考研数学必备积分表【附录】
【高等数学】秒杀必背积分表三角部分
![【高等数学】秒杀必背积分表三角部分](https://img.taocdn.com/s3/m/03d9d971842458fb770bf78a6529647d2728341d.png)
【高等数学】秒杀必背积分表三角部分欢迎纠错常用极限,导数,级数秒杀必背积分表实数部分秒杀必背积分表三角部分基本三角公式sec 2 x − tan 2 x = 1 csc 2 x − cot 2 x = 1 ∫ sec x d x = l n ∣ sec x + tan x ∣ + C ∫ csc x d x = l n ∣ csc x − cot x ∣ + C ∫ tan x d x = − ln ∣ cos x ∣+ C ∫ cot x d x = ln ∣ sin x ∣ +C \sec^2x-\tan^2x=1\\\ \\ \csc^2x-\cot^2x=1\\\ \\ \int \sec x dx=ln|\sec x+\tan x|+C\\\ \\ \int \csc x dx=ln|\csc x-\cot x|+C\\\ \\ \int \tan xdx=-\ln |\cos x |+C\\\ \\ \int \cot xdx=\ln |\sin x|+C\\\ \\sec2x−tan2x=1 csc2x−cot2x=1 ∫secxdx=ln∣secx+tanx ∣+C ∫cscxdx=ln∣cscx−cotx∣+C ∫tanxdx=−ln∣cosx ∣+C ∫cotxdx=ln∣sinx∣+C∫ arcsin x d x = x arcsin x + 1 − x 2 +C ∫ arccos x d x = x arccos x − 1 − x 2 + C ∫ arctan x d x = x arctan x − 1 2 ln ( 1 + x 2 ) + C ∫ a r c c o t x d x = π 2 x − ∫arctan x d x \int \arcsin x dx=x\arcsin x+\sqrt{1-x^2}+C\\\ \\ \int \arccos xdx=x\arccos x-\sqrt{1-x^2}+C\\\ \\ \int \arctan x dx=x\arctan x-\frac{1}{2}\ln(1+x^2)+C\\\ \\ \int arccot xdx=\frac{\pi}{2}x-\int \arctan x dx∫arcsinxdx=xarcsinx+1−x2ln(1+x2)+C ∫arccotxdx=2πx−∫arctanxdx简单积分策略∫ sin n x cos m x d x m , n 至少一奇数,凑偶数项 m , n 均为偶数,倍角降幂 s e c 偶凑 t a n , s e c 奇凑 s e c \int\sin^nx \cos^m xdx\\\ \\ m,n至少一奇数,凑偶数项\\m,n均为偶数,倍角降幂\\\ \\ sec偶凑tan,sec奇凑sec ∫sinnxcosmxdx m,n至少一奇数,凑偶数项m,n均为偶数,倍角降幂sec偶凑tan,sec奇凑sec三角有理函数积分① 若 R ( − sin x , cos x ) = − R ( sin x , cos x ) ,凑 d cos x ② 若 R ( sin x , − cos x ) = − R ( sin x , cos x ) ,凑 d sin x ③ 若 R ( − sin x , −cos x ) = R ( sin x , cos x ) ,凑 d tan x ∫ 0 π 2 f ( cos x , sin x ) d x = ∫ 0 π 2 f ( sin x , cos x ) d x ∫ 0 π x f( sin x ) d x = π 2 ∫ 0 π f ( sin x ) d x = π ∫ 0 π 2 f ( sin x ) d x = π ∫ 0 π 2 f ( cos x ) d x ∫ 0 π x f ( ∣ cos x ∣ ) d x = π2 ∫ 0 π f ( ∣ cos x ∣ ) d x = π ∫ 0 π 2 f ( cos x ) d x = ∫ 0 π x f ( sin x ) d x ∫ 0 1 x m ( 1 − x ) n d x = ∫ 0 1 ( 1 − x ) m x n d x 三角有理函数积分\\ ①若R(-\sin x,\cos x)=-R(\sin x,\cos x),凑d\cos x\\ ②若R(\sin x,-\cos x)=-R(\sin x, \cos x),凑d\sin x\\ ③若R(-\sin x,-\cos x)=R(\sin x, \cos x),凑d\tan x\\\ \\ \\\ \\ \int_0^{\frac{\pi}{2}} f(\cos x,\sin x)dx=\int_0^{\frac{\pi}{2}} f(\sinx,\cos x)dx\\\ \\ \int_0^\pi xf(\sin x)dx=\frac{\pi}{2}\int_0^\pi f(\sin x) dx=\pi\int_0^{\frac{\pi}{2}} f(\sin x) dx = \pi\int_0^{\frac{\pi}{2}} f(\cos x) dx\\\ \\ \int_0^\pixf(|\cos x|) dx=\frac{\pi}{2}\int_0^\pi f(|\cos x|)dx=\pi \int_0^{\frac{\pi}{2}} f(\cos x) dx =\int_0^\pi xf(\sin x) dx\\\ \\ \int_0^1x^m(1-x)^ndx = \int_0^1(1-x)^mx^ndx 三角有理函数积分①若R(−sinx,cosx)=−R(sinx,cosx),凑dcosx②若R(sinx,−cosx)=−R(sinx,cosx),凑dsinx③若R(−sinx,−cosx)=R(sinx,cosx),凑dtanx ∫02πf(cosx,sinx)dx=∫02πf(sinx,cosx)dx ∫0πxf(sinx)dx=2π∫0πf(sinx)dx=π∫02πf(sinx)dx=π∫02πf(cosx)dx ∫0πxf(∣cosx∣)dx=2π∫0πf(∣cosx∣)dx=π∫02πf(cosx)dx=∫0πxf(sinx)dx ∫01xm(1−x)ndx=∫01(1−x)mxndx三角秒杀积分∫ 0 π sin θ d θ = 2 ∫ 0 π 2 sin n θ cos θ d θ = ∫ 0 π 2 sin θ cos nθ d θ = 1 n + 1 ∫ 0 π sin 2 θ d θ =∫ 0 π cos 2 θ d θ = π 2 ∫ 0 π sin 3 θ d θ = 3 4 ; ∫ 0 π cos 3 θ d θ = 0 ∫ 0 π sin 4 θ d θ = ∫ 0 π cos 4θ d θ = 3 π 8 ∫ 0 π sin 5 θ d θ =16 15 ; ∫ 0 π cos 5 θ d θ = 0 ∫ 0 π sin 6 θ d θ = ∫ 0 π cos 6 θ d θ = 5 π 16 \int_0^\pi \sin \theta \space d\theta=2\\\ \\ \int_0^{\frac \pi 2}\sin^n \theta \cos \theta\space d\theta =\int_0^{\frac \pi 2}\sin \theta \cos^n \theta \space d\theta =\frac{1}{n+1}\\\ \\ \int_0^\pi \sin^2 \theta\space d\theta=\int_0^\pi \cos^2\theta\space d\theta=\frac \pi 2\\\ \\ \int_0^\pi\sin^3\theta\space d\theta=\frac 3 4 \space ; \space\int_0^\pi \cos^3 \theta\space d\theta=0\\\ \\\int_0^\pi \sin^4 \theta\space d\theta=\int_0^\pi\cos^4 \theta\space d\theta=\frac {3\pi} 8\\\ \\\int_0^\pi \sin^5\theta\space d\theta=\frac {16} {15} \space ; \space \int_0^\pi \cos^5 \theta\spaced\theta=0\\\ \\ \int_0^\pi \sin^6 \theta\spaced\theta=\int_0^\pi \cos^6 \theta\space d\theta=\frac {5\pi} {16}\\\ \\ ∫0πsinθdθ=2 ∫02πsinnθcosθdθ=∫02πsinθcosnθdθ=n+11 ∫0πsin2θdθ=∫0πcos2θdθ=2π∫0πsin3θdθ=43 ; ∫0πcos3θdθ=0 ∫0πsin4θdθ=∫0πcos4θdθ=83π∫0πsin5θdθ=1516 ; ∫0πcos5θdθ=0 ∫0πsin6θdθ=∫0πcos6θdθ=165π∫ 0 π 2 sin n θ d θ = { ( n − 1 ) ( n − 3 ) ⋯ 4 ⋅ 2 n ( n − 2 ) ( n − 4 ) ⋯ 5 ⋅ 3 , n 为奇整数 ( n − 1 ) ( n − 3 ) ⋯ 5 ⋅ 3 ⋅ 1 n ( n −2 ) ( n − 4 ) ⋯ 4 ⋅ 2 π 2 , n 为偶整数\int_0^{\frac \pi 2}\sin^n\theta d\theta=\left\{ \begin{array}{c} \frac{(n-1)(n-3)\cdots4\cdot2}{n(n-2)(n-4)\cdots5\cdot3},n为奇整数\\\ \\ \frac{(n-1)(n-3)\cdots5\cdot3\cdot1}{n(n-2)(n-4)\cdots4\cdot2}\frac{\pi}{2},n为偶整数 \end{array} \right. ∫02πsinnθdθ=n(n−2)(n−4)⋯5⋅3(n−1)(n−3)⋯4⋅2,n为奇整数n(n−2)(n−4)⋯4⋅2(n−1)(n−3)⋯5⋅3⋅12π,n为偶整数其他积分{ ∫ e a x sin b x d x = 1 a 2 + b 2 ∣ ( e ax ) ′ ( sin b x ) ′ e a x sin b x ∣ + C ∫ e a x cos b x d x = 1 a 2 + b 2 ∣( e a x ) ′ ( cos b x ) ′ e a x cos b x ∣ + C \left\{ \begin{array}{c} \int e^{ax}\sin bx\spacedx=\frac{1}{a^2+b^2} \begin{vmatrix}(e^{ax}) ' & (\sin bx) ' \\ e^{ax} & \sin bx\\ \end{vmatrix}+C\\\ \\ \int e^{ax}\cos bx\space dx=\frac{1}{a^2+b^2}\begin{vmatrix}(e^{ax}) ' & (\cos bx) ' \\ e^{ax} &\cos bx\\ \end{vmatrix}+C \end{array} \right.∫eaxsinbx dx=a2+b21∣∣∣∣(eax)′eax(sinbx)′sinbx∣∣∣∣+C ∫eaxcosbx dx=a2+b21∣∣∣∣(eax)′eax(cosbx)′cosbx∣∣∣∣+C一些公式诱导公式唯几一个有负号的 cos (π / 2 + α ) = −sin α tan (π / 2 + α ) = − cot α cot (π / 2 + α ) = − tan α 唯几一个有负号的\\\cos(π/2+α)=-\sin α\\\tan(π/2+α)=-\cotα\\\cot(π/2+α)=-\tanα 唯几一个有负号的cos (π/2+α)=−sinαtan(π/2+α)=−cotαcot(π/2+α)=−tanα sin ( w ( π − x ) ) = sin w x , w 为奇数 sin ( k ( π − x ) ) = − sin k x , k 为偶数 \sin (w(\pi-x))=\sin wx,w为奇数\\\sin(k(\pi-x))=-\sin kx,k为偶数sin(w(π−x))=sinwx,w为奇数sin(k(π−x))=−sinkx,k为偶数 sin ( n 2 π ) , n ∈ 1 , 2 , 3 ⋯ = ( − 1 ) n − 1 2 , n ∈ 1 , 3 , 5 ⋯ cos ( n 2 π ) , n ∈ 1 , 2 , 3 ⋯ = ( − 1 ) n 2 , n ∈ 2 , 4 , 6 ⋯\sin(\frac n 2\pi),n\in1,2,3\cdots=(-1)^{\frac{n-1}2},n\in 1,3,5\cdots\\\ \\ \cos(\frac n2\pi),n\in1,2,3\cdots=(-1)^{\frac{n}2},n\in2,4,6\cdots sin(2nπ),n∈1,2,3⋯=(−1)2n−1,n∈1,3,5⋯cos(2nπ),n∈1,2,3⋯=(−1)2n,n∈2,4,6⋯积化和差和差化积。
考研数学复习必备之高等数学公式打印版
![考研数学复习必备之高等数学公式打印版](https://img.taocdn.com/s3/m/d73b35a0767f5acfa0c7cd19.png)
高 等 数 学 公 式导数公式: 基本积分表:三角函数的有理式积分:222212211cos 12sin u du dx x tg u u u x u u x +==+-=+=, , , 一些初等函数: 两个重要极限:三角函数公式: ·诱导公式:ax x aa a ctg x x x tg xx x x ctg x xtg x a x x ln 1)(lo g ln )(csc )(csc sec )(sec csc )(sec )(22='='⋅-='⋅='-='='222211)(11)(11)(arcco s 11)(arcsin x a rcctg x x a rctg x x x x x +-='+='--='-='⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==Ca x x axdx C shx chxdx C chx shxdx Ca a dx a Cx ctgxdx x C x dx tgx x Cctgx xdx xdxC tgx xdx xdxxx)ln(ln csc csc sec sec cscsin sec cos 22222222Ca xx a dx C xa xa a x a dx C a x ax a a x dx C a xarctg a x a dx C ctgx x xdx C tgx x xdx Cx ctgxdx Cx tgxdx +=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 22222222⎰⎰⎰⎰⎰++-=-+-+--=-+++++=+-===-Cax a x a xdx x a Ca x x a a x xdx a x Ca x x a axxdx a x I nn xdx xdx I n n nn arcsin 22ln 22)ln(221cos sin22222222222222222222220ππxxarthx x x archx x x arshx e e e e chx shx thx e e chx e e shx x x xx xxxx -+=-+±=++=+-==+=-=----11ln21)1ln(1ln(:2:2:22)双曲正切双曲余弦双曲正弦...590457182818284.2)11(lim 1sin lim 0==+=∞→→e xxxx x x·和差角公式: ·和差化积公式:·倍角公式:·半角公式:ααααααααααααααααααcos 1sin sin cos 1cos 1cos 12cos 1sin sin cos 1cos 1cos 122cos 12cos 2cos 12sin -=+=-+±=+=-=+-±=+±=-±=ctg tg·正弦定理:R C c Bb Aa 2sin sin sin === ·余弦定理:C ab b ac cos 2222-+= ·反三角函数性质:arcctgx arctgx x x -=-=2arccos 2arcsin ππ 高阶导数公式——莱布尼兹(Leibniz )公式:)()()()2()1()(0)()()(!)1()1(!2)1()(n k k n n n n nk k k n k n n uv v u k k n n n v u n n v nu v u v u C uv +++--++''-+'+==---=-∑中值定理与导数应用:拉格朗日中值定理。
积分表24个公式(一)
![积分表24个公式(一)](https://img.taocdn.com/s3/m/e6764ccf9f3143323968011ca300a6c30c22f111.png)
积分表24个公式(一)积分表24个公式1. 基本积分法则•公式:∫u(x)dx=U(x)+C•说明:对于可导的函数u(x),其原函数U(x)的导函数为u(x)。
因此,对u(x)进行积分即可得到U(x)加上常数C的结果。
2. 积分线性法则•公式:∫(af(x)+bg(x))dx=a∫f(x)dx+b∫g(x)dx•说明:对于可积函数f(x)和g(x),以及实数a和b,将其线性组合进行积分,可以将积分分别作用于f(x)和g(x),然后再乘以对应的系数。
3. 积分常数法则•公式:∫dx=x+C•说明:对于常数函数1,进行积分得到x加上常数C。
4. 积分倒数法则dx=ln|f(x)|+C•公式:∫1f(x)• 说明:对于可积函数 f (x ),其倒数的积分为该函数的自然对数的绝对值再加上常数 C 。
5. 积分复合函数法则• 公式:∫f(g (x ))g′(x )dx =F(g (x ))+C• 说明:对于复合函数 f(g (x )),其中 g′(x ) 是 g (x ) 对 x 的导数。
将复合函数的积分转化为对 g (x ) 的原函数 F (x ) 进行积分,再加上常数 C 。
6. 反常积分定义• 公式:∫f b a (x )dx =lim n→∞∫f b a(x )dx • 说明:当函数 f (x ) 在区间 [a,b ] 上不满足 Riemann 积分定义的条件时,可以使用极限的方式来定义反常积分。
…(以此类推,依次列举下去)通过以上24个公式,我们可以灵活运用各种积分技巧来求解不同类型的积分问题。
这些公式是对积分操作的基本规则的总结和归纳,是进行积分计算的重要工具。
熟练掌握这些公式,能够帮助我们更加高效地解决各种积分相关的问题。
高等数学常用积分公式查询表
![高等数学常用积分公式查询表](https://img.taocdn.com/s3/m/a3b40bdb192e45361166f588.png)
導數公式:基本積分表:三角函數的有理式積分:ax x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22='='⋅-='⋅='-='='222211)(11)(11)(arccos 11)(arcsin x arcctgx x arctgx x x x x +-='+='--='-='⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==Ca x x a x dx C shx chxdx C chx shxdx Ca a dx a Cx ctgxdx x Cx dx tgx x Cctgx xdx x dx C tgx xdx x dx xx)ln(ln csc csc sec sec csc sin sec cos 22222222C axx a dx C x a xa a x a dx C a x ax a a x dx C a xarctg a x a dx Cctgx x xdx C tgx x xdx Cx ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 22222222⎰⎰⎰⎰⎰++-=-+-+--=-+++++=+-===-Cax a x a x dx x a Ca x x a a x x dx a x Ca x x a a x x dx a x I nn xdx xdx I n n nn arcsin 22ln 22)ln(221cos sin 2222222222222222222222ππ222212211cos 12sin u dudx x tg u u u x u u x +==+-=+=, , , (一)含有ax b +的積分(0a ≠)1.d x ax b +⎰=1ln ax b C a ++2.()d ax b x μ+⎰=11()(1)ax b C a μμ++++(1μ≠-)3.d x x ax b +⎰=21(ln )ax b b ax b C a +-++4.2d x x ax b +⎰=22311()2()ln 2ax b b ax b b ax b C a ⎡⎤+-++++⎢⎥⎣⎦5.d ()xx ax b +⎰=1ln ax b C b x+-+ 6.2d ()xx ax b +⎰=21ln a ax b C bx b x +-++ 7.2d ()x x ax b +⎰=21(ln )b ax b C a ax b++++ 8.22d ()x x ax b +⎰=231(2ln )b ax b b ax b C a ax b+-+-++ 9.2d ()xx ax b +⎰=211ln ()ax b C b ax b b x +-++的積分10.x C11.x ⎰=22(3215ax b C a -12.x x ⎰=22232(15128105a x abx b C a-+13.x=22(23ax b C a -14.2x=22232(34815a x abx b C a -+ 15.=(0)(0)C b C b ⎧+><16.=2a b -⎰17.x=b 18.x=2a x -+(三)含有22x a ±的積分19.22d x x a +⎰=1arctan xC a a+ 20.22d ()n x x a +⎰=2221222123d 2(1)()2(1)()n n x n xn a x a n a x a ---+-+-+⎰21.22d xx a -⎰=1ln 2x a C a x a -++(四)含有2(0)ax b a +>的積分22.2d x ax b +⎰=(0)(0)C b C b ⎧+>+< 23.2d x x ax b +⎰=21ln 2ax b C a++ 24.22d x x ax b +⎰=2d x b xa a ax b-+⎰25.2d ()x x ax b +⎰=221ln 2x C b ax b++26.22d ()x x ax b +⎰=21d a xbx b ax b --+⎰27.32d ()x x ax b +⎰=22221ln 22ax b a C b x bx+-+ 28.22d ()x ax b +⎰=221d 2()2x xb ax b b ax b+++⎰(五)含有2ax bx c ++(0)a >的積分29.2d x ax bx c ++⎰=22(4)(4)C b ac Cb ac +<+>30.2d x x ax bx c ++⎰=221d ln 22b x ax bx c a a ax bx c++-++⎰(0)a >的積分31.=1arshxC a +=ln(x C ++ 32.=C +33.x=C34.x=C +35.2x=2ln(2a x C ++36.2x =ln(x C +++37.=1ln aC a x +38.C +39.x 2ln(2a x C ++40.x =2243(25ln(88x x a a x C +++41.x ⎰C +42.x x ⎰=422(2ln(88x a x a x C+++43.d x x ⎰ln a a C x -+44.2d x x ⎰=ln(x C x-+++(0)a >的積分45.=1arch x xC x a+=ln x C ++ 46.C +47.x =C48.x =C +49.2x 2ln 2a x C ++50.2x =ln x C +++51.=1arccos aC a x +52.C +53.x 2ln 2a x C -++54.x =2243(25ln 88x x a a x C -+++55.x ⎰C +56.x x ⎰=422(2ln 88x a x a x C -++57.x x⎰=arccos aa C x -+58.x =ln x C ++(0)a >的積分59.=arcsinxC a + 60.C +61.x =C62.x =C +63.2x =2arcsin 2a x C a ++ 64.2x arcsinxC a-+65.=1ln a C a x -+66.2C a x -+67.x 2arcsin 2a x C a++68.x =2243(52arcsin 88x x a x a C a-+69.x ⎰=C70.x x ⎰=422(2arcsin 88x a x x a C a-+71.x a C +72.x =arcsin xC a-+(0)a >的積分73.2ax b C +++74.x22ax b C +++75.x2ax b C -+++76.=C +77.x 2C +78.x =C +79.x =((x b b a C -+-+80.x =((x b b a C -+-+81.2arcsinC +()a b <82.x 2()4b a C - ()a b <(十一)含有三角函數的積分 83.sin d x x ⎰=cos x C -+ 84.cos d x x ⎰=sin x C +85.tan d x x ⎰=ln cos x C -+ 86.cot d x x ⎰=ln sin x C +87.sec d x x ⎰=ln tan()42x C π++=ln sec tan x x C ++ 88.csc d x x ⎰=ln tan2xC +=ln csc cot x x C -+ 89.2sec d x x ⎰=tan x C +90.2cscd x x ⎰=cot x C -+91.sec tan d x x x ⎰=sec x C + 92.csc cot d x x x ⎰=csc x C -+93.2sin d x x ⎰=1sin 224x x C -+ 94.2cos d x x ⎰=1sin 224x x C ++95.sin d n x x ⎰=1211sin cos sin d n n n x x x x n n----+⎰ 96.cos d n x x ⎰=1211cos sin cos d n n n x x x x n n---+⎰ 97.d sin n x x ⎰=121cos 2d 1sin 1sin n n x n x n x n x ----⋅+--⎰ 98.d cos n x x ⎰=121sin 2d 1cos 1cos n n x n xn x n x---⋅+--⎰ 99.cos sin d m n x x x ⎰=11211cos sin cos sin d m n m nm x x x x x m n m n-+--+++⎰ =11211cos sin cos sin d m n m n n x x x x x m n m n+----+++⎰ 100.sin cos d ax bx x ⎰=11cos()cos()2()2()a b x a b x C a b a b -+--++-101.sin sin d ax bx x ⎰=11sin()sin()2()2()a b x a b x C a b a b -++-++-102.cos cos d ax bx x ⎰=11sin()sin()2()2()a b x a b x C a b a b ++-++-103.d sin xa b x +⎰tanx a b C ++22()a b >104.d sin xa b x +⎰C+22()a b <105.d cos xa b x +⎰)2x C +22()a b >106.d cos x a b x +⎰C +22()a b <107.2222d cos sin x a x b x +⎰=1arctan(tan )bx C ab a + 108.2222d cos sin xa xb x -⎰=1tan ln 2tan b x a C ab b x a ++-109.sin d x ax x ⎰=211sin cos ax x ax C a a -+ 110.2sin d x ax x ⎰=223122cos sin cos x ax x ax ax C a a a -+++111.cos d x ax x ⎰=211cos sin ax x ax C a a ++112.2cos d x ax x ⎰=223122sin cos sin x ax x ax ax C a a a+-+(十二)含有反三角函數的積分(其中0a >)113.arcsin d x x a ⎰=arcsin x x C a+114.arcsin d xx x a⎰=22()arcsin 24x a x C a -+115.2arcsin d x x x a ⎰=3221arcsin (239x x x a C a +++116.arccos d x x a ⎰=arccos x x C a117.arccos d x x x a⎰=22()arccos 24x a x C a --+118.2arccos d x x x a ⎰=3221arccos (239x x x a C a -+ 119.arctan d x x a ⎰=22arctan ln()2x a x a x C a -++ 120.arctan d x x x a ⎰=221()arctan 22x a a x x C a +-+ 121.2arctan d x x x a ⎰=33222arctan ln()366x x a a x a x C a -+++ (十三)含有指數函數的積分122.d x a x ⎰=1ln x a C a+ 123.e d ax x ⎰=1e ax C a+ 124.e d ax x x ⎰=21(1)e ax ax C a-+ 125.e d n ax x x ⎰=11e e d n ax n ax n x x x a a --⎰ 126.d x xa x ⎰=21ln (ln )x x x a a C a a -+ 127.d n x x a x ⎰=11d ln ln n x n x n x a x a x a a--⎰ 128.e sin d ax bx x ⎰=221e (sin cos )ax a bx b bx C a b-++ 129.e cos d ax bx x ⎰=221e (sin cos )ax b bx a bx C a b+++ 130.e sin d ax n bx x ⎰=12221e sin (sin cos )ax n bx a bx nb bx a b n --+22222(1)e sin d ax n n n b bx x a b n --++⎰131.e cos d ax n bx x ⎰=12221e cos (cos sin )ax n bx a bx nb bx a b n-++ 22222(1)e cos d ax n n n b bx x a b n--++⎰ (十四)含有對數函數的積分132.ln d x x ⎰=ln x x x C -+ 133.d ln x x x ⎰=ln ln x C +134.ln d n x x x ⎰=111(ln )11n x x C n n +-+++ 135.(ln )d n x x ⎰=1(ln )(ln )d n n x x n x x --⎰ 136.(ln )d m n x x x ⎰=111(ln )(ln )d 11m n m n n x x x x x m m +--++⎰ (十五)含有雙曲函數的積分137.sh d x x ⎰=ch x C + 138.ch d x x ⎰=sh x C + 139.th d x x ⎰=lnch x C + 140.2sh d x x ⎰=1sh224x x C -++ 141.2ch d x x ⎰=1sh224x x C ++ (十六)定積分142.cos d nx x π-π⎰=sin d nx x π-π⎰=0 143.cos sin d mx nx x π-π⎰=0144.cos cos d mx nx x π-π⎰=0,,m n m n ≠⎧⎨π=⎩145.sin sin d mx nx x π-π⎰=0,,m n m n ≠⎧⎨π=⎩ 146.0sin sin d mx nx x π⎰=0cos cos d mx nx x π⎰=0,,2m n m n ≠⎧⎪⎨π=⎪⎩ 147.n I =20sin d n x x π⎰=20cos d n x x π⎰n I =21n n I n -- 1342253n n n I n n --=⋅⋅⋅⋅- (n 為大於1的正奇數),1I =1 13312422n n n I n n --π=⋅⋅⋅⋅⋅-(n 為正偶數),0I =2π。
高等数学积分表大全
![高等数学积分表大全](https://img.taocdn.com/s3/m/7bd64d23650e52ea551898d1.png)
常 用 积 分 公 式(一)含有ax b +的积分(0a ≠)1.d xax b +⎰=1ln ax b C a++ 2.()d ax b x μ+⎰=11()(1)ax b C a μμ++++(1μ≠-)3.d x x ax b +⎰=21(ln )ax b b ax b C a+-++ 4.2d x x ax b +⎰=22311()2()ln 2ax b b ax b b ax b C a ⎡⎤+-++++⎢⎥⎣⎦5.d ()xx ax b +⎰=1lnax b C b x +-+ 6.2d ()xx ax b +⎰=21ln a ax b C bx b x +-++ 7.2d ()x x ax b +⎰=21(ln )b ax b C a ax b++++8.22d ()x x ax b +⎰=231(2ln )b ax b b ax b C a ax b+-+-++ 9.2d ()xx ax b +⎰=211ln ()ax b C b ax b b x +-++ (二)含有ax b+的积分10.d ax b x +⎰=32()3ax b C a ++ 11.d x ax b x +⎰=322(32)()15ax b ax b C a -++ 12.2d x ax b x +⎰=222332(15128)()105a x abx b ax b C a-+++ 13.d x x ax b+⎰=22(2)3ax b ax b C a -++14.2d x x ax b+⎰=22232(348)15a x abx b ax b C a -+++ 15.d x x ax b +⎰=1ln(0)2arctan(0)ax b b C b b ax b b ax b Cb bb +-+>++++<--⎧⎪⎪⎨⎪⎪⎩16.2d x x ax b+⎰=d 2ax b a xbx b x ax b +--+⎰17.d ax b x x +⎰=d 2xax b b x ax b +++⎰ 18.2d ax b x x +⎰=d 2ax b a xx x ax b+-++⎰ (三)含有22x a ±的积分19.22d x x a +⎰=1arctan x C a a + 20.22d xx a-⎰=1ln 2x a C a x a -++ 21.22d ()n x x a +⎰=2221222123d 2(1)()2(1)()n n x n xn a x a n a x a ---+-+-+⎰ (四)含有2(0)ax b a +>的积分22.2d x ax b +⎰=1arctan (0)1ln(0)2ax C b bab ax bC b ab ax b⎧+>⎪⎪⎨--⎪+<⎪-+-⎩23.2d x x ax b +⎰=21ln 2ax b C a ++ 24.22d x x ax b +⎰=2d x b x a a ax b -+⎰ 25.2d ()x x ax b +⎰=221ln 2x C b ax b++ 26.22d ()x x ax b +⎰=21d a xbx b ax b --+⎰27.32d ()x x ax b +⎰=22221ln 22ax b a C b x bx +-+28.22d ()x ax b +⎰=221d 2()2x xb ax b b ax b+++⎰ (五)含有2ax bx c ++(0)a >的积分29.2d x ax bx c ++⎰=222222222arctan (4)44124ln (4)424ax b C b ac ac b ac b ax b b ac Cb ac b ac ax b b ac +⎧+<⎪--⎪⎨+--⎪+>⎪-++-⎩30.2d x x ax bx c ++⎰=221d ln 22b x ax bx c a a ax bx c++-++⎰ (六)含有22x a +(0)a >的积分31.22d x x a +⎰=1arshxC a +=22ln()x x a C +++ 32.223d ()x x a +⎰=222x C a x a ++ 33.22d x x x a +⎰=22x a C ++34.223d ()x x x a +⎰=221C x a-++35.222d x x x a +⎰=22222ln()22x a x a x x a C +-+++ 36.2223d ()x x x a +⎰=2222ln()x x x a C x a -+++++37.22d xx x a +⎰=221ln x a aC a x +-+ 38.222d x x x a+⎰=222x a C a x +-+ 39.22d x a x +⎰=22222ln()22x a x a x x a C +++++ 40.223()d x a x +⎰=22224223(25)ln()88x x a x a a x x a C ++++++41.22d x x a x +⎰=2231()3x a C ++ 42.222d x x a x +⎰=4222222(2)ln()88x a x a x a x x a C ++-+++43.22d x a x x +⎰=2222ln x a a x a a C x +-+++ 44.222d x a x x +⎰=2222ln()x a x x a C x+-++++ (七)含有22x a -(0)a >的积分 45.22d x x a -⎰=1arch x xC x a +=22ln x x a C +-+ 46.223d ()x x a -⎰=222x C a x a -+- 47.22d x x x a -⎰=22x a C -+48.223d ()x x x a -⎰=221C x a-+-49.222d x x x a -⎰=22222ln 22x a x a x x a C -++-+ 50.2223d ()x x x a -⎰=2222ln x x x a C x a -++-+-51.22d xx x a -⎰=1arccos a C a x + 52.222d xx x a-⎰=222x a C a x -+ 53.22d x a x -⎰=22222ln 22x a x a x x a C --+-+ 54.223()d x a x -⎰=22224223(25)ln 88x x a x a a x x a C --++-+55.22d x x a x -⎰=2231()3x a C -+ 56.222d xx a x -⎰=4222222(2)ln 88x a x a x a x x a C ---+-+57.22d x a x x-⎰=22arccos a x a a C x --+58.222d x a x x -⎰=2222ln x a x x a C x--++-+ (八)含有22a x -(0)a >的积分59.22d x a x -⎰=arcsinx C a + 60.223d ()xa x -⎰=222x C a a x +- 61.22d x x a x-⎰=22a x C --+ 62.223d ()x x a x -⎰=221C a x+-63.222d x x a x -⎰=222arcsin 22x a x a x C a --++ 64.2223d ()x x a x -⎰=22arcsinx xC aa x -+- 65.22d xx a x -⎰=221ln a a x C a x --+ 66.222d x x a x-⎰=222a x C a x --+ 67.22d a x x -⎰=222arcsin 22x a x a x C a-++ 68.223()d a x x -⎰=222243(52)arcsin 88x xa x a x a C a --++69.22d x a x x -⎰=2231()3a x C --+70.222d x a x x -⎰=42222(2)arcsin 88x a x x a a x C a--++71.22d a x x x -⎰=2222ln a a x a x a C x ---++ 72.222d a x x x -⎰=22arcsin a x xC x a---+ (九)含有2ax bx c ±++(0)a >的积分73.2d x ax bx c++⎰=21ln 22ax b a ax bx c C a+++++ 74.2d ax bx c x ++⎰=224ax bax bx c a+++2234l n 228a c ba xb aa xb xc Ca-++++++ 75.2d x x ax bx c++⎰=21ax bx c a ++23l n 222b a x b aa xb xc Ca-+++++ 76.2d x c bx ax +-⎰=212arcsin 4ax bC a b ac--++77.2d c bx ax x +-⎰=2232242arcsin 484ax b b ac ax b c bx ax C a a b ac-+-+-+++78.2d x x c bx ax +-⎰=23212arcsin 24b ax bc bx ax C a a b ac--+-+++(十)含有x ax b-±-或()()x a b x --的积分79.d x a x x b --⎰=()()ln()x ax b b a x a x b C x b--+--+-+-80.d x a x b x --⎰=()()arcsin x a x ax b b a C b x b x ---+-+-- 81.d ()()xx a b x --⎰=2arcsinx a C b x -+-()a b <82.()()d x a b x x --⎰=22()()()arcsin 44x a b b a x a x a b x C b x------++-()a b < (十一)含有三角函数的积分83.sin d x x ⎰=cos x C -+ 84.cos d x x ⎰=sin x C + 85.tan d x x ⎰=ln cos x C -+ 86.cot d x x ⎰=ln sin x C +87.sec d x x ⎰=ln tan()42xC π++=ln sec tan x x C ++88.csc d x x ⎰=ln tan2xC +=ln csc cot x x C -+ 89.2sec d x x ⎰=tan x C + 90.2csc d x x ⎰=cot x C -+ 91.sec tan d x x x ⎰=sec x C + 92.csc cot d x x x ⎰=csc x C -+93.2sin d x x ⎰=1sin 224x x C -+ 94.2cos d x x ⎰=1sin 224x x C ++ 95.sin d n x x ⎰=1211sin cos sin d n n n x x x x n n ----+⎰96.cos d n x x ⎰=1211cos sin cos d n n n x x x x n n---+⎰ 97.d sin n x x ⎰=121cos 2d 1sin 1sin n n x n xn x n x----⋅+--⎰ 98.d cos n x x ⎰=121sin 2d 1cos 1cos n n x n xn x n x---⋅+--⎰ 99.cos sin d m n x x x ⎰=11211cos sin cos sin d m n m n m x x x x x m n m n-+--+++⎰ =11211cos sin cos sin d m n m n n x x x x x m n m n+----+++⎰ 100.sin cos d ax bx x ⎰=11cos()cos()2()2()a b x a b x C a b a b -+--++-101.sin sin d ax bx x ⎰=11sin()sin()2()2()a b x a b x C a b a b -++-++-102.cos cos d ax bx x ⎰=11sin()sin()2()2()a b x a b x C a b a b ++-++-103.d sin xa b x +⎰=2222tan22arctan xa b C a ba b++--22()a b >104.d sin x a b x +⎰=222222tan12ln tan 2x a b b a Cx b a a b b a +--+-++-22()a b <105.d cos xa b x +⎰=2arctan(tan )2a b a b x C a b a ba b +-++-+22()a b >106.d cos x a b x +⎰=tan12lntan 2x a ba b b a C a b b a xa b b a+++-++-+--22()a b <107.2222d cos sin x a x b x +⎰=1arctan(tan )bx C ab a +108.2222d cos sin xa xb x-⎰=1tan ln 2tan b x a C ab b x a ++- 109.sin d x ax x ⎰=211sin cos ax x ax C a a -+ 110.2sin d x ax x ⎰=223122cos sin cos x ax x ax ax C a a a -+++111.cos d x ax x ⎰=211cos sin ax x ax C a a ++112.2cos d x ax x ⎰=223122sin cos sin x ax x ax ax C a a a+-+(十二)含有反三角函数的积分(其中0a >)113.arcsin d x x a ⎰=22arcsin xx a x C a+-+114.arcsin d xx x a ⎰=2222()arcsin 244x a x x a x C a -+-+ 115.2arcsin d xx x a⎰=322221arcsin (2)39x x x a a x C a ++-+116.arccos d x x a ⎰=22arccos xx a x C a--+117.arccos d xx x a⎰=2222()arccos 244x a x x a x C a ---+118.2arccos d xx x a⎰=322221arccos (2)39x x x a a x C a -+-+119.arctan d x x a ⎰=22arctan ln()2x ax a x C a -++120.arctan d x x x a ⎰=221()arctan 22x aa x x C a +-+121.2arctan d xx x a⎰=33222arctan ln()366x x a a x a x C a -+++(十三)含有指数函数的积分122.d x a x ⎰=1ln x a C a + 123.e d ax x ⎰=1e ax C a + 124.e d ax x x ⎰=21(1)e ax ax C a -+ 125.e d n ax x x ⎰=11e e d n ax n ax nx x x a a--⎰126.d x xa x ⎰=21ln (ln )x xx a a C a a -+ 127.d n x x a x ⎰=11d ln ln n x n x nx a x a x a a --⎰ 128.e sin d ax bx x ⎰=221e (sin cos )axa bxb bx C a b -++ 129.e cos d ax bx x ⎰=221e (sin cos )ax b bx a bx C a b+++ 130.e sin d ax n bx x ⎰=12221e sin (sin cos )ax n bx a bx nb bx a b n--+ 22222(1)e s i n d a x n n n b b x x a b n--++⎰ 131.e cos d ax n bx x ⎰=12221e cos (cos sin )ax n bx a bx nb bx a b n-++ 22222(1)e c o s d a x n n n b b x x a b n--++⎰ (十四)含有对数函数的积分132.ln d x x ⎰=ln x x x C -+ 133.d ln xx x⎰=ln ln x C + 134.ln d n x x x ⎰=111(ln )11n x x C n n +-+++135.(ln )d nx x ⎰=1(ln )(ln )d n n x x n x x --⎰136.(ln )d m n x x x ⎰=111(ln )(ln )d 11m n m n n x x x x x m m +--++⎰ (十五)含有双曲函数的积分137.sh d x x ⎰=ch x C + 138.ch d x x ⎰=sh x C + 139.th d x x ⎰=lnch x C + 140.2sh d x x ⎰=1sh224x x C -++ 141.2ch d x x ⎰=1sh224x x C ++ (十六)定积分142.cos d nx x π-π⎰=sin d nx x π-π⎰=0 143.cos sin d mx nx x π-π⎰=0144.cos cos d mx nx x π-π⎰=0,,m nm n ≠⎧⎨π=⎩145.sin sin d mx nx x π-π⎰=0,,m nm n≠⎧⎨π=⎩146.0sin sin d mx nx x π⎰=0cos cos d mx nx x π⎰=0,,2m n m n ≠⎧⎪⎨π=⎪⎩147. n I =20sin d nx x π⎰=20cos d n x x π⎰n I =21n n I n-- 1342253n n n I n n --=⋅⋅⋅⋅- (n 为大于1的正奇数),1I =1 13312422n n n I n n --π=⋅⋅⋅⋅⋅-(n 为正偶数),0I =2π。
考研数学公式大全(考研必备)
![考研数学公式大全(考研必备)](https://img.taocdn.com/s3/m/6e3b1045a300a6c30c229fa9.png)
高等数学公式篇导数公式: 基本积分表:C kx dx k +=⎰)1a (,C x 1a 1dx x 1a a-≠++=+⎰C x ln dx x 1+=⎰ C e dx e xx +=⎰C a ln a dx a xx+=⎰(1a ,0a ≠>) C x cos xdx sin +-=⎰C x sin dx x cos +=⎰ C x arctan dx x 112+=+⎰C axarcsin x a dx C x a xa ln a 21x a dx C a x ax ln a 21a x dx C a xarctan a 1x a dx Cx cot x csc ln xdx csc C x tan x sec ln xdx sec Cx sin ln xdx cot C x cos ln xdx tan 22222222+=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==C)a x x ln(a x dx C shx chxdx C chx shxdx Ca ln a dx a Cx csc xdx cot x csc C x sec dx x tan x sec Cx cot xdx csc x sin dx C x tan xdx sec x cos dx 2222x x2222aln x 1)x (log a ln a )a (x cot x csc )x (csc x tan x sec )x (sec x csc )x (cot x sec )x (tan x cos )x (sin aX )X (0)C (a x x 221a a ='='⋅-='⋅='-='='='='='-2222xx x 11)x cot arc (x 11)x (arctan x 11)x (arccos x 11)x (arcsin x 1)x (ln e )e (x sin )x (cos +-='+='--='-='='='-='C x sin d x cos c ln B Ax dx x sin d x cos c xsin b x cos a +++=++⎰其中,)x sin d x cos c (B )x sin d x cos c (A x sin b x cos a +++=+ a Bd Ac =+B ,A b Bc Ad ⇒=-三角函数的有理式积分:2222u1du2dx 2x tan u u 1u 1x cos u 1u 2x sin +==+-=+=, , , 一些初等函数: 两个重要极限:三角函数公式: ·诱导公式:xxarthx x x archx x x arshx e e e e chx shx thx e e chx e e shx x x xx xx xx -+=-+±=++=+-==+=-=----11ln21)1ln(1ln(:2:2:22)双曲正切双曲余弦双曲正弦...590457182818284.2)11(lim 1sin lim 0==+=∞→→e xxx x x x·和差角公式: ·和差化积公式:·倍角公式:·半角公式:α-α=αα+=α-α+±=αα+α=αα-=α+α-±=αα+±=αα-±=αcos 1sin sin cos 1cos 1cos 12cot cos 1sin sin cos 1cos 1cos 12tan2cos 12cos 2cos 12sin ·正弦定理:R CcB b A a 2sin sin sin === ·余弦定理:C ab b a c cos 2222-+= ·反三角函数性质:x cot arc 2x arctan x arccos 2x arcsin -π=-π= 高阶导数公式——莱布尼兹(Leibniz )公式:)()()()2()1()(0)()()(!)1()1(!2)1()(n k k n n n n nk k k n k n n uv v u k k n n n v u n n v nu v u v u C uv +++--++''-+'+==---=-∑2sin2sin 2cos cos 2cos2cos 2cos cos 2sin2cos 2sin sin 2cos2sin2sin sin βαβαβαβαβαβαβαβαβαβαβαβα-+=--+=+-+=--+=+α±ββ⋅α=β±αβ⋅αβ±α=β±αβαβα=β±αβα±βα=β±αcot cot 1cot cot )cot(tan tan 1tan tan )tan(sin sin cos cos )cos(sin cos cos sin )sin( α-α-α=αα-α=αα-α=α2333tan 31tan tan 33tan cos 3cos 43cos sin 4sin 33sin α-α=αα-α=αα-α=α-=-α=ααα=α222222tan 1tan 22tan cot 21cot 2cot sin cos sin 211cos 22cos cos sin 22sin中值定理与导数应用:拉格朗日中值定理。
考研数学积分公式表-背诵版
![考研数学积分公式表-背诵版](https://img.taocdn.com/s3/m/997dda9a69eae009591bec4a.png)
基本积分表(1)kdx kx C =+⎰ (k 是常数)(2)1,1x x dx C μμμ+=++⎰ (1)u ≠−(3)1ln ||dx x C x =+⎰(4)2tan 1=++⎰dxarc x C x (5)arcsin x C =+(6)cos sin xdx x C =+⎰ (7)sin cos xdx x C =−+⎰(8)21tan cos dx x C x =+⎰(9)21cot sin dx x C x =−+⎰(10)sec tan sec x xdx x C =+⎰ (11)csc cot csc x xdx x C =−+⎰ (12)x x e dx e C =+⎰(13)ln xxa a dx C a=+⎰,(0,1)a a >≠且 (14)shxdx chx C =+⎰ (15)chxdx shx C =+⎰(16)2211tan xdx arc C a x a a =++⎰ (17)2211ln ||2x adx C x a a x a −=+−+⎰ (18)sinxarc C a=+ (19)ln(x C =++(20)ln |x C =++(21)tan ln |cos |xdx x C =−+⎰ (22)cot ln |sin |xdx x C =+⎰ (23)sec ln |sec tan |xdx x x C =++⎰ (24)csc ln |csc cot |xdx x x C =−+⎰注:1、从导数基本公式可得前15个积分公式 2、以上公式把x 换成u 仍成立,u 是以x 为自变量的函数。
3、复习三角函数公式:2222sin cos 1tan 1sec sin 22sin cos ,+=+==x x x x x x x 221cos 2cos 21cos 2sin 2+=−=xx xx ,注:由[()]'()[()]()f x x dx f x d x ϕϕϕϕ=⎰⎰,此步为凑微分过程,所以第一类换元法也叫凑微分法。
数学积分表
![数学积分表](https://img.taocdn.com/s3/m/be6f182f10661ed9ad51f35e.png)
75
.∫
x ax + bx + c
2
dx
1 =a −
ax 2 + bx + c b 2 a
3
ln 2ax + b + 2 a ax 2 + bx + c + C
76
.∫ .∫ .∫
dx c + bx − ax
2
=−
1 2ax − b arcsin +C a b 2 + 4ac c + bx − ax 2 + b 2 a3 b 2 + 4ac 8 a
的积分
x−b )+C
.∫ .∫ .∫ .∫
x−a dx x−b x−a dx b− x
= ( x − b) = ( x − b)
x−a + (b − a ) ln( x − a + x−b
80
x−a x−a + (b − a ) arcsin +C b− x b− x x−a +C b− x
( a < b)
50
=−
51
1 a =a arccos + C x
52
=
x =2
x2 − a2 +C a2 x
x2 − a2 −
2
53
a2 ln x + x 2 − a 2 x − a ) dx = 8 (2 x − 5a ) x 1 55. ∫ x x − a dx = (x − a ) + C 3
2 2 2 2 3
3 − a 2 + a 4 ln x + x 2 − a 2 + C 8
《高等数学》附录6(积分表)
![《高等数学》附录6(积分表)](https://img.taocdn.com/s3/m/9cd884d40d22590102020740be1e650e52eacfbe.png)
481附录6 积 分 表一、含有n x 的形式1. 1d ,11n nx x x C n n +=+≠-+⎰2.1d ln x x C x=+⎰二、含有a bx +的形式3.()21d ln x x bx a a bx C a bx b=-+++⎰ 4.()221d ln xax a bx C b a bx a bx ⎛⎫=+++⎪+⎝⎭+⎰5.()()()()()()21211d ,1,221nn n xax C n b a bx n a bx n a bx --⎡⎤-=++≠⎢⎥+-+-+⎢⎥⎣⎦⎰ 6.()2231d 2ln 2x bx x a bx a a bx C a bx b ⎡⎤=--+++⎢⎥+⎣⎦⎰7.()22231d 2ln x a x bx a a bx C b a bx a bx ⎛⎫=--++ ⎪++⎝⎭⎰ 8.()()2232312d ln 2x a a x a bx C b a bx a bx a bx ⎡⎤=-+++⎢⎥+++⎢⎥⎣⎦⎰ 9.()()()()()()()223213112d 321nn n n x a a x b a bx n a bx n a bx n a bx ---⎡⎤-=+-⎢⎥+-+-+-+⎢⎥⎣⎦⎰(),1,2,3C n +≠ 10.()11d ln x x C x a bx a a bx =+++⎰11.()21111d ln x x C a a bx a a bx x a bx ⎛⎫=++ ⎪+++⎝⎭⎰12.()2111d lnb xx C x a bx a x a a bx⎛⎫=-++ ⎪++⎝⎭⎰13.()()2221122d ln a bx b xx C a x a bx a a bx x a bx ⎡⎤+=-++⎢⎥+++⎢⎥⎣⎦⎰ 三、含有22,0a x a ±>的形式14.2211d arctan xx C a x a a=++⎰15.2222111d ln 2x ax dx C x a a x a x a-=-=+--+⎰⎰ 16.()()()()()()112222222111d 23,121n n n x x n dx n a n a x a x a x --⎡⎤⎢⎥=+-≠⎢⎥-±±±⎣⎦⎰⎰ 四、含有22,4a bx cx b ac ++≠的形式17.()221d ,4x C b ac a bx cx +<++⎰, 21d x a bx cx =++⎰()2,4.C b ac >18.22211d ln 2x x a bx cx b dx a bx cx c a bx cx ⎛⎫=++- ⎪++++⎝⎭⎰⎰五、含有的形式19.()()3/2223n n x x x a bx na x b n -⎡⎤=⋅+-⎣⎦+⎰⎰482 20.(),0,x C a x +>(),0.C a <21.()()()231,112b n x x n a n -⎤-=≠⎥-⎢⎦⎣ 22.x a x = 23.()()()3/21251,112n a bx n b x x n a n x -⎡⎤+--=+≠⎢⎥-⎢⎥⎣⎦24.x C25.()1221n n x x na x n b -⎛⎫= ⎪+⎝⎭六、含有0a >的形式26.(21ln 2x a x C =+27.(22412ln 8x x x x a a x C ⎡=±+⎢⎣⎰28.x a C +29.arccos a x a C x +30.ln x x C31.ln x x C =32.(221ln 2x a x C =+33.1arccos ax C a x =+34.1x C a -=+35.x C =36.()3/2221d x C x a=±⎰七、含有0a >的形式37.21arcsin 2x x a C a ⎛⎫=+ ⎪⎝⎭38.(22412arcsin 8x x x x x a a C a ⎡⎤=-+⎢⎥⎣⎦⎰39.x a C =+40.arcsin xx C a=+40.arcsinxx C a=+42.1x C a -=43.x C44.221arcsin 2x x a C a ⎛⎫=-+ ⎪⎝⎭ 45.()3/2221d x C a x -⎰483八、含有sin x 或cos x 的形式46.sin d cos x x x C =-+⎰ 47.cos d sin x x x C =+⎰ 48.()21sin d sin cos 2x x x x x C =-+⎰ 49.()21cos d sin cos 2x x x x x C =++⎰ 50.()121sin d sin cos 1sin n n n x x x x n xdx n--⎡⎤=-+-⎣⎦⎰⎰ 51.()121cos d cos sin 1cos d n n n x x x x n x x n --⎡⎤=+-⎣⎦⎰⎰ 52.sin d sin cos x x x x x x C =-+⎰53.cos d cos sin x x x x x x C =++⎰ 54.1sin d cos cos d n n n x x x x x n x x x -=-+⎰⎰ 55.1cos d sin sin d n n n x x x x x n x x x -=-⎰⎰ 56.1d tan sec 1sin x x x C x=+±⎰57.1d cot csc 1cos x x x C x =-±+±⎰ 58.1d ln tan sin cos x x C x x=+⎰九、含有tan ,cot ,sec ,csc x x x x 的形式59.tan d ln cos x x x C =-+⎰60.cot d ln sin x x x C =+⎰ 61.sec d ln sec tan x x x x C =++⎰62.csc d ln csc cot x x x x C =-+⎰ 63.2tan d tan x x x x C =-++⎰64.2cot d cot x x x x C =--+⎰65.2sec d tan x x x C =+⎰ 66.2csc d cot x x x C =-+⎰ 67.12tan tan d tan d ,11n nn xx x x x n n --=-≠-⎰⎰ 68.12cot cot d cot d ,11n n n x x x x x n n --=--≠-⎰⎰ 69.22sec tan 2sec d sec d ,111n nn x x n x x x x n n n ---=+≠--⎰⎰ 70.22sc cot 2csc d csc d ,111n n n c x x n x x x x n n n ---=-+≠--⎰⎰ 71.()11d ln cos sin 1tan 2x x x x C x =±±+±⎰72.()11d ln sin cos 1cot 2x x x x C x =±+±⎰ 73.1d cot csc 1sec x x x x C x =++±⎰74.1d tan sec 1csc x x x x C x=-±+±⎰ 十、含有反三角函数的形式75.arcsin d arcsin x x x x C =⎰ 76.arccos d arccos x x x x C =⎰ 77.()21arctan d arctan ln 12x x x x x C =-++⎰ 78.()21arccot d arccot ln 12x x x x x C =+++⎰79.arcsec d arcsec ln x x x x x C =-+⎰ 80.arccsc d arccsc ln x x x x x C =+⎰ 81.()21arcsin d 21arcsin 4x x x x x C ⎡⎤=-+⎣⎦⎰ 82.()21arccos d 21arccos 4x x x x x C ⎡⎤=--+⎣⎦⎰83.()21arctan d 1arctan 2x x x x x x C ⎡⎤=+-+⎣⎦⎰ 84.()21arccot d 1arccot 2x x x x x x C ⎡⎤=+++⎣⎦⎰ 十一、含有e x 的形式85.d ln xxa a x C a=+⎰86.e d e x x x C =+⎰ 87.()e d 1e x x x x x C =-+⎰88.1e d e e d n x n x n xx x x n x x -=-⎰⎰ 89.()1d ln 1e 1ex xx x C =-+++⎰90.()22e e sin d sin cos ax ax bx x a bx b bx C a b =-++⎰ 91.()22e e cos d cos sin ax axbx x a bx b bx C a b=+++⎰484 十二、含有ln x 的形式92.()ln d ln 1x x x x C =-+⎰ 93.)ln 2x x C =-+ 94.()2ln d 2ln 14x x x x x C =-+⎰95.()()12ln d 1ln 1,11n n x x x x n x C n n +=⎡+-⎤+≠-⎣⎦+⎰ 96.()()22ln d ln 2ln 2x x x x x C ⎡⎤=-++⎣⎦⎰ 97.()()()1ln d ln ln d nnn x x x x n x x -=-⎰⎰ 98.()()()sin ln d sin ln cos ln 2xx x x x C =⎡-⎤+⎣⎦⎰ 99.()()()cos ln d sin ln cos ln 2xx x x x C =⎡+⎤+⎣⎦⎰ 100.((ln d ln x x x x C =⎰ 十三、 含有2(0)ax b a +>的积分101.2(0)d (0)C b x ax b C b ⎧+>=++<⎰ 102. 221d ln ||2x x ax b C ax b a =+++⎰103. 222d d x x b x x ax b a a ax b =-++⎰⎰ 104. 222d 1ln ()2||x x C x ax b b ax b =+++⎰ 105. 222d 1d ()x a xx ax b bx b ax b =--++⎰⎰ 106. 232222d ||1ln ()22x a ax b C x ax b b x bx +=-++⎰ 107.2222d 1d ()2()2x x x ax b b ax b b ax b =++++⎰⎰0)a >的积分108. |2ax b C +++ 109. 2|2x ax b C +++ 110. |2x ax b C +++ 111. C = 112. 2x C113.x C =+114. ((x x b b a C =--+ 115. ((x x b b a C =-- 116.()C a b =<117.2()()4b a x C a b -<。
(完整版)考研高数必备公式
![(完整版)考研高数必备公式](https://img.taocdn.com/s3/m/f797315789eb172dec63b74b.png)
考研高数部分公式222212211cos 12sin u dudx x tg u u u x u u x +==+-=+=, , , 4一些初等函数: 两个重要极限:5三角函数公式: ·诱导公式:xxarthx x x archx x x arshx e e e e chx shx thx e e chx e e shx x xxx xx xx -+=-+±=++=+-==+=-=----11ln21)1ln(1ln(:2:2:22)双曲正切双曲余弦双曲正弦...590457182818284.2)11(lim 1sin lim0==+=∞→→e xxxx x x·倍角公式:·半角公式:ααααααααααααααααααcos 1sin sin cos 1cos 1cos 12cos 1sin sin cos 1cos 1cos 122cos 12cos 2cos 12sin -=+=-+±=+=-=+-±=+±=-±=ctg tg·正弦定理:R CcB b A a 2sin sin sin === ·余弦定理:C ab b a c cos 2222-+=·反三角函数性质:arcctgx arctgx x x -=-=2arccos 2arcsin ππ8中值定理与导数应用:拉格朗日中值定理。
时,柯西中值定理就是当柯西中值定理:拉格朗日中值定理:x x F f a F b F a f b f a b f a f b f =''=---'=-)(F )()()()()()())(()()(ξξξ曲率:αααααααααα23333133cos 3cos 43cos sin 4sin 33sin tg tg tg tg --=-=-=αααααααααααααα222222122212sin cos sin 211cos 22cos cos sin 22sin tg tg tg ctg ctg ctg -=-=-=-=-==.1;0.)1(lim M s M M :.,13202aK a K y y ds d s K M M sK tg y dx y ds s =='+''==∆∆='∆'∆∆∆==''+=→∆的圆:半径为直线:点的曲率:弧长。
数学分析资料:积分表
![数学分析资料:积分表](https://img.taocdn.com/s3/m/39954ad89b89680203d8254e.png)
附录III 积分表一、含有x n 的形式:1、∫x n dx=1n x1n +++C, n ≠-1.2二、含有a+bx 的形式:3dx=2b1(bx-aln|a+bx|)+C.4dx=2b 1(bxa a++ln|a+bx|)+C.52b 1[1-n 2-n bx )1)(a -(n a bx )2)(a -(n 1-+++]+C, n ≠1,2.6dx=3b 1-2bx(2a-bx)+a 2ln|a+bx|)+C.7dx=3b 1(bx-bx a a 2+-2aln|a+bx|)+C.8dx=3b 1[bx a 2a +-22bx)2(a a ++ln|a+bx|]+C.93b 1[3-n bx )3)(a -(n 1-++2-n bx )2)(a -(n 2a +-1-n 2bx)1)(a -(n a +]+C,n ≠1,2,3.10a 1ln bx a x ++C.11⎪⎪⎭⎫⎝⎛+++bxa xlna 1bx a 1a 1+C.12dx=-⎪⎪⎭⎫⎝⎛++bx a xlna b x 1a 1+C. 13dx=-⎪⎪⎭⎫ ⎝⎛++++bx a xlna2b bx)x(a 2bx a a 12+C.三、含有a 2±x 2, a>0的形式:14dx=a 1arctan a x+C. 15dx=2a 1ln a x a -x ++C.16dx=⎥⎦⎤⎢⎣⎡±+±-⎰--dx )x (a x)3-n 2()x (a x )1n (2a 11n 221n 222, n ≠1.四、含有a+bx+cx 2, b 2≠4ac 的形式:17dx=⎪⎪⎩⎪⎪⎨⎧>++++++4ac b C 4ac -b b cx 24ac -b -b cx 2ln 4ac -b 24ac <b C b -4ac b cx 2arctan b-4ac 22222222,,.18dx=⎪⎭⎫ ⎝⎛++-++⎰dx cx bx a 1b |cx bx a |ln 2c 122.五、含有bx a +的形式: 19、∫bx a x n +dx=[]⎰+-++dx bx a x na bx )(a x 3)b(2n 21-n 3n .20⎪⎪⎩⎪⎪⎨⎧<++>+++-+0a C a -bxa arctan a-2a C a bx a abx a lna 1,,.21dx=⎥⎦⎤⎢⎣⎡+++-⎰dx bx a x 123)-b(2n x bx a 1)-a(n 11-n 1-n , n ≠1.22dx=⎰+++dx bxa x 1a bx a 2.23dx=⎥⎥⎦⎤⎢⎢⎣⎡+++-⎰dx x bx a 25)-b(2n x bx)(a 1)-a(n 11-n 1-n 3, n ≠1.24dx=bx a b3)bx a 2(22+--+C. 25dx=⎪⎪⎭⎫ ⎝⎛+-++⎰dx bx a x na bx a x 1)b(2n 21-n n .六、含有22a x ±,a>0的形式:26dx=21(x 22a x ±±a 2ln|x+22a x ±|)+C. 27、∫x 222a x ±dx=81[x(2x 2±a 2)22a x ±-a 4ln|x+22a x ±|)+C.2822a x +-aln x a x a 22+++C.2922a x --a ·arccos x a +C. 3022a x x1±-+ln|x+22a x ±|)+C. 3122a x ±|+C.3221(x 22a x ±∓a 2ln|x+22a x ±|)+C.33dx=a1arccos xa +C.34dx=a 1-ln x a x a 22+++C.35dx=∓x a a x 222±+C.36dx=222ax ax ±±+C.七、含有22x -a ,a>0的形式:37dx=21(x 22x -a +a 2arcsin ax )+C. 38、∫x 222x -a dx=81[x(2x 2-a 2)22x -a +a 4arcsin ax ]+C.39dx=22x -a -aln x x -a a 22++C.40dx=22x -a x 1-- arcsin ax+C.41dx=arcsin ax +C.42dx=a 1-ln x x -a a 22++C.43dx=x a x -a 222-+C. 44dx=21(-x 22x -a +a 2arcsin ax )+C.45222x-a ax +C.八、含有sinx 或cosx 的形式:46、∫sinxdx=-cosx+C.47、∫cosxdx=sinx+C.1(x-sinxcosx)+C.48、∫sin2xdx=21(x+sinxcosx)+C.49、∫cos2xdx=21[-sin n-1xcosx+(n-1)∫sin n-2xdx].50、∫sin n xdx=n1[cos n-1xsinx+(n-1)∫cos n-2xdx].51、∫cos n xdx=n52、∫xsinxdx=sinx-xcosx+C.53、∫xcosxdx=cosx+xsinx+C.54、∫x n sinxdx=-x n cosx+n∫x n-1cosxdx.55、∫x n cosxdx=x n sinx-n∫x n-1sinxdx.56∓secx+C.57dx=-cotx±cscx+C.58dx=ln|tanx|+C.九、含有tanx, cotx, secx或cscx的形式:59、∫tanxdx=-ln|cosx|+C.60、∫cotxdx=ln|sinx|+C.61、∫secxdx=ln|secx+tanx|+C.62、∫cscxdx=ln|cscx-cotx|+C.63、∫tan 2xdx=-x+tanx+C. 64、∫cot 2xdx=-x-cotx+C. 65、∫sec 2xdx=tanx+C. 66、∫csc 2xdx=-cotx+C.67、∫tan nxdx=⎰-x dx tan 1-n xtan 2-n 1-n , n ≠1. 68、∫cot nxdx=-⎰-x dx cot 1-n xcot 2-n 1-n , n ≠1. 69、∫sec nxdx=⎰+x dx sec 1-n 2-n 1-n x tanx sec 2-n 2-n , n ≠1. 70、∫csc nxdx=-⎰+x dx csc 1-n 2-n 1-n x cotx csc 2-n 2-n , n ≠1.71dx=21(x ±ln|cosx ±sinx|)+C.7221(x ∓ln|sinx ±cosx|)+C.73∓cscx+C.74±secx+C.十、含有反三角函数的形式: 75、∫arcsinxdx=xarcsinx+2x -1+C. 76、∫arccosxdx=xarccosx-2x -1+C. 77、∫arctanxdx=xarctanx-21ln(1+x 2)+C.78、∫arccotxdx=xarccotx+21ln(1+x 2)+C. 79、∫arcsecxdx=xarcsecx-ln|x+1x 2-|+C. 80、∫arccscxdx=xarccscx+ln|x+1x 2-|+C. 81、∫xarcsinxdx=41[x 2x -1+(2x 2-1)arcsinx]+C. 82、∫xarccosxdx=41[-x 2x -1+(2x 2-1)arccosx]+C. 83、∫xarctanxdx=21[(1+x 2)arctanx-x]+C. 84、∫xarccotxdx=21[(1+x 2)arccotx+x]+C.十一、含有e x 的形式:85、∫a xdx=lnaa x+C.86、∫e x dx=e x +C. 87、∫xe x dx=(x-1)e x +C. 88、∫x n e x dx=x n e x -n ∫x n-1e x dx.89dx=x-ln(1+e x )+C. 90、∫e axsinbxdx=22axb a e +(asinbx-bcosbx)+C.91、∫e axcosbxdx=22axba e +(acosbx+bsinbx)+C.十二、含有lnx 的形式:92、∫lnxdx=x(lnx-1) +C.93dx=4x (ln x -1) +C.94、∫xlnxdx=4x 2(2lnx-1) +C.95、∫x nlnxdx=21n )1n (x ++[(n+1)lnx-1] +C, n ≠-1. 96、∫(lnx)2dx=x[(lnx)2-2lnx+2] +C. 97、∫(lnx)n dx=x(lnx)n -n ∫(lnx)n-1dx. 98、∫sin (lnx)dx=2x [sin(lnx)-cos(lnx)]+C. 99、∫cos (lnx)dx=2x [sin(lnx)+cos(lnx)]+C. 100、∫ln (x+2x 1+)dx=xln(x+2x 1+)-2x 1++C.。
(完整版)高等数学积分表大全
![(完整版)高等数学积分表大全](https://img.taocdn.com/s3/m/65020eed1711cc7931b716ad.png)
常 用 积 分 公 式(一)含有ax b +的积分(0a ≠)1.d xax b +⎰=1ln ax b C a++ 2.()d ax b x μ+⎰=11()(1)ax b C a μμ++++(1μ≠-)3.d x x ax b +⎰=21(ln )ax b b ax b C a+-++ 4.2d x x ax b +⎰=22311()2()ln 2ax b b ax b b ax b C a ⎡⎤+-++++⎢⎥⎣⎦5.d ()xx ax b +⎰=1lnax b C b x +-+ 6.2d ()xx ax b +⎰=21ln a ax b C bx b x +-++ 7.2d ()x x ax b +⎰=21(ln )b ax b C a ax b++++8.22d ()x x ax b +⎰=231(2ln )b ax b b ax b C a ax b+-+-++ 9.2d ()xx ax b +⎰=211ln ()ax b C b ax b b x +-++的积分10.x C11.x ⎰=22(3215ax b C a -+12.x x ⎰=22232(15128105a x abx b C a-+13.x=22(23ax b C a -+14.2x=22232(34815a x abx b C a -++ 15.=(0)(0)C b Cb +><⎧⎪⎪⎩16.=2a bx b -- 17.x=b + 18.2d x x ⎰=2a + (三)含有22x a ±的积分19.22d x x a +⎰=1arctan x C a a + 20.22d xx a -⎰=1ln 2x a C a x a-++ 21.22d ()n x x a +⎰=2221222123d 2(1)()2(1)()n n x n xn a x a n a x a ---+-+-+⎰ (四)含有2(0)ax b a +>的积分22.2d x ax b +⎰=(0)(0)x C b C b ⎧+>⎪⎪⎨+<23.2d x x ax b +⎰=21ln 2ax b C a ++ 24.22d x x ax b +⎰=2d x b x a a ax b -+⎰ 25.2d ()x x ax b +⎰=221ln 2x C b ax b++ 26.22d ()x x ax b +⎰=21d a x bx b ax b --+⎰27.32d ()x x ax b +⎰=22221ln 22ax b a C b x bx +-+28.22d ()x ax b +⎰=221d 2()2x xb ax b b ax b+++⎰ (五)含有2ax bx c ++(0)a >的积分29.2d x ax bx c ++⎰=22(4)(4)C b ac Cb ac +<+>30.2d x x ax bx c ++⎰=221d ln 22b x ax bx c a a ax bx c++-++⎰(0)a >的积分31.=1arshxC a +=ln(x C ++ 32.C + 33.xC34.x=C +35.2x2ln(2a x C ++ 36.2x=ln(x C +++37.=1C a + 38.2C a x -+ 39.x2ln(2a x C ++ 40.x=2243(25ln(88x x a a x C ++++41.x ⎰C42.x x ⎰=422(2ln(88x a x a x C +++43.x a C ++44.x =ln(x C +++(0)a >的积分45.=1arch x xC x a +=ln x C +46.C + 47.x C +48.x =C +49.2x 2ln 2a x C ++50.2x =ln x C +++51.=1arccos a C a x + 52.C +53.x 2ln 2a x C +54.x =2243(25ln 88x x a a x C -+++55.x ⎰C56.xx ⎰=422(2ln 88x a x a x C -++57.x arccos aa C x+58.x =ln x C +++(0)a >的积分59.=arcsinx C a + 60.C +61.x =C 62.x C +63.2x =2arcsin 2a x C a + 64.2x arcsinxC a-+65.=1C a + 66.C +67.x 2arcsin 2a x C a+68.x =2243(52arcsin 88x xa x a C a -+69.x ⎰=C +70.x x ⎰=422(2arcsin 88x a x x a C a-++71.x ln a a C x-+72.x =arcsin xC a-+(0)a >的积分73.2ax b C +++74.x22ax b C +++75.x2ax b C -+++76.=C +77.x 2C78.x =C +或79.x =((x b b a C --+80.x =((x b b a C --81.C ()a b <82.x 2()4b a C -()a b < (十一)含有三角函数的积分83.sin d x x ⎰=cos x C -+ 84.cos d x x ⎰=sin x C + 85.tan d x x ⎰=ln cos x C -+ 86.cot d x x ⎰=ln sin x C +87.sec d x x ⎰=ln tan()42xC π++=ln sec tan x x C ++88.csc d x x ⎰=ln tan2xC +=ln csc cot x x C -+ 89.2sec d x x ⎰=tan x C + 90.2csc d x x ⎰=cot x C -+ 91.sec tan d x x x ⎰=sec x C + 92.csc cot d x x x ⎰=csc x C -+93.2sin d x x ⎰=1sin 224x x C -+ 94.2cos d x x ⎰=1sin 224x x C ++ 95.sin d n x x ⎰=1211sin cos sin d n n n x x x x n n ----+⎰96.cos d n x x ⎰=1211cos sin cos d n n n x x x x n n---+⎰ 97.d sin n x x ⎰=121cos 2d 1sin 1sin n n x n xn x n x----⋅+--⎰ 98.d cos n x x ⎰=121sin 2d 1cos 1cos n n x n xn x n x---⋅+--⎰ 99.cos sin d m n x x x ⎰=11211cos sin cos sin d m n m n m x x x x x m n m n-+--+++⎰ =11211cos sin cos sin d m n m n n x x x x x m n m n+----+++⎰ 100.sin cos d ax bx x ⎰=11cos()cos()2()2()a b x a b x C a b a b -+--++-101.sin sin d ax bx x ⎰=11sin()sin()2()2()a b x a b x C a b a b -++-++-102.cos cos d ax bx x ⎰=11sin()sin()2()2()a b x a b x C a b a b ++-++-103.d sin xa b x +⎰tanxa b C ++22()a b >104.d sin x a b x +⎰C+22()a b <105.d cos xa b x +⎰)2x C +22()a b >106.d cos x a b x +⎰C +22()a b <107.2222d cos sin x a x b x +⎰=1arctan(tan )bx C ab a +108.2222d cos sin xa xb x-⎰=1tan ln 2tan b x a C ab b x a ++- 109.sin d x ax x ⎰=211sin cos ax x ax C a a -+ 110.2sin d x ax x ⎰=223122cos sin cos x ax x ax ax C a a a -+++111.cos d x ax x ⎰=211cos sin ax x ax C a a ++112.2cos d x ax x ⎰=223122sin cos sin x ax x ax ax C a a a+-+(十二)含有反三角函数的积分(其中0a >)113.arcsin d x x a ⎰=arcsin xx C a++114.arcsin d xx x a ⎰=22()arcsin 24x a x C a -++ 115.2arcsin d xx x a⎰=3221arcsin (239x x x a C a ++116.arccos d x x a ⎰=arccos xx C a-+117.arccos d xx x a⎰=22()arccos 24x a x C a --118.2arccos d xx x a⎰=3221arccos (239x x x a C a -+119.arctan d x x a ⎰=22arctan ln()2x ax a x C a -++120.arctan d x x x a ⎰=221()arctan 22x aa x x C a +-+121.2arctan d xx x a⎰=33222arctan ln()366x x a a x a x C a -+++(十三)含有指数函数的积分122.d x a x ⎰=1ln x a C a + 123.e d ax x ⎰=1e ax C a + 124.e d ax x x ⎰=21(1)e ax ax C a -+ 125.e d n ax x x ⎰=11e e d n ax n ax nx x x a a--⎰126.d x xa x ⎰=21ln (ln )x x x a a C a a -+ 127.d n x x a x ⎰=11d ln ln n x n x nx a x a x a a --⎰ 128.e sin d ax bx x ⎰=221e (sin cos )axa bxb bx C a b -++ 129.e cos d ax bx x ⎰=221e (sin cos )ax b bx a bx C a b+++ 130.e sin d ax n bx x ⎰=12221e sin (sin cos )ax n bx a bx nb bx a b n--+ 22222(1)e sin d ax n n n b bx x a b n --++⎰131.e cos d ax n bx x ⎰=12221e cos (cos sin )ax n bx a bx nb bx a b n-++ 22222(1)e cos d axn n n b bx x a b n--++⎰ (十四)含有对数函数的积分132.ln d x x ⎰=ln x x x C -+ 133.d ln xx x⎰=ln ln x C + 134.ln d n x x x ⎰=111(ln )11n x x C n n +-+++135.(ln )d n x x ⎰=1(ln )(ln )d n nx x n x x --⎰ 136.(ln )d m n x x x ⎰=111(ln )(ln )d 11m n m n n x x x x x m m +--++⎰ (十五)含有双曲函数的积分137.sh d x x ⎰=ch x C + 138.ch d x x ⎰=sh x C + 139.th d x x ⎰=lnch x C + 140.2sh d x x ⎰=1sh224x x C -++ 141.2ch d x x ⎰=1sh224x x C ++ (十六)定积分142.cos d nx x π-π⎰=sin d nx x π-π⎰=0 143.cos sin d mx nx x π-π⎰=0144.cos cos d mx nx x π-π⎰=0,,m nm n ≠⎧⎨π=⎩145.sin sin d mx nx x π-π⎰=0,,m nm n≠⎧⎨π=⎩146.0sin sin d mx nx x π⎰=0cos cos d mx nx x π⎰=0,,2m n m n ≠⎧⎪⎨π=⎪⎩147. n I =20sin d nx x π⎰=20cos d n x x π⎰n I =21n n I n-- 1342253n n n I n n --=⋅⋅⋅⋅- (n 为大于1的正奇数),1I =1 13312422n n n I n n --π=⋅⋅⋅⋅⋅-(n 为正偶数),0I =2π。
常用积分表
![常用积分表](https://img.taocdn.com/s3/m/280b4ab06aec0975f46527d3240c844769eaa03e.png)
常用积分表常用积分公式(一)含有的积分() axb+0a≠1.dxaxb+∫=1lnaxbCa++2.=()axbxμ+∫11()(1)axbCaμμ++++(1μ≠.)3.dxxaxb+∫=21(ln)axbbaxbCa+.++4.2dxxaxb+∫=22311()2()ln2axbbaxbbaxbCa..+.++++....5.d()xxaxb+∫=1lnaxbCbx+.+6.2d()xxaxb+∫=21lnaaxbCbxbx+.++7.2d()xxaxb+∫=21(ln)baxbCaax++++8.22d()xxaxb+∫=231(2ln)baxbbaxbCaa+.+.+9.2d()xxaxb+∫=211ln()axbCbaxbbx+.++(二)含有axb+的积分10.daxbx+∫=32()3axbCa++11.dxaxbx+∫=322(32)()15axbaxbCa.++12.2dxaxbx+∫=222332(15128)() 105axabxbaxbCa.+++13.dxxaxb+∫=22(2)3axbaxbCa.+14.2dxxaxb+∫=22232(348) 15axabxbaxbCa.++15.dxxaxb+∫=1ln(0)2arctan(0) axbbCbbaxbbaxbCbbb.+. +>.++...++<....16.2dxxaxb+∫=d2axbaxbxbxaxb+..+∫17.daxbxx+∫=d2xaxbbxaxb+++∫18.2daxbxx+∫=d2axbaxxxaxb+.++∫(三)含有2xa±的积分19.22dxxa+∫=1arctanxCaa+20.22d()nxxa+∫=2221222123d2(1)()2(1)()nnxnnaxanaxa.. .+.+.+∫21.22dxxa.∫=1ln2xaCaxa.++(四)含有的积分 2(0axba+>22.2dxaxb+∫=1arctan(0)1ln(0)2axCbbabaxbCbabaxb.+>......+<..+..23.2dxxaxb+∫=21ln2axbCa++24.22dxxaxb+∫=2dxbxaaaxb.+∫25.2d()xxaxb+∫=221ln2xCbaxb++26.22d()xxaxb+∫=21daxbxbaxb..+∫27.32d()xxaxb+∫=22221ln22axbaCbxbx+.+28.22d()xaxb+∫=221d2()2xxbaxbbaxb+++∫(五)含有的积分 2axbxc++(0a>29.2dxaxbxc++∫=222222222arctan(4)44124ln(4)424axbCbacbacbaxbbacCbacbacaxbbac+.+<.....+...+>..++..30.2dxxaxbxc++∫=221dln22bxaxbxcaaaxbxc++. ++∫(六)含有22xa+(0a>的积分31.22dxxa+∫=1arshxCa+=22ln()xxaC+++32.223d()xxa+∫=222xCaxa++33.22dxxxa+∫=22xaC++34.223d()xxxa+∫=221Cxa.++35.222dxxxa+∫=22222ln()22xaxaxxa+.+++36.2223d()xxxa+∫=2222ln()xxxaCxa.++++ +37.22dxxxa+∫=221lnxaaCax+.+38.222dxxxa+∫=222xaCax+.+39.22dxax+∫=22222ln()22xaxaxxa+++++40.223()xax+∫=22224223(25)ln() 88xxaxaaxxaC++++++41.22dxxa+∫=2231()3xaC++42.222dxxa+∫=4222222(2)ln()88xaxaxaxxaC++.+++43.22dxaxx+∫=2222lnxaaxaaCx+.+++44.222dxaxx+∫=2222ln()xaxxaCx+.++++(七)含有22xa.(0a>的积分45.22dxxa.∫=1archxxCxa+=22lnxxaC+.+46.22d()xxa.∫=222xCaxa.+.47.22dxxxa.∫=22xaC.+48.223d()xxxa.∫=221Cxa.+.49.222dxxxa.∫=22222ln22xaxaxxa.++.+50.2223d()xxxa.∫=2222lnxxxaCxa.++.+.51.22dxxxa.∫=1arccosaCax+52.222dxxxa.∫=222xaCax.+53.22dxax.∫=22222ln22xaxaxxa..+.+54.223()xax.∫=22224223(25)ln88xxaxaaxxaC..++.+55.22dxxax.∫=2231()3xaC.+56.222dxxax.∫=4222222(2)ln88xaxaxaxxaC...+.+ 57.22dxaxx.∫=22arccosaxaaCx..+58.222dxaxx.∫=2222lnxaxxaCx..++.+(八)含有22ax.(0a>的积分59.22dxax.∫=arcsinxCa+60.22d()xax.∫=222xCaax+.61.22dxxax.∫=22axC..+62.223d()xxax.∫=221Cax+.63.222dxxax.∫=222arcsin22xaxaxCa..++64.2223d()xxax.∫=22arcsinxxCaax.+.65.22dxxax.∫=221lnaaxCax..+66.222dxxax.∫=222axCax..+67.22dax.∫=222arcsin22xaaxCa.++68.223()ax.∫=222243(52)arcsin88xxaxaxaa..++69.22dxax.∫=2231()3axC..+70.222dxax.∫=42222(2)arcsin88xaxaaxCa..++71.22daxxx.∫=2222lnaaxaxaCx...++72.222daxxx.∫=22arcsinaxxCxa...+(九)含有2axbxc±++(0a>的积分73.2dxaxbxc++∫=21ln22axbaaxbxcCa+++++74.2daxbxcx++∫=224axbaxbxca+++2234ln228acbaxbaaxbxcCa.++++++75.2dxxaxbxc++∫=21axbxca++23ln222baxbaaxbxcCa.+++++76.2dxcbxax+.∫=212arcsin4axbCabac..++77.2dcbxaxx+.∫=223224arcsin484axbbacaxbcbxaxCaabac.++.+++78.2dxxcbxax+.∫=23212arcsin24baxbcbxaxCaabac. .+.+++(十)含有xaxb.±.或()(xabx..的积分79.dxaxxb..∫=()()ln()xaxbbaxaxbxb..+..+.+.80.dxaxbx..∫=()()arcsinxaxaxbbabxbx...+.+..81.d()(xxabx..∫=2arcsinxaCbx.+.()ab<82.()()dxabxx..∫=22()()()arcsin44xabbaxaxabxCbx.... ..++.()ab<(十一)含有三角函数的积分83.sindxx∫=cosxC.+84.cosdxx∫=sinxC+85.tandxx∫=lncosxC.+86.cotdxx∫=lnsinxC+87.secdxx∫=lntan()42xCπ++=lnsectanxxC++88.cscdxx∫=lntan2xC+=lncsccotxxC.+ 89.2secdxx∫=tanxC+90.2cscdxx∫=cotxC.+ 91.sectandxxx∫=secxC+ 92.csccotdxxx∫=cscxC.+93.2sindxx∫=1sin224xxC.+94.2cosdxx∫=1sin224xxC++95.sindnxx∫=1211sincossindnnnxxxnn... .+∫96.cosdnxx∫=1211cossincosdnnnxxxnn...+∫97.dsinnxx∫=121cos2d1sin1sinnnxnxnxn.....+..∫98.dcosnxx∫=121sin2d1cos1cosnnxnxnxn....+..∫99.cossindmnxxx∫=11211cossincossindmnmnmxxxmnmn.+..+++∫=11211cossincossindmnmnnxxxmnmn+....+++∫100.=sincosdaxbxx∫11cos()cos()2()2()abxabxCabab.+..++.101.=sinsindaxbxx∫11sin()sin()2()2()abxabxCabab.++.++.102.=coscosdaxbxx∫11sin()sin()2()2()abxabxCabab++.++.103.dsinxabx+∫=2222tan22arctanxabCabab++..22()ab>104.dsinxabx+∫=222222tan12lntan2xabbaCxbaabba+.. +.++.22()ab<105.dcosxabx+∫=2arctan(tan)2ababxCababab+.++.+22()ab>106.dcosxabx+∫=tan12lntan2xababbaCabbaxabba+++.++.+..22()ab<107.2222dcossinxaxbx=108.2222dcossinxaxbx=109.sindxaxx∫=211sincosaxxaxCaa.+110.2sindxaxx∫=223122cossincosxaxxaxaxCaaa.++111.cosdxaxx∫=211cossinaxxaxCaa++112.2cosdxaxx∫=223122sincossinxaxxaxaxCaaa+.+ (十二)含有反三角函数的积分(其中) 0a> 113.arcsindxxa∫=22arcsinxxaxCa+.+114.arcsindxxxa∫=2222()arcsin244xaxxaxCa.+.115.2arcsindxxxa∫=322221arcsin(2)39xxxaaxCa++.+116.arccosdxxa∫=22arccosxxaxCa..+117.arccosdxxxa∫=2222()arccos244xaxxaxCa...+118.2arccosdxxxa∫=322221arccos(2)39xxxaaxCa.+.+119.arctandxxa∫=22arctanln()2xaxaxCa.++120.arctandxxxa∫=221()arctan22xaaxxCa+.121.2arctandxxxa∫=33222arctanln()366xxaaxaxCa.+++(十三)含有指数函数的积分122.=dxax∫1lnxaCa+123.edaxx∫=1eaxCa+124.edaxxx∫=21(1)eaxaxCa.+125.ednaxxx∫=11eenaxnaxnxxxaa..∫126.dxxax∫=21ln(ln)xxxaaaa.+127.dnxxax∫=11dlnlnnxnxnxaxaaa..∫128.=esindaxbxx∫221e(sincos)axabxbbxCab.++129.=ecosdaxbxx∫221e(sincos)axbbxabxCab+++130.=esindaxnbxx∫12221esin(sincos)axnbxabxnbbxabn.. +22222(1)esindaxnnnbbxxabn..++∫131.=ecosdaxnbxx∫12221ecos(cossin)axnbxabxnbbxabn.+ +22222(1)ecosdaxnnnbbxxabn..++∫(十四)含有对数函数的积分132.lndxx∫=lnxxxC.+133.dlnxxx∫=lnlnxC+134.lndnxxx∫=111(ln)11nxxCnn+.+++135.(ln)dnxx∫=1(ln)(ln)dnnxxnx..∫136.(ln)dmnxxx∫=111(ln)(ln)d11mnmnnxxxxmm+..++∫(十五)含有双曲函数的积分137.shdxx∫=chxC+138.chdxx∫=shxC+ 139.thdxx∫=lnchxC+140.2shdxx∫=1sh224xxC.++ 141.2chdxx∫=1sh224xxC++ (十六)定积分142.==0 cosdnxxπ.π∫sindnxxπ.π∫143.=0 cossindmxnxxπ.π∫144.=coscosdmxnxxπ.π∫0,,mnmn≠..π=.145.=sinsindmxnxxπ.π∫0,,mnmn≠..π=.146.==0sinsindmxnxxπ∫0coscosdmxnxxπ∫0,,2mnmn≠...π=..147. nI=20sindnxxπ∫=20cosdnxxπ∫nI=21nnIn..134225nnnInn..=....... (为大于1的正奇数),n1I=113312422(为正偶数),0I=2π。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
a
a
x
2(n 1)a2 a2 x2 n1
2n 3 2(n 1)a2
2 1 . x
a2 x2 dx 1
3
a2 x2 2 C
3
dx
a2 x2
22. x2 a2 x2 dx x 2x2 a2
n1
(n
1)
23.
dx
8 arcsin x C
a2 x2
a
a 2 x 2 a 4 arcsin x C
0(m n)
91. cos mx cos nxdx (m n)
0(m n)
92. sin mx sin nxdx (m n)
0(m n)
93. sin mx sin nxdx
cos
mx
cos
nxdx
0
0
2 (m n)
94. 2 cosn xdx 0
2 0
C
83. eax cos bxdx eax a cos bx b sin bx C
a2 b2
84. arcsin xdx x arccos x a2 x2 C
a
a
85. arccos xdx x arccos x a2 x2 C
a
a
86.
arctan
x dx
x
arctan
5 1 .
dx
1 ln
|x|
C
x x2 a2 a a x2 a2
x2 a2 | C
5 2 .
dx
1 arccos a C
x x2 a2 a
x
A.6 含有a bx cx2 的积分
57.
sin
axdx
1 a
cos
ax
C
53.
dx a bx cx2
2 arctan 2cx b C(b2 4ac) 58.
n 1
n 1
75. cscn xdx 1 cot xcscn2 x n 2 cscn2 xdx(n 1)
n 1
n 1
76. sinm xcosn xdx sinm1 xcosn1 x n 1 sinm xcosn2 xdx
mn
mn
sinm1 xcosn1 x m1 sinm2 xcosn xdx
csc
axdx
1 a
ln
|
csc
ax
cot
ax
|
C
65. sec x tan xdx sec x C
A.8 含有三角函数的积分
66. csc x cot xdx csc x C
67.
sin
ax
sin
bxdx
sin a b x 2a b cosa b x
sin a b 2a b cos a b
1
C
a2 x2
பைடு நூலகம்
A.4 含有 a2 x2 的积分
2 9 .
x 2d x
3
a 2 x 2 2
1
arcsin x C
a2 x2
a
3 0 .
dx
1 ln a a 2 x 2 C
x a2 x2 a
x
3 1 .
dx
x2 a2 x2
3 2 .
dx
x3 a2 x2
a2 x2 C a2x
mn
mn
77.
a
dx b cos
x
2
a2 b2 arctan
a a
b b
tan
x 2
C(a2
b2 )
1
bacos x ln
b2 a2 sin x C(a2 b2)
b2 a2
a bcos x
A.9 其他形式的积分
78. xneaxdx 1 xneax n xn e 1 axdx
1
a a bx
1 a2
ln
a bx x
C
16.
a x2
bx
dx
a
x
bx
b 2
x
dx a bx
A.3 含有a2 x2 的积分
2 0 . a 2 x 2 d x x a 2 x 2 a 2 a r c s in x C
2
2
a
17.
dx a2 x2
n
1 arc tan x C(n 1)
a
A.7 含有 a bx cx2 的积分
54.
dx a bx cx2
1 c
ln | 2cx
1
arcsin
b2 2cx
c b
a bx cx2 | C(c 0) C(b2 4ac,c 0)
c
b2 4ac
55. a bx cx2dx 2cx b a bx cx2 4ac b2
2a3
|x|
x3
dx
x2 a2
x2 a2 2a2x2
1 2a3
arccos a x
C
x 2 a 2 dx x 2 a 2 a ln a x 2 a 2 C
x
|x|
x 2 a 2 dx x 2 a 2 a arccos a C
x
x
5 0 .
x2 x2
a2
dx
x2 a 2 ln | x x
sin n
xdx
n
1 n
n n
3 2
4 5
2 3
(n是奇数)
n
1 n
n n
3 2
3 4
1 2
2
(n是偶数)
95.
2 0
sin 2 m1
x cosn
xdx
2462m
n 1n 3n
2m 1
96.
2 0
sin 2 m
x cos2n
xdx
1352n 11352m 2462m 2n
dx
4c
8c
a bx cx2
56.
xdx 1 a bx cx2 b
dx
a bx cx2 c
2c a bx cx2
61.
sin 2
axdx
x 2
1 4a
sin
2ax
C
62.
cos2
axdx
x 2
1 4a
sin
2ax
C
63.
sec
axdx
1 a
ln
|
sec
ax
tan
ax
|
C
64.
a2 x2 2a 2x 2
1 2a3
ln
a
a2 x2 C x
3 3 .
a2 x2 dx
a 2 x 2 a ln a
a2 x2 C
x
x
3 4 .
a2 x2
1
x2
dx x
a 2 x 2 arcsin x C a
A.5 含有 x2 a2 的积分
42.
dx
3
x2 a2 2
8
a
18
xdx (a2 x2 )n
1 2
ln
a2 x2 1
2(n 1) a2
C(n 1) x2 n1 C(n 1)
2 4 .
xdx a 2 x2 C
a2 x2
2 5 .
x 2dx x a 2 x 2 a 2 arcsin x C
a2 x2
2
2
简单积分表
A.2 含有 a bx 的积分
A.1 含有a+bx 的积分
3
23bx 2aa bx2
1.
a
bx dx
(a bx) 1 b( 1)
C (
1)
1
b
ln
|
a
bx
|
C(
1)
xdx x a 2. a bx b b2 ln | a bx | C
3.
x2dx a bx
4ac b2
4ac b2
1
ln
b2
4ac b 2cx
C(b2
59.
4ac)
b2 4ac b2 4ac b 2cx
60.
cos axdx 1 sin ax C a
tan axdx 1 ln | cos ax | C a
cot axdx 1 ln | sin ax | C
x2 a2 3a4 ln | x
48. x2 a2 | C
8
8
49
x2dx 3
x2 a2 2
x ln | x x2 a2
x2 a2 | C
dx
x2 x2 a2
x2 a2 a2x2
C
dx
x 2 a 2 1 ln a x 2 a 2 C
x3 x2 a2
2a2x2
a
a
79.
x
ln
xdx
x 1
12
1 ln
x
1
C(
1)
80. xn sin xdx xn cos x n xn1 cos xdx
81. xn cos xdx xn sin x n xn1 sin xdx
82.
eax
sin
bxdx
eax
a sin bx b
a2 b2
cos bx
x
x
C
(a
b)
70.sinn 71. cosn
xdx 1 sinn1 xcos x n1 sinn1 xdx
n
n
xdx 1 cosn1 sin x n1 cosn1 xdx
n
n
68. sin ax cos bxdx
2a b
2a b