strategy, whose main objective is to turn Europe into the most competitive and dynamic knowledge-based economy in the world. However, the ability of SMEs to grow depends highly on their potential to invest in restructuring, innovation and qualification. All of these investments need capital and therefore access to finance.Against this background the consistently repeated complaint of SMEs about their problems regarding access to finance is a highly relevant constraint that endangers the economic recovery of Europe.Changes in the finance sector influence the behavior of credit institutes towards Crafts, Trades and SMEs. Recent and ongoing developments in the banking sector add to the concerns of SMEs and will further endanger their access to finance. The main changes in the banking sector which influence SME finance are:•Globalization and internationalization have increased the competition and the profit orientation in the sector;•worsening of the economic situations in some institutes (burst of the ITC bubble, insolvencies) strengthen the focus on profitability further;•Mergers and restructuring created larger structures and many local branches, which had direct and personalized contacts with small enterprises, were closed;•up-coming implementation of new capital adequacy rules (Basel II) will also change SME business of the credit sector and will increase its administrative costs;•Stricter interpretation of State-Aide Rules by the European Commission eliminates the support of banks by public guarantees; many of the effected banks are very active in SME finance.All these changes result in a higher sensitivity for risks and profits in the financesector.The changes in the finance sector affect the accessibility of SMEs to finance.Higher risk awareness in the credit sector, a stronger focus on profitability and the ongoing restructuring in the finance sector change the framework for SME finance and influence the accessibility of SMEs to finance. The most important changes are: •In order to make the higher risk awareness operational, the credit sector introduces new rating systems and instruments for credit scoring;•Risk assessment of SMEs by banks will force the enterprises to present more and better quality information on their businesses;•Banks will try to pass through their additional costs for implementing and running the new capital regulations (Basel II) to their business clients;•due to the increase of competition on interest rates, the bank sector demands more and higher fees for its services (administration of accounts, payments systems, etc.), which are not only additional costs for SMEs but also limit their liquidity;•Small enterprises will lose their personal relationship with decision-makers in local branches –the credit application process will become more formal and anonymous and will probably lose longer;•the credit sector will lose more and more i ts “public function” to provide access to finance for a wide range of economic actors, which it has in a number of countries, in order to support and facilitate economic growth; the profitability of lending becomes the main focus of private credit institutions.All of these developments will make access to finance for SMEs even more difficult and / or will increase the cost of external finance. Business start-ups and SMEs, which want to enter new markets, may especially suffer from shortages regarding finance. A European Code of Conduct between Banks and SMEs would have allowed at least more transparency in the relations between Banks and SMEs and UEAPME regrets that the bank sector was not able to agree on such a commitment.Towards an encompassing policy approach to improve the access of Crafts, Trades and SMEs to financeAll analyses show that credits and loans will stay the main source of finance for the SME sector in Europe. Access to finance was always a main concern for SMEs, but the recent developments in the finance sector worsen the situation even more.Shortage of finance is already a relevant factor, which hinders economic recovery in Europe. Many SMEs are not able to finance their needs for investment.Therefore, UEAPME expects the new European Commission and the new European Parliament to strengthen their efforts to improve the framework conditions for SME finance. Europe’s Crafts, Trades and SMEs ask for an encompassing policy approach, which includes not only the conditions for SMEs’ access to l ending, but will also strengthen their capacity for internal finance and their access to external risk capital.From UEAPME’s point of view such an encompassing approach should be based on three guiding principles:•Risk-sharing between private investors, financial institutes, SMEs and public sector;•Increase of transparency of SMEs towards their external investors and lenders;•improving the regulatory environment for SME finance.Based on these principles and against the background of the changing environment for SME finance, UEAPME proposes policy measures in the following areas:1. New Capital Requirement Directive: SME friendly implementation of Basel IIDue to intensive lobbying activities, UEAPME, together with other Business Associations in Europe, has achieved some improvements in favour of SMEs regarding the new Basel Agreement on regulatory capital (Basel II). The final agreement from the Basel Committee contains a much more realistic approach toward the real risk situation of SME lending for the finance market and will allow the necessary room for adaptations, which respect the different regional traditions and institutional structures.However, the new regulatory system will influence the relations between Banks and SMEs and it will depend very much on the way it will be implemented into European law, whether Basel II becomes burdensome for SMEs and if it will reduce access to finance for them.The new Capital Accord form the Basel Committee gives the financial market authorities and herewith the European Institutions, a lot of flexibility. In about 70 areas they have room to adapt the Accord to their specific needs when implementing itinto EU law. Some of them will have important effects on the costs and the accessibility of finance for SMEs.UEAPME expects therefore from the new European Commission and the new European Parliament:•The implementation of the new Capital Requirement Directive will be costly for the Finance Sector (up to 30 Billion Euro till 2006) and its clients will have to pay for it. Therefore, the implementation – especially for smaller banks, which are often very active in SME finance –has to be carried out with as little administrative burdensome as possible (reporting obligations, statistics, etc.).•The European Regulators must recognize traditional instruments for collaterals (guarantees, etc.) as far as possible.•The European Commission and later the Member States should take over the recommendations from the European Parliament with regard to granularity, access to retail portfolio, maturity, partial use, adaptation of thresholds, etc., which will ease the burden on SME finance.2. SMEs need transparent rating proceduresDue to higher risk awareness of the finance sector and the needs of Basel II, many SMEs will be confronted for the first time with internal rating procedures or credit scoring systems by their banks. The bank will require more and better quality information from their clients and will assess them in a new way. Both up-coming developments are already causing increasing uncertainty amongst SMEs.In order to reduce this uncertainty and to allow SMEs to understand the principles of the new risk assessment, UEAPME demands transparent rating procedures –rating procedures may not become a “Black Box” for SMEs: •The bank should communicate the relevant criteria affecting the rating of SMEs.•The bank should inform SMEs about its assessment in order to allow SMEs to improve.The negotiations on a European Code of Conduct between Banks and SMEs , which would have included a self-commitment for transparent rating procedures by Banks, failed. Therefore, UEAPME expects from the new European Commission and the new European Parliament support for:•binding rules in the framework of the new Capital Adequacy Directive,which ensure the transparency of rating procedures and credit scoring systems for SMEs;•Elaboration of national Codes of Conduct in order to improve the relations between Banks and SMEs and to support the adaptation of SMEs to the new financial environment.3. SMEs need an extension of credit guarantee systems with a special focus on Micro-LendingBusiness start-ups, the transfer of businesses and innovative fast growth SMEs also depended in the past very often on public support to get access to finance. Increasing risk awareness by banks and the stricter interpretation of State Aid Rules will further increase the need for public support.Already now, there are credit guarantee schemes in many countries on the limit of their capacity and too many investment projects cannot be realized by SMEs.Experiences show that Public money, spent for supporting credit guarantees systems, is a very efficient instrument and has a much higher multiplying effect than other instruments. One Euro form the European Investment Funds can stimulate 30 Euro investments in SMEs (for venture capital funds the relation is only 1:2).Therefore, UEAPME expects the new European Commission and the new European Parliament to support:•The extension of funds for national credit guarantees schemes in the framework of the new Multi-Annual Programmed for Enterprises;•The development of new instruments for securitizations of SME portfolios;•The recognition of existing and well functioning credit guarantees schemes as collateral;•More flexibility within the European Instruments, because of national differences in the situation of SME finance;•The development of credit guarantees schemes in the new Member States;•The development of an SBIC-like scheme in the Member States to close the equity gap (0.2 – 2.5 Mio Euro, according to the expert meeting on PACE on April 27 in Luxemburg).•the development of a financial support scheme to encourage the internalizations of SMEs (currently there is no scheme available at EU level: termination of JOP, fading out of JEV).4. SMEs need company and income taxation systems, whichstrengthen their capacity for self-financingMany EU Member States have company and income taxation systems with negative incentives to build-up capital within the company by re-investing their profits. This is especially true for companies, which have to pay income taxes. Already in the past tax-regimes was one of the reasons for the higher dependence of Europe’s SMEs on bank lending. In future, the result of rating w ill also depend on the amount of capital in the company; the high dependence on lending will influence the access to lending. This is a vicious cycle, which has to be broken.Even though company and income taxation falls under the competence of Member States, UEAPME asks the new European Commission and the new European Parliament to publicly support tax-reforms, which will strengthen the capacity of Crafts, Trades and SME for self-financing. Thereby, a special focus on non-corporate companies is needed.5. Risk Capital – equity financingExternal equity financing does not have a real tradition in the SME sector. On the one hand, small enterprises and family business in general have traditionally not been very open towards external equity financing and are not used to informing transparently about their business.On the other hand, many investors of venture capital and similar forms of equity finance are very reluctant regarding investing their funds in smaller companies, which is more costly than investing bigger amounts in larger companies. Furthermore it is much more difficult to set out of such investments in smaller companies.Even though equity financing will never become the main source of financing for SMEs, it is an important instrument for highly innovative start-ups and fast growing companies and it has therefore to be further developed. UEAPME sees three pillars for such an approach where policy support is needed:Availability of venture capital•The Member States should review their taxation systems in order to create incentives to invest private money in all forms of venture capital.•Guarantee instruments for equity financing should be further developed.Improve the conditions for investing venture capital into SMEs•The development of secondary markets for venture capital investments in SMEs should be supported.•Accounting Standards for SMEs should be revised in order to easetransparent exchange of information between investor and owner-manager.Owner-managers must become more aware about the need for transparency towards investors•SME owners will have to realise that in future access to external finance (venture capital or lending) will depend much more on a transparent and open exchange of information about the situation and the perspectives of their companies.•In order to fulfil the new needs for transparency, SMEs will have to use new information instruments (business plans, financial reporting, etc.) and new management instruments (risk-management, financial management, etc.).外文资料翻译涂敏之会计学 8051208076题目:未来的中小企业融资背景:中小企业融资已经改变未来的经济复苏将取决于能否工艺品,贸易和中小企业利用其潜在的增长和创造就业。

外文文献翻译译文

外文文献翻译译文

环境管理会计(EMA)是管理会计发展的趋势Christine Jasch摘要:组织机构和会计师们为什么应该关心环境问题?来自供应链、资金提供商、监管机构以及其他利益相关者对于环境绩效及其信息披露的压力,导致组织机构的与环境相关的成本不断增加。

但同时提高环境绩效能够带来潜在的货币利益这一观点也逐渐得到人们的认同,传统的会计实务不能充分提供对于环境管理和与之相关的战略决策所需要的信息。

由于联合国可持续发展事务署下的环境管理会计工作组的成立,以及由它主办的出版物的发行,环境管理会计得到了促进和提升。

最近,国际会计师联合会发行了一份关于环境管理会计的指导性文件,这将进一步推动环境管理会计在会计师中的应用。

这期《清洁生产》杂志的关于环境管理会计的这个特别问题,侧重于它的方法论背景,以及来自澳大利亚、奥地利、阿根廷、加拿大、日本和立陶宛的案例研究经验。

正文:环境问题伴随者相关费用,收入和利益,正被世界上大多数国家的公民,政府组织,合作型领导人给予越来越多的关注.但是,有一个越来越广泛的共识,那就是,传统的会计不能为合理的支持在环境管理责任方面的决策制定提供准确的信息.为了填补这个差距,目前,EMA的新兴领域已经受到持续增加的关注.在19世纪九十年代早期,美国环保署是第一个成立了正式的项目去促进EMA的采纳的国家机构.从那时起,在30个国家的组织已经开始推动和落实EMA的许多不同类型的与环保相关的管理措施. 对于EMA的广泛关注是由于联合国可持续发展事务司对EMA的提倡以及其对EMA书籍的委托出版。

国际会计师联合会决定授权在由联合国科学发展司EMA工作组发表的最早的关于EMA 两本出版物的基础上发展一个关于EMA的指导性文件以整合关于EMA的最好的信息并与此同时进行必要的更新和添加.这个文件既不是有规定的要求的标准,也不是个描述性研究报告.它意在成为一个提供指导性信息的文件,作为监管要求,标准和纯粹信息的中间地带.这样, 它的目标是提供了一个总体框架和EMA的定义是相当全面,这是一致的可能与其他现有的,广泛应用于环境会计框架与EMA必须通力合作,以减少一些就这一重要议题的国际混乱功能。

法学 毕业论文 文献 外文 英文 翻译

法学 毕业论文 文献 外文 英文 翻译

附件一:英文文献INTRODUCTIONOffences of strict liability are those crimes which do not require mens rea with regard to at least one or more elements of the actus reus. The defendant need not have intended or known about that circumstance or consequence. Liability is said to be strict with regard to that element. For a good example see:R v Prince[1875]:The defendant ran off with an under-age girl. He was charged with an offence of taking a girl under the age of 16 out of the possession of her parents contrary to s55 of the Offences Against the Person Act 1861. The defendant knew that the girl was in the custody her father but he believed on reasonable grounds that the girl was aged 18. It was held that knowledge that the girl was under the age of 16 was not required in order to establish the offence. It was sufficient to show that the defendant intended to take the girl out of the possession of her father.It is only in extreme and rare cases where no mens rea is required for liability, thereby making the particular offence "absolute".GENERAL PRINCIPLESThe vast majority of strict liability crimes are statutory offences. However, statutes do not state explicitly that a particular offence is one of strict liability. Where a statute uses terms such as "knowingly" or "recklessly" then the offence being created is one that requires mens rea. Alternatively, it may make it clear that an offence of strict liability is being created. In many cases it will be a matter for the courts to interpret the statute and decide whether mens rea is required or not. What factors are taken into account by the courts when assessing whether or not an offence falls into the category of strict liability offences?THE MODERN CRITERIAIn Gammon (Hong Kong) Ltd v Attorney-General for Hong Kong [1984], the Privy Council considered the scope and role of strict liability offences in the modern criminal law and their effect upon the "presumption of mens rea". Lord Scarman laid down the criteria upon which a court should decide whether or not it is appropriate to impose strict liability: "In their Lordships' opinion, the law … may be stated in the following propositions … : (1) there is a presumption of law that mens rea is required before a person can be held guilty of a criminal offence; (2) the presumption is particularly strong where the offence is "truly criminal" in character; (3) the presumption applies to statutory offences, and can be displaced only if this is clearly or by necessary implication the effect of the statute; (4) the only situation in which the presumption can be displaced is where the statute is concerned with an issue of social concern, and public safety is such an issue; (5) even where a statute is concerned with such an issue, the presumption of mens rea stands unless it can be shown that the creation of strict liability will be effective to promote the objects of the statute by encouraging greater vigilance to prevent the commission of the prohibited act."(1) PRESUMPTION OF MENS REACourts usually begin with the presumption in favor of mens rea, seeing the well-known statement by Wright J in Sherras v De Rutzen:There is a presumption that mens rea, or evil intention, or knowledge of the wrongfulness of the act, is an essential ingredient in every offence; but that presumption is liable to be displaced either by the words of the statute creating the offence or by the subject-matter with which it deals, and both must be considered(2) GRAVITY OF PUNISHMENTAs a general rule, the more serious the criminal offence created by statute, the less likely the courts is to view it as an offence of strict liability. See:Sweet v Parsley [1970]:The defendant was a landlady of a house let to tenants. She retained one room in the house for herself and visited occasionally to collect the rent and letters. While she was absent the police searched the house and found cannabis. The defendant was convicted under s5 of the Dangerous Drugs Act 1965, of "being concerned in the management of premises used for the smoking of cannabis". She appealed alleging that she had no knowledge of the circumstances and indeed could not expect reasonably to have had such knowledge.The House of Lords,quashing her conviction, held that it had to be proved that the defendant had intended the house to be used for drug-taking, since the statute in question created a serious, or "truly criminal" offence, conviction for which would have grave consequences for the defendant. Lord Reid stated that "a stigma still attaches to any person convicted of a truly criminal offence, and the more serious or more disgraceful the offence the greater the stigma". And equally important, "the press in this country are vigilant to expose injustice, and every manifestly unjust conviction made known to the public tends to injure the body politic [people of a nation] by undermining public confidence in the justice of the law and of its administration."Lord Reid went on to point out that in any event it was impractical to impose absolute liability for an offence of this nature, as those who were responsible for letting properties could not possibly be expected to know everything that their tenants were doing.(3) WORDING OF THE STATUTEIn determining whether the presumption in favor of mens rea is to be displaced, the courts are required to have reference to the whole statute in which the offence appears. See:Cundy v Le Cocq (1884) :The defendant was convicted of unlawfully selling alcohol to an intoxicated person, contrary to s13 of the Licensing Act 1872. On appeal, the defendant contended that he had been unaware of the customer's drunkenness and thus should be acquitted. The Divisional Court interpreted s13 as creating an offence of strict liability since it was itself silent as to mens rea, whereas other offences under the same Act expressly required proof of knowledge on the part of the defendant. It was held that it was not necessary to consider whether the defendant knew, or had means of knowing, or could with ordinary care have detected that the person served was drunk. If he served a drink to a person who was in fact drunk, he was guilty. Stephen J stated: Here, as I have already pointed out, the object of this part of the Act is to prevent the sale of intoxicating liquor to drunken persons, and it is perfectly natural to carry that out by throwing on the publican the responsibility of determining whether the person supplied comes within that category.(4) ISSUES OF SOCIAL CONCERNSee :R v Blake (1996) :Investigation officers heard an unlicensed radio station broadcast and traced it to a flat where the defendant was discovered alone standing in front of the record decks, still playing music and wearing a set of headphones. Though the defendant admitted that he knewhe was using the equipment, he claimed that he believed he was making demonstration tapes and did not know he was transmitting. The defendant was convicted of using wireless telegraphy equipment without a license, contrary to s1 (1) Wireless Telegraphy Act 1949 and appealed on the basis that the offence required mens rea.The Court of Appeal held that the offence was an absolute (actually a strict) liability offence. The Court applied Lord Scarman's principles in Gammon and found that, though the presumption in favor of mens rea was strong because the offence carried a sentence of imprisonment and was, therefore, "truly criminal", yet the offence dealt with issues of serious social concern in the interests of public safety (namely, frequent unlicensed broadcasts on frequencies used by emergency services) and the imposition of strict liability encouraged greater vigilance in setting up careful checks to avoid committing the offence.(5) IS THERE ANY PURPOSE IN IMPOSING STRICT LIABILITY?The courts will be reluctant to construe a statute as imposing strict liability upon a defendant, where there is evidence to suggest that despite his having taken all reasonable steps, he cannot avoid the commission of an offence. See:Sherras v De Rutzen [1895]: The defendant was convicted of selling alcohol to a police officer whilst on duty, contrary to s16(2) of the Licensing Act 1872. He had reasonably believed the constable to be off duty as he had removed his arm-band, which was the acknowledged method of signifying off duty. The Divisional Court held that the conviction should be quashed, despite the absence from s16 (2) of any words requiring proof of mens rea as an element of the offence. Wright J expressed the view that the presumption in favor of mens rea would only be displaced by the wording of the statute itself, or its subject matter. In this case the latter factor was significant, in that no amount of reasonable care by the defendant would have prevented the offence from being committed. Wright J stated: "It is plain that if guilty knowledge is not necessary, no care on the part of the publican could save him from a conviction under section 16, subsection (2), since it would be as easy for the constable to deny that he was on duty when asked, or to produce a forged permission from his superior officer, as to remove his armlet before entering the public house. I am, therefore, of opinion that this conviction ought to be quashed."MODERN EXAMPLESThe following case is a modern example of the imposition of strict liability: Alphacell v Woodward [1972] The defendants were charged with causing polluted matter to enter a river contrary to s2 of the Rivers (Prevention of Pollution) Act 1951. The river had in fact been polluted because a pipe connected to the defendant's factory had been blocked, and the defendants had not been negligent. The House of Lords nevertheless held that the defendants were liable. Lord Salmon stated: If this appeal succeeded and it were held to be the law that no conviction be obtained under the 1951 Act unless the prosecution could discharge the often impossible onus of proving that the pollution was caused intentionally or negligently, a great deal of pollution would go unpunished and undeterred to the relief of many riparian factory owners. As a result, many rivers which are now filthy would become filthier still and many rivers which are now clean would lose their cleanliness. The legislature no doubt recognized that as a matter of public policy this would be most unfortunate. Hence s2(1)(a) which encourages riparian factory owners not only to take reasonable steps to prevent pollution but to do everything possible to ensure that they do not cause it.ARGUMENTS FOR STRICT LIABILITY1. The primary function of the courts is the prevention of forbidden acts. What acts should be regarded as forbidden? Surely only such acts as we can assert ought not to have been done. Some of the judges who upheld the conviction of Prince did so on the ground that men should be deterred from taking girls out of the possession of their parents, whatever the girl's age. This reasoning can hardly be applied to many modern offences of strict liability. We do not wish to deter people from driving cars, being concerned in the management of premises, financing hire purchase transactions or canning peas. These acts, if done with all proper care, are not such acts as the law should seek to prevent.2. Another argument that is frequently advanced in favor of strict liability is that, without it, many guilty people would escape - that there is neither time nor personnel available to litigate the culpability of each particular infraction. T his argument assumes that it is possible to deal with these cases without deciding whether D had mens rea or not, whether he was negligent or not. Certainly D may be convicted without deciding these questions, but how can he be sentenced? Suppose that a butcher sells some meat which is unfit for human consumption. Clearly the court will deal differently with (i) the butcher who knew that the meat was tainted; (ii) the butcher who did not know, but ought to have known; and (iii) the butcher who did not know and had no means of finding out. Sentence can hardly be imposed without deciding into which category the convicted person falls.3. The argument which is probably most frequently advanced by the courts for imposing strict liability is that it is necessary to do so in the interests of the public. Now it may be conceded that in many of the instances where strict liability has been imposed, the public does need protection against negligence and, assuming that the threat of punishment can make the potential harm doer more careful, there may be a valid ground for imposing liability for negligence as well as where there is mens rea. This is a plausible argument in favor of strict liability if there were no middle way between mens rea and strict liability - that is liability for negligence - and the judges have generally proceeded on the basis that there is no such middle way. Liability for negligence has rarely been spelled out of a statute except where, as in driving without due care, it is explicitly required. Lord Devlin has said: "It is not easy to find a way of construing a statute apparently expressed in terms of absolute liability so as to produce the requirement of negligence."ARGUMENTS AGAINST STRICT LIABILITY1. The case against strict liability, then, is, first, that it is unnecessary. It results in the conviction of persons who have behaved impeccably and who should not be required to alter their conduct in any way.2. Secondly, that it is unjust. Even if an absolute discharge can be given D may feel rightly aggrieved at having been formally convicted of an offence for which he bore no responsibility. Moreover, a conviction may have far-reaching consequences outside the courts, so that it is no answer to say that only a nominal penalty is imposed.3. The imposition of liability for negligence would in fact meet the arguments of most of those who favor strict liability. Such statutes are not meant to punish the vicious will but to put pressure upon the thoughtless and inefficient to do their whole duty in the interest of public health or safety or morals." The "thoughtless and inefficient" are, of course, the negligent. The objection tooffences of strict liability is not that these persons are penalized, but that others who are completely innocent are also liable to conviction. Though Lord Devlin was skeptical about the possibility of introducing the criterion of negligence (above), in Reynolds v Austin (1951) he stated that strict liability should only apply when there is something that the defendant can do to promote the observance of the law - which comes close to requiring negligence. If there were something which D could do to prevent the commission of the crime and which he failed to do, he might generally be said to have failed to comply with a duty - perhaps a high duty - of care; and so have been negligent.4. In Alphacell v Woodward (1972) Lord Salmon thought the relevant statutory section, "encourages riparian factory owners not only to take reasonable steps to prevent pollution but to do everything possible to ensure that they do not cause it." This suggests that, however vast the expenditure involved, and however unreasonable it may be in relation to the risk, D is under a duty to take all possible steps. Yet it may be doubted whether factory owners will in fact do more than is reasonable; and it is questionable whether they ought to be required to do so, at the risk - even though it be unlikely - of imprisonment. The contrary argument is that the existence of strict liability does induce organizations to aim at higher and higher standards.POSSIBLE DEVELOPMENTSThere are several possible compromises between mens rea and strict liability in regulatory offences. A "halfway house" has developed in Australia. The effect of Australian cases is: D might be convicted without proof of any mens rea by the Crown; but acquitted if he proved on a balance of probabilities that he lacked mens rea and was not negligent; ie, that he had an honest and reasonable belief in a state of facts which, would have made his act innocent. The onus of proving reasonable mistake is on D.STATUTORY DEFENCESIt is common for the drastic effect of a statute imposing strict liability to be mitigated by the provision of a statutory defense. It is instructive to consider one example. Various offences relating to the treatment and sale of food are enacted by the first twenty sections of the Food Safety Act 1990. Many, if not all, of these are strict liability offences. Section 21(1), however, provides that it shall be a defense for the person charged with any of the offences to prove that he took all reasonable precautions and exercised all due diligence to avoid the commission of the offence by himself or by a person under his control. Statutory defenses usually impose on the defendant a burden of proving that he had no mens rea and that he took all reasonable precautions and exercised all due diligence to avoid the commission of an offence. The effect of such provisions is that the prosecution need do no more than prove that the accused did the prohibited act and it is then for him to establish, if he can, that he did it innocently. Such provisions are a distinct advance on unmitigated strict liability.附件二:英文文献翻译介绍严格责任犯罪是关于客观方面的一个或多个因素不要求犯罪意图的那些犯罪。

外文参考文献(带中文翻译)

外文参考文献(带中文翻译)

外文资料原文涂敏之会计学 8051208076Title:Future of SME finance(/docs/pos_papers/2004/041027_SME-finance_final.do c)Background – the environment for SME finance has changedFuture economic recovery will depend on the possibility of Crafts, Trades and SMEs to exploit their potential for growth and employment creation.SMEs make a major contribution to growth and employment in the EU and are at the heart of the Lisbon Strategy, whose main objective is to turn Europe into the most competitive and dynamic knowledge-based economy in the world. However, the ability of SMEs to grow depends highly on their potential to invest in restructuring, innovation and qualification. All of these investments need capital and therefore access to finance.Against this background the consistently repeated complaint of SMEs about their problems regarding access to finance is a highly relevant constraint that endangers the economic recovery of Europe.Changes in the finance sector influence the behavior of credit institutes towards Crafts, Trades and SMEs. Recent and ongoing developments in the banking sector add to the concerns of SMEs and will further endanger their access to finance. The main changes in the banking sector which influence SME finance are:•Globalization and internationalization have increased the competition and the profit orientation in the sector;•worsening of the economic situations in some institutes (burst of the ITC bubble, insolvencies) strengthen the focus on profitability further;•Mergers and restructuring created larger structures and many local branches, which had direct and personalized contacts with small enterprises, were closed;•up-coming implementation of new capital adequacy rules (Basel II) will also change SME business of the credit sector and will increase its administrative costs;•Stricter interpretation of State-Aide Rules by the European Commission eliminates the support of banks by public guarantees; many of the effected banks are very active in SME finance.All these changes result in a higher sensitivity for risks and profits in the finance sector.The changes in the finance sector affect the accessibility of SMEs to finance.Higher risk awareness in the credit sector, a stronger focus on profitability and the ongoing restructuring in the finance sector change the framework for SME finance and influence the accessibility of SMEs to finance. The most important changes are: •In order to make the higher risk awareness operational, the credit sector introduces new rating systems and instruments for credit scoring;•Risk assessment of SMEs by banks will force the enterprises to present more and better quality information on their businesses;•Banks will try to pass through their additional costs for implementing and running the new capital regulations (Basel II) to their business clients;•due to the increase of competition on interest rates, the bank sector demands more and higher fees for its services (administration of accounts, payments systems, etc.), which are not only additional costs for SMEs but also limit their liquidity;•Small enterprises will lose their personal relationship with decision-makers in local branches –the credit application process will become more formal and anonymous and will probably lose longer;•the credit sector will lose more and more its “public function” to provide access to finance for a wide range of economic actors, which it has in a number of countries, in order to support and facilitate economic growth; the profitability of lending becomes the main focus of private credit institutions.All of these developments will make access to finance for SMEs even more difficult and / or will increase the cost of external finance. Business start-ups and SMEs, which want to enter new markets, may especially suffer from shortages regarding finance. A European Code of Conduct between Banks and SMEs would have allowed at least more transparency in the relations between Banks and SMEs and UEAPME regrets that the bank sector was not able to agree on such a commitment.Towards an encompassing policy approach to improve the access of Crafts, Trades and SMEs to financeAll analyses show that credits and loans will stay the main source of finance for the SME sector in Europe. Access to finance was always a main concern for SMEs,but the recent developments in the finance sector worsen the situation even more. Shortage of finance is already a relevant factor, which hinders economic recovery in Europe. Many SMEs are not able to finance their needs for investment.Therefore, UEAPME expects the new European Commission and the new European Parliament to strengthen their efforts to improve the framework conditions for SME finance. Europe’s Crafts, Trades and SMEs ask for an encompassing policy approach, which includes not only the conditions for SMEs’ access to lending, but will also strengthen their capacity for internal finance and their access to external risk capital.From UEAPM E’s point of view such an encompassing approach should be based on three guiding principles:•Risk-sharing between private investors, financial institutes, SMEs and public sector;•Increase of transparency of SMEs towards their external investors and lenders;•improving the regulatory environment for SME finance.Based on these principles and against the background of the changing environment for SME finance, UEAPME proposes policy measures in the following areas:1. New Capital Requirement Directive: SME friendly implementation of Basel IIDue to intensive lobbying activities, UEAPME, together with other Business Associations in Europe, has achieved some improvements in favour of SMEs regarding the new Basel Agreement on regulatory capital (Basel II). The final agreement from the Basel Committee contains a much more realistic approach toward the real risk situation of SME lending for the finance market and will allow the necessary room for adaptations, which respect the different regional traditions and institutional structures.However, the new regulatory system will influence the relations between Banks and SMEs and it will depend very much on the way it will be implemented into European law, whether Basel II becomes burdensome for SMEs and if it will reduce access to finance for them.The new Capital Accord form the Basel Committee gives the financial market authorities and herewith the European Institutions, a lot of flexibility. In about 70areas they have room to adapt the Accord to their specific needs when implementing it into EU law. Some of them will have important effects on the costs and the accessibility of finance for SMEs.UEAPME expects therefore from the new European Commission and the new European Parliament:•The implementation of the new Capital Requirement Directive will be costly for the Finance Sector (up to 30 Billion Euro till 2006) and its clients will have to pay for it. Therefore, the implementation – especially for smaller banks, which are often very active in SME finance –has to be carried out with as little administrative burdensome as possible (reporting obligations, statistics, etc.).•The European Regulators must recognize traditional instruments for collaterals (guarantees, etc.) as far as possible.•The European Commission and later the Member States should take over the recommendations from the European Parliament with regard to granularity, access to retail portfolio, maturity, partial use, adaptation of thresholds, etc., which will ease the burden on SME finance.2. SMEs need transparent rating proceduresDue to higher risk awareness of the finance sector and the needs of Basel II, many SMEs will be confronted for the first time with internal rating procedures or credit scoring systems by their banks. The bank will require more and better quality information from their clients and will assess them in a new way. Both up-coming developments are already causing increasing uncertainty amongst SMEs.In order to reduce this uncertainty and to allow SMEs to understand the principles of the new risk assessment, UEAPME demands transparent rating procedures –rating procedures may not become a “Black Box” for SMEs:•The bank should communicate the relevant criteria affecting the rating of SMEs.•The bank should inform SMEs about its assessment in order to allow SMEs to improve.The negotiations on a European Code of Conduct between Banks and SMEs , which would have included a self-commitment for transparent rating procedures by Banks, failed. Therefore, UEAPME expects from the new European Commission and the new European Parliament support for:•binding rules in the framework of the new Capital Adequacy Directive, which ensure the transparency of rating procedures and credit scoring systems for SMEs;•Elaboration of national Codes of Conduct in order to improve the relations between Banks and SMEs and to support the adaptation of SMEs to the new financial environment.3. SMEs need an extension of credit guarantee systems with a special focus on Micro-LendingBusiness start-ups, the transfer of businesses and innovative fast growth SMEs also depended in the past very often on public support to get access to finance. Increasing risk awareness by banks and the stricter interpretation of State Aid Rules will further increase the need for public support.Already now, there are credit guarantee schemes in many countries on the limit of their capacity and too many investment projects cannot be realized by SMEs.Experiences show that Public money, spent for supporting credit guarantees systems, is a very efficient instrument and has a much higher multiplying effect than other instruments. One Euro form the European Investment Funds can stimulate 30 Euro investments in SMEs (for venture capital funds the relation is only 1:2).Therefore, UEAPME expects the new European Commission and the new European Parliament to support:•The extension of funds for national credit guarantees schemes in the framework of the new Multi-Annual Programmed for Enterprises;•The development of new instruments for securitizations of SME portfolios;•The recognition of existing and well functioning credit guarantees schemes as collateral;•More flexibility within the European Instruments, because of national differences in the situation of SME finance;•The development of credit guarantees schemes in the new Member States;•The development of an SBIC-like scheme in the Member States to close the equity gap (0.2 – 2.5 Mio Euro, according to the expert meeting on PACE on April 27 in Luxemburg).•the development of a financial support scheme to encourage the internalizations of SMEs (currently there is no scheme available at EU level: termination of JOP, fading out of JEV).4. SMEs need company and income taxation systems, which strengthen their capacity for self-financingMany EU Member States have company and income taxation systems with negative incentives to build-up capital within the company by re-investing their profits. This is especially true for companies, which have to pay income taxes. Already in the past tax-regimes was one of the reasons for the higher dependence of Europe’s SMEs on bank lending. In future, the result of rating will also depend on the amount of capital in the company; the high dependence on lending will influence the access to lending. This is a vicious cycle, which has to be broken.Even though company and income taxation falls under the competence of Member States, UEAPME asks the new European Commission and the new European Parliament to publicly support tax-reforms, which will strengthen the capacity of Crafts, Trades and SME for self-financing. Thereby, a special focus on non-corporate companies is needed.5. Risk Capital – equity financingExternal equity financing does not have a real tradition in the SME sector. On the one hand, small enterprises and family business in general have traditionally not been very open towards external equity financing and are not used to informing transparently about their business.On the other hand, many investors of venture capital and similar forms of equity finance are very reluctant regarding investing their funds in smaller companies, which is more costly than investing bigger amounts in larger companies. Furthermore it is much more difficult to set out of such investments in smaller companies.Even though equity financing will never become the main source of financing for SMEs, it is an important instrument for highly innovative start-ups and fast growing companies and it has therefore to be further developed. UEAPME sees three pillars for such an approach where policy support is needed:Availability of venture capital•The Member States should review their taxation systems in order to create incentives to invest private money in all forms of venture capital.•Guarantee instruments for equity financing should be further developed.Improve the conditions for investing venture capital into SMEs•The development of secondary markets for venture capital investments in SMEs should be supported.•Accounting Standards for SMEs should be revised in order to ease transparent exchange of information between investor and owner-manager.Owner-managers must become more aware about the need for transparency towards investors•SME owners will have to realise that in future access to external finance (venture capital or lending) will depend much more on a transparent and open exchange of information about the situation and the perspectives of their companies.•In order to fulfil the new needs for transparency, SMEs will have to use new information instruments (business plans, financial reporting, etc.) and new management instruments (risk-management, financial management, etc.).外文资料翻译涂敏之会计学 8051208076题目:未来的中小企业融资背景:中小企业融资已经改变未来的经济复苏将取决于能否工艺品,贸易和中小企业利用其潜在的增长和创造就业。

毕业设计外文文献翻译【范本模板】

毕业设计外文文献翻译【范本模板】

毕业设计(论文)外文资料翻译系别:专业:班级:姓名:学号:外文出处:附件: 1. 原文; 2。

译文2013年03月附件一:A Rapidly Deployable Manipulator SystemChristiaan J。

J。

Paredis, H. Benjamin Brown,Pradeep K. KhoslaAbstract:A rapidly deployable manipulator system combines the flexibility of reconfigurable modular hardware with modular programming tools,allowing the user to rapidly create a manipulator which is custom-tailored for a given task. This article describes two main aspects of such a system,namely,the Reconfigurable Modular Manipulator System (RMMS)hardware and the corresponding control software。

1 IntroductionRobot manipulators can be easily reprogrammed to perform different tasks, yet the range of tasks that can be performed by a manipulator is limited by mechanicalstructure。

Forexample,a manipulator well-suited for precise movement across the top of a table would probably no be capable of lifting heavy objects in the vertical direction. Therefore,to perform a given task,one needs to choose a manipulator with an appropriate mechanical structure.We propose the concept of a rapidly deployable manipulator system to address the above mentioned shortcomings of fixed configuration manipulators。

建筑类外文文献及中文翻译

建筑类外文文献及中文翻译

forced concrete structure reinforced with anoverviewReinSince the reform and opening up, with the national economy's rapid and sustained development of a reinforced concrete structure built, reinforced with the development of technology has been great. Therefore, to promote the use of advanced technology reinforced connecting to improve project quality and speed up the pace of construction, improve labor productivity, reduce costs, and is of great significance.Reinforced steel bars connecting technologies can be divided into two broad categories linking welding machinery and steel. There are six types of welding steel welding methods, and some apply to the prefabricated plant, and some apply to the construction site, some of both apply. There are three types of machinery commonly used reinforcement linking method primarily applicable to the construction site. Ways has its own characteristics and different application, and in the continuous development and improvement. In actual production, should be based on specific conditions of work, working environment and technical requirements, the choice of suitable methods to achieve the best overall efficiency.1、steel mechanical link1.1 radial squeeze linkWill be a steel sleeve in two sets to the highly-reinforced Department with superhigh pressure hydraulic equipment (squeeze tongs) along steel sleeve radial squeeze steel casing, in squeezing out tongs squeeze pressure role of a steel sleeve plasticity deformation closely integrated with reinforced through reinforced steel sleeve and Wang Liang's Position will be two solid steel bars linkedCharacteristic: Connect intensity to be high, performance reliable, can bear high stress draw and pigeonhole the load and tired load repeatedly.Easy and simple to handle, construction fast, save energy and material, comprehensive economy profitable, this method has been already a large amount of application in the project.Applicable scope : Suitable for Ⅱ, Ⅲ, Ⅳgrade reinforcing bar (including welding bad reinfor cing bar ) with ribbing of Ф 18- 50mm, connection between the same diameter or different diameters reinforcing bar .1.2must squeeze linkExtruders used in the covers, reinforced axis along the cold metal sleeve squeeze dedicated to insert sleeve Lane two hot rolling steel drums into a highly integrated mechanical linking methods.Characteristic: Easy to operate and joining fast and not having flame homework , can construct for 24 hours , save a large number of reinforcing bars and energy. Applicable scope : Suitable for , set up according to first and second class antidetonation requirement -proof armored concrete structure ФⅡ, Ⅲgrade reinforcing bar with ribbing of hot rolling of 20- 32mm join and construct live.1.3 cone thread connectingUsing cone thread to bear pulled, pressed both effort and self-locking nature, undergo good principles will be reinforced by linking into cone-processing thread at the moment the value of integration into the joints connecting steel bars.Characteristic: Simple , all right preparatory cut of the craft , connecting fast, concentricity is good, have pattern person who restrain from advantage reinforcing bar carbon content.Applicable scope : Suitable for the concrete structure of the industry , civil buil ding and general structures, reinforcing bar diameter is for Фfor the the 16- 40mm one Ⅱ, Ⅲgrade verticality, it is the oblique to or reinforcing bars horizontal join construct live.conclusionsThese are now commonly used to connect steel synthesis methods, which links technology in the United States, Britain, Japan and other countries are widely used. There are different ways to connect their different characteristics and scope of the actual construction of production depending on the specific project choose a suitable method of connecting to achieve both energy conservation and saving time limit for a project ends.钢筋混凝土构造中钢筋连接综述改革开放以来,伴随国民经济旳迅速、持久发展,多种钢筋混凝土建筑构造大量建造,钢筋连接技术得到很大旳发展。

毕业设计论文外文文献翻译

毕业设计论文外文文献翻译

xxxx大学xxx学院毕业设计(论文)外文文献翻译系部xxxx专业xxxx学生姓名xxxx 学号xxxx指导教师xxxx 职称xxxx2013年3 月Introducing the Spring FrameworkThe Spring Framework: a popular open source application framework that addresses many of the issues outlined in this book. This chapter will introduce the basic ideas of Spring and dis-cuss the central “bean factory” lightweight Inversion-of-Control (IoC) container in detail.Spring makes it particularly easy to implement lightweight, yet extensible, J2EE archi-tectures. It provides an out-of-the-box implementation of the fundamental architectural building blocks we recommend. Spring provides a consistent way of structuring your applications, and provides numerous middle tier features that can make J2EE development significantly easier and more flexible than in traditional approaches.The basic motivations for Spring are:To address areas not well served by other frameworks. There are numerous good solutions to specific areas of J2EE infrastructure: web frameworks, persistence solutions, remoting tools, and so on. However, integrating these tools into a comprehensive architecture can involve significant effort, and can become a burden. Spring aims to provide an end-to-end solution, integrating spe-cialized frameworks into a coherent overall infrastructure. Spring also addresses some areas that other frameworks don’t. For example, few frameworks address generic transaction management, data access object implementation, and gluing all those things together into an application, while still allowing for best-of-breed choice in each area. Hence we term Spring an application framework, rather than a web framework, IoC or AOP framework, or even middle tier framework.To allow for easy adoption. A framework should be cleanly layered, allowing the use of indi-vidual features without imposing a whole worldview on the application. Many Spring features, such as the JDBC abstraction layer or Hibernate integration, can be used in a library style or as part of the Spring end-to-end solution.To deliver ease of use. As we’ve noted, J2EE out of the box is relatively hard to use to solve many common problems. A good infrastructure framework should make simple tasks simple to achieve, without forcing tradeoffs for future complex requirements (like distributed transactions) on the application developer. It should allow developers to leverage J2EE services such as JTA where appropriate, but to avoid dependence on them in cases when they are unnecessarily complex.To make it easier to apply best practices. Spring aims to reduce the cost of adhering to best practices such as programming to interfaces, rather than classes, almost to zero. However, it leaves the choice of architectural style to the developer.Non-invasiveness. Application objects should have minimal dependence on the framework. If leveraging a specific Spring feature, an object should depend only on that particular feature, whether by implementing a callback interface or using the framework as a class library. IoC and AOP are the key enabling technologies for avoiding framework dependence.Consistent configuration. A good infrastructure framework should keep application configuration flexible and consistent, avoiding the need for custom singletons and factories. A single style should be applicable to all configuration needs, from the middle tier to web controllers.Ease of testing. Testing either whole applications or individual application classes in unit tests should be as easy as possible. Replacing resources or application objects with mock objects should be straightforward.To allow for extensibility. Because Spring is itself based on interfaces, rather than classes, it is easy to extend or customize it. Many Spring components use strategy interfaces, allowing easy customization.A Layered Application FrameworkChapter 6 introduced the Spring Framework as a lightweight container, competing with IoC containers such as PicoContainer. While the Spring lightweight container for JavaBeans is a core concept, this is just the foundation for a solution for all middleware layers.Basic Building Blockspring is a full-featured application framework that can be leveraged at many levels. It consists of multi-ple sub-frameworks that are fairly independent but still integrate closely into a one-stop shop, if desired. The key areas are:Bean factory. The Spring lightweight IoC container, capable of configuring and wiring up Java-Beans and most plain Java objects, removing the need for custom singletons and ad hoc configura-tion. Various out-of-the-box implementations include an XML-based bean factory. The lightweight IoC container and its Dependency Injection capabilities will be the main focus of this chapter.Application context. A Spring application context extends the bean factory concept by adding support for message sources and resource loading, and providing hooks into existing environ-ments. Various out-of-the-box implementations include standalone application contexts and an XML-based web application context.AOP framework. The Spring AOP framework provides AOP support for method interception on any class managed by a Spring lightweight container.It supports easy proxying of beans in a bean factory, seamlessly weaving in interceptors and other advice at runtime. Chapter 8 dis-cusses the Spring AOP framework in detail. The main use of the Spring AOP framework is to provide declarative enterprise services for POJOs.Auto-proxying. Spring provides a higher level of abstraction over the AOP framework and low-level services, which offers similar ease-of-use to .NET within a J2EE context. In particular, the provision of declarative enterprise services can be driven by source-level metadata.Transaction management. Spring provides a generic transaction management infrastructure, with pluggable transaction strategies (such as JTA and JDBC) and various means for demarcat-ing transactions in applications. Chapter 9 discusses its rationale and the power and flexibility that it offers.DAO abstraction. Spring defines a set of generic data access exceptions that can be used for cre-ating generic DAO interfaces that throw meaningful exceptions independent of the underlying persistence mechanism. Chapter 10 illustrates the Spring support for DAOs in more detail, examining JDBC, JDO, and Hibernate as implementation strategies.JDBC support. Spring offers two levels of JDBC abstraction that significantly ease the effort of writing JDBC-based DAOs: the org.springframework.jdbc.core package (a template/callback approach) and the org.springframework.jdbc.object package (modeling RDBMS operations as reusable objects). Using the Spring JDBC packages can deliver much greater pro-ductivity and eliminate the potential for common errors such as leaked connections, compared with direct use of JDBC. The Spring JDBC abstraction integrates with the transaction and DAO abstractions.Integration with O/R mapping tools. Spring provides support classesfor O/R Mapping tools like Hibernate, JDO, and iBATIS Database Layer to simplify resource setup, acquisition, and release, and to integrate with the overall transaction and DAO abstractions. These integration packages allow applications to dispense with custom ThreadLocal sessions and native transac-tion handling, regardless of the underlying O/R mapping approach they work with.Web MVC framework. Spring provides a clean implementation of web MVC, consistent with the JavaBean configuration approach. The Spring web framework enables web controllers to be configured within an IoC container, eliminating the need to write any custom code to access business layer services. It provides a generic DispatcherServlet and out-of-the-box controller classes for command and form handling. Request-to-controller mapping, view resolution, locale resolution and other important services are all pluggable, making the framework highly extensi-ble. The web framework is designed to work not only with JSP, but with any view technology, such as Velocity—without the need for additional bridges. Chapter 13 discusses web tier design and the Spring web MVC framework in detail.Remoting support. Spring provides a thin abstraction layer for accessing remote services without hard-coded lookups, and for exposing Spring-managed application beans as remote services. Out-of-the-box support is inc luded for RMI, Caucho’s Hessian and Burlap web service protocols, and WSDL Web Services via JAX-RPC. Chapter 11 discusses lightweight remoting.While Spring addresses areas as diverse as transaction management and web MVC, it uses a consistent approach everywhere. Once you have learned the basic configuration style, you will be able to apply it in many areas. Resources, middle tier objects, and web components are all set up using the same bean configuration mechanism. You can combine your entireconfiguration in one single bean definition file or split it by application modules or layers; the choice is up to you as the application developer. There is no need for diverse configuration files in a variety of formats, spread out across the application.Spring on J2EEAlthough many parts of Spring can be used in any kind of Java environment, it is primarily a J2EE application framework. For example, there are convenience classes for linking JNDI resources into a bean factory, such as JDBC DataSources and EJBs, and integration with JTA for distributed transaction management. In most cases, application objects do not need to work with J2EE APIs directly, improving reusability and meaning that there is no need to write verbose, hard-to-test, JNDI lookups.Thus Spring allows application code to seamlessly integrate into a J2EE environment without being unnecessarily tied to it. You can build upon J2EE services where it makes sense for your application, and choose lighter-weight solutions if there are no complex requirements. For example, you need to use JTA as transaction strategy only if you face distributed transaction requirements. For a single database, there are alternative strategies that do not depend on a J2EE container. Switching between those transac-tion strategies is merely a matter of configuration; Spring’s consistent abstraction avoids any need to change application code.Spring offers support for accessing EJBs. This is an important feature (and relevant even in a book on “J2EE without EJB”) because the u se of dynamic proxies as codeless client-side business delegates means that Spring can make using a local stateless session EJB an implementation-level, rather than a fundamen-tal architectural, choice.Thus if you want to use EJB, you can within a consistent architecture; however, you do not need to make EJB the cornerstone of your architecture. This Spring feature can make devel-oping EJB applications significantly faster, because there is no need to write custom code in service loca-tors or business delegates. Testing EJB client code is also much easier, because it only depends on the EJB’s Business Methods interface (which is not EJB-specific), not on JNDI or the EJB API.Spring also provides support for implementing EJBs, in the form of convenience superclasses for EJB implementation classes, which load a Spring lightweight container based on an environment variable specified in the ejb-jar.xml deployment descriptor. This is a powerful and convenient way of imple-menting SLSBs or MDBs that are facades for fine-grained POJOs: a best practice if you do choose to implement an EJB application. Using this Spring feature does not conflict with EJB in any way—it merely simplifies following good practice.Introducing the Spring FrameworkThe main aim of Spring is to make J2EE easier to use and promote good programming practice. It does not reinvent the wheel; thus you’ll find no logging packages in Spring, no connection pools, no distributed transaction coordinator. All these features are provided by other open source projects—such as Jakarta Commons Logging (which Spring uses for all its log output), Jakarta Commons DBCP (which can be used as local DataSource), and ObjectWeb JOTM (which can be used as transaction manager)—or by your J2EE application server. For the same reason, Spring doesn’t provide an O/R mapping layer: There are good solutions for this problem area, such as Hibernate and JDO.Spring does aim to make existing technologies easier to use. For example, although Spring is not in the business of low-level transactioncoordination, it does provide an abstraction layer over JTA or any other transaction strategy. Spring is also popular as middle tier infrastructure for Hibernate, because it provides solutions to many common issues like SessionFactory setup, ThreadLocal sessions, and exception handling. With the Spring HibernateTemplate class, implementation methods of Hibernate DAOs can be reduced to one-liners while properly participating in transactions.The Spring Framework does not aim to replace J2EE middle tier services as a whole. It is an application framework that makes accessing low-level J2EE container ser-vices easier. Furthermore, it offers lightweight alternatives for certain J2EE services in some scenarios, such as a JDBC-based transaction strategy instead of JTA when just working with a single database. Essentially, Spring enables you to write appli-cations that scale down as well as up.Spring for Web ApplicationsA typical usage of Spring in a J2EE environment is to serve as backbone for the logical middle tier of a J2EE web application. Spring provides a web application context concept, a powerful lightweight IoC container that seamlessly adapts to a web environment: It can be accessed from any kind of web tier, whether Struts, WebWork, Tapestry, JSF, Spring web MVC, or a custom solution.The following code shows a typical example of such a web application context. In a typical Spring web app, an applicationContext.xml file will reside in the WEB-INF directory, containing bean defini-tions according to the “spring-beans” DTD. In such a bean definition XML file, business objects and resources are defined, for example, a “myDataSource” bean, a “myInventoryManager” bean, and a “myProductManager” bean. Spring takes care of their configuration, their wiring up, and their lifecycle.<beans><bean id=”myDataSource” class=”org.springframework.jdbc. datasource.DriverManagerDataSource”><property name=”driverClassName”> <value>com.mysql.jdbc.Driver</value></property> <property name=”url”><value>jdbc:mysql:myds</value></property></bean><bean id=”myInventoryManager” class=”ebusiness.DefaultInventoryManager”> <property name=”dataSource”><ref bean=”myDataSource”/> </property></bean><bean id=”myProductManager” class=”ebusiness.DefaultProductManage r”><property name=”inventoryManager”><ref bean=”myInventoryManager”/> </property><property name=”retrieveCurrentStock”> <value>true</value></property></bean></beans>By default, all such beans have “singleton” scope: one instance per context. The “myInventoryManager” bean will automatically be wired up with the defined DataSource, while “myProductManager” will in turn receive a reference to the “myInventoryManager” bean. Those objects (traditionally called “beans” in Spring terminology) need to expos e only the corresponding bean properties or constructor arguments (as you’ll see later in this chapter); they do not have to perform any custom lookups.A root web application context will be loaded by a ContextLoaderListener that is defined in web.xml as follows:<web-app><listener> <listener-class>org.springframework.web.context.ContextLoaderListener</listener-class></listener>...</web-app>After initialization of the web app, the root web application context will be available as a ServletContext attribute to the whole web application, in the usual manner. It can be retrieved from there easily via fetching the corresponding attribute, or via a convenience method in org.springframework.web. context.support.WebApplicationContextUtils. This means that the application context will be available in any web resource with access to the ServletContext, like a Servlet, Filter, JSP, or Struts Action, as follows:WebApplicationContext wac = WebApplicationContextUtils.getWebApplicationContext(servletContext);The Spring web MVC framework allows web controllers to be defined as JavaBeans in child application contexts, one per dispatcher servlet. Such controllers can express dependencies on beans in the root application context via simple bean references. Therefore, typical Spring web MVC applications never need to perform a manual lookup of an application context or bean factory, or do any other form of lookup.Neither do other client objects that are managed by an application context themselves: They can receive collaborating objects as bean references.The Core Bean FactoryIn the previous section, we have seen a typical usage of the Spring IoC container in a web environment: The provided convenience classes allow for seamless integration without having to worry about low-level container details. Nevertheless, it does help to look at the inner workings to understand how Spring manages the container. Therefore, we will now look at the Spring bean container in more detail, starting at the lowest building block: the bean factory. Later, we’ll continue with resource setup and details on the application context concept.One of the main incentives for a lightweight container is to dispense with the multitude of custom facto-ries and singletons often found in J2EE applications. The Spring bean factory provides one consistent way to set up any number of application objects, whether coarse-grained components or fine-grained busi-ness objects. Applying reflection and Dependency Injection, the bean factory can host components that do not need to be aware of Spring at all. Hence we call Spring a non-invasive application framework.Fundamental InterfacesThe fundamental lightweight container interface is org.springframework.beans.factory.Bean Factory. This is a simple interface, which is easy to implement directly in the unlikely case that none of the implementations provided with Spring suffices. The BeanFactory interface offers two getBean() methods for looking up bean instances by String name, with the option to check for a required type (and throw an exception if there is a type mismatch).public interface BeanFactory {Object getBean(String name) throws BeansException;Object getBean(String name, Class requiredType) throws BeansException;boolean containsBean(String name);boolean isSingleton(String name) throws NoSuchBeanDefinitionException;String[] getAliases(String name) throws NoSuchBeanDefinitionException;}The isSingleton() method allows calling code to check whether the specified name represents a sin-gleton or prototype bean definition. In the case of a singleton bean, all calls to the getBean() method will return the same object instance. In the case of a prototype bean, each call to getBean() returns an inde-pendent object instance, configured identically.The getAliases() method will return alias names defined for the given bean name, if any. This mecha-nism is used to provide more descriptive alternative names for beans than are permitted in certain bean factory storage representations, such as XML id attributes.The methods in most BeanFactory implementations are aware of a hierarchy that the implementation may be part of. If a bean is not foundin the current factory, the parent factory will be asked, up until the root factory. From the point of view of a caller, all factories in such a hierarchy will appear to be merged into one. Bean definitions in ancestor contexts are visible to descendant contexts, but not the reverse.All exceptions thrown by the BeanFactory interface and sub-interfaces extend org.springframework. beans.BeansException, and are unchecked. This reflects the fact that low-level configuration prob-lems are not usually recoverable: Hence, application developers can choose to write code to recover from such failures if they wish to, but should not be forced to write code in the majority of cases where config-uration failure is fatal.Most implementations of the BeanFactory interface do not merely provide a registry of objects by name; they provide rich support for configuring those objects using IoC. For example, they manage dependen-cies between managed objects, as well as simple properties. In the next section, we’ll look at how such configuration can be expressed in a simple and intuitive XML structure.The sub-interface org.springframework.beans.factory.ListableBeanFactory supports listing beans in a factory. It provides methods to retrieve the number of beans defined, the names of all beans, and the names of beans that are instances of a given type:public interface ListableBeanFactory extends BeanFactory {int getBeanDefinitionCount();String[] getBeanDefinitionNames();String[] getBeanDefinitionNames(Class type);boolean containsBeanDefinition(String name);Map getBeansOfType(Class type, boolean includePrototypes,boolean includeFactoryBeans) throws BeansException}The ability to obtain such information about the objects managed by a ListableBeanFactory can be used to implement objects that work with a set of other objects known only at runtime.In contrast to the BeanFactory interface, the methods in ListableBeanFactory apply to the current factory instance and do not take account of a hierarchy that the factory may be part of. The org.spring framework.beans.factory.BeanFactoryUtils class provides analogous methods that traverse an entire factory hierarchy.There are various ways to leverage a Spring bean factory, ranging from simple bean configuration to J2EE resource integration and AOP proxy generation. The bean factory is the central, consistent way of setting up any kind of application objects in Spring, whether DAOs, business objects, or web controllers. Note that application objects seldom need to work with the BeanFactory interface directly, but are usu-ally configured and wired by a factory without the need for any Spring-specific code.For standalone usage, the Spring distribution provides a tiny spring-core.jar file that can be embed-ded in any kind of application. Its only third-party dependency beyond J2SE 1.3 (plus JAXP for XML parsing) is the Jakarta Commons Logging API.The bean factory is the core of Spring and the foundation for many other services that the framework offers. Nevertheless, the bean factory can easily be used stan-dalone if no other Spring services are required.Derivative:networkSpring 框架简介Spring框架:这是一个流行的开源应用框架,它可以解决很多问题。

外文文献翻译原文+译文

外文文献翻译原文+译文

外文文献翻译原文Analysis of Con tin uous Prestressed Concrete BeamsChris BurgoyneMarch 26, 20051、IntroductionThis conference is devoted to the development of structural analysis rather than the strength of materials, but the effective use of prestressed concrete relies on an appropriate combination of structural analysis techniques with knowledge of the material behaviour. Design of prestressed concrete structures is usually left to specialists; the unwary will either make mistakes or spend inordinate time trying to extract a solution from the various equations.There are a number of fundamental differences between the behaviour of prestressed concrete and that of other materials. Structures are not unstressed when unloaded; the design space of feasible solutions is totally bounded;in hyperstatic structures, various states of self-stress can be induced by altering the cable profile, and all of these factors get influenced by creep and thermal effects. How were these problems recognised and how have they been tackled?Ever since the development of reinforced concrete by Hennebique at the end of the 19th century (Cusack 1984), it was recognised that steel and concrete could be more effectively combined if the steel was pretensioned, putting the concrete into compression. Cracking could be reduced, if not prevented altogether, which would increase stiffness and improve durability. Early attempts all failed because the initial prestress soon vanished, leaving the structure to be- have as though it was reinforced; good descriptions of these attempts are given by Leonhardt (1964) and Abeles (1964).It was Freyssineti’s observations of the sagging of the shallow arches on three bridges that he had just completed in 1927 over the River Allier near Vichy which led directly to prestressed concrete (Freyssinet 1956). Only the bridge at Boutiron survived WWII (Fig 1). Hitherto, it had been assumed that concrete had a Young’s modulus which remained fixed, but he recognised that the de- ferred strains due to creep explained why the prestress had been lost in the early trials. Freyssinet (Fig. 2) also correctly reasoned that high tensile steel had to be used, so that some prestress would remain after the creep had occurred, and alsothat high quality concrete should be used, since this minimised the total amount of creep. The history of Freyssineti’s early prestressed concrete work is written elsewhereFigure1:Boutiron Bridge,Vic h yFigure 2: Eugen FreyssinetAt about the same time work was underway on creep at the BRE laboratory in England ((Glanville 1930) and (1933)). It is debatable which man should be given credit for the discovery of creep but Freyssinet clearly gets the credit for successfully using the knowledge to prestress concrete.There are still problems associated with understanding how prestressed concrete works, partly because there is more than one way of thinking about it. These different philosophies are to some extent contradictory, and certainly confusing to the young engineer. It is also reflected, to a certain extent, in the various codes of practice.Permissible stress design philosophy sees prestressed concrete as a way of avoiding cracking by eliminating tensile stresses; the objective is for sufficient compression to remain after creep losses. Untensionedreinforcement, which attracts prestress due to creep, is anathema. This philosophy derives directly from Freyssinet’s logic and is primarily a working stress concept.Ultimate strength philosophy sees prestressing as a way of utilising high tensile steel as reinforcement. High strength steels have high elastic strain capacity, which could not be utilised when used as reinforcement; if the steel is pretensioned, much of that strain capacity is taken out before bonding the steel to the concrete. Structures designed this way are normally designed to be in compression everywhere under permanent loads, but allowed to crack under high live load. The idea derives directly from the work of Dischinger (1936) and his work on the bridge at Aue in 1939 (Schonberg and Fichter 1939), as well as that of Finsterwalder (1939). It is primarily an ultimate load concept. The idea of partial prestressing derives from these ideas.The Load-Balancing philosophy, introduced by T.Y. Lin, uses prestressing to counter the effect of the permanent loads (Lin 1963). The sag of the cables causes an upward force on the beam, which counteracts the load on the beam. Clearly, only one load can be balanced, but if this is taken as the total dead weight, then under that load the beam will perceive only the net axial prestress and will have no tendency to creep up or down.These three philosophies all have their champions, and heated debates take place between them as to which is the most fundamental.2、Section designFrom the outset it was recognised that prestressed concrete has to be checked at both the working load and the ultimate load. For steel structures, and those made from reinforced concrete, there is a fairly direct relationship between the load capacity under an allowable stress design, and that at the ultimate load under an ultimate strength design. Older codes were based on permissible stresses at the working load; new codes use moment capacities at the ultimate load. Different load factors are used in the two codes, but a structure which passes one code is likely to be acceptable under the other.For prestressed concrete, those ideas do not hold, since the structure is highly stressed, even when unloaded. A small increase of load can cause some stress limits to be breached, while a large increase in load might be needed to cross other limits. The designer has considerable freedom to vary both the working load and ultimate load capacities independently; both need to be checked.A designer normally has to check the tensile and compressive stresses, in both the top and bottom fibre of the section, for every load case. The critical sections are normally, but not always, the mid-span and the sections over piers but other sections may become critical ,when the cable profile has to be determined.The stresses at any position are made up of three components, one of which normally has a different sign from the other two; consistency of sign convention is essential.If P is the prestressing force and e its eccentricity, A and Z are the area of the cross-section and its elastic section modulus, while M is the applied moment, then where ft and fc are the permissible stresses in tension and compression.c e t f ZM Z P A P f ≤-+≤Thus, for any combination of P and M , the designer already has four in- equalities to deal with.The prestressing force differs over time, due to creep losses, and a designer isusually faced with at least three combinations of prestressing force and moment;• the applied moment at the time the prestress is first applied, before creep losses occur,• the maximum applied moment after creep losses, and• the minimum applied moment after creep losses.Figure 4: Gustave MagnelOther combinations may be needed in more complex cases. There are at least twelve inequalities that have to be satisfied at any cross-section, but since an I-section can be defined by six variables, and two are needed to define the prestress, the problem is over-specified and it is not immediately obvious which conditions are superfluous. In the hands of inexperienced engineers, the design process can be very long-winded. However, it is possible to separate out the design of the cross-section from the design of the prestress. By considering pairs of stress limits on the same fibre, but for different load cases, the effects of the prestress can be eliminated, leaving expressions of the form:rangestress e Perm issibl Range Mom entZ These inequalities, which can be evaluated exhaustively with little difficulty, allow the minimum size of the cross-section to be determined.Once a suitable cross-section has been found, the prestress can be designed using a construction due to Magnel (Fig.4). The stress limits can all be rearranged into the form:()M fZ PA Z e ++-≤1 By plotting these on a diagram of eccentricity versus the reciprocal of the prestressing force, a series of bound lines will be formed. Provided the inequalities (2) are satisfied, these bound lines will always leave a zone showing all feasible combinations of P and e. The most economical design, using the minimum prestress, usually lies on the right hand side of the diagram, where the design is limited by the permissible tensile stresses.Plotting the eccentricity on the vertical axis allows direct comparison with the crosssection, as shown in Fig. 5. Inequalities (3) make no reference to the physical dimensions of the structure, but these practical cover limits can be shown as wellA good designer knows how changes to the design and the loadings alter the Magnel diagram. Changing both the maximum andminimum bending moments, but keeping the range the same, raises and lowers the feasible region. If the moments become more sagging the feasible region gets lower in the beam.In general, as spans increase, the dead load moments increase in proportion to the live load. A stage will be reached where the economic point (A on Fig.5) moves outside the physical limits of the beam; Guyon (1951a) denoted the limiting condition as the critical span. Shorter spans will be governed by tensile stresses in the two extreme fibres, while longer spans will be governed by the limiting eccentricity and tensile stresses in the bottom fibre. However, it does not take a large increase in moment ,at which point compressive stresses will govern in the bottom fibre under maximum moment.Only when much longer spans are required, and the feasible region moves as far down as possible, does the structure become governed by compressive stresses in both fibres.3、Continuous beamsThe design of statically determinate beams is relatively straightforward; the engineer can work on the basis of the design of individual cross-sections, as outlined above. A number of complications arise when the structure is indeterminate which means that the designer has to consider, not only a critical section,but also the behaviour of the beam as a whole. These are due to the interaction of a number of factors, such as Creep, Temperature effects and Construction Sequence effects. It is the development of these ideas whichforms the core of this paper. The problems of continuity were addressed at a conference in London (Andrew and Witt 1951). The basic principles, and nomenclature, were already in use, but to modern eyes concentration on hand analysis techniques was unusual, and one of the principle concerns seems to have been the difficulty of estimating losses of prestressing force.3.1 Secondary MomentsA prestressing cable in a beam causes the structure to deflect. Unlike the statically determinate beam, where this motion is unrestrained, the movement causes a redistribution of the support reactions which in turn induces additional moments. These are often termed Secondary Moments, but they are not always small, or Parasitic Moments, but they are not always bad.Freyssinet’s bridge across the Marne at Luzancy, started in 1941 but not completed until 1946, is often thought of as a simply supported beam, but it was actually built as a two-hinged arch (Harris 1986), with support reactions adjusted by means of flat jacks and wedges which were later grouted-in (Fig.6). The same principles were applied in the later and larger beams built over the same river.Magnel built the first indeterminate beam bridge at Sclayn, in Belgium (Fig.7) in 1946. The cables are virtually straight, but he adjusted the deck profile so that the cables were close to the soffit near mid-span. Even with straight cables the sagging secondary momentsare large; about 50% of the hogging moment at the central support caused by dead and live load.The secondary moments cannot be found until the profile is known but the cablecannot be designed until the secondary moments are known. Guyon (1951b) introduced the concept of the concordant profile, which is a profile that causes no secondary moments; es and ep thus coincide. Any line of thrust is itself a concordant profile.The designer is then faced with a slightly simpler problem; a cable profile has to be chosen which not only satisfies the eccentricity limits (3) but is also concordant. That in itself is not a trivial operation, but is helped by the fact that the bending moment diagram that results from any load applied to a beam will itself be a concordant profile for a cable of constant force. Such loads are termed notional loads to distinguish them from the real loads on the structure. Superposition can be used to progressively build up a set of notional loads whose bending moment diagram gives the desired concordant profile.3.2 Temperature effectsTemperature variations apply to all structures but the effect on prestressed concrete beams can be more pronounced than in other structures. The temperature profile through the depth of a beam (Emerson 1973) can be split into three components for the purposes of calculation (Hambly 1991). The first causes a longitudinal expansion, which is normally released by the articulation of the structure; the second causes curvature which leads to deflection in all beams and reactant moments in continuous beams, while the third causes a set of self-equilibrating set of stresses across the cross-section.The reactant moments can be calculated and allowed-for, but it is the self- equilibrating stresses that cause the main problems for prestressed concrete beams. These beams normally have high thermal mass which means that daily temperature variations do not penetrate to the core of the structure. The result is a very non-uniform temperature distribution across the depth which in turn leads to significant self-equilibrating stresses. If the core of the structure is warm, while the surface is cool, such as at night, then quite large tensile stresses can be developed on the top and bottom surfaces. However, they only penetrate a very short distance into the concrete and the potential crack width is very small. It can be very expensive to overcome the tensile stress by changing the section or the prestress。

(完整word版)外文文献及翻译doc

(完整word版)外文文献及翻译doc

Criminal Law1.General IntroductionCriminal law is the body of the law that defines criminal offenses, regulates the apprehension, charging, and trial of suspected offenders,and fixes punishment for convicted persons. Substantive criminal law defines particular crimes, and procedural law establishes rules for the prosecution of crime. In a democratic society, it is the function of the legislative bodies to decide what behavior will be made criminal and what penalties will be attached to violations of the law.Capital punishment may be imposed in some jurisdictions for the most serious crimes. And physical or corporal punishment may still be imposed such as whipping or caning, although these punishments are prohibited in much of the world. A convict may be incarcerated in prison or jail and the length of incarceration may vary from a day to life.Criminal law is a reflection of the society that produce it. In an Islamic theocracy, such as Iran, criminal law will reflect the religious teachings of the Koran; in an Catholic country, it will reflect the tenets of Catholicism. In addition, criminal law will change to reflect changes in society, especially attitude changes. For instance, use of marijuana was once considered a serious crime with harsh penalties, whereas today the penalties in most states are relatively light. As severity of the penaltieswas reduced. As a society advances, its judgments about crime and punishment change.2.Elements of a CrimeObviously, different crimes require different behaviors, but there are common elements necessary for proving all crimes. First, the prohibited behavior designated as a crime must be clearly defined so that a reasonable person can be forewarned that engaging in that behavior is illegal. Second, the accused must be shown to have possessed the requisite intent to commit the crime. Third, the state must prove causation. Finally, the state must prove beyond a reasonable doubt that the defendant committed the crime.(1) actus reusThe first element of crime is the actus reus.Actus is an act or action and reus is a person judicially accused of a crime. Therefore, actus reus is literally the action of a person accused of a crime. A criminal statute must clearly define exactly what act is deemed “guilty”---that is, the exact behavior that is being prohibited. That is done so that all persons are put on notice that if they perform the guilty act, they will be liable for criminal punishment. Unless the actus reus is clearly defined, one might not know whether or not on e’s behavior is illegal.Actus reus may be accomplished by an action, by threat of action,or exceptionally, by an omission to act, which is a legal duty to act. For example, the act of Cain striking Abel might suffice, or a parent’s failure to give to a young child also may provide the actus reus for a crime.Where the actus reus is a failure to act, there must be a duty of care. A duty can arise through contract, a voluntary undertaking, a blood relation, and occasionally through one’s official position. Duty also can arise from one’s own creation of a dangerous situation.(2)mens reaA second element of a crime is mens rea. Mens rea refers to an individual’s state of mind when a crime is committed. While actus reus is proven by physical or eyewitness evidence, mens rea is more difficult to ascertain. The jury must determine for itself whether the accused had the necessary intent to commit the act.A lower threshold of mens rea is satisfied when a defendant recognizes an act is dangerous but decides to commit it anyway. This is recklessness. For instance, if Cain tears a gas meter from a wall, and knows this will let flammable gas escape into a neighbor’s house, he could be liable for poisoning. Courts often consider whether the actor did recognise the danger, or alternatively ought to have recognized a danger (though he did not) is tantamount to erasing intent as a requirement. In this way, the importance of mens rea hasbeen reduced in some areas of the criminal law.Wrongfulness of intent also may vary the seriousness of an offense. A killing committed with specific intent to kill or with conscious recognition that death or serious bodily harm will result, would be murder, whereas a killing affected by reckless acts lacking such a consciousness could be manslaughter.(3)CausationThe next element is causation. Often the phrase “but for”is used to determine whether causation has occurred. For example, we might say “Cain caused Abel”, by which we really mean “Cain caused Abel’s death. ”In other words, ‘but for Cain’s act, Abel would still be alive.” Causation, then, means “but for” the actions of A, B would not have been harmed. In criminal law, causation is an element that must be proven beyond a reasonable doubt.(4) Proof beyond a Reasonable DoubtIn view of the fact that in criminal cases we are dealing with the life and liberty of the accused person, as well as the stigma accompanying conviction, the legal system places strong limits on the power of the state to convict a person of a crime. Criminal defendants are presumed innocent. The state must overcome this presumption of innocence by proving every element of the offense charged against the defendant beyond a reasonable doubt to thesatisfaction of all the jurors. This requirement is the primary way our system minimizes the risk of convicting an innocent person.The state must prove its case within a framework of procedural safeguards that are designed to protect the accused. The state’s failure to prove any material element of its case results in the accused being acquitted or found not guilty, even though he or she may actually have committed the crime charged.3. Strict LiabilityIn modern society, some crimes require no more mens rea, and they are known as strict liability offenses. For in stance, under the Road Traffic Act 1988 it is a strict liability offence to drive a vehicle with an alcohol concentration above the prescribed limit.Strict liability can be described as criminal or civil liability notwithstanding the lack mens rea or intent by the defendant. Not all crimes require specific intent, and the threshold of culpability required may be reduced. For example, it might be sufficient to show that a defendant acted negligently, rather than intentionally or recklessly.1. 概述刑法是规定什么试犯罪,有关犯罪嫌疑人之逮捕、起诉及审判,及对已决犯处以何种刑罚的部门法。

外文文献及翻译

外文文献及翻译

((英文参考文献及译文)二〇一六年六月本科毕业论文 题 目:STATISTICAL SAMPLING METHOD, USED INTHE AUDIT学生姓名:王雪琴学 院:管理学院系 别:会计系专 业:财务管理班 级:财管12-2班 学校代码: 10128 学 号: 201210707016Statistics and AuditRomanian Statistical Review nr. 5 / 2010STATISTICAL SAMPLING METHOD, USED IN THE AUDIT - views, recommendations, fi ndingsPhD Candidate Gabriela-Felicia UNGUREANUAbstractThe rapid increase in the size of U.S. companies from the earlytwentieth century created the need for audit procedures based on the selectionof a part of the total population audited to obtain reliable audit evidence, tocharacterize the entire population consists of account balances or classes oftransactions. Sampling is not used only in audit – is used in sampling surveys,market analysis and medical research in which someone wants to reach aconclusion about a large number of data by examining only a part of thesedata. The difference is the “population” from which the sample is selected, iethat set of data which is intended to draw a conclusion. Audit sampling appliesonly to certain types of audit procedures.Key words: sampling, sample risk, population, sampling unit, tests ofcontrols, substantive procedures.Statistical samplingCommittee statistical sampling of American Institute of CertifiedPublic Accountants of (AICPA) issued in 1962 a special report, titled“Statistical sampling and independent auditors’ which allowed the use ofstatistical sampling method, in accordance with Generally Accepted AuditingStandards (GAAS). During 1962-1974, the AICPA published a series of paperson statistical sampling, “Auditor’s Approach to Statistical Sampling”, foruse in continuing professional education of accountants. During 1962-1974,the AICPA published a series of papers on statistical sampling, “Auditor’sApproach to Statistical Sampling”, for use in continuing professional educationof accountants. In 1981, AICPA issued the professional standard, “AuditSampling”, which provides general guidelines for both sampling methods,statistical and non-statistical.Earlier audits included checks of all transactions in the period coveredby the audited financial statements. At that time, the literature has not givenparticular attention to this subject. Only in 1971, an audit procedures programprinted in the “Federal Reserve Bulletin (Federal Bulletin Stocks)” includedseveral references to sampling such as selecting the “few items” of inventory.Statistics and Audit The program was developed by a special committee, which later became the AICPA, that of Certified Public Accountants American Institute.In the first decades of last century, the auditors often applied sampling, but sample size was not in related to the efficiency of internal control of the entity. In 1955, American Institute of Accountants has published a study case of extending the audit sampling, summarizing audit program developed by certified public accountants, to show why sampling is necessary to extend the audit. The study was important because is one of the leading journal on sampling which recognize a relationship of dependency between detail and reliability testing of internal control.In 1964, the AICPA’s Auditing Standards Board has issued a report entitled “The relationship between statistical sampling and Generally Accepted Auditing Standards (GAAS)” which illustrated the relationship between the accuracy and reliability in sampling and provisions of GAAS.In 1978, the AICPA published the work of Donald M. Roberts,“Statistical Auditing”which explains the underlying theory of statistical sampling in auditing.In 1981, AICPA issued the professional standard, named “Audit Sampling”, which provides guidelines for both sampling methods, statistical and non-statistical.An auditor does not rely solely on the results of a single procedure to reach a conclusion on an account balance, class of transactions or operational effectiveness of the controls. Rather, the audit findings are based on combined evidence from several sources, as a consequence of a number of different audit procedures. When an auditor selects a sample of a population, his objective is to obtain a representative sample, ie sample whose characteristics are identical with the population’s characteristics. This means that selected items are identical with those remaining outside the sample.In practice, auditors do not know for sure if a sample is representative, even after completion the test, but they “may increase the probability that a sample is representative by accuracy of activities made related to design, sample selection and evaluation” [1]. Lack of specificity of the sample results may be given by observation errors and sampling errors. Risks to produce these errors can be controlled.Observation error (risk of observation) appears when the audit test did not identify existing deviations in the sample or using an inadequate audit technique or by negligence of the auditor.Sampling error (sampling risk) is an inherent characteristic of the survey, which results from the fact that they tested only a fraction of the total population. Sampling error occurs due to the fact that it is possible for Revista Română de Statistică nr. 5 / 2010Statistics and Auditthe auditor to reach a conclusion, based on a sample that is different from the conclusion which would be reached if the entire population would have been subject to audit procedures identical. Sampling risk can be reduced by adjusting the sample size, depending on the size and population characteristics and using an appropriate method of selection. Increasing sample size will reduce the risk of sampling; a sample of the all population will present a null risk of sampling.Audit Sampling is a method of testing for gather sufficient and appropriate audit evidence, for the purposes of audit. The auditor may decide to apply audit sampling on an account balance or class of transactions. Sampling audit includes audit procedures to less than 100% of the items within an account balance or class of transactions, so all the sample able to be selected. Auditor is required to determine appropriate ways of selecting items for testing. Audit sampling can be used as a statistical approach and a non- statistical.Statistical sampling is a method by which the sample is made so that each unit consists of the total population has an equal probability of being included in the sample, method of sample selection is random, allowed to assess the results based on probability theory and risk quantification of sampling. Choosing the appropriate population make that auditor’ findings can be extended to the entire population.Non-statistical sampling is a method of sampling, when the auditor uses professional judgment to select elements of a sample. Since the purpose of sampling is to draw conclusions about the entire population, the auditor should select a representative sample by choosing sample units which have characteristics typical of that population. Results will not extrapolate the entire population as the sample selected is representative.Audit tests can be applied on the all elements of the population, where is a small population or on an unrepresentative sample, where the auditor knows the particularities of the population to be tested and is able to identify a small number of items of interest to audit. If the sample has not similar characteristics for the elements of the entire population, the errors found in the tested sample can not extrapolate.Decision of statistical or non-statistical approach depends on the auditor’s professional judgment which seeking sufficient appropriate audits evidence on which to completion its findings about the audit opinion.As a statistical sampling method refer to the random selection that any possible combination of elements of the community is equally likely to enter the sample. Simple random sampling is used when stratification was not to audit. Using random selection involves using random numbers generated byRomanian Statistical Review nr. 5 / 2010Statistics and Audit a computer. After selecting a random starting point, the auditor found the first random number that falls within the test document numbers. Only when the approach has the characteristics of statistical sampling, statistical assessments of risk are valid sampling.In another variant of the sampling probability, namely the systematic selection (also called random mechanical) elements naturally succeed in office space or time; the auditor has a preliminary listing of the population and made the decision on sample size. “The auditor calculated a counting step, and selects the sample element method based on step size. Step counting is determined by dividing the volume of the community to sample the number of units desired. Advantages of systematic screening are its usability. In most cases, a systematic sample can be extracted quickly and method automatically arranges numbers in successive series.”[2].Selection by probability proportional to size - is a method which emphasizes those population units’recorded higher values. The sample is constituted so that the probability of selecting any given element of the population is equal to the recorded value of the item;Stratifi ed selection - is a method of emphasis of units with higher values and is registered in the stratification of the population in subpopulations. Stratification provides a complete picture of the auditor, when population (data table to be analyzed) is not homogeneous. In this case, the auditor stratifies a population by dividing them into distinct subpopulations, which have common characteristics, pre-defined. “The objective of stratification is to reduce the variability of elements in each layer and therefore allow a reduction in sample size without a proportionate increase in the risk of sampling.” [3] If population stratification is done properly, the amount of sample size to come layers will be less than the sample size that would be obtained at the same level of risk given sample with a sample extracted from the entire population. Audit results applied to a layer can be designed only on items that are part of that layer.I appreciated as useful some views on non-statistical sampling methods, which implies that guided the selection of the sample selecting each element according to certain criteria determined by the auditor. The method is subjective; because the auditor selects intentionally items containing set features him.The selection of the series is done by selecting multiple elements series (successive). Using sampling the series is recommended only if a reasonable number of sets used. Using just a few series there is a risk that the sample is not representative. This type of sampling can be used in addition to other samples, where there is a high probability of occurrence of errors. At the arbitrary selection, no items are selected preferably from the auditor, Revista Română de Statistică nr. 5 / 2010Statistics and Auditthat regardless of size or source or characteristics. Is not the recommended method, because is not objective.That sampling is based on the auditor’s professional judgment, which may decide which items can be part or not sampled. Because is not a statistical method, it can not calculate the standard error. Although the sample structure can be constructed to reproduce the population, there is no guarantee that the sample is representative. If omitted a feature that would be relevant in a particular situation, the sample is not representative.Sampling applies when the auditor plans to make conclusions about population, based on a selection. The auditor considers the audit program and determines audit procedures which may apply random research. Sampling is used by auditors an internal control systems testing, and substantive testing of operations. The general objectives of tests of control system and operations substantive tests are to verify the application of pre-defined control procedures, and to determine whether operations contain material errors.Control tests are intended to provide evidence of operational efficiency and controls design or operation of a control system to prevent or detect material misstatements in financial statements. Control tests are necessary if the auditor plans to assess control risk for assertions of management.Controls are generally expected to be similarly applied to all transactions covered by the records, regardless of transaction value. Therefore, if the auditor uses sampling, it is not advisable to select only high value transactions. Samples must be chosen so as to be representative population sample.An auditor must be aware that an entity may change a special control during the course of the audit. If the control is replaced by another, which is designed to achieve the same specific objective, the auditor must decide whether to design a sample of all transactions made during or just a sample of transactions controlled again. Appropriate decision depends on the overall objective of the audit test.Verification of internal control system of an entity is intended to provide guidance on the identification of relevant controls and design evaluation tests of controls.Other tests:In testing internal control system and testing operations, audit sample is used to estimate the proportion of elements of a population containing a characteristic or attribute analysis. This proportion is called the frequency of occurrence or percentage of deviation and is equal to the ratio of elements containing attribute specific and total number of population elements. WeightRomanian Statistical Review nr. 5 / 2010Statistics and Audit deviations in a sample are determined to calculate an estimate of the proportion of the total population deviations.Risk associated with sampling - refers to a sample selection which can not be representative of the population tested. In other words, the sample itself may contain material errors or deviations from the line. However, issuing a conclusion based on a sample may be different from the conclusion which would be reached if the entire population would be subject to audit.Types of risk associated with sampling:Controls are more effective than they actually are or that there are not significant errors when they exist - which means an inappropriate audit opinion. Controls are less effective than they actually are that there are significant errors when in fact they are not - this calls for additional activities to establish that initial conclusions were incorrect.Attributes testing - the auditor should be defining the characteristics to test and conditions for misconduct. Attributes testing will make when required objective statistical projections on various characteristics of the population. The auditor may decide to select items from a population based on its knowledge about the entity and its environment control based on risk analysis and the specific characteristics of the population to be tested.Population is the mass of data on which the auditor wishes to generalize the findings obtained on a sample. Population will be defined compliance audit objectives and will be complete and consistent, because results of the sample can be designed only for the population from which the sample was selected.Sampling unit - a unit of sampling may be, for example, an invoice, an entry or a line item. Each sample unit is an element of the population. The auditor will define the sampling unit based on its compliance with the objectives of audit tests.Sample size - to determine the sample size should be considered whether sampling risk is reduced to an acceptable minimum level. Sample size is affected by the risk associated with sampling that the auditor is willing to accept it. The risk that the auditor is willing to accept lower, the sample will be higher.Error - for detailed testing, the auditor should project monetary errors found in the sample population and should take into account the projected error on the specific objective of the audit and other audit areas. The auditor projects the total error on the population to get a broad perspective on the size of the error and comparing it with tolerable error.For detailed testing, tolerable error is tolerable and misrepresentations Revista Română de Statistică nr. 5 / 2010Statistics and Auditwill be a value less than or equal to materiality used by the auditor for the individual classes of transactions or balances audited. If a class of transactions or account balances has been divided into layers error is designed separately for each layer. Design errors and inconsistent errors for each stratum are then combined when considering the possible effect on the total classes of transactions and account balances.Evaluation of sample results - the auditor should evaluate the sample results to determine whether assessing relevant characteristics of the population is confirmed or needs to be revised.When testing controls, an unexpectedly high rate of sample error may lead to an increase in the risk assessment of significant misrepresentation unless it obtained additional audit evidence to support the initial assessment. For control tests, an error is a deviation from the performance of control procedures prescribed. The auditor should obtain evidence about the nature and extent of any significant changes in internal control system, including the staff establishment.If significant changes occur, the auditor should review the understanding of internal control environment and consider testing the controls changed. Alternatively, the auditor may consider performing substantive analytical procedures or tests of details covering the audit period.In some cases, the auditor might not need to wait until the end audit to form a conclusion about the effectiveness of operational control, to support the control risk assessment. In this case, the auditor might decide to modify the planned substantive tests accordingly.If testing details, an unexpectedly large amount of error in a sample may cause the auditor to believe that a class of transactions or account balances is given significantly wrong in the absence of additional audit evidence to show that there are not material misrepresentations.When the best estimate of error is very close to the tolerable error, the auditor recognizes the risk that another sample have different best estimate that could exceed the tolerable error.ConclusionsFollowing analysis of sampling methods conclude that all methods have advantages and disadvantages. But the auditor is important in choosing the sampling method is based on professional judgment and take into account the cost / benefit ratio. Thus, if a sampling method proves to be costly auditor should seek the most efficient method in view of the main and specific objectives of the audit.Romanian Statistical Review nr. 5 / 2010Statistics and Audit The auditor should evaluate the sample results to determine whether the preliminary assessment of relevant characteristics of the population must be confirmed or revised. If the evaluation sample results indicate that the relevant characteristics of the population needs assessment review, the auditor may: require management to investigate identified errors and likelihood of future errors and make necessary adjustments to change the nature, timing and extent of further procedures to take into account the effect on the audit report.Selective bibliography:[1] Law no. 672/2002 updated, on public internal audit[2] Arens, A şi Loebbecke J - Controve …Audit– An integrate approach”, 8th edition, Arc Publishing House[3] ISA 530 - Financial Audit 2008 - International Standards on Auditing, IRECSON Publishing House, 2009- Dictionary of macroeconomics, Ed C.H. Beck, Bucharest, 2008Revista Română de Statistică nr. 5 / 2010Statistics and Audit摘要美国公司的规模迅速增加,从第二十世纪初创造了必要的审计程序,根据选定的部分总人口的审计,以获得可靠的审计证据,以描述整个人口组成的帐户余额或类别的交易。

机械类外文文献翻译(中英文翻译)

机械类外文文献翻译(中英文翻译)

机械类外文文献翻译(中英文翻译)英文原文Mechanical Design and Manufacturing ProcessesMechanical design is the application of science and technology to devise new or improved products for the purpose of satisfying human needs. It is a vast field of engineering technology which not only concerns itself with the original conception of the product in terms of its size, shape and construction details, but also considers the various factors involved in the manufacture, marketing and use of the product.People who perform the various functions of mechanical design are typically called designers, or design engineers. Mechanical design is basically a creative activity. However, in addition to being innovative, a design engineer must also have a solid background in the areas of mechanical drawing, kinematics, dynamics, materials engineering, strength of materials and manufacturing processes.As stated previously, the purpose of mechanical design is to produce a product which will serve a need for man. Inventions, discoveries and scientific knowledge by themselves do not necessarily benefit people; only if they are incorporated into a designed product will a benefit be derived. It should be recognized, therefore, that a human need must be identified before a particular product is designed.Mechanical design should be considered to be an opportunity to use innovative talents to envision a design of a product, to analyze the systemand then make sound judgments on how the product is to be manufactured. It is important to understand the fundamentals of engineering rather than memorize mere facts and equations. There are no facts or equations which alone can be used to provide all the correct decisions required to produce a good design.On the other hand, any calculations made must be done with the utmost care and precision. For example, if a decimal point is misplaced, an otherwise acceptable design may not function.Good designs require trying new ideas and being willing to take a certain amount of risk, knowing that if the new idea does not work the existing method can be reinstated. Thus a designer must have patience, since there is no assurance of success for the time and effort expended. Creating a completely new design generally requires that many old and well-established methods be thrust aside. This is not easy since many people cling to familiar ideas, techniques and attitudes. A design engineer should constantly search for ways to improve an existing product and must decide what old, proven concepts should be used and what new, untried ideas should be incorporated.New designs generally have "bugs" or unforeseen problems which must be worked out before the superior characteristics of the new designs can be enjoyed. Thus there is a chance for a superior product, but only at higher risk. It should be emphasized that, if a design does not warrant radical new methods, such methods should not be applied merely for the sake of change.During the beginning stages of design, creativity should be allowedto flourish without a great number of constraints. Even though many impractical ideas may arise, it is usually easy to eliminate them in the early stages of design before firm details are required by manufacturing. In this way, innovative ideas are not inhibited. Quite often, more than one design is developed, up to the point where they can be compared against each other. It is entirely possible that the design which is ultimately accepted will use ideas existing in one of the rejected designs that did not show as much overall promise.Psychologists frequently talk about trying to fit people to the machines they operate. It is essentially the responsibility of the design engineer to strive to fit machines to people. This is not an easy task, since there is really no average person for which certain operating dimensions and procedures are optimum.Another important point which should be recognized is that a design engineer must be able to communicate ideas to other people if they are to be incorporated. Communicating the design to others is the final, vital step in the design process. Undoubtedly many great designs, inventions, and creative works have been lost to mankind simply because the originators were unable or unwilling to explain their accomplishments to others. Presentation is a selling job. The engineer, when presenting a new solution to administrative, management, or supervisory persons, is attempting to sell or to prove to them that this solution is a better one. Unless this can be done successfully, the time and effort spent on obtaining the solution have been largely wasted.Basically, there are only three means of communication available tous. These are the written, the oral, and the graphical forms. Therefore the successful engineer will be technically competent and versatile in all three forms of communication. A technically competent person who lacks ability in any one of these forms is severely handicapped. If ability in all three forms is lacking, no one will ever know how competent that person is!The competent engineer should not be afraid of the possibility of not succeeding in a presentation. In fact, occasional failure should be expected because failure or criticism seems to accompany every really creative idea. There is a great deal to be learned from a failure, and the greatest gains are obtained by those willing to risk defeat. In the final analysis, the real failure would lie in deciding not to make the presentation at all. To communicate effectively, the following questions must be answered:(1) Does the design really serve a human need?(2) Will it be competitive with existing products of rival companies?(3) Is it economical to produce?(4) Can it be readily maintained?(5) Will it sell and make a profit?Only time will provide the true answers to the preceding questions, but the product should be designed, manufactured and marketed only with initial affirmative answers. The design engineer also must communicate the finalized design to manufacturing through the use of detail and assembly drawings.Quite often, a problem will occur during the manufacturing cycle [3].It may be that a change is required in the dimensioning or tolerancing of a part so that it can be more readily produced. This fails in the category of engineering changes which must be approved by the design engineer so that the product function will not be adversely affected. In other cases, a deficiency in the design may appear during assembly or testing just prior to shipping. These realities simply bear out the fact that design is a living process. There is always a better way to do it and the designer should constantly strive towards finding that better way.Designing starts with a need, real or imagined. Existing apparatus may need improvements in durability, efficiently, weight, speed, or cost. New apparatus may be needed to perform a function previously done by men, such as computation, assembly, or servicing. With the objective wholly or partly defined, the next step in design is the conception of mechanisms and their arrangements that will perform the needed functions.For this, freehand sketching is of great value, not only as a record of one's thoughts and as an aid in discussion with others, but particularly for communication with one's own mind, as a stimulant for creative ideas.When the general shape and a few dimensions of the several components become apparent, analysis can begin in earnest. The analysis will have as its objective satisfactory or superior performance, plus safety and durability with minimum weight, and a competitive east. Optimum proportions and dimensions will be sought for each critically loaded section, together with a balance between the strength of the several components. Materials and their treatment will be chosen. These important objectives can be attained only by analysis based upon the principles ofmechanics, such as those of statics for reaction forces and for the optimumutilization of friction; of dynamics for inertia, acceleration, and energy; of elasticity and strength of materials for stress。

儿童教育外文翻译文献

儿童教育外文翻译文献

儿童教育外文翻译文献(文档含中英文对照即英文原文和中文翻译)原文:The Role of Parents and Community in the Educationof the Japanese ChildHeidi KnipprathAbstractIn Japan, there has been an increased concern about family and community participation in the child’s educat ion. Traditionally, the role of parents and community in Japan has been one of support and less one of active involvement in school learning. Since the government commenced education reforms in the last quarter of the 20th century, a more active role for parents and the community in education has been encouraged. These reforms have been inspired by the need to tackle various problems that had arisen, such as the perceived harmful elements of society’spreoccupation with academic achievement and the problematic behavior of young people. In this paper, the following issues are examined: (1) education policy and reform measures with regard to parent and community involvement in the child’s education; (2) the state of parent and community involvement at the eve of the 20th century.Key Words: active involvement, community, education reform, Japan, parents, partnership, schooling, supportIntroduction: The Discourse on the Achievement GapWhen western observers are tempted to explain why Japanese students attain high achievement scores in international comparative assessment studies, they are likely to address the role of parents and in particular of the mother in the education of the child. Education mom is a phrase often brought forth in the discourse on Japanese education to depict the Japanese mother as being a pushy, and demanding home-bound tutor, intensely involved in the child’s education due to severe academic competition. Although this image of the Japanese mother is a stereotype spread by the popular mass media in Japan and abroad, and the extent by which Japanese mothers are absorbed in their children is exaggerated (Benjamin, 1997, p. 16; Cummings, 1989, p. 297; Stevenson & Stigler, 1992, p. 82), Stevenson and Stigler (1992) argue that Japanese parents do play an indispensable role in the academic performance of their children. During their longitudinal and cross-national research project, they and their collaborators observed that Japanese first and fifth graders persistently achieved higher on math tests than American children. Besides reciting teacher’s teaching style, cultural beliefs, and organization of schooling, Stevenson and Stigler (1992) mention parent’s role in supporting the learning conditions of the child to explain differences in achievement between elementary school students of the United States and students of Japan. In Japan, children receive more help at home with schoolwork (Chen & Stevenson, 1989; Stevenson & Stigler, 1992), and tend to perform less household chores than children in the USA (Stevenson et al., 1990; Stevenson & Stigler, 1992). More Japanese parents than American parents provide space and a personal desk and purchase workbooks for their children to supplement their regular text-books at school (Stevenson et al., 1990; Stevenson & Stigler, 1992). Additionally, Stevenson and Stigler (1992) observed that American mothers are much more readily satisfied with their child’s performance than Asian parents are, have less realistic assessments of their child’s academic perform ance, intelligence, and other personality characteristics, and subsequently have lower standards. Based on their observation of Japanese, Chinese and American parents, children and teachers, Stevenson and Stigler (1992) conclude that American families can increase the academic achievement of their children by strengthening the link between school and home, creating a physical and psychological environment that is conducive to study, and by making realistic assessments and raising standards. Also Benjamin (1997), who performed ‘day-to-day ethnography’ to find out how differences in practice between American and Japanese schools affect differences in outcomes, discusses the relationship between home and school and how the Japanese mother is involved in the academic performance standards reached by Japanese children. She argues that Japanese parents are willing to pay noticeable amounts of money for tutoring in commercial establishments to improve the child’s performance on entrance examinations, to assist in ho mework assignments, to facilitate and support their children’s participation in school requirements and activities, and to check notebooks of teachers on the child’s progress and other school-related messages from the teacher. These booklets are read and written daily by teachers and parents. Teachers regularly provide advice and reminders to parents, and write about homework assignments of the child, special activities and the child’s behavior (Benjamin, 1997, p. 119, p. 1993–1995). Newsletters, parents’ v isits to school, school reports, home visits by the teacher and observation days sustain communication in later years at school. According toBenjamin (1997), schools also inform parents about how to coach their children on proper behavior at home. Shimahara (1986), Hess and Azuma (1991), Lynn (1988) and White (1987) also try to explain national differences in educational achievement. They argue that Japanese mothers succeed in internalizing into their children academic expectations and adaptive dispositions that facilitate an effective teaching strategy, and in socializing the child into a successful person devoted to hard work.Support, Support and SupportEpstein (1995) constructed a framework of six types of involvement of parents and the community in the school: (1) parenting: schools help all families establish home environments to support children as students; (2) communicating: effective forms of school-to-home and home-to-school communications about school programs and children’s progress; (3) volu nteering: schools recruit and organize parents help and support; (4) learning at home: schools provide information and ideas to families about how to help students at home with homework and other curriculum-related activities, decisions and planning; (5) decision making: schools include parents in school decisions, develop parent leaders and representatives; and (6) collaborating with the community: schools integrate resources and services from the community to strengthen school programs, family practices, and student learning and development. All types of involvement mentioned in studies of Japanese education and in the discourse on the roots of the achievement gap belong to one of Epstein’s first four types of involvement: the creation of a conducive learn ing environment (type 4), the expression of high expectations (type 4), assistance in homework (type 4), teachers’ notebooks (type 2), mother’s willingness to facilitate school activities (type3) teachers’ advice about the child’s behavior (type 1), observ ation days by which parents observe their child in the classroom (type 2), and home visits by the teachers (type 1). Thus, when one carefully reads Stevenson and Stigler’s, Benjamin’s and other’s writings about Japanese education and Japanese students’ high achievement level, one notices that parents’ role in the child’s school learning is in particular one of support, expected and solicited by the school. The fifth type (decision making) as well as the sixth type (community involvement) is hardly ever mentioned in the discourse on the achievement gap.In 1997, the OECD’s Center for Educational Research and Innovation conducted a cross-national study to report the actual state of parents as partners in schooling in nine countries, including Japan. In its report, OECD concludes that the involvement of Japanese parents in their schools is strictly limited, and that the basis on which it takes place tends to be controlled by the teacher (OECD, 1997, p. 167). According to OECD (1997), many countries are currently adopting policies to involve families closely in the education of their children because (1) governments are decentralizing their administrations; (2) parents want to be increasingly involved; and (3) because parental involvement is said to be associated with higher achievement in school (p. 9). However, parents in Japan, where students already score highly on international achievement tests, are hardly involved in governance at the national and local level, and communication between school and family tends to be one-way (Benjamin, 1997; Fujita, 1989; OECD, 1997). Also parent–teacher associations (PTA, fubo to kyoshi no kai ) are primarily presumed to be supportive of school learning and not to participate in school governance (cf. OECD, 2001, p. 121). On the directionsof the occupying forces after the second world war, PTA were established in Japanese schools and were considered with the elective education boards to provide parents and the community an opportunity to participate actively in school learning (Hiroki, 1996, p. 88; Nakata, 1996, p. 139). The establishment of PTA and elective education boards are only two examples of numerous reform measures the occupying forces took to decentralize the formal education system and to expand educational opportunities. But after they left the country, the Japanese government was quick to undo liberal education reform measures and reduced the community and parental role in education. The stipulation that PTA should not interfere with personnel and other administrative tasks of schools, and the replacement of elective education boards by appointed ones, let local education boards believe that parents should not get involved with school education at all (Hiroki, 1996, p. 88). Teachers were regarded to be the experts and the parents to be the laymen in education (Hiroki, 1996, p. 89).In sum, studies of Japanese education point into one direction: parental involvement means being supportive, and community involvement is hardly an issue at all. But what is the actual state of parent and community involvement in Japanese schools? Are these descriptions supported by quantitative data?Statistics on Parental and Community InvolvementTo date, statistics of parental and community involvement are rare. How-ever, the school questionnaire of the TIMSS-R study did include some interesting questions that give us a clue about the degree of involvement relatively compared to the degree of involvement in other industrialized countries. The TIMSS-R study measured science and math achievement of eighth graders in 38 countries. Additionally, a survey was held among principals, teachers and students. Principals answered questions relating to school management, school characteristics, and involvement. For convenience, the results of Japan are only compared with the results of those countries with a GNP of 20650 US dollars or higher according to World Bank’s indicators in 1999.Unfortunately, only a very few items on community involvement were measured. According to the data, Japanese principals spend on average almost eight hours per month on representing the school in the community (Table I). Australian and Belgian principals spend slightly more hours and Dutch and Singaporean principals spend slightly less on representing the school and sustaining communication with the community. But when it comes to participation from the community, Japanese schools report a nearly absence of involvement (Table II). Religious groups and the business community have hardly any influence on the curriculum of the school. In contrast, half of the principals report that parents do have an impact in Japan. On one hand, this seems a surprising result when one is reminded of the centralized control of the Ministry of Education. Moreover, this control and the resulting uniform curriculum are often cited as a potential explanation of the high achievement levels in Japan. On the other hand, this extent of parental impact on the curriculum might be an indicator of the pressure parents put on schools to prepare their children appropriately for the entrance exams of senior high schools.In Table III, data on the extent of other types of parental involvement in Japan and other countries are given. In Japan, parental involvement is most common in case of schools volunteering for school projects and programs, and schools expecting parents to make sure that thechild completes his or her homework. The former is together with patrolling the grounds of the school to monitor student behavior most likely materialized through the PTA. The kinds and degree of activities of PTA vary according to the school, but the activities of the most active and well-organized PTA’s of 395 elementary schools investigated by Sumida (2001)range from facilitating sport and recreation for children, teaching greetings, encouraging safe traffic, patrolling the neighborhood, publishing the PTA newspaper to cleaning the school grounds (pp. 289–350). Surprisingly, less Japanese principals expect from the parents to check one’s child’s completion of homework than principals of other countries. In the discourse on the achievement gap, western observers report that parents and families in Japan provide more assistance with their children’s homework than parents and families outside Japan. This apparent contradiction might be the result of the fact that these data are measured at the lower secondary level while investigations of the roots of Japanese students’ high achievement levels focus on childhood education and learning at primary schools. In fact, junior high school students are given less homework in Japan than their peers in other countries and less homework than elementary school students in Japan. Instead, Japanese junior high school students spend more time at cram schools. Finally, Japanese principals also report very low degrees of expectations toward parents with regard to serving as a teacher aid in the classroom, raising funds for the school, assisting teachers on trips, and serving on committees which select school personnel and review school finances. The latter two items measure participation in school governance.In other words, the data support by and large the descriptions of parental of community involvement in Japanese schooling. Parents are requested to be supportive, but not to mount the territory of the teacher nor to be actively involved in governance. Moreover, whilst Japanese principals spend a few hours per month on communication toward the community, involvement from the community with regard to the curriculum is nearly absent, reflecting the nearly absence of accounts of community involvement in studies on Japanese education. However, the reader needs to be reminded that these data are measured at the lower secondary educational level when participation by parents in schooling decreases (Epstein, 1995; OECD, 1997; Osakafu Kyoiku Iinkai, unpublished report). Additionally, the question remains what stakeholders think of the current state of involvement in schooling. Some interesting local data provided by the Osaka Prefecture Education Board shed a light on their opinion.ReferencesBenjamin, G. R. (1997). Japanese lessons. New York: New York University Press.Cave, P. (2003). Educational reform in Japan in the 1990s: ‘Individuality’ and other uncertainties. Comparative Education Review, 37(2), 173–191.Chen, C., & Stevenson, H. W. (1989). Homework: A cross-cultural examination. Child Development, 60(3), 551–561.Chuo Kyoiku Shingikai (1996). 21 seiki o tenbo shita wagakuni no kyoiku no arikata ni tsu-ite [First Report on the Model for Japanese Education in the Perspective of theCummings, W. K. (1989). The American perception of Japanese parative Education, 25(3), 293–302.Epstein, J. L. (1995). School/family/community partnerships. Phi Delta Kappan , 701–712.Fujita, M. (1989). It’s all mother’s fault: childcare and the socialization of working mothers in Japan. The Journal of Japanese Studies , 15(1), 67–91.Harnish, D. L. (1994). Supplemental education in Japan: juku schooling and its implication. Journal of Curriculum Studies , 26(3), 323–334.Hess, R. D., & Azuma, H. (1991). Cultural support for schooling, contrasts between Japanand the United States. Educational Researcher , 20(9), 2–8, 12.Hiroki, K. (1996). Kyoiku ni okeru kodomo, oya, kyoshi, kocho no kenri, gimukankei[Rights and duties of principals, teachers, parents and children in education. InT. Horio & T. Urano (Eds.), Soshiki toshite no gakko [School as an organization](pp. 79–100). Tokyo: Kashiwa Shobo. Ikeda, H. (2000). Chiiki no kyoiku kaikaku [Local education reform]. Osaka: Kaiho Shup-pansha.Kudomi, Y., Hosogane, T., & Inui, A. (1999). The participation of students, parents and the community in promoting school autonomy: case studies in Japan. International Studies in Sociology of Education, 9(3), 275–291.Lynn, R. (1988).Educational achievement in Japan. London: MacMillan Press.Martin, M. O., Mullis, I. V. S., Gonzalez, E. J., Gregory, K. D., Smith, T. A., Chrostowski,S. J., Garden, R. A., & O’Connor, K. M. (2000). TIMSS 1999 Intern ational science report, findings from IEA’s Repeat of the Third International Mathematics and ScienceStudy at the Eight Grade.Chestnut Hill: The International Study Center.Mullis, I. V. S., Martin, M. O., Gonzalez, E. J., Gregory, K. D., Garden, R. A., O’Connor, K. M.,Chrostowski, S. J., & Smith, T. A.. (2000). TIMSS 1999 International mathemat-ics report, findings from IEA’s Repeat of the Third International Mathematics and Science Study at the Eight Grade.Chestnut Hill: The International Study Center. Ministry of Education, Science, Sports and Culture (2000).Japanese government policies in education, science, sports and culture. 1999, educational reform in progress. Tokyo: PrintingBureau, Ministry of Finance.Monbusho Ed. (1999).Heisei 11 nendo, wagakuni no bunkyoshisaku : Susumu kaikaku [Japanese government policies in education, science, sports and culture 1999: Educational reform in progress]. Tokyo: Monbusho.Educational Research for Policy and Practice (2004) 3: 95–107 © Springer 2005DOI 10.1007/s10671-004-5557-6Heidi KnipprathDepartment of MethodologySchool of Business, Public Administration and TechnologyUniversity of Twente P.O. Box 2177500 AE Enschede, The Netherlands译文:家长和社区在日本儿童教育中的作用摘要在日本,人们越来越关心家庭和社区参与到儿童教育中。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

水力压裂过程中页岩渗透渗吸作用实验研究摘要:水力压裂技术已经广泛应用于页岩储层以显著提高产量。

然而,据钻井人员汇报大量压裂液流失于地下不能回收,滞留压裂液对页岩组成的影响机制尚不清晰,滞留压裂液可被页岩基质、微裂缝和裂缝表面吸收,本文旨在研究渗吸作用对页岩基质渗透性、微裂缝渗透性和裂缝渗透性的影响,首次探究页岩渗透性变化与页岩渗吸作用二者之关系,并提供大量水力压裂过程中页岩伴随渗吸作用渗透性增减结果。

本文实验采用压力恢复法测定岩样渗透率,采用失重法进行渗吸实验,样品来源于Niobrara、HornRiver及Woodford地区页岩地层。

实验结果表明,滞留压裂液会损害页岩基质渗透性,使其渗透率大为降低,样品吸收液体越多,基质渗透率降低越显著,渗吸作用造成张开裂缝渗透率减小,但减小量不及基质渗透率,此外,润滑作用使页岩样品微裂缝再次张开,导致渗吸作用过程中微裂缝渗透率提升。

渗透率这一指标决定着页岩地层长期产气量,本文研究水力压裂过程中渗吸作用影响下页岩渗透率变化情况,观察得到渗吸作用不仅损害页岩组成,还会通过张开闭合或密封天然裂缝增加渗透率而对页岩组成造成潜在影响。

1.简介随着水力压裂技术在页岩和其他非常规地层的成功应用,预计到2020年,美国原油的产量将从2008年的5百万桶/日增加至10.6百万桶/日;同时页岩和其他低渗储层的石油产量将增长到全国原油总产量的一半。

从2008年开始美国页岩气产量预计将增长近9倍(EIA,2015)。

水力压裂技术的一般程序主要分为5个步骤,包括垫注,凝胶浆注射,冲洗注射,注井和水回收。

水回收是该井投入生产前水力压裂处理的最后一步。

这一步在水力压裂过程中很重要和必要,因为它可以控制和最小化压裂液的损伤。

不过,很多操作人员报道注入页岩储层的压裂液只有不到50%可以回收(Alkouh和Wattenbarger,2013)。

这个可能是因为水力压裂后页岩储层系统能量较低。

一般来说,裂缝较为常规、较不复杂时系统能量较高。

能量越高,会导致回收液体流流量越大、流速越高。

但是页岩储层的裂缝很复杂,导致裂缝回收液体占比很少,需要花费几周来完成回流,比常规页岩储层长得多(King,2010;Wu等,2010)。

在页岩中,如此大量的剩余液体对产量的影响成为一个问题。

因为许多研究发现剩余压裂液可以被页岩和裂缝表面吸收(Roychaudhuri等,2011;Makhanov等,2012;Yao等,2012;Zhou等,2014)。

渗吸作用是在多孔介质中一种液体被另一种不混溶的液体替换的过程。

这种替换是富粘土页岩储层中粘土严重损坏的主要原因。

除了粘土损坏之外,在大面积水力压裂过程中吸入的水也会在致密气储层中产生水堵(秦,2007)。

水力压裂引起的渗吸作用会导致粘土在页岩层中膨胀(Ghanbari等,2014)。

膨胀可以不同程度地发生在所有粘土矿物中,绿泥石和混层伊利石可以膨胀到原来的20倍体积(Hayatdavoudi,1999)。

然而,很难确定粘土膨胀是有害的还是有益的。

Dutta等人(2012)发现在富粘土地区更多的液体被吸收,由于粘土膨胀,气体的流动性减小。

另一方面,Morsy和Sheng(2014)认为由于渗吸作用而导致的粘土膨胀可产生沿着页岩地层层面的裂缝,从而有望提高渗透率和产油量。

当水和其他液体被捕获在多孔介质中并阻碍气体产生时,就会发生水堵(Charoenwongsa,2011)。

滞后和不连续毛细管压力使注入的液体极困难产生效果。

此外,生产后,入侵区液体饱和度可以降低至残留饱和度使液体不能置换。

因此,由于来自被捕液体的额外气体阻力,天然气渗透率和天然气产会大大减少(HadleyandHandy,1956;Land,1968;Ehrlich,1970)。

以前的研究发现水堵只能暂时降低渗透率。

只要压差足够高,渗透率就会恢复,(Holditch,1979;Abrams和Vinegar,1985;Mahadevan和sharma,2003;Bazin 等,2009)。

然而,一些研究表明水堵产生永久性的渗透率损坏,这是因为致密地层中压差很难达到足够高(Penny等,1983;Soliman和Hunt,1985)。

另外一些数字模型显示,当岩石基质吸收了裂缝中的液体时,入侵带气体的相对渗透率降低。

在生产过程中,吸入的液体首先产出。

然后随着水堵区域气体相对渗透率的升高,天然气开始从入侵区域流入裂缝(Barati等,2009;Charoenwongsa,2011;Putthaworapoom等,2012;Zhang等,2014)。

因此,水堵是暂时性的。

总之,以前的研究显示粘土膨胀可能损坏或提升地层产气量;水堵对地层的破坏可能是永久性或临时性的。

然而,以前的研究没有实验数据回答压裂液的渗吸作用是损坏还是提高页岩储层产量这一问题。

这些问题即页岩地层的渗吸作用是损坏还是提高长期产量。

另外,如果渗吸作用产生负面影响,是永久的还是暂时的?在本文中,渗透率作为研究这种影响的标准。

通过实验,本文研究了页岩在各种压裂液的渗吸作用下渗透率的变化。

这是第一次将渗透率的定量变化作为页岩渗吸作用的函数。

此外,本文的结果还可以解释滑溜水压裂是如何增加页岩储层产量的。

2.实验渗透率变化与液体渗吸作用存在函数关系,其测定为本文实验主要任务,因此实验可分为渗透率测定和液体渗吸实验两部分,下文将详细阐述。

每种样品进行实验之前,首先通过渗透率测试确定样品原始渗透率,再将样品浸入测试液进行渗吸实验,一或两天后再次测试样品渗透率,测完后放回原测试液继续渗吸实验,渗透率测试重复进行,渗吸实验亦紧随其后重复进行,重复实验通常持续一周,有时一月,最终记录表明,在渗吸作用过程中不同渗透率值表现为时间的函数。

2.1.渗透率测试页岩样品渗透率测试采用压力恢复法,一种高效低渗岩石渗透率测试方法。

2.1.1.测试原理压力恢复法原理在于,单一封闭页岩样品进气压力高于排气压力,流体泵入样品中时,测试记录并分析排气压力增加速率,压力恢复法测试流体为氮气,岩样渗透率数值通过以下方程获得。

标准条件及测试条件下气体密度由式(2.1)(2.2)计算。

gs gs gs gsP MRT Z (2.1)gt gt gt gt P M RT Z (2.2)ρgs ,ρgt 分别为标准条件及实验条件下气体密度;P gs ,P gt 分别为标准压力及实验压力;T gs ,T gt 分别为标准温度及实验温度;Z gs ,Z gt 分别为标准条件及实验条件下压缩因数;M 为气体摩尔质量,R 为理想气体系数。

因此,实验条件下气体密度可表示为式(2.3)。

gs gt gs gs gt gs gt gt T Z P P T Z (2.3)取Z gs =1。

一维气体连续性方程如式( 2.4)()()gt gt t (2.4)νχ为x 方向速度;φ为孔隙度;t 为时间。

将气体密度方程带入气体连续性方程得式(2.5) ()gt gt gt gt g gt gt P P P P C P Z Z t (2.5)μ为气体粘度;κ为渗透率;C(P)为气体压缩系数;C(P)=1/P -1/ZdZ/dP 引入P´定义如下gt 2gt1'2P gt gt P g gt P P dP Z ( 2.6)2212121''gt gt g gtP P P P Z ( 2.7) 因此,气体连续性方程可表示为式( 2.8)'1'P P K t (2.8) 式中K=φC(P)μg /κ本气体连续性方程与Oort 提出用于描述页岩样品液体渗透率方程相似,二者唯一区别在于本方程将Oort 方程中压力换为P´,因此,经过Oort 的发展气体连续性方程有类似结果如下''22'22ln ln ()()'()()inletinitial inlet initial g d g dinlet outlet inlet outlet P P P P C P V L C P V L P P t P P t A t A t(2.9) V d 为下游储液器体积;L 为样品长度;A 为样品横截面积;P inlet 为进气压力;P initial 为初始孔隙压力;P outlet 为排气压力2.1.2.测试装置页岩样品渗透率测定由专门设计用于合成样品渗透率测试Model6100合成反应测试仪进行(图2.1),最大泵送压力及围限压力分别为5500psi 、6000psi ,岩心夹持器直径1英寸,长至6英寸。

2.1.3.测试步骤压力恢复法分四步进行第一步,打开所有阀门,以一定压力将氮气冲满包括上下游储液器在内所有系统空间,使样品进气压力等于排气压力。

第二步,关闭除与气体注射器连接外所有阀门以隔离下游储液器,此时只有进气压力可使排气压力变化,进气压力将在下一步骤升高。

第三步,迅速升高进气压力并持续一段时间。

第四步,记录排气压力升高速率,由式(2.9)根据瞬时排气压力算得样品渗透率。

2.2.渗吸实验本文渗吸实验采用悬挂法进行(图2.2),此种方法是将样品悬挂在天平之下,天平自动记录样品重量随时间变化,此种变化是渗吸作用引起岩石内外液体发生置换导致。

本实验使用7%KCL及0.07%降阻剂两种测试液体广泛用作油田水力压裂处理液。

为了便于不同岩石样品测试结果进行比较,将天平记录数据换算为渗吸液饱和度,换算过程基于液体浓度、岩样体积及孔隙度。

(见式2.10)=WImbibed Liquid SaturationV(2.10)ΔW为样品重量变化;ρ1为液体浓度;V为样品体积;φ为孔隙度。

3.页岩样品样品是从HornRiver,和Niobrara页岩地层采集得到。

来自HornRiver和Woodford地层的页岩样品在这些地区作业的公司提供的。

Niobrara页岩样品为野外露头,是从美国科罗拉多州Lyons附近采石场获得的。

来自HornRiver地层的原始页岩样品空隙中填充着硅酸钾泥浆系统。

共有七块板状样品。

两块取自Muskwa段;两块取自Otter Park段;另外三块取自Evie段。

Muskwa段,Otter Park 段,和Evie段是HornRiver地层从上到下的三个主要段层。

在运输期间,样品由PVC 食品包装密封。

在实验室中样品一直保持密封条件,直到渗吸实验之前的堵塞处理时才解除密封。

在堵塞处理时,钻头或锯刀均用冷却空气冷却。

为了防止其他液体干扰测试,渗吸实验之前没有液体接触样品。

此外,测试样品从原始样品内部取得,以便将取芯时使用的水基泥浆对渗吸实验的影响降至最低。

因为样品暴露于空气和其他液体中的时间有限,因此,实验过程中样品的初始饱和度相当于原始饱和度。

相关文档
最新文档