双侧向测井(精)
双侧向测井影响因素与应对措施分析
12 双侧向测井仪可以帮助人员确定相关参数,如地层电阻率等,这项参数对于油气层开发工作至关重要。
根据研究结果,如果钻杆没有接通电源,浅侧向探测深度较浅,浅侧向响应一般不会出现明显变化,但是深侧向仪器与钻杆的电位存在差异,因此深侧向响应可能改变。
钻杆处于深侧向回路电极位置时,结合各项数据可以确定相关参数,即带钻杆加长电极系数刻度,此时可以忽略测井响应受到的影响。
相关学者指出,双侧向测井电子线路中的参数变化会导致最终测量结果出现偏差,尤其是带通滤波器中心频率偏移,因此相关研究中详细分析了各项参数,并将这些参数联系起来用于计算测井曲线变化,包括中心频率及其增益、品质因素[1]。
利用相关数据计算出最终测量结果的差异。
本文主要研究了双侧向测井工程,结合实际工作流程探讨了可能导致测量结果出现变化的主要因素,在此基础上提出了针对性的应对策略。
1 工作原理双侧向电极系设置了多个不同作用的电极。
包括主电极、监督和聚焦电极,第一种设置在中心位置,后两种设置在上下位置,数量为1、4、4,表示为A0,M1、Nl、Al、 A2,除主电极外其它电极通常成对设置在各个位置,同时需要增加短路线。
深侧向设置了不同电极,即回流和测量参考电极,在图1中表示为B、N,考虑到测量流程,两者一般处于“无穷远处”。
屏蔽电极(聚焦电极)A1与A2在测量过程中具有相同的电位,在回路中形成的屏流Il与主电流I0具有相同点,即极性保持一致。
一般情况下,A2较长,因此主电流在一定区域被聚焦,在地层深处屏流对其产生的影响较小,所以该电流不断发散,通过增加探测深度,能够得到相对准确的测量结果,与真电阻率差异较小。
图1 双侧向原理在浅探测过程中,电极A2、A2为回流电极,与A1极性存在差异,屏流对主电流的影响较小,主电流层发散的位置发生改变,集中在较浅的地层,因此最终得到的测量结果可能在侵入带的作用下产生一定偏差。
双侧向测井影响因素与应对措施分析钱志军 中海油田服务股份有限公司 天津 300459摘要:本文主要分析了双侧向测井的工作原理,影响影响双侧向测井的主要因素,如测井回路、测井SP、深驱动板、带通滤波器以及其他因素,仪器故障、仪器常数K值变化或其他原因都会导致双侧向测井“双轨”现象,实际应用过程中应根据不同的原因进行“双轨”现象的校正和处理,从而全面保证测井质量。
裂缝测井识别
所谓裂缝识别,主要包含四个含义,即裂缝的真实性、裂缝的有效性、裂缝填充物的性质(即含油气性)、裂缝产状的计算。
裂缝综合分类如下:⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧⎪⎪⎪⎩⎪⎪⎪⎨⎧⎪⎪⎪⎩⎪⎪⎪⎨⎧︒<︒<<︒︒<<︒︒>应力释放缝钻井液与地应力压裂缝钻具诱导缝诱导缝网状裂缝)水平缝()低角度缝()斜交缝()高角度缝(低阻(低密度)缝高阻(高密度)缝天然裂缝裂缝5305753075αααα常规测井曲线对裂缝的响应1、微侧向测井微侧向测井采用贴井壁测量。
由于其电极系尺寸小,测量范围小,所以,其测量结果反映了井壁附近的地层情况,对裂缝的发育情况十分敏感。
在裂缝发育段,电阻率出现低阻异常,往往表现为以深侧向为背景的针刺状低阻突跳。
2、双侧向测井从宏观上看,深、浅侧向,尤其是深侧向能反映出井眼周围较大范围内地层总的电性变化,由于探测深度有较大差别,往往出现深、浅侧向值的大小不同,表现为电阻率的“差异”。
影响双侧向差异性质及大小的因素较多,但主要是裂缝发育程度、裂缝角度、流体性质因素的影响。
(1) 裂缝发育程度的影响经验表明,裂缝越发育的地方,双侧向的正差异一般也越大。
(2) 裂缝角度的影响高角度、垂直裂缝的双侧向为正差异。
斜交缝的双侧向不明显。
低角度缝、水平缝的双侧向为低阻尖峰。
(3) 流体性质的影响在淡水钻井液作用下,当地层中的流体为油气时,侵入带的电阻率低于原状地层的电阻率,双侧向出现正差异。
如果地层中油裂缝发育,钻井液滤液沿着较大的裂缝侵入较深,但微缝中的油气缺少被驱替;离开井筒越远,地层中的油气呗驱替越少,从而一般仍出现双侧向的正差异。
当地层中的流体为水时双侧向差异减小。
(4) 地应力集中的影响在地应力集中段,岩石变致密,地层电阻率急剧上升,高达上万欧姆米,大大超过一般致密层的电阻率。
在钻井过程中,地应力通过井眼释放,造成该井段井壁沿最小主应力方向定向坍塌,使浅侧向值显著降低,从而出现深、浅侧向的正差异。
《测井仪器方法及原理课程》第一章 双侧向测井
第一章 双侧向测井双侧向测井是应用最广泛的一种电阻率测井方法,它测量地层电阻率。
自然界中不同岩石和矿物的导电能力是不相同的尤其地层中所含流体性质不同时,导电性能差别很大。
因此 ,电阻率是地层的重要的物理参数之一。
在油气井中进行电阻率测井是我们寻找和定量确定油气存在的基本方法。
根据所测得的电阻率,可以区分含导电流体(如盐水,泥浆滤液)的地层和含非导电流体(如油气)的地层,应用阿尔奇公式,可以计算出地层中油气水的比例:2WW S FR =ρ (1-1) 式中:ρ—地层电阻率;R W —地层水电阻率;S W —地层含水饱和度;F ——地层因素。
电阻率测井是发展最早并一直沿用至今的一种测井方法。
最早使用的电阻率测井方法称普通电阻率测井。
经改进后,发展成为目前广泛使用的聚焦式电阻率测井,或称侧向测井。
自1950年,首批侧向测井仪投入商业使用后,老式的普通电阻率测井方法就逐渐被淘汰。
1.1 普通电阻率测井原理为测量某一电阻的阻值R ,可应用一个电源给该电阻供电,测量流过该电阻的电流I 和电阻两端的电压降V 。
由欧姆定律即可求出该电阻的阻值。
IV R = (1-2) 普通电阻率测井原理也是采用与此类似的方法,测量地层电阻率。
在介质中设置一个供电电极A ,回流电极B 放在距电极A 无限远的地方,在距电极A 一定距离处放置一对测量电极M,N (见图1-1),进行电位差测量。
假定电极为点电极,介质是均匀无限的,介质电阻率为ρ。
则从电极A 流出的电流呈辐射状向四面八方均匀散开,等电位面是以A 为球心的球面,如果测量电极M,N 与供电电极的距离分别为AM ,AN (注意电阻ρ的量纲为m ⋅Ω长度量纲为m )则M 点的电位:AM I V M πρ4=(1-3) N 点的电位: ANI V N πρ4= (1-4) 式中I 为电极A 流出的电流强度(安培)。
由上式可得M,N 两点的电位差V :I ANAM MN V V V N M ρπ4=-=电阻率:I V MN AN AM ⋅=πρ4 (1-5) 式中,MN 为电极M,N 两点间的距离令 MNAN AM K π4= 则 IV K ⋅=ρ (1-6) 式中:K 称为电极系常数。
对双侧向测井仪的几点认识
引言随着社会的不断进步,对于能源的需求也是越来越大。
尤其是对于原油资源的需要,其中石油能源的热能值较高,很多产品的生产都需要用到石油,是当今最为稀缺的能源之一。
1 双侧向测井仪的基本介绍侧向测井也称为聚焦式电阻率测井。
它包括三侧向、七侧向、双侧向、微测向等方法。
其中双侧向测井是在三侧向和七侧向测井的基础上发展出来的测井方法,双侧向的突出优点就是具有良好的聚焦特性,并可以同时测量深、浅两种探测深度的电阻率曲线。
双侧向电机系有9个电极。
主电极A0位于中央,其余八个电极以主电极为中心,上下对称分布,每对电极分别用短路线进行连接。
电极M、M1’和N1、N1’为两队监督电极,电极A1、A1’和A2、A2’为两队聚焦电极。
进行深探测时,聚焦电极保持等电位,屏流I1与主电流I0为同级性,由于聚焦电极较长,加强了屏流对主电流的聚焦作用,因此主电流层在进入地底深处后才会逐渐扩散;进行浅探测时,电极A2、A2’以回流电极的作用,减弱了屏流对主电流的聚焦作用,所以主电流在进入地底不远处就开始扩散。
2 双侧向测井仪使用中的影响因素2.1 双侧向测井曲线形状的影响因素(1)研究表明当探测井内的泥浆与井外媒介的电阻率均为定值时,探测井的内径的大小不一样,深浅测响应分裂的程度也不一样,探测井内径变大会导致曲线的变化趋势减缓,而泥浆电阻率与底层电阻率的反差不断增加的话,曲线的棱角会变得愈发的清晰可见。
(2)在探测时,探测深度在2米到4米的范围内是,曲线的变化不大,当探测深度大于4米时,曲线在地层中部出现平顶。
2.2 双侧向测井幅度差的影响因素双侧向测井幅度差是探测队确定地下油气和水层的重要参考数据,因此研究双侧向测井的幅度差是非常重要的,尤其是对于解释“双轨”这类现象更具有现实意义,为了考察影响双侧向测井幅度差的因素,针对典型的三层介质底层模型做了迹象检测:(1)泥浆电阻率以及地层厚度对于RLLD/ RLLS比值的影响:(2)围岩电阻率对于RLLD/RLLS比值的影响:(3)侵入带电阻率以及侵入深度对于RLLD/RLLS比值的影响。
双侧向测井
RLLS、RMSFL、RS 第二步:进行井眼和围岩校正 第二步:用旋涡图版进行侵入校正、
Rt(取平均值)、Ri、di
RLLD RLLS
RMSFL
总结: 1 学会分层
2 读值、准备查图所用的参数
3 正确使用校正图版
2)划分出油气、水层 - SP + 淡水泥浆井中的砂泥岩、
RLLD>RLLS 则为油气层
油气层
Ra RLLD
RLLD<RLLS 则为水层
水层
RLLS
3) 划分碳酸岩盐裂缝储集层中的高低角度裂缝
碳酸岩盐底中低角度裂缝的特征:
泥浆侵入地层深,深浅双侧向 的差异小或无差异(即使油气 层也如此),且电阻率值低, 井段显示不超过1米(短)。
电阻率发生改变,主电流随之而变,监督电极的
电位也在改变。测量监督电极与参考电极N间的电 位差Vod和主电流I0 d 。
其电阻率的计算公式为:
RLLD
Kd
Vod I od
浅双侧向测井时,A2 A2`作回路电极,使其对主 电极的聚焦作用减弱,
其电阻率的计算公式为:
RLLS
KS
Vos I os
三侧向、七侧向与双侧向在探测深度和分层能力 上的比较: 探测深度 三侧向<七侧向<双侧向
Rlls、Rlld
致密岩层
裂缝
碳酸岩盐底中高角度裂缝的特征:
泥浆侵入地层浅,深浅双 侧向有明显的正差异,井段 显示长,电阻率中低值。
RLLS RLLD
经理论和实践证明:垂直裂缝的双侧向曲线的差 异与含油气和基块的电阻率 无关,而与垂直裂缝的宽度 和泥浆的电导率成正比。
测井方法9-双侧向概述
双侧向尺寸
3 0.3 0.22 0.02 0.12 0.02 0.02 0.3 3 0.8 0.22 0.08 0.18 0.18 0.08 0.22 0.8 ( B2 ) A2 A2 M2 M2 A0 M1 M1 A1 A1( B1 )
电极系k值:kd =0.733m,ks=1.505m 仪器全长:9.36m 仪器直径:0.089m 屏蔽电极A1、A2很长→确保深侧向探测深度大
四、双侧向测井资料应用
电阻率测井在油气勘探开发中应用非常广泛
⑴地层对比 ⑵裂缝识别
主要 应用
⑶油、气、水层判别
⑷计算地层含水饱和度 ⑸估算裂缝参数
⑴地层对比
决定地层电 岩石名称 阻率大小的 粘土 主要因素 页岩
疏松砂岩
主要岩石、矿物的电阻率
电阻率 10-100 白云母 41011
一是岩石的组织结构
烟煤 10-10000 600-105 石油 10 -10
致密砂岩
磨溪地区储层多井测井对比图
⑵裂缝识别
四川测井研究所水槽模型实 验结果:裂缝的产状与深、 浅双侧向的“差异”有着直 接关系
深、浅侧向电极系的尺寸完全一样。不同处:将深侧向的 屏蔽电极 A1 、 A2 改成回路电极后,就构成了浅侧向电极 系→这样,深、浅侧向的纵向分辨率是相同的,且受围岩、 层厚影响基本一样→用深、浅侧向测出的电阻率判别油、 气、水层具有良好效果。
电极系确定原则:分层能力强( 0102间距离要小)、探 测深度大( A1、A2要长)、井眼影响小
井眼、围岩、侵入
实测双侧向曲线
双侧向 双侧向
碎屑岩地层
碳酸盐岩地层
三、双侧向、三侧向、七侧向比较
1.探测深度
三侧向—探测深度小,侵入影响大,深浅三侧向探测深度 差异不大,判别油、气水层效果差。原因:主电极与屏蔽 电极同电位,电极系长度有限,主电流发散快
测井方法9-双侧向
一、测井原理
电极系
与七侧向类似,不同的是在七电极系的外面再加上两个屏 蔽电极 A1′、 A2′。为了增加探测深度,屏蔽电极 A1′、 A2′不是环状,而是柱状(与三侧向屏蔽电极相同)
测井原理
测井时,主电极 A0 发出恒 定电流 I0 ,并通过两对屏 蔽电极 A1 、 A1 和 A2 、 A2 发 出与 I0 极性相同的屏蔽电 流I1和I1。
烟煤 10-10000 600-105 石油 10 -10
致密砂岩
磨溪地区储层多井测井对比图
⑵裂缝识别
四川测井研究所水槽模型实 验结果:裂缝的产状与深、 浅双侧向的“差异”有着直 接关系
低角度( 60 以下)缝, “负差异” 高角度( 75 以上)缝, “正差异” 6075裂缝,差异较小和无差异 45裂缝时, “负差异”,且差异幅度最大
井眼、围岩、侵入
实测双侧向曲线
双侧向 双侧向
碎屑岩地层
碳酸盐岩地层
三、双侧向、三侧向、七侧向比较
1.探测深度
三侧向—探测深度小,侵入影响大,深浅三侧向探测深度 差异不大,判别油、气水层效果差。原因:主电极与屏蔽 电极同电位,电极系长度有限,主电流发散快
七侧向—探测深度高于三侧向,但高侵时,探测深度变浅。 原因:采用监督电极 M1´、M1´同电位来控制电流场。分布 比s↑→屏流↑→屏蔽电极电位↑→探测深度↑ 双侧向—探测深度最大。原因:将屏蔽电极分成多段(两 对)加长→控制各段电压→探测深度↑
四、双侧向测井资料应用别
主要 应用
⑶油、气、水层判别
⑷计算地层含水饱和度 ⑸估算裂缝参数
⑴地层对比
决定地层电 岩石名称 阻率大小的 粘土 主要因素 页岩
疏松砂岩
主要岩石、矿物的电阻率
油水井分析常用测井曲线及解释要点
主要测井曲线及解释要点一、自然电位测井:测量在地层电化学作用下产生的电位。
自然电位极性的―正‖、―负‖以及幅度的大小与泥浆滤液电阻率Rmf和地层水电阻率Rw的关系一致。
Rmf≈Rw时,SP几乎是平直的;Rmf>Rw时SP为负异常;Rmf<Rw时,SP在渗透层表现为正异常。
自然电位测井SP曲线的应用:①划分渗透性地层。
②判断岩性,进行地层对比。
③估计泥质含量。
④确定地层水电阻率。
⑤判断水淹层。
⑥沉积相研究。
自然电位正异常Rmf<Rw时,SP出现正异常。
淡水层Rw很大(浅部地层)咸水泥浆(相对与地层水电阻率而言)自然电位测井自然电位曲线与自然伽马、微电极曲线具有较好的对应性。
自然电位曲线在水淹层出现基线偏移二、普通视电阻率测井(R4、R2.5)普通视电阻率测井是研究各种介质中的电场分布的一种测井方法。
测量时先给介质通入电流造成人工电场,这个场的分布特点决定于周围介质的电阻率,因此,只要测出各种介质中的电场分布特点就可确定介质的电阻率。
视电阻率曲线的应用:①划分岩性剖面。
②求岩层的真电阻率。
③求岩层孔隙度。
④深度校正。
⑤地层对比。
电极系测井2.5米底部梯度电阻率进套管时有一屏蔽尖,它对应套管鞋深度;若套管下的较深,在测井图上可能无屏蔽尖,这时可用曲线回零时的半幅点向上推一个电极距的长度即可。
底部梯度电极系分层:顶:低点;底:高值。
三、微电极测井(ML)微电极测井是一种微电阻率测井方法。
其纵向分辨能力强,可直观地判断渗透层。
主要应用:①划分岩性剖面。
②确定岩层界面。
③确定含油砂岩的有效厚度。
④确定大井径井段。
⑤确定冲洗带电阻率Rxo及泥饼厚度hmc。
微电极确定油层有效厚度微电极测井微电极曲线应能反映出岩性变化,在淡水泥浆、井径规则的条件下,对于砂岩、泥质砂岩、砂质泥岩、泥岩,微电极曲线的幅度及幅度差,应逐渐减小。
四、双感应测井感应测井是利用电磁感应原理测量介质电导率的一种测井方法,感应测井得到一条介质电导率随井深变化的曲线就是感应测井曲线。
侧向测井
M
' 1
0.083
M1
0.167
0.02 Ao
0.167
M
2
0.083
M
' 2
0.25
0.025 A2
0.5
0.025 B2
分布比S=2.4;电极系长度L0=1.07m;电极距L=0.437m
勘探开发工程监督管理中心
A1 M2’ M1’ A0 M1 M2 A1‘
勘探开发工程监督管理中心
2
测量原理
勘探开发工程监督管理中心
1
七侧向测井电极系
将回路电极B分成两部分B1、B2,对 称地放在深三侧向电极系的A1、A2点击的 外侧,由于回路电极靠近, A1、A2发出 的屏蔽电流IS很快通过B电极形成回路, 对主电流I0的控制作用减弱,所以I0深入 地层不远处就开始发散,从而使电极系的 探测深度减小。图中阴影部分是浅七侧向 主电流的分布范围。
勘探开发工程监督管理中心
1
三侧向测井电极系
电极系在井内的工作状态 及电流分布如图3-2所示。
勘探开发工程监督管理中心
1
三侧向测井电极系
测井过程中,主电极A0和屏蔽电极A1、A2
分别通以相同极性的电流I0和Is,并使I0 保持为一常数,通过自动控制Is方法, 使A1、A2的电位始终保持和A0的电位相等
,沿纵向的电位梯度为零。这就保证了 电流不会沿井轴方向流动,而绝大部分 呈水平层状进入地层,这样大大减小了 井和围岩的影响,测量的是主电极(或 任一屏蔽电极)上的电位值。因为主电 流保持恒定,故测得的电位依赖于地层 电阻率的大小。从电场的分布看出三侧 向测井所测的视电阻率曲线主要取决于 深部原状地层的电阻率值。
侧向测井
双侧向测井影响因素与应对措施
双侧向测井影响因素与应对措施双侧向测井是能够进行深、浅组合测井技术在三侧向和七侧向的基础上发展出来的,双侧向技术是将三侧向棒形电极和七侧向监督电极相结合,能够有效增强电极的聚焦作用,保障通过井轴方向的主电流经过控制不产生分流,所以在测井技术中双侧向技术应用的比较广泛。
本文主要阐述了双侧向测井技术中存在的问题以及影响因素,在双侧向测井技术中解决双轨技术能够更好的发挥其性能。
标签:双侧向测井;影响因素双侧向测井技术具有很多的优点,其主要是主电流利用两个屏蔽电极进行聚焦,能够具有径向探测深度较深和垂向分辨率较高的特点,深部和浅部的探测利用同一电极就能够完成。
所以双侧向测井技术的发展已经成为在电阻率测井中比较常用的技术。
1 双侧向测井的工作原理1.1 地层电阻率测量原理M和N在AMN测量电极系中是一对测量电极,供电电极和电源分别为B 和A。
等位面球面是以A为中心向周围每个方向辐射的电流线。
1.2 仪器模型测量原理半径r是井下圆柱形等位面,UA是电位,我们可以认为测量地层点圆柱形等位面长度接近无限大,当UN=0的时候电流从自主面流出,射向地层形成回流。
双侧向测井仪器根据这个模型通过聚焦系统,将电流利用圆柱形等位面被迫进入地层。
我们假设研究的模型中地层的介质是均匀同性,但是实际中是一种复杂的情况,井内电极系周围存在泥浆等介质,根据此模型不能精确的对地层的厚度和径向上各个环带进行计算,只能综合考虑各种因素,我们要进行版图的校正工作才能得到精确的数据。
2 双侧向测井影响因素分析测井曲线在进行双侧向测井同时会受到一些因素的影响,仪器的结构设计和电性参数在实际的操作过程中都要时刻的关注,因为外界因素产生的影响排查比较困难,发生的频率较高。
测井曲线双轨曲线现象的形成是因为侧向马笼头和其他马笼头在导线和马笼头、外壳的绝缘影响下相混淆,形成的一种短路的现象,双轨曲线的浅侧向要高于深侧向。
供电的电流会在绝缘不良时增大,造成上传的数据不稳定,指令下达的错误,严重对测井工作造成影响。
第三章侧向测井
深七侧向电极系系数为:
Kd4A0A M 01 A1 2A 0M A01'M (A 10M A10 MA 1'0M1')
(3-5)
2019/12/14
测井方法
26
浅七侧向电极系系数为:
K s11(
4 A 1A 2 B 1 B 2 )B 1 B 2
1
A 0 M 1 2A 1 M 1A 2 M 1 B 1 M 1B 2 M 1 2B 1 M 1B 2M 1
2019/12/14
测井方法
12
图3-4 三侧向井眼校正图版
2019/12/14
测井方法
13
图3-5 三侧向围岩校正图版
2019/12/14
测井方法
14
图3-6 选择侵入校正图版
2019/12/14
测井方法
15
图3-7 侵入校正图板
2019/12/14
测井方法
16
图3-8 深、浅三侧向组合图版
2、电场分布特点 1)、深双侧向电场分布特点 由于深侧向电极系有两个柱状屏蔽电极,对主电 流的控制作用加强,主电极发出的电流径向流入地层 很远才发散与B电极形成回路,主电流分布特点见图 3-12。主电流层的厚度为两对监督电极中点的距离 ,即电极系的电极距。由于两个柱状屏蔽电极比较长 (3米),对主电极电流的屏蔽作用强,使得主电流流到地 层很远处才发散,因此,电极系的测量结果主要反映原 状地层的电阻率。
的。
电极系的记录点为A0 电极的中心。
2019/12/14
测井方法
23
2、浅七侧向电极系
浅七侧向电极系如图
3-11所示.
主电极A0, 两对监督电极M1 、 M2及M1’、M2’ 一对屏蔽电极A1、A2. 一对回路电极B1、B2.
双侧向测井幅度差的影响因素与“双轨”现象
双侧向测井幅度差的影响因素与“双轨”现象测井技术WELL LOGGING TECHNOLOGY1999年第23卷第2期vol.23 No.2 1999--------------------------------------------------------------------------------xxxxxxxx摘要从理论上考查了泥浆、井径、围岩、地层厚度、侵入深度、侵入带电阻率和仪器常数等因素对双侧向测井幅度差的影响,由此分析了引起“双轨”现象的三大因素,尤其是泥浆电阻率和仪器常数因素。
提出了处理“双轨”现象的方法。
主题词:双侧向测井[幅度]影响电阻率仪器常数The Influence Factors of Dual Laterolog Separation and Its Dual-track Phenomenon.Ke Shizheng,Feng Qing and Sun Yanru et al.ABSTRACTThe influence of such factors as mud,borehole diameter,surrounding bed,formation thickness,depth of invasion,resistivity of invasion zone and tool factor etc.on the separation of dual laterolog are studied up theoretically.And the discussion is focused on three main factors resulting in dual-track phenomenon,particularly the mud resistivity and tool factors.A method for dealing with the dual-track phenomenon is proposed.Subject Terms:dual laterolog[amplitude]influenceresistivitytoolfactor 引言一般认为在非渗透性(无侵入)的厚地层中,深浅侧向测得的视电阻率应相等,而在渗透性(有侵入)地层中,二者分裂即产生幅度差。
根据双侧向测井计算裂缝的各种产状
*根据双侧向测井计算裂缝的各种产状,计算公式如下:所谓裂缝的张开度:指在测井仪器其纵向分辨率的范围内,所有的同井壁相切割的裂缝的宽度的总和。
对于低角度缝和网状缝其计算公式为:ε=1R d −1R bR m/(1.2×10−9)对于高角度缝(>75度),其计算公式为:ε=K RR s −1R dR m/(4×10−10)式中Rd——深侧向电阻率,Ω·m;Rb——基岩块电阻率,Ω·m;Rs——浅侧向电阻率,Ω·m; K R——浅侧向畸变系数,取1.2;R m——钻井液电阻率,Ω·m;ε——裂缝张开度, um。
2.裂缝孔隙度,计算公式:∅f=m f(K Rs−1d)R mf式中m f ——裂缝指数,取1.1R mf——钻井液电阻率,Ω·m∅f——裂缝孔隙度。
3.裂缝渗透率,计算公式:K f=4.16×10−3ε2∅f式中K f——裂缝渗透率,10−3um2,其他符号同上。
4.裂缝线密度:计算公式为d f=200×(K f∅f 32.08)−05式中d f——裂缝线密度,条/m5.裂缝发育指数计算,计算公式为;F1=∅f K fℎ×100式中F1——裂缝发育指数,10−3um2·m;h——储层厚度,m。
6.综合评价指数为了排除岩层基质的影响,定义储层的综合评价指数为:F2=F1(∆t−120)利用双侧向电阻率来计算裂缝的孔隙度基本公式为∅f=m f R mf(1R lls−1R lld)式中Rlld——深侧向电阻率,Ω·mRlls——浅侧向电阻率,Ω·mRmf——钻井液电阻率,Ω·mmf——裂缝孔隙度指数。
1984年,Sibbit 和Faiver 根据上述公式,提出了油气水层裂缝的孔隙度公式。
油气层的裂缝孔隙度为∅f=m f R m(K rR lls−1R lld)水层的裂缝孔隙度为∅f=m f K rR lls−1R tb(R m−1R w)式中Rm——泥浆电阻率,Ω·mR tb——岩块电阻率,Ω·mK r——双侧向畸变系数,低角度缝取1.2,斜交缝取1.1垂直缝取1.0;R w——地层水电阻率,Ω·m。
侧向测井
侧向测井的提出1.盐水泥浆、高阻薄层,将产生泥浆分流,测不到地层真电阻率。
2.高阻屏蔽使普通电阻率法无法进行,所以提出聚焦测井法使电流进入地层。
侧向测井的分类LL3、LL6、LL7、LL8、双侧向,邻近侧向、微侧向、微球形聚焦等。
侧向测井又名聚焦电阻率测井,是一种电阻率法测井。
入地层,大大减少泥浆分流和上下围岩特点是在供电电极的两侧加有同极性的屏蔽电极,使主电极的电流被控制在一个狭窄的范围内垂直进的影响。
侧向测井是克服盐水泥浆影响和研究高阻薄地层的重要方法。
三侧向测井电极特征三侧向电极系结构:Ao为主电极,A1、A2为屏蔽电极位于两侧,它们短路相连接。
回路电极(也称回流电极) B置远处(计为无限远)。
工作原理(1)测井过程中,主电极Ao和A1、A2供以相同极性的电流Io和Ia,并使它们之间处于等电位状态。
测井过程中,主电极Ao和A1、A2供以相同极性的电流Io和Ia,并使它们之间处于等电位状态。
(2)当Ao与A1、A2电位不相等时,其电位差被送到调整线路上,通过调节A1、A2电路中的屏蔽电流Ia,保持整个电极系处于等电位状态。
当Ao与A1、A2电位不相等时,其电位差被送到调整线路上,通过调节A1、A2电路中的屏蔽电流Ia,保持整个电极系处于等电位状态。
(3)三侧向的电场:由于主电流Io被A1、A2所屏蔽。
主电流水平流入地层(4)仪器记录的是任意屏蔽电极A1或A2或Ao与回流电极B之间的电位差△U和或Ao与回流电极B之间的电位差△U和主电极电流Ioro—表示主电极的接地电阻,表示主电极的电流层由主电极到回流电极所经过的介质的电阻。
(5)三侧向的主电流基本上是垂直射入地层。
三侧向测井的影响因素•电极系参数的影响电极系长度L的影响主电极长度Lo的影响电极系直径对视电阻率的影响•井眼及地层参数的影响井眼直径和泥岩的影响层厚和围岩的影响侵入带影响深、浅三侧向测井LL3深侧向浅侧向深浅三侧向电流分布图深三侧向电阻率测井主要反映原状地层电阻率Rt;浅三侧向电阻率测井主要反映侵入带的电阻率Ri。
测井方法
测井方法1.1 双侧向测井用于导电性泥浆(盐水基泥浆)的钻孔中确定地层电阻率。
这个测量系统由两个不同探测深度的侧向测井系统所组成,它向地层发出水平聚焦的电流。
测量时,两条曲线使用同一个电极系。
测量深侧向时使用较长的屏蔽电极,测量浅侧向时只使用深测向屏蔽电极的一部分作为屏蔽电极,而另一部分作为回路电极。
如果岩石的电阻率非常高(104-105Ω-m),则测量电流不能有效地聚焦,因此不能够确定岩石的真实电阻率。
在结晶岩地区,双侧向测井可用于划分钻孔周围的岩性、裂隙带和估计裂隙孔隙度。
1.2 视电阻率测井电阻率法测井通常测得的是视电阻率ρs,故过去常称它为视电阻率测井。
由于电阻率法测井的电极系种类越来越多,所以把使用普通电极系的电阻率测井专称为视电阻率测井。
工作时,电极系的A、B电极供电,M、N电极测量电位差,最后根据计算结果绘出与岩层电阻率有关的曲线ρs。
计算公式为ρs =K*ΔU MN/I。
式中K为电极系系数,由电极系排列方式和距离决定。
视电阻率测井主要用来划分钻孔的岩性剖面和进行剖面对比。
有时可用于探测井中金属落物的深度或摸“鱼顶”(探测落井钻具的顶部深度),指导钻具打捞。
1.3 微电阻率测井是电阻法测井的一种,它的特点是电极距只有几厘米。
它包括微电位电极系和微梯级电极系。
为避免钻井液影响,用弹簧片将镶在绝缘板上的电极紧贴井壁。
微梯度电极系比微电位电极系的探测深度小。
在渗透性地层上,微梯度电极系受泥饼的影响较大。
因泥饼的电阻率较低,测得的微电位曲线幅度高于微梯度曲线幅度,称为“正幅度差”。
在非渗透性地层上幅度差不明显。
根据微电阻率测井曲线的“正幅度差”,可以划分出渗透性岩层。
同时,微电阻率测井划分薄岩层的效果很好。
微球形聚焦测井是微电阻率测井的一种,它对贴井壁极板电极系统的特殊设计可获得特殊的电场,从而克服泥饼的影响,获得紧靠井壁的泥浆滤液冲洗带的电阻率。
通常与双侧向测井同时记录。
在石油测井中,渗透性地层被钻井液滤液饱和的井壁冲洗带的电阻率是计算可动油气的重要参数。
三常用测井仪器介绍
GR技术指标:
–长度 6.7ft 2.041m –直径 3.63in 92.1mm –耐压 20 kpsi 137.9MPa –耐温 400℉ 204℃ –重量 120 lb 54.4kg –垂直分辨率 15 in. 381.0 mm
GR应用条件:
最小井眼
4.75in. 120.7mm
最大井眼
24 in. 609.6 mm
MLL质量控制
有时因极板接触不良,曲线上可看到间断的极 低的电阻率读数。应该降低测速进行重复测量 以改善数据质量; 重复测井与主测井应重复较好(裂缝地层通常 重复不好)。
1.3自然伽玛测井GR(Gamma Ray)
自然伽玛测井仪可测量地层的自然放 射性。地层的自然放射性是由岩石中所含 的钾、铀、钍等放射性元素引起的。这些 放射性元素在地层中的聚集与地层沉积环 境有密切关系。因此,测量地层的自然放 射性可解决一些地质问题。它既可在裸眼 井中测量,也可在套管井中测量,用于地 质分层,估算泥质含量及深度校正等等。
GR优点和地质应用: 1. 用于曲线深度校正 2. 确定地层层序剖面,储层划分 3. 估算泥质含量 4. 井间对比,火山岩识别 5. 阳离子交换能力研究;
GR质量控制
自然伽玛仪器可居中或偏心; 在目的层段应重复测60m,重复误差应在允许 范围内; 自然伽玛测井因受地层中运移流体所携带的铀 元素沉淀或者岩盐的影响,而会作出地层不正 确含泥质的指示。应将测量结果与岩屑样品作 比较,若有异,则建议增加自然伽玛能谱测井 (测量钍、铀和钾元素)。
AC优点和地质应用:
– 1.确定地层孔隙度; – 2.识别气层; – 3.得到地层速度数据; – 4.做相关性对比; – 5. 与 其 它 孔 隙 度 曲 线 一 起 识 别 岩 性 ; – 6.识别地层裂缝; – 7. 确 定 地 层 的 力 学 参 数 , 确 定 岩 石
第4章侧向测井
二、侧向测井的分类
高阻地层用侧向 LL3、LL6、LL7、LL8、双测向邻近侧向,微侧向
微球形聚焦
1.三电极侧向测井 2.七电极侧向测井(简称七侧向) 3.微球形聚焦测井
4.双侧向测井
三、三侧向测井LL3
1.
侧向测井原理图
1)
Ao主电极,A1、A2屏 蔽电极位于两则, 它们短路相接。回 路电极B置远处(计 为无限远)
第四章 侧向测井 Laterolog 或Focused Log
总述 1. 2. 3.电流聚焦测量深、中、浅三种不同径 向
电阻率Rt、Ri、Rxo 4.用于划分岩性、
一、为什么要提出侧向测井
1.盐水泥浆、高阻薄层,将产生泥浆分流、
2.高阻屏蔽使普通电阻率法无法进行,所以提出聚焦测井法使 电流进入地层。其办法是把主电流聚焦,用电子线路把电流 挤入地层,与普通视电阻率差别在于供电方式不一样。
用三侧向测井可以求得Rt
四、七侧向测井
七侧向测井由主电极A0、两对监督电极Ml、M2、Ml′、 M2′及两个屏 蔽电极A1、A2构成,电极呈环状,每对电极相对A0是对称的,且短路连接。
测量时A0电极供以恒定电流I0,屏蔽电极Al、 A2流出相同极性的屏蔽电流IS,通过自动调节, 使监督电极M1与M1′(M2与M2′)之间的电位 差为零,因此无论从A0或A1、A2来的电流都 不能穿过M1与M2′(M2与M2′)之间的介质, 迫使电流沿径向流入地层(图2-34),主电极 I0电流呈圆盘状沿径向流入地层。
为了说明层间各部分对测量结果相对影响,引入几何因子的概念:几何因 子是指与介质空间位置、体积大小、形状等几何因素有关的各种影响因 素的总和。
几何因子理论:地层各个分测量结果的相对贡献可用相对几何位置描述。 电极系测定各部分贡献总和为1 Ra=GmRm+GiRi+GtRt
双侧向测井误差分析
1简介双侧向测井是在三侧向和七侧向的基础上延伸出来的深、浅测向的组合测井模式。
双侧向测井仪主要测量盐水钻井液钻井的裸眼井的地层电阻率的主要方法,运用于裸眼井的石油测井。
通过双侧向微球测井仪,还可测得原始地层电阻率和断层带电阻率,并且能研究不同地层电阻率的变化,结合综合的测井资料,从而确定和评估不同地层含油特性。
2仪器特性2.1双侧向微球的技术指标耐温:350F(176℃)2小时最大压力:137.9Mpa外径:3.62in(91.2mm)适合井眼:5.5in-24in最大测井速度:60ft/min(18.3m/min)泥浆类型,水基泥浆:0.015ohm-m 3.0ohm-m180V AC4,6供电电缆7芯电缆仪器换档:测井1,5对10内零:5对10内刻:1对1014#--ID19#--ED16#--IS15#--ES(对18#)7&8#--SP1#&3#开腿直流110伏2.2双侧向测井仪性能指标曲线名称深侧向浅侧向测量范围0.2~40000W·m0.2~2000W·m测量精度±5%±5%探测深度152.4~213.36cm(60~84in)60.96~91.44cm(24~36in)垂直分辨率60.96cm(24in)60.96cm(24in)最大测量井眼60.96cm(24in)最小测量井眼11.43cm(4.5in)仪器耐温177°C(350°F)仪器耐压137.89Mpa(2000psi)2.3安全规定所有正常操作安全技术要求在HSE MS Manual(在线和P/N 186397—915)和RDFO(149400—915)中都有规定,任何特殊的技术要求和预防措施按如下规定:1239DLL—S。
电极输出的电压和电流很小,不会对人造成伤害。
3双侧向测井仪双侧向测井仪器有这不同的设计款式,但是他们都有一个三级电极器为核心,供电给中间部分的电极,会产生一定强度的电流,而两侧的两个电极发射可变强弱的电流,从而使其与中间部分的电极电位差趋近于零。
双侧向测井原理
三侧向—井眼、围岩影响较小,侵入影响大
七侧向—深、浅七侧向受围岩影响程度不同(监督电极、 屏蔽电极位置不同→主电流厚度不同)
双侧向—围岩、层厚对深、浅双侧向的影响相同。受井眼 影响最小
四、双侧向测井资料应用
电阻率测井在油气勘探开发中应用非常广泛
⑴地层对比
主要 应用
⑵裂缝识别 ⑶油、气、水层判别 ⑷计算地层含水饱和度 ⑸估算裂缝参数
气、水层具有良好效果。
电极系确定原则:分层能力强(0102间距离要小)、探 测深度大( A1、A2要长)、井眼影响小
纵向分辨率一般0.6m左右 深侧向探测深度一般2~3m 浅侧向探测深度一般0.5m左右
二、双侧向视电阻率曲线及校正
•与 七 侧 向 视 电 阻 率 曲线相似
电模型实验
•对称于地层中部
一、测井原理 电极系
与七侧向类似,不同的是在七电极系的外面再加上两个屏 蔽电极A1′、A2′。为了增加探测深度,屏蔽电极A1′、 A2′不是环状,而是柱状(与三侧向屏蔽电极相同)
测井原理
测 井 时 , 主 电 极 A0 发 出 恒 定 电 流 I0 , 并 通 过 两 对 屏 蔽 电 极 A1、 A1和 A2、 A2发 出 与 I0 极 性 相 同 的 屏 蔽 电 流I1和I1。
电法测井
(九)
司马立强
西南石油大学资源与环境学院
第一节 三电极侧向测井 第二节 七电极侧向测井 第三节 双侧向测井 第四节 微侧向测井 第五节 邻近侧向测井 第六节 微球形聚焦测井 第七节 电阻率测井方法综合 第八节 侧向测井视电阻率计算
双侧向 测井
是在三、七侧向测井基础上发展 起来的。
测量精度较高,动态范围大,适 用于高阻碳酸盐岩地层,也适用 于低阻砂泥岩地层
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
RLLDC/RLLD
P58 1-55图
0.2 地层厚度ft
当岩层厚度<2ft时,如果RS大于目的层的电阻率,测
出的电阻率增大,校正后的值使其变小. (RLLD/RS=1
至0.005是对的)
如果RS小于目的层的电阻率,测出的电阻率减小,校
正后的值使其变大. 当RLLD与RS 差别很大时才校正
当RLLD/RS=0.5至2时,受围岩的影响小,可以不校正。
Ra RLLD
水层 RLLD<RLLS 则为水层
RLLS
3) 划分碳酸岩盐裂缝储集层中的高低角度裂缝 碳酸岩盐底中低角度裂缝的特征: 泥浆侵入地层深,深浅双侧向 的差异小或无差异(即使油气 层也如此),且电阻率值低, 井段显示不超过1米(短)。 致密岩层
Rlls、Rlld
裂缝
碳酸岩盐底中高角度裂缝的特征: 泥浆侵入地层浅,深浅双 侧向有明显的正差异,井段 显示长,电阻率中低值。
双侧向电极系优越,资料便于对比,
使用效果较好,目前广泛使用.
一:问题的提出
求RXO的测井方法,以前的微电极 受泥饼厚度的影响很大,在盐水泥 浆井中几乎不反映井壁附近地层 的RXO,由此提出了微侧向.
二:微侧向的测量原理 A0 M1测量电极 M2测量电极 A1屏蔽电极
井壁
电极系形状:环形 电极:相当于七个
2 特殊电极的作用
双侧向分为深双和浅双侧向 而A2 、A2`在深双侧向中作
屏蔽电极,在浅双侧向中作 回路电极。
3 电极的排列
A0
M
A1
4
深双侧向与 浅双侧向的区别与联系: 区别:A2 A2`在深双侧向中作屏蔽电极,而在浅 双侧向中作回路电极。
联系:主电极、监督电极、A1 A1`是共用。 5 测井原理 深双侧向测井时,A0 发出恒定的I0 ,A1 A1`、 自动调节使U A2 /U A1=常数,同时使得U M1 =U M2, 或者 U M1` =U M2`。随着电极系的提升周围介质的
RLLS
RLLD
经理论和实践证明:垂直裂缝的双侧向曲线的差
异与含油气和基块的电阻率
无关,而与垂直裂缝的宽度 和泥浆的电导率成正比。 由此,可用双侧向求垂直裂缝的宽度: CLLS-CLLD=0.4ⅹ10-8 ⅹ Cm ⅹ W 电阻率:以欧姆米为电位
式中W:以微米为单位
在使用各种侧向的情况下,权衡的结果认为:
一:优点 1 由于采用了三侧向的棒状电极,因此加强了对主 电极的聚焦。
2 采用了七侧向的监督电极,控制了主电流不能
在井轴方向分流。 3 为了满足高阻剖面电阻率的大范围,采用了恒 功率的方式记录。
二 双侧向测井的原理
1
电极的个数及符号
九电极,除了与七侧向相 同的电极外,还有一对特 殊的电极A2 、A2`
RLLS KS Vos I os
三侧向、七侧向与双侧向在探测深度和分层能力 上的比较: 探测深度 分层能力 三侧向<七侧向<双侧向 三侧向>七侧向=双侧向
三 曲线的特点及应用
1 特点
RLLD RLLS 与三侧向或七侧向曲线的特点完全 相同
2 曲线的应用 (1) 求地层的真电阻率 无论何种电法测井,其曲线所受的影响因素有: 井眼 围岩 侵入
- SP +
RLLD RLLS
解:第一步:分层取值H、RLLD、 RLLS、RMSFL、RS 第二步:进行井眼和围岩校正 第二步:用旋涡图版进行侵入校正、
Rt(取平均值)、Ri、di
RMSFL
总结:
1 学会分层 2 3 读值、准备查图所用的参数 正确使用校正图版
- SP + 2)划分出油气、水层 淡水泥浆井中的砂泥岩、 RLLD>RLLS 则为油气层 油气层
RMLL K M
I0在泥饼上的分流减小,使所测的RMLL受低阻泥
I0
饼的影响小,因此RMLL比微电极更接近于RXO
三 测井资料的应用 1 求RXO
RMLL虽受泥饼的影响小,但泥饼较厚时,泥饼的影响
就突出,此时必须进行校正,才能求准RXO Hmc<10mm时,则RXO= RMLL
Hmc>10mm时,则RXO≠ RMLL,此时须进行泥饼厚度
2 测量原理 电极形状:矩形 电极符号及意义:A0 主电极 , A1 频蔽电极, M 参考电位电极。
因此,要求得地层的真电阻率,必须进行井眼、 井径 围岩、侵入校正。 16``(IN) 1) 井眼校正 10`` LLD RLLDC/RLLD P58 1-54图
RLLD/RM
RLLDC:经井眼校正后的深双侧向,该值可能大于
RLLD也可能小于RLLD,根据受井眼影响的
大小而定。 浅双侧向的井眼校正方法相同,只不过曲线的具 体位置不同而已。(略讲) RLLD/RS 2)围岩校正 50
A2 A2`分别发出与I0 同极性的I1 I2,在测量过程中,
电阻率发生改变,主电流随之而变,监督电极的 电位也在改变。测量监督电极与参考电极N间的电 位差Vod和主电流I0 d 。
其电阻率的计算公式为:
RLLD K d
Vod I od
浅双侧向测井时,A2 A2`作回路电极,使其对主 电极的聚焦作用减弱, 其电阻率的计算公式为:
3) 侵入校正 利用旋涡图版进行校正。 所需的参数:RXO、经井眼和侵入校正后的RLLD RLLS 该图版能作侵入校正,还能求出侵入带的直径。 Rt/ RLLD CC di Rt/ Rxo RLLD CC/RXO
P60 1-58图
RLLD CC/RLLSCC
某井砂泥岩剖面的双侧向、 球形聚焦如图。已知: CAL=8in,Rm=1欧姆米, 求A层的Rt、Ri、di
校正
2 划分薄层 因它的主电流的厚度为4. 4cm,所以它能划分出 >4.5cm的薄层,是确定油气层有效厚度的有利手段. RMLL N0.5M1A - SP +
四 邻近侧向 (PL)
1 邻近侧向的提出 在测量范围内,hmc、Rmc较大时,测量结果受泥饼 的影响太大,此时微侧向不能反映Rxo,因此提出 了邻近侧向
特点:贴井壁测量 测井时,与七侧向的原理相同。 A0发出主电流I0,A1发出同极性的屏蔽电流Ia,测 井时 I0不变,自动调节Ia,使UM1=UM2,使电流呈 层状流入地层,提升电极系的同时,记录任一测 量电极与N电极的电位差。 因 N电极很远,所以UN=0,电位差=UM1 计算电阻率的公式: U M1