三视图还原技巧教程文件
由三视图还原几何体 PPT
平行投影:在一束平行光线照射下形成的投影.
正投影:投射线 垂直于投影面
斜投影:投射线 倾斜于投影面
注:与投射面平行的平面图形,它的平行投影与这个图形全等.
IPAD演示 〔问题〕你能得出三视图概念吗
主视图
IPAD演示
〔问题〕你能得出三视图概念吗
正视图:光线从物体的 前面向后面正
三 投影,得到的投影图
视 侧视图:光线从物体的左面向右面正
投影,得到的投影图
图
俯视图:光线从物体的上面向下面正 投影,得到的投影图
〔问题〕你发现了哪些结论 主视图
正视图
侧视图
俯视图
结论:“长对正” 、“高平齐” 、“宽相等”
例一
(IPAD)常见空间几何体的三视图
1、正三棱柱、直四棱柱
2、圆柱、圆锥、圆台、球、组合体 结论:看不见的轮廓线或棱用虚线表示 结论:先确定三视图的形状,再确定大小
位置:正视图 侧视图 大小:长对正、高平齐、宽相等.
俯视图
由三视图还原几何体
新知引入 观察IPAD中的投影方式
投影:在不透明物体后面的屏幕上留下影子的现象. 其中,光线叫做投影线,留下物体影子的屏幕叫做投影面.
中心投影:光由一点 向外散射形成的投影. 其投影线交于一点, 该点称为投影中心.
在中心投影中,如果改变物体与投射中心或投影面之间的 距离、位置,则其投影的大小也随之改变.
例二
请画出正四棱锥的三视图
合作探究
正四棱锥的正视图和侧视图是不是 就是我们看到的侧面的三角形呢?
变式
请画出正三棱锥的三视图
正视图
侧视图
正三棱锥
俯视图
课 堂小 结
中心投影:投射线交于一点
完整版三视图还原技巧
核心内容:三视图的长度特征一一“长对齐,宽相等,高平齐”,即正视图和左视图一样高,正视图和俯视图一样长,左视图和俯视图一样宽。
还原三步骤:(1)先画正方体或长方体,在正方体或长方体地面上截取出俯视图形状;(2)依据正视图和左视图有无垂直关系和节点,确定并画出刚刚截取出的俯视图中各节点处垂直拉升的线条(剔除其中无需垂直拉升的节点,不能确定的先垂直拉升),由高平齐确定其长短;(3)将垂直拉升线段的端点和正视图、左视图的节点及俯视图各个节点连线,隐去所有的辅助线条便可得到还原的几何体。
方法展示(1)将如图所示的三视图还原成几何体还原步骤:①依据俯视图,在长方体地面初绘ABCDE如图;②依据正视图和左视图中显示的垂直关系,判断出在节点A、B、C、D处不可能有垂直拉升的线条,而在E处必有垂直拉升的线条ES由正视图和侧视图中高度,确定点S的位置;如图I③将点S 与点ABCD 分别连接,隐去所有的辅助线条,便可得到还原的几何体SABCD 如图所示:o5/ VDR的(左)觇阁 匸)现图 厂1例题2: —个多面体的三视图如图所示,则该多面体的表面积为()经典题型:例题1:若某几何体的三视图,如图所示,则此几何体的体积等于()cm3 解答:(24)答案:21+ .. 3计算过程:S=2x2X6-y X 1X1 >x6 + y xV2 x72 X^yX2= 21+^3步骤如下:第一步:在正方体底面初绘制ABCDEFMN如图;第二步:依据正视图和左视图中显示的垂直关系,判断出节点 E F、M、N处不可能有垂直拉升的线条,而在点A、B、C、D处皆有垂直拉升的线条,由正视图和左视图中高度及节点确定点G,G',B',D',E',F'地位置如图;第三步:由三视图中线条的虚实,将点G与点E、F分别连接,将G'与点E'、F 分别连接,隐去所有的辅助线便可得到还原的几何体,如图所示。
x32由三视图还原成实物图课件
思考3:观察下列两个实物体,它们的结 构特征如何?你能画出它们的三视图吗
?
思考4:如图,桌子上放着一个长方体和 一个圆柱,若把它们看作一个整体,你
能画出它们的三视图吗?
正视图
侧视
图
俯视图
3. 2由三视图还原成实物图
(1)
(2)
(3)
(4)
A
B
2.添线补全下面物体的三视图. 俯视 主视图 左视图
主视
俯视图
2.添线补全下面物体的三视图. 俯视
主视图 左视图
主视
俯视图
3.下面物体的三视图有无错误?如果 有,请指出并改正.
俯视
主视图 左视图
主视
俯视图
3.下面物体的三视图有无错误?如果 有,请指出并改正.
俯视
主视图 左视图
7. 根据以下三视图想像物体原形,并分别画出物体的 实物图.
8.画出下面几何体的三视图.
左视→
8. 画出下面几何体的三视图.
俯视
主视
例6 下图是4个三视图和4个实物图.请将三视图和 实物图正确配对.
(1)
(2)
(3)
(4)
A
B
例7 根据三视图想像物体原形,并画出 物体的实物草图.
主视图
左视图
俯视|
例7 根据三视图想像物体原形,并画出 物体的实物草图.
主视图
左视图
俯视
思考交流
下图是一个奖杯的三视图,请画出它的实物图,并 与同学交流.
主视
俯视图
4. 画出下列几何体的三视图.
俯视
左视
主视
6. 画出下列几何体的三视图.
三视图还原几何体的方法
三视图还原——xyz 定位法一、首先要掌握简单几何体的三视图。
正方体、长方体、三棱柱、四棱柱、三棱锥、四棱锥、圆柱、圆锥、圆台和球的三视图分别是什么要熟悉掌握。
二、掌握简单组合体的组合形式。
简单组合体主要有拼接和挖去两种形式。
三、三视图之间的关系。
几何体的长:正视图、俯视图的长;几何体的宽:俯视图的高、侧视图的长;几何体的高:正视图、侧视图的高。
(口诀:主俯定长,俯左定宽,主左定高)(下面)左视左侧(后面)正视左侧(左面)正视右侧(右面)左视右侧(前面)(下面)四、清楚三视图各个线段说表示几何体位置,如上图所表示。
五、由三视图画出直观图的步骤和思考方法。
1、组合类题型,往往很简单,基本可以通过简单想象直接还原;2、有两个视角为三角形,为椎体特征。
选择底面还原(求体积可不用还原);3、凡是想不出来的,可用xyz 坐标定位法还原。
前面俯视左侧(左面)【类型一】:(三线交汇)例2:【类型二】:例3:连接这五个点的四棱锥,不满足俯视图。
而顶点又必须在这五点交点中,所以当点数超过4个,可能不需要全部连接,则这些点有所取舍。
第一法:俯视图看到的面不可以为上面四个点构成的整个四边形,而是中间有一条折痕,故只能说左半边三角形乡下折。
即舍弃前面左上方的点。
故得,第二:唯一法:正视图看,已标记下面的点必不可少;从俯视图看,上面有3个点必不可少;故只能舍弃前面左上方的点。
第三:口诀:实线两端的点保留,虚线两端的点待定。
从俯视图一看,便知道答案了。
取舍关键:墙角点是取舍的备选。
练习【类型三】:(八点齐飞,直观图不唯一)例4此题八点齐飞,通过类型二中的第三取舍法,我们很容易就能还原出来。
答案:然而,我们发现这个三视图也可以看成,是上图中的三棱锥与另外一个三棱锥组合而成。
如下图所示:M为顶点的三棱锥(四种)与上图的组合。
同理,还有其他两种形式,此处就不一一画图了。
由此得出,上题中的三视图至少有5种不同的直观图。
【三视图题目几点技巧】1,部分椎体求体积,直接用公式(可以不还原)2,斜二测画法与原图面积比例为定值(可以不还原)3,三视图中,和视线垂直的线段,长度不变。
三视图复原技巧
当物体某部分被其他部分遮挡时,需要在视图中进行相应的处理,如使用虚线表示被遮挡部分的轮廓。
处理遮挡关系
在复原三视图时,应注意细节部分的处理,如倒角、圆角、螺纹等。这些细节部分对于准确表达物体形状至关重要。
注意细节处理
在三视图中,各视图之间的比例关系应保持以确定长方体的宽度。
根据三个视图的信息,可以绘制出长方体的三维图。
主视图通常显示圆柱体的一个端面,呈现为一个圆。通过主视图可以确定圆的直径。
确定主视图
确定俯视图
确定左视图
绘制三维图
俯视图也显示圆柱体的上面,呈现为一个圆。这个圆应该与主视图的圆大小和位置一致。
左视图显示圆柱体的侧面,呈现为一个矩形。矩形的长度应该等于圆的直径,高度等于圆柱体的高度。
主视图
从物体的正面看去的视图,反映物体的主要形状和特征。
俯视图
从物体的上面看去的视图,反映物体的水平投影和上下位置关系。
左视图
从物体的左侧看去的视图,反映物体的左侧形状和左右位置关系。
02
CHAPTER
三视图复原步骤
仔细分析三视图中的每一个视图,理解其表达的空间形状和位置关系。
注意视图中的图线、符号等细节信息,特别是虚线和实线的含义。
根据三个视图的信息,可以绘制出圆柱体的三维图。
确定主视图
主视图通常显示圆锥体的一个侧面,呈现为一个等腰三角形。通过主视图可以确定圆锥体的高度和底面的直径。
确定俯视图
俯视图显示圆锥体的底面,呈现为一个圆。这个圆应该与主视图中三角形的底边大小和位置一致。
确定左视图
左视图也显示圆锥体的一个侧面,呈现为一个直角三角形。直角三角形的直角边应该等于圆的直径,斜边等于圆锥体的母线长。
三视图还原技巧
焦点内容:之五兆芳芳创作三视图的长度特征——“长对齐,宽相等,高平齐”,即正视图和左视图一样高,正视图和仰望图一样长,左视图和仰望图一样宽.复原三步调:(1)先画正方体或长方体,在正方体或长方体地面上截取出仰望图形状;(2)依据正视图和左视图有无垂直关系和节点,确定并画出方才截取出的仰望图中各节点处垂直拉升的线条(剔除其中无需垂直拉升的节点,不克不及确定的先垂直拉升),由高平齐确定其长短;(3)将垂直拉升线段的端点和正视图、左视图的节点及仰望图各个节点连线,隐去所有的帮助线条便可得到复原的几何体.办法展示(1)将如图所示的三视图复原成几何体.复原步调:①依据仰望图,在长方体地面初绘ABCDE如图;②依据正视图和左视图中显示的垂直关系,判断出在节点A、B、C、D处不成能有垂直拉升的线条,而在E处必有垂直拉升的线条ES,由正视图和侧视图中高度,确定点S的位置;如图③将点S与点ABCD辨别连接,隐去所有的帮助线条,便可得到复原的几何体S-ABCD如图所示:经典题型:例题1:若某几何体的三视图,如图所示,则此几何体的体积等于()cm³.解答:(24)例题2:一个多面体的三视图如图所示,则该多面体的概略积为()答案:21+3计较进程:步调如下:第一步:在正方体底面初绘制ABCDEFMN如图;第二步:依据正视图和左视图中显示的垂直关系,判断出节点E、F、M、N处不成能有垂直拉升的线条,而在点A、B、C、D处皆有垂直拉升的线条,由正视图和左视图中高度及节点确定点'','''BGG地位置如图;D,,,,FE第三步:由三视图中线条的虚实,将点G与点E、F辨别连接,将'G与点'E、'F辨别连接,隐去所有的帮助线便可得到复原的几何体,如图所示.例题3:如图所示,网格纸上小正方形的边长为4,粗实线画出的是某多面体的三视图,则该多面体的各条棱中,最长的棱的长度是()答案:(6)复原图形办法一:若由主视图引发,具体步调如下:(1)依据主视图,在长方体后正面初绘ABCM如图:(2)依据仰望图和左视图中显示的垂直关系,判断出在节点A、B、C出不成能有垂直向前拉升的线条,而在M出必有垂直向前拉升的线条MD,由仰望图和侧视图中长度,确定点D的位置如图:(3)将点D与A、B、C辨别连接,隐去所有的帮助线条便可得到复原的几何体D—ABC如图所示:解:置于棱长为4个单位的正方体中研究,该几何体为四面体D—ABC,且AB=BC=4,AC=24,DB=DC=52,可得DA=6.故最长的棱长为6.办法2若由左视图引发,具体步调如下:(1)依据左视图,在长方体右正面初绘BCD如图:(2)依据正视图和仰望图中显示的垂直关系,判断出在节点C、D处不成能有垂直向前拉升的线条,而在B处,必有垂直向左拉升的线条BA,由仰望图和左视图的长度,确定点A的位置,如图:(3)将点A与点B、C、D辨别连接,隐去所有的帮助线条便可得到复原的几何体D—ABC如图:办法3:由三视图可知,原几何体的长、宽、高均为4,所以我们可以用一个正方体做载体复原:(1)按照正视图,在正方体中画出正视图上的四个顶点的原象所在的线段,用红线暗示.如图,也就是说正视图的四个顶点肯定是由原图中红线上的点投影而成;(2)左视图有三个顶点,画出它们的原象所在的线段,用蓝线暗示,如图;(3)仰望图有三个顶点,画出它们的原象所在的线段,用绿线暗示,如图;(4)三种颜色的公共点(一定要三种颜色公共交点)即为几何体的顶点,连接各顶点即为原几何体,如图.然后计较出最长的棱.课后习题:1、某四棱台的三视图如图所示,则该四棱台的体积是( )A.4B.314C.316 答案:B2、某几何体的三视图,如图所示,则此几何体的概略积是( )cm²答案:D。
版三视图还原技巧
中心内容:三视图的长度特点——“长对齐,宽相等,高平齐”,即正视图和左视图同样高,正视图和俯视图同样长,左视图和俯视图同样宽。
复原三步骤:1)先画正方体或长方体,在正方体或长方体地面上截拿出俯视图形状;2)依照正视图和左视图有无垂直关系和节点,确立并画出刚才截拿出的俯视图中各节点处垂直拉升的线条(剔除此中无需垂直拉升的节点,不可以确立的先垂直拉升),由高平齐确立其长短;3)将垂直拉升线段的端点和正视图、左视图的节点及俯视图各个节点连线,隐去全部的协助线条即可获得复原的几何体。
方法展现(1)将以下图的三视图复原成几何体。
复原步骤:①依照俯视图,在长方体地面初绘ABCDE如图;②依照正视图和左视图中显示的垂直关系,判断出在节点A、B、C、D处不行能有垂直拉升的线条,而在E处必有垂直拉升的线条ES,由正视图和侧视图中高度,确立点S的地点;如图③将点S与点ABCD分别连结,隐去全部的协助线条,即可获得复原的几何体S-ABCD以下图:)cm3。
经典题型:例题1:若某几何体的三视图,以下图,则此几何体的体积等于(解答:(24)例题2:一个多面体的三视图以下图,则该多面体的表面积为()答案:21+3计算过程:步骤以下:第一步:在正方体底面初绘制ABCDEFMN如图;第二步:依照正视图和左视图中显示的垂直关系,判断出节点E、F、M、N处不行能有垂直拉升的线条,而在点A、B、C、D处皆有垂直拉升的线条,由正视图和左视图中高度及节点确立点G,G',B',D',E',F'地地点如图;第三步:由三视图中线条的虚实,将点G与点E、F分别连结,将G'与点E'、F'分别连结,隐去全部的协助线即可获得复原的几何体,以下图。
例题3:以下图,网格纸上小正方形的边长为4,粗实线画出的是某多面体的三视图,则该多面体的各条棱中,最长的棱的长度是()答案:(6)复原图形方法一:若由主视图引起,详细步骤以下:(1)依照主视图,在长方体后侧面初绘ABCM如图:2)依照俯视图和左视图中显示的垂直关系,判断出在节点A、B、C出不行能有垂直向前拉升的线条,而在M出必有垂直向前拉升的线条MD,由俯视图和侧视图中长度,确立点D的地点如图:3)将点D与A、B、C分别连结,隐去全部的协助线条即可获得复原的几何体D—ABC以下图:解:置于棱长为4个单位的正方体中研究,该几何体为四周体D—ABC,且AB=BC=4,AC=42,DB=DC=25,可得DA=6.故最长的棱长为6.方法2若由左视图引起,详细步骤以下:((1)依照左视图,在长方体右边面初绘BCD如图:(2)依照正视图和俯视图中显示的垂直关系,判断出在节点C、D处不行能有垂直向前拉升的线条,而在B处,必有垂直向左拉升的线条BA,由俯视图和左视图的长度,确立点A的地点,如图:3)将点A与点B、C、D分别连结,隐去全部的协助线条即可获得复原的几何体D—ABC如图:方法3:由三视图可知,原几何体的长、宽、高均为4,因此我们能够用一个正方体做载体复原:1)依据正视图,在正方体中画出正视图上的四个极点的原象所在的线段,用红线表示。
由三视图复原几何体方法整理
研究成果总结
三视图复原几何体方法分类
本文总结了基于线框模型、表面模型、体素模型等多种三 视图复原几何体的方法,并对各种方法的优缺点进行了分 析比较。
三视图数据获取与处理
本文介绍了三视图数据的获取方式,包括从CAD模型、激 光扫描、结构光等获取方法,并详细阐述了三视图数据的 预处理方法,如去噪、配准等。
三视图复原几何体实验验证
本文通过大量实验验证了所提出的三视图复原几何体方法 的可行性和有效性,并与其他方法进行了比较,证明了本 文方法的优越性。
未来研究方向展望
深度学习在三视图复原几何体中的应用:随着深 度学习技术的不断发展,未来可以探索将深度学 习应用于三视图复原几何体中,以提高复原精度 和效率。
视图间对应关系不明确问题
特征匹配
01
通过提取不同视图间的共有特征,并进行匹配,以建立视图间
的对应关系。
几何约束
02
利用几何体本身的几何约束条件,如平行、垂直、相等等,来
辅助确定视图间的对应关系。
优化算法
03
采用优化算法对不同视图间的对应关系进行调整和优化,以得
到更准确的结果。
复杂几何体复原困难问题
长方体与球的组合体
根据三视图中的轮廓线和尺寸标注, 可以确定长方体和球的尺寸以及它们 之间的位置关系,从而复原出整个组 合体。
特殊几何体实例
斜二测画法下的几何体
在斜二测画法下,几何体的三视图可能呈现出特殊的形状。通过分析这些形状 和尺寸标注,可以逐步推导出原几何体的形状和大小。
含有虚线的三视图
当三视图中含有虚线时,通常表示原几何体中存在被遮挡的部分。通过分析虚 线的位置和长度,可以推断出被遮挡部分的形状和大小,进而复原出整个几何 体。
【原创课件】三视图还原技巧
A.
B.
C.
D.1
3.某几何体的三视图如图所示,
则该几何体的表面积为( )
A.54
B.60
C.66
D.72
4.某四棱锥的三视图如图所示,其俯视图为 等腰直角三角形,则该四棱锥的体积为________.
5.某三棱锥的三视图如图所示,
则该三棱锥最长的棱长为( )
A. 5
B.2 2
C.3
D.3 2
6.某几何体的三视图如图所示, 网格纸上小正方形的边长为 1, 则该几何体的表面积为( ) A.8+4 2+2 5 B.6+4 2+4 5 C.6+2 2+2 5 D.8+2 2+2 5
人教A版 高中数学(必修2)
三视图还原技巧
三视图还原技巧
正视图
侧视图
俯视图
✓ 与空间几何体的表面积、侧面积和体积相结合。 ✓ 也经常涉及一些最值的问题。 要学好三视图,其中是否能够根据三视图还原几何体是关键。
长方体顶点排除法
D1
C1
A1×
B×1
× ●M
D
C
A×
×B
例1(2014全国I卷理第12题):如图,网格纸上小正方形的边长 为1,粗实线画出的是某多面体的三视图,则该多面体的每条棱
中,最长的棱的长度为( C)
A、6 2 B、4 2 C、6 D、4
D1
C1 D1
C1 C1D1=C1C=4
A1×
B×1
D1C= 4 2
× ●M
C
●M C
C1M=CM= 2 5
A×
×B
D1M=6
D1● A1×
×D A×
C×1
B1×
M
●
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
核心内容:
三视图的长度特征——“长对齐,宽相等,高平齐”,即正视图和左视图一样高,正视图和俯视图一样长,左视图和俯视图一样宽。
还原三步骤:
(1)先画正方体或长方体,在正方体或长方体地面上截取出俯视图形状;
(2)依据正视图和左视图有无垂直关系和节点,确定并画出刚刚截取出的俯视图中各节点处垂直拉升的线条(剔除其中无需垂直拉升的节点,不能确定的先垂直拉升),由高平齐确定其长短;
(3)将垂直拉升线段的端点和正视图、左视图的节点及俯视图各个节点连线,隐去所有的辅助线条便可得到还原的几何体。
方法展示
(1)将如图所示的三视图还原成几何体。
还原步骤:
①依据俯视图,在长方体地面初绘ABCDE如图;
②依据正视图和左视图中显示的垂直关系,判断出在节点A、B、C、D处不可能有垂直拉升的线条,而在E处必有垂直拉升的线条ES,由正视图和侧视图中高度,确定点S的位置;如图
③将点S与点ABCD分别连接,隐去所有的辅助线条,便可得到还原的几何体S-ABCD如图所示:
经典题型:
例题1:若某几何体的三视图,如图所示,则此几何体的体积等于()cm³。
解答:(24)
例题2:一个多面体的三视图如图所示,则该多面体的表面积为()
答案:21+3
计算过程:
步骤如下:
第一步:在正方体底面初绘制ABCDEFMN 如图;
第二步:依据正视图和左视图中显示的垂直关系,判断出节点E 、F 、M 、N 处不可能有垂直拉升的线条,而在点A 、B 、C 、D 处皆有垂直拉升的线条,由正视图和左视图中高度及节点确定点''''',,,,,F E D B G G 地位置如图;
第三步:由三视图中线条的虚实,将点G 与点E 、F 分别连接,将'G 与点'E 、'F 分别连接,隐去所有的辅助线便可得到还原的几何体,如图所示。
例题3:如图所示,网格纸上小正方形的边长为4,粗实线画出的是某多面体的三视图,则该多面体的各条棱中,最长的棱的长度是( )
答案:(6)
还原图形方法一:
若由主视图引发,具体步骤如下:
(1)依据主视图,在长方体后侧面初绘ABCM如图:
(2)依据俯视图和左视图中显示的垂直关系,判断出在节点A、B、C出不可能有垂直向前拉升的线条,而在M出必有垂直向前拉升的线条MD,由俯视图和侧视图中长度,确定点D的位置如图:
(3)将点D与A、B、C分别连接,隐去所有的辅助线条便可得到还原的几何体D—ABC如图所示:
解:置于棱长为4个单位的正方体中研究,该几何体为四面体D —ABC ,且AB=BC=4,AC=24,DB=DC=52,可得DA=6.故最长的棱长为6.
方法2
若由左视图引发,具体步骤如下:
(1)依据左视图,在长方体右侧面初绘BCD 如图:
(2)依据正视图和俯视图中显示的垂直关系,判断出在节点C 、D 处不可能有垂直向前拉升的线条,而在B 处,必有垂直向左拉升的线条BA ,由俯视图和左视图的长度,确定点A 的位置,如图:
(3)将点A 与点B 、C 、D 分别连接,隐去所有的辅助线条便可得到还原的几何体D —ABC 如图:
方法3:
由三视图可知,原几何体的长、宽、高均为4,所以我们可以用一个正方体做载体还原:
(1)根据正视图,在正方体中画出正视图上的四个顶点的原象所在的线段,用红线表示。
如图,也就是说正视图的四个顶点必定是由原图中红线上的点投影而成;
(2)左视图有三个顶点,画出它们的原象所在的线段,用蓝线表示,如图;
(3)俯视图有三个顶点,画出它们的原象所在的线段,用绿线表示,如图;
(4)三种颜色的公共点(一定要三种颜色公共交点)即为几何体的顶点,连接各顶点即为原几何体,如图。
然后计算出最长的棱。
课后习题:
1、某四棱台的三视图如图所示,则该四棱台的体积是( )
A.4
B.314
C.316
D.6
答案:B
2、某几何体的三视图,如图所示,则此几何体的表面积是(
)
cm ²
A. 90
B. 129
C. 132
D.138 答案:D。