2020年高一数学上学期期末统考试卷
2020年湖北省宜昌市一中、恩施高中高一上学期末联考数学试题及答案
2020年湖北省宜昌市一中、恩施高中高一上学期末联考数学试题及答案一、单选题1.设集合{A x y ==,{}3log ,19B y y x x ==≤≤,A B =( )A .∅B .[]1,2C .[]0,2D .[]1,3【答案】B【解析】求出集合A 、B ,然后利用交集的定义可求出集合AB .【详解】{{}[)101,A x y x x ===-≥=+∞,由于函数3log y x =为增函数,当19x ≤≤时,333log 1log log 9x ≤≤,即30log 2x ≤≤,即{}[]3log ,190,2B y y x x ==≤≤=,因此,[]1,2A B =.故选:B. 【点睛】本题考查交集的计算,同时也考查了函数定义域和对数函数值域的计算,考查计算能力,属于基础题. 2.下列各组函数中,表示同一函数的是( ) A .1y =,0y x =B .()()22log 1log 2y x x =-++,()()2log 12y x x =-+C .y x =,y =D .11x x y e e -+=⋅,2t y e =【答案】D【解析】分别判断两个函数的定义域和对应法则是否相同即可. 【详解】对于A 选项,函数1y =的定义域为R ,函数0y x =的定义域为{}0x x ≠,两个函数的定义域不相同,A 选项中的两个函数不是同一函数; 对于B选项,由1020x x ->⎧⎨+>⎩,可得1x >,函数()()22log 1log 2y x x =-++的定义域为()1,+∞,解不等式()()120x x -+>,解得2x <-或1x >,则函数()()2log 12y x x =-+的定义域为()(),21,-∞-⋃+∞,两个函数的定义域不相同,B 选项中的两个函数不是同一函数;对于C 选项,两个函数的定义域均为R ,且y x==,两个函数的对应法则不相同, C 选项中的两个函数不是同一函数;对于D 选项,两个函数的定义域均为R ,且112x x x y e e e -+=⋅=,两个函数的对应法则相同,D 选项中的两个函数是同一函数. 故选:D. 【点睛】本题主要考查两个函数是否为同一函数,判断函数的定义域和对应法则是否相同是解决本题的关键,比较基础. 3.若向量()3,2a =,(),6b x =,且//a b ,则x 的值为( )A .9B .1-C .4-D .9-【答案】A【解析】根据共线向量的坐标表示可得出关于实数x 的方程,求出即可. 【详解】向量()3,2a =,(),6b x =,且//a b ,23618x ∴=⨯=,解得9x =. 故选:A. 【点睛】本题考查向量平行的坐标表示,关键是掌握向量平行的坐标表示,属于基础题.4.三个数1eπ⎛⎫ ⎪⎝⎭,1e π,1ln π的大小关系为( )A .111ln ee πππ⎛⎫<< ⎪⎝⎭ B .111ln ee πππ⎛⎫<< ⎪⎝⎭C .111ln ee πππ⎛⎫<< ⎪⎝⎭D .111ln e e πππ⎛⎫<< ⎪⎝⎭【答案】A【解析】利用指数函数、对数函数的单调性比较三个数与0和1的大小关系,从而可得出三个数的大小关系.【详解】指数函数1xy π⎛⎫= ⎪⎝⎭为减函数,所以01101e ππ⎛⎫⎛⎫<<= ⎪ ⎪⎝⎭⎝⎭; 指数函数x y e =为增函数,所以101e e π>=;对数函数ln y x =为()0,∞+上的增函数,所以1lnln10π<=.因此,111ln ee πππ⎛⎫<< ⎪⎝⎭.故选:A. 【点睛】本题考查三个数的大小的判断,考查对数函数、指数函数的单调性等基础知识,考查推理能力,是基础题. 5.已知方程()23log 0kx x k +=<的实根0x 满足()01,2x ∈,则k 的取值范围为( ) A .3k <- B .10k -<< C .31k -<<- D .3k <-或10k -<<【答案】C【解析】构造函数()2log 3f x kx x =-+,判断出函数()y f x =为减函数,由题意得出()()1020f f ⎧>⎪⎨<⎪⎩,解出不等式组即可得出实数k 的取值范围. 【详解】构造函数()2log 3f x kx x =-+,0k <,函数3y kx =+为减函数,又函数2log y x =为增函数,所以,函数()2log 3f x kx x =-+为减函数,由于方程()23log 0kx x k +=<的实根0x 满足()01,2x ∈,则()()1302220f k f k ⎧=+>⎪⎨=+<⎪⎩, 解得31k -<<-. 故选:C. 【点睛】本题考查利用方程根的取值范围求参数的取值范围,利用函数的单调性得出端点函数值符号是解题的关键,考查分析问题和解决问题的能力,属于中等题.6.已知cos cos tan sin sin ααααα+=+则的值为 ( ) A .﹣1 B .﹣2C .12D .2【答案】D【解析】试题分析:∵sin cos αα+=∴2(sin cos )2αα+=,∴1sin cos 2αα=, ∴cos sin cos 1tan 2sin cos sin sin cos ααααααααα+=+==.【考点】平方关系、商数关系.7.已知扇形AOB ∆的周长为4,当扇形的面积取得最大值时,扇形的弦长AB 等于( ) A .2 B .sin1 C .2sin1 D .2cos1【答案】C【解析】设扇形的半径为r ,可得出扇形的弧长为()4202l r r =-<<,利用二次函数的基本性质可求得扇形面积的最大值,求出对应的r 的值,进而求出扇形的圆心角的弧度数,然后利用等腰三角形的性质可求出扇形的弦长AB .【详解】设扇形的半径为r ,可得出扇形的弧长为()4202l r r =-<<,所以,扇形的面积为()()22114221122S lr r r r r r ==-=-+=--+, 当1r =时,该扇形的面积取到最大值1,扇形的弧长为422l r =-=,此时2lAOB r∠==, 如下图所示:取AB的中点C,则OC AB∠=,因此,AOC⊥,且1===.22sin12sin1AB AC r故选:C.【点睛】本题考查扇形面积最值的计算,同时也考查了扇形弦长的计算,涉及二次函数基本性质的应用,考查计算能力,属于中等题.),则下面结8.已知曲线C1:y=cos x,C2:y=sin (2x+2π3论正确的是( )A.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,个单位长度,得到曲线C2再把得到的曲线向右平移π6B.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,个单位长度,得到曲线C2再把得到的曲线向左平移π12C.把C1上各点的横坐标缩短到原来的1倍,纵坐标不变,2个单位长度,得到曲线C2再把得到的曲线向右平移π6D.把C1上各点的横坐标缩短到原来的1倍,纵坐标不变,2个单位长度,得到曲线C2再把得到的曲线向左平移π12【答案】D【解析】把C1上各点的横坐标缩短到原来的1倍,纵坐标2不变,得到函数y=cos2x图象,再把得到的曲线向左平移π12个单位长度,得到函数y=cos2(x+π12)=cos (2x+π6)=sin (2x+2π3)的图象,即曲线C 2,故选D .点睛:三角函数的图象变换,提倡“先平移,后伸缩”,但“先伸缩,后平移”也常出现在题目中,所以也必须熟练掌握.无论是哪种变形,切记每一个变换总是对字母x 而言. 函数sin()()y A x x R ωϕ=+∈是奇函数π()k k Z ϕ⇔=∈;函数sin()()y A x x R ωϕ=+∈是偶函数ππ+()2k k Z ϕ⇔=∈;函数cos()()y A x x R ωϕ=+∈是奇函数ππ+()2k k Z ϕ⇔=∈;函数cos()()y A x x R ωϕ=+∈是偶函数π()k k Z ϕ⇔=∈.9.函数ln |1|x y e x =--的图像大致是( )A .B .C .D .【答案】D【解析】根据函数的形式和图象,分1x ≥和01x <<两种情况去绝对值,判断选项. 【详解】 当1x ≥时,()ln 111xy ex x x =--=--=,当01x <<时,()ln ln 1111xx y ex e x x x-=--=--=+- 只有D 满足条件.故选:D 【点睛】本题考查含绝对值图象的识别,属于基础题型. 一般根据选项判断函数的奇偶性,零点,特殊值的正负,以及单调性,极值点等排除选项.10.函数()y f x =满足()2f x f x π⎛⎫+= ⎪⎝⎭,且当0,2x π⎡⎤∈⎢⎥⎣⎦时,(),sin cos ,sin cos x x xf x x x x≤=>,则函数()lg y f x x =-的零点个数为( ) A .10 B .11 C .12 D .13【答案】B【解析】由题意可知,函数()y f x =是周期为2π的周期函数,函数()lg y f x x =-的零点个数等价于函数()y f x =与函数lg y x =图象的交点个数,作出两个函数的图象,观察两个函数图象的交点个数即可. 【详解】函数()y f x =满足()2f x f x π⎛⎫+= ⎪⎝⎭,则函数()y f x =是周期为2π的周期函数,令()lg 0f x x -=可得()lg f x x =,函数()lg y f x x =-的零点个数等价于函数()y f x =与函数lg y x =图象的交点个数,当0,2x π⎡⎤∈⎢⎥⎣⎦时,(),sin cos ,sin cos x x x f x x x x≤=>,则()max 1f x =,如下图所示:由于13104π<,当10x >时,lg 1x,此时,函数()y f x =与函数lg y x =的图象没有公共点,由上图可知,函数()y f x =与函数lg y x =的图象共有11个交点,因此,函数()lg y f x x =-的零点个数为11. 故选:B. 【点睛】本题考查函数的零点个数,将问题转化为两个函数图象的交点个数是解题的关键,考查数形结合思想的应用,属于中等题.11.已知函数())221log 121xxe f x x x e -=++++,则不等式()2sin 212f x ->,()0,x π∈的解集为()A .,62ππ⎛⎫ ⎪⎝⎭B .2,33ππ⎛⎫⎪⎝⎭ C .5,1212ππ⎛⎫ ⎪⎝⎭D .50,,1212πππ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭【答案】D【解析】设函数()()2g x f x =-,判断出该函数为R 上的奇函数且为减函数,将所求不等式化为()()2sin 210g x g ->,利用函数()y g x =的单调性得出2sin 210x -<,然后在区间()0,π上解此不等式即可.【详解】设函数()())212log 1xxe g xf x x e -=-=++,则()00g =,对任意的x ∈Rx x >≥0x >在R 上恒成立,所以,函数()y g x =的定义域为R .()())()()2211log log 11x x x xx x e e e g x x x e e e ------⎤-=-+=+⎥⎦++)21log 1x x e x e -=++, ()()))2211log log 11xx xxe e g x g x x x e e --∴+-=+++++)()22222log log 1log 10xx x x ⎡⎤==+-==⎢⎥⎣⎦,()()g x g x ∴-=-,所以,函数()y g x =为奇函数, 当0x ≤时,由于函数u x 为减函数,函数2log y u =为增函数,所以,函数())2log h x x=在(],0-∞上为减函数,()()21121111xx x x xe e x e e eϕ-+-===-+++在(],0-∞上为减函数, 所以,函数()y g x =在(],0-∞上为减函数,则该函数在区间[)0,+∞上也为减函数,由于函数()y g x =在R 上连续,所以,函数()y g x =在R 上为减函数,由()2sin 212f x ->,可得()2sin 2120f x -->,即()()2sin 210g x g ->,所以,2sin 210x -<,即1sin 22x <,()0,x π∈,()20,2x π∴∈, 所以026x π<<或5226x ππ<<,解得012x π<<或512x ππ<<,因此,不等式()2sin 212f x ->,()0,x π∈的解集为50,,1212πππ⎛⎫⎛⎫⎪⎪⎝⎭⎝⎭. 故选:D. 【点睛】本题考查利用函数的单调性解函数不等式,涉及正弦函数基本性质的应用,判断出函数的奇偶性和单调性是解题的关键,考查分析问题和解决问题的能力,属于中等题. 12.已知函数()2(43)3,0,log (1)1,0ax a x a x f x x x ⎧+-+<=⎨++≥⎩(0a >,且a 1≠)在R上单调递减,且关于x 的方程()2f x x =-恰有两个不相等的实数解,则a 的取值范围是A .20,3⎛⎤⎥⎝⎦B.[23,34]C .[13,23]{34}D .[13,23){34}【答案】C【解析】试题分析:由()f x 在R 上单调递减可知34013{313401a a a a -≥≥⇒≤≤<<,由方程()2f x x =-恰好有两个不相等的实数解,可知32,a ≤,1233a ≤≤,又34a =时,抛物线2(43)3y x a x a =+-+与直线2y x =-相切,也符合题意,∴实数a 的取值范围是123[,]334⎧⎫⋃⎨⎬⎩⎭,故选C.【考点】函数性质综合应用【名师点睛】已知函数有零点求参数取值范围常用的方法和思路:(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数值域问题加以解决;(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解.二、填空题13.已知()2,1a =,()1,2b =-,若()4,7ma nb -=,则m n +的值为_____. 【答案】5【解析】根据向量的坐标运算建立关于实数m 、n 的方程组,解出即可. 【详解】()2,1a =,()1,2b =-,且()()2,24,7ma nb m n m n -=-+=,则有2427m n m n -=⎧⎨+=⎩, 解得32m n =⎧⎨=⎩,因此,5m n +=.故答案为:5. 【点睛】本题考查利用平面向量坐标运算求参数,根据坐标运算建立方程组是解题的关键,考查计算能力,属于基础题. 14.若3log 21x =,则44x x -+=_____.【答案】829【解析】利用对数的运算以及对数与指数的互化可得出23x =,可得出49x =,进而可计算出44x x -+的值.【详解】33log 2log 21x x ==,23x ∴=,则()()224229xx x ===,因此,18244999x x -+=+=. 故答案为:829.【点睛】本题考查指数和对数的运算,掌握对数和指数的运算律是解题的关键,考查计算能力,属于基础题.15.函数()12log sin 26f x x π⎡⎤⎛⎫=+ ⎪⎢⎥⎝⎭⎣⎦的单调递减区间为_____.【答案】(),126k k k Z ππππ⎛⎤-+∈ ⎥⎝⎦【解析】根据题意求函数sin 26u x π⎛⎫=+⎪⎝⎭的增区间且满足sin 206x π⎛⎫+> ⎪⎝⎭,由此可得出关于x 的不等式,解出即可得出函数()y f x =的单调递减区间. 【详解】 对于函数()12log sin 26f x x π⎡⎤⎛⎫=+ ⎪⎢⎥⎝⎭⎣⎦,自变量x 满足sin 206x π⎛⎫+> ⎪⎝⎭, 由于外层函数12log y u=为减函数,要求函数()12log sin 26f x x π⎡⎤⎛⎫=+ ⎪⎢⎥⎝⎭⎣⎦的单调递减区间,即求内层函数sin 26u x π⎛⎫=+ ⎪⎝⎭的单调递增区间,令()22262k x k k Z ππππ<+≤+∈,解得()126k x k k Z ππππ-<≤+∈, 因此,函数()12log sin 26f x x π⎡⎤⎛⎫=+ ⎪⎢⎥⎝⎭⎣⎦的单调递减区间为(),126k k k Z ππππ⎛⎤-+∈ ⎥⎝⎦. 故答案为:(),126k k k Z ππππ⎛⎤-+∈ ⎥⎝⎦. 【点睛】本题考查复合对数函数单调区间的求解,涉及了正弦型函数单调区间的求解,在解题时不要忽略函数的定义域的求解,考查分析问题和解决问题的能力,属于中等题. 16.下面5个说法中正确的序号为_____. ①函数()22x f x x =-有两个零点;②函数tan 216y x π⎛⎫=-- ⎪⎝⎭的图象关于点,13π⎛⎫-⎪⎝⎭对称; ③若α是第三象限角,则sincos 22sincos22αα+的取值集合为{}2,0-;④锐角三角形ABC 中一定有sin cos A B >; ⑤已知()1xx a f x a =+(0a >且1a ≠),同一平面内有O 、A 、B 、C 四个不同的点,若()()OA f x OB f x OC =+-,则A 、B 、C 必定三点共线. 【答案】②④⑤【解析】利用零点存在定理以及()()240f f ==可判断命题①的正误;求出函数tan 216y x π⎛⎫=-- ⎪⎝⎭的对称中心坐标,利用赋值法可判断命题②的正误;确定2α的象限,去绝对值,求出sincos 22sincos22αααα+的取值集合,可判断命题③的正误;利用正弦函数的单调性可判断命题④的正误;计算出()()1f x f x +-=,可判断命题⑤的正误.【详解】 对于命题①,()1102f -=-<,()010f =>,由零点存在定理知,函数()22xf x x =-在区间()1,0-上有零点,又()()240f f ==,则函数()22x f x x =-的零点个数大于2,命题①错误;对于命题②,令()262k x k Z ππ-=∈,解得()124k x k Z ππ=+∈, 令1k =,可得3x π=,所以,函数tan 216y x π⎛⎫=-- ⎪⎝⎭的图象关于点,13π⎛⎫- ⎪⎝⎭对称,命题②正确; 对于命题③,如下图所示:由于角α为第三象限角,由等分象限法知,角2α是第二象限或第四象限角.若角2α是第二象限角,sin02α>,cos02α<,sin cos 22110sincos22αααα+=-=;若角2α是第四象限角,sin02α<,cos02α>,sin cos22110sincos22αα+=-+=.命题③错误;对于命题④,由于ABC ∆是锐角三角形,则2A B π+>,所以2B A π-<,即022B A ππ<-<<,因为正弦函数在区间0,2π⎛⎫⎪⎝⎭上为增函数,所以,sin sin cos 2A B B π⎛⎫>-= ⎪⎝⎭,命题④正确;对于命题⑤,()1xx a f x a =+,则()()1111x x x x x x xa a a f x a a a a ----⋅-===++⋅+,()()1111x x xa f x f x a a ∴+-=+=++,()()OA f x OB f x OC =+-,A ∴、B 、C 三点共线,命题⑤正确.因此,正确说法的序号为:②④⑤. 故答案为:②④⑤. 【点睛】本题考查命题真假的判断,涉及函数零点个数、三角函数符号和基本性质、以及利用向量共线处理三点共线问题,考查推理能力,属于中等题.三、解答题17.(116127⎛⎫+⎪⎝⎭(2)已知tan 2θ=-,求22sin cos cos θθθ+-的值.【答案】(1)lg 33-;(2)75. 【解析】(1)根据指数与对数的运算律可计算出所求代数式的值;(2)将所求代数式化为2222sin cos cos 2sin sin cos cos θθθθθθθ+-=++,并除以22sin cos θθ+,然后在分式的分子和分母中同时除以2cos θ,然后代入tan θ的值计算即可. 【详解】 (1)1136611327⨯⎛⎫⎛⎫+=+⎪ ⎪⎝⎭⎝⎭121111lg 3lg 3333⎛⎫=-+=-+-=- ⎪⎝⎭; (2)tan 2θ=-,2222sin cos cos 2sin sin cos cos θθθθθθθ+-=++()()2222222222212sin sin cos cos 2tan tan 17sin cos tan 1521θθθθθθθθθ⨯--+++++====++-+. 【点睛】本题考查指数、对数的运算,同时也考查了弦化切思想的应用,考查计算能力,属于基础题. 18.已知集合A 为函数()222log 21y xax a =-+-的定义域,集合{}ln 2lg1000B x e x =≤≤.(1)当1a =-时,求()RA B ;(2)若A B A ⋃=,求实数a 的取值范围.【答案】(1)()()(),20,23,-∞-+∞;(2)()(),14,-∞⋃+∞. 【解析】(1)求出集合A 、B ,然后利用补集和交集的定义可求出集合()RA B ;(2)由A B A ⋃=可得出B A ⊆,可得出关于实数a 的不等式组,解出即可. 【详解】 (1)据题意{}()(){}22210110A x x ax a x x a x a ⎡⎤⎡⎤=-+->=--⋅-+>⎣⎦⎣⎦()(),11,a a =-∞-++∞,当1a =-时,()(),20,A =-∞-+∞.{}[]ln 2lg10002,3B x e x =≤≤=,所以()(),23,R B =-∞+∞,因此,()()()(),20,23,RA B =-∞-+∞;(2)A B A =,B A ∴⊆,所以12a +<或13a ->,解得1a <或4a >,因此,实数a 的取值范围是()(),14,-∞⋃+∞. 【点睛】本题考查集合的基本运算,同时也考查了利用集合的包含关系求参数,考查运算求解能力,属于中等题. 19.在ABC ∆中,3AE EC =,2BD DC =,点P 为AD 与BE 的交点,记AB a =,AC b =.(1)用a 、b 表示AD 、BE ; (2)求:BP PE .【答案】(1)1233AD a b =+;34BE b a =-(2)83. 【解析】(1)由2BD DC =可求得1233AD a b =+,34AE b =,再由平面向量的减法可得出BE 关于a 、b 的表达式;(2)由B 、P 、E 三点共线,可BP PE λ=,0λ>,由A 、P 、D 三点共线,设AP PD μ=,0μ>,根据平面向量的线性运算得出AD 关于a 、b 的两个表达式,由此可得出关于实数λ、μ的方程组,解出即可得出:BP PE 的值.【详解】 (1)2BD DC =,()2AD AB AC AD=∴--,即12123333AD AB AC a b =+=+, 43343b AE EC AC ===,因此,3344BE AE AB AC AB b a =-=-=-;(2)B 、P 、E 三点共线,令BP PE λ=,0λ>,则有()AP AB AE AP λ-=-,即()13141AP a b λλλ=+++. 又A 、P 、D 三点共线,则再设AP PD μ=,0μ>,则有()AP AD APμ=-,即()()213131AP AD a bμμμμμμ==++++,由平面向量基本定理可知,()()()1131324131μλμλμλμ⎧=⎪++⎪⎨⎪=⎪++⎩,()23141λλλ∴=++,即83λ=. 因此,8:3BP PE =. 【点睛】本题考查利用基底表示向量,同时也考查了利用平面向量的基本定理求参数,考查计算能力,属于中等题. 20.某公司每年生产、销售某种产品的成本包含广告费用支出和浮动成本两部分,该产品的年产量为x 万件,每年投入的广告费为10x 万元,另外,当年产量不超过50万件时,浮动成本为21102x x ⎛⎫+ ⎪⎝⎭万元,当年产量超过50万件时,浮动成本为20000521300x x ⎛⎫+- ⎪⎝⎭万元.若每万件该产品销售价格为60万元,且每年该产品都能销售完.(1)设年利润为()f x (万元),试求()f x 关于x 的函数关系式;(2)年产量x 为多少万件时,该公司所获利润()f x 最大?并求出最大利润. 【答案】(1)()2140,5022000021300,50x x x f x x x x ⎧-+≤⎪⎪=⎨⎪--+>⎪⎩; (2)当年产量x 为100万件时,该公司所获利润了()f x 最大,最大利润为900万元.【解析】(1)直接由题意列分段函数可得函数()y f x =的解析式;(2)分段利用配方法与双勾函数的单调性求最值,比较大小后可得出结论. 【详解】(1)由题意可得,当50x ≤时,()22116010104022f x x x x x x x ⎛⎫=--+=-+ ⎪⎝⎭,当50x >时,()2000020000601052130021300f x x x x x x x ⎛⎫=--+-=--+ ⎪⎝⎭. 因此,()2140,5022000021300,50x x x f x x x x ⎧-+≤⎪⎪=⎨⎪--+>⎪⎩; (2)当50x ≤时,()()2211404080022f x x x x =-+=--+, 当40x =时,()max 800f x =(万元); 当50x >时,()20000100002130021300f x x x x x ⎛⎫=--+=-++ ⎪⎝⎭, 对于函数10000y x x=+,任取1250100x x <<≤, 则()121212121210000100001000010000y y x x x x x x x x ⎛⎫⎛⎫⎛⎫-=+-+=-+- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭()()()()()21121212121212121000010000100001x x x x x x x x x x x x x x x x ---⎛⎫=-+=--= ⎪⎝⎭, 1250100x x <<≤,120x x ∴-<,12010000x x <<,所以,120y y ->,所以,函数10000y x x=+在区间(]50,100上为减函数, 同理可证函数10000y x x=+在区间[)100,+∞上为增函数, 所以,函数()y f x =在区间(]50,100上为增函数,在区间[)100,+∞上为减函数,当100x =时,()()max 1000010021001300900100f x f ⎛⎫==-⨯++= ⎪⎝⎭(万元).综上,当年产量x 为100万件时,该公司所获利润()f x 最大,最大利润为900万元. 【点睛】本题考查分段函数模型的应用,训练了利用二次函数求最值与双勾函数的单调性求最值,是中档题.21.如图,已知函数()()()sin 0,0f x x ωϕωϕπ=+><<,点A 、B 分别是()f x 的图象与y 轴、x 轴的交点,C 、D 分别是()f x 的图象上横坐标为2π、23π的两点,//CD x 轴,且A 、B 、D 三点共线.(1)求函数()y f x =的解析式; (2)若()1213f α=,,123ππα⎡⎤∈⎢⎥⎣⎦,求4f πα⎛⎫- ⎪⎝⎭;(3)若关于x 的函数()2log 4g x f x k π⎛⎫=-- ⎪⎝⎭在区间,122ππ⎡⎤⎢⎥⎣⎦上恰好有一个零点,求实数k 的取值范围.【答案】(1)()sin 23f x x π⎛⎫=+ ⎪⎝⎭;(2)5413f πα⎛⎫-= ⎪⎝⎭;(3)2⎡⎣. 【解析】(1)求出B 点的横坐标,线段CD 中点坐标,再求函数()y f x =的最小正周期T ,从而求出ω、ϕ的值,即可写出函数解析式;(2)由题意得出12sin 2313πα⎛⎫+= ⎪⎝⎭,再利用诱导公式可求出4f πα⎛⎫- ⎪⎝⎭的值;(3)由函数()y g x =的解析式,利用分离常数法得出2log cos 23k x π⎛⎫=-+ ⎪⎝⎭,求出,122x ππ⎡⎤∈⎢⎥⎣⎦时,cos 23x π⎛⎫-+ ⎪⎝⎭的范围,可得出关于k 的不等式,解出即可. 【详解】(1)根据题意,点A 与点D 关于点B 对称,B ∴点的横坐标为120233ππ⎛⎫⨯+=⎪⎝⎭.又点C 与点D 关于直线12722312x πππ⎛⎫=⨯+=⎪⎝⎭对称,∴函数()y f x =的最小正周期23471T πππ⎛⎫-= ⎪⎝⎭=⨯,22Tπω∴==, 又2sin 033f ππϕ⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭,()23k k Z πϕπ∴+=∈, 解得()3k k Z πϕπ=+∈,0ϕπ<<,3πϕ∴=,因此,()sin 23f x x π⎛⎫=+ ⎪⎝⎭;(2)由()12sin 2313f παα⎛⎫=+=⎪⎝⎭,,123ππα⎡⎤∈⎢⎥⎣⎦,2,32ππαπ⎡⎤∴+∈⎢⎥⎣⎦,所以,5cos 2313πα⎛⎫+==- ⎪⎝⎭,所以5sin 2sin 2cos 244332313f ππππππαααα⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫-=-+=+-=-+= ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦;(3)()22log cos 2log 43g x f x k x k ππ⎛⎫⎛⎫=--=-+- ⎪ ⎪⎝⎭⎝⎭,令()0g x =,得2log cos 23k x π⎛⎫=-+⎪⎝⎭, 当,122x ππ⎡⎤∈⎢⎥⎣⎦时,42,323x πππ⎡⎤+∈⎢⎥⎣⎦,所以1cos 2,032x π⎛⎫⎡⎤+∈- ⎪⎢⎥⎝⎭⎣⎦, 所以210log 2k ≤≤,解得1≤k所以实数k 的取值范围是⎡⎣.【点睛】本题考查了三角函数的图象与性质的应用问题以及三角函数值的计算,也考查了函数与方程思想方法,是综合题. 22.已知函数()245f x x x a =++-,()148x g x m m -=⋅-+. (1)若函数()y f x =在区间[]1,1-上存在零点,求实数a 的取值范围;(2)当0a =时,若对任意的1x 、[]21,2x ∈,()()12f xg x ≤恒成立,求实数m 的取值范围;(3)若函数()y f x =在[],2t 上的值城为区间D ,是否存在常数t ,使得区间D 的长度为64t -?若存在,求出t 的值;若不存在,请说明理由.(注:区间[],p q 的长度为q p -).【答案】(1)[]0,8;(2)13⎡⎫-+∞⎪⎢⎣⎭,;(3)存在常数4t =--或52t =-满足题意.【解析】(1)求出函数的对称轴,得到函数的单调性,建立关于a 的不等式组,解出即可;(2)依题意,函数()y f x =在[]1,2上的最大值小于等于函数()y g x =在[]1,2上的最小值,此时可以分离变量,也可以直接求解;(3)通过讨论t 的范围,结合函数的单调性以及()2f 、()2f -的值,得到关于t 的方程,解出即可. 【详解】(1)由题意得,函数()y f x =的对称轴为2x =-, 故函数()y f x =在区间[]1,1-上为增函数, 函数()y f x =在区间[]1,1-上存在零点,()()1010f f ⎧-≤⎪∴⎨≥⎪⎩,即800a a -≤⎧⎨≥⎩,解得08a ≤≤,故实数a 的取值范围为[]0,8;(2)依题意,函数()y f x =在[]1,2上的最大值小于等于函数()y g x =在[]1,2上的最小值,当0a =时,()()224529f x x x x =+-=+-,易知,函数()y f x =在[]1,2上的最大值为()22497f =-=.法一:当0m >时,函数()148x g x m m -=⋅-+在[]1,2上为增函数,则()()min 187g x g ==>,符合题意; 当0m <时,函数()148x g x m m -=⋅-+在[]1,2上为减函数,则()()min 2387g x g m ==+≥,解得103m -≤<. 综上,实数m 的取值范围为13⎡⎫-+∞⎪⎢⎣⎭,; 法二:依题意,1487x m m -⋅-+≥对任意[]1,2x ∈都成立,12x ≤≤,1144x -∴≤≤,则10413x -≤-≤,当1x =时,则有87≥,显然成立;当1x ≠时,则1141x m -≥--对任意(]1,2x ∈都成立, 则函数1141x y -=--为增函数,故max 13y =-,即13m ≥-. 综上,实数m 的取值范围为13⎡⎫-+∞⎪⎢⎣⎭,; (3)依题意2640t t <⎧⎨->⎩,解得32t <.①当6t ≤-时,当[],2x t ∈时,()()max f x f t =,()()min 2f x f =-,即()()2,D f f t =-⎡⎤⎣⎦,()()224464f t f t t t --=++=-,即2820t t +-=,解得4t =--②当62t -<≤-时,当[],2x t ∈时,()()max 2f x f =,()()min 2f x f =-,()()2,2D f f =-⎡⎤⎣⎦,()()221664f f t ∴--==-,解得52t =-; ③当322t -<<时,当[],2x t ∈时,()()max 2f x f =,()()min f x f t =,()(),2D f t f =⎡⎤⎣⎦,()()2241264f f t t t t ∴-=--+=-,解得t =不符合,舍去;综上,存在常数4t =--52t =-满足题意. 【点睛】本题考查函数性质的综合运用,考查函数值域的求法及不等式的恒成立问题,考查转化思想及分类讨论思想,属于中档题.。
2020-2021学年辽宁省沈阳市高一上学期期末数学试卷 (解析版)
2020-2021学年辽宁省沈阳市高一(上)期末数学试卷一、选择题(共8小题).1.已知全集U={1,2,3,4,5,6,7},集合A={2,4,6,7},B={1,3,4,6},则A∩∁U B=()A.{2,7}B.{4,6}C.{2,5,7}D.{2,4,5,6,7} 2.某单位共有500名职工,其中不到35岁的有125人,35﹣49岁的有a人,50岁及以上的有b人,现用分层抽样的方法,从中抽出100名职工了解他们的健康情况.如果已知35﹣49岁的职工抽取了56人,则50岁及以上的职工抽取的人数为()A.19B.95C.220D.2803.设x∈R,则“x<1”是“2x<1”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件4.2020年12月4日,中国科学技术大学宣布该校潘建伟等人成功构建76个光子的量子计算原型机“九章”.据介绍,将这台量子原型机命名为“九章”,是为了纪念中国古代的数学专著《九章算术》.在该书的《方程》一章中有如下一题:“今有上禾二秉,中禾三秉,下禾四秉,实皆不满斗.上取中,中取下,下取上,各一秉,而实满斗.问上中下禾实一秉各几何?”其译文如下:“今有上等稻禾2束,中等稻禾3束,下等稻禾4束,各等稻禾总数都不足1斗.如果将2束上等稻禾加上1束中等稻禾,或者将3束中等稻禾加上1束下等稻禾,或者将4束下等稻禾加上1束上等稻禾,则刚好都满1斗.问每束上、中、下等的稻禾各多少斗?”现请你求出题中的1束上等稻禾是多少斗?()A.B.C.D.5.在△ABC中,,.若点D满足,则=()A.B.C.D.6.设a=50.6,b=()﹣0.7,c=log0.60.7,则a,b,c的大小关系为()A.a<b<c B.b<a<c C.c<b<a D.c<a<b7.已知实数a>0,b>0,且2a+b=2ab,则a+2b的最小值为()A.B.C.D.8.已知函数f(x)=+x(其中e为自然对数的底数,e=2.71828…),若实数m满足f(m)=﹣1,则f(﹣m)=()A.4B.3C.2D.1二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求,全部选对的得5分,有选错的得0分,部分选对的得3分.9.下列命题中错误的是()A.若a>b,则<B.若a>b,则>C.若a>b,c<d,则a﹣d>b﹣cD.若b>a>0,m>0,则>10.在某次高中学科竞赛中,5000名考生的参赛成绩统计如图所示,60分以下视为不及格,若同一组中的数据用该组区间中点值为代表,则下列说法中正确的是()A.考生成绩在[70,80)的人数最多B.考生成绩在[80,90)对应的频率为0.015C.不及格的考生人数为1000D.考生成绩的平均分约为70.511.已知函数f(x)=|()x﹣1|﹣b有两个零点,分别为x1,x2(x1<x2),则下列结论正确的是()A.﹣1<x1<0B.0<x2<2C.()+()=2D.0<b<112.若关于x的方程=的解集中只含有一个元素,则满足条件的实数k可以为()A.﹣B.﹣1C.1D.三、填空题:本题共4小题,每小题5分,共20分.13.计算lg8+lg25﹣lg2的结果是.14.设A,B,C为三个随机事件,若A与B互斥,B与C对立,且P(A)=,P(C)=,则P(A+B)=.15.已知函数f(x)=则不等式x+f(x﹣1)≤2的解集是.16.给定函数y=f(x),设集合A={x|y=f(x)},B={y|y=f(x)}.若对于∀x∈A,∃y∈B,使得x+y=0成立,则称函数f(x)具有性质P.给出下列三个函数:①;②;③y=lgx.其中,具有性质P的函数的序号是.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(10分)设A,B,C,D为平面直角坐标系中的四点,且A(2,﹣2),B(4,1),C(1,3).(1)若=,求D点的坐标及||;(2)设向量=,=,若k﹣与+3平行,求实数k的值.18.(12分)已知全集U=R,集合A={x|x2﹣4x<0},B={x|m≤x≤3m﹣2}.(1)当m=2时,求∁U(A∩B);(2)如果A∪B=A,求实数m的取值范围.19.(12分)中学阶段是学生身体发育重要的阶段,长时间熬夜学习严重影响学生的身体健康.某校为了解甲、乙两个班的学生每周熬夜学习的总时长(单位:小时),从这两个班中各随机抽取6名同学进行调查,将他们最近一周熬夜学习的总时长作为样本数据,如表所示.如果学生一周熬夜学习的总时长超过21小时,则称为“过度熬夜”.甲班91113202431乙班111218202225(1)分别计算出甲、乙两班样本的平均值;(2)为了解学生过度热夜的原因,从甲、乙两班符合“过度熬夜”的样本数据中,抽取2个数据,求抽到的数据来自于同一个班级的概率;(3)从甲班的样本数据中有放回地抽取2个数据,求恰有1个数据为“过度熬夜”的概率.20.(12分)已知函数f(x)=x2+2ax+1(a∈R).(1)求f(x)在区间[1,3]上的最小值g(a);(2)设函数h(x)=,用定义证明:h(x)在(0,1)上是减函数.21.(12分)近来,国内多个城市纷纷加码布局“夜经济”,以满足不同层次的多元消费,并拉动就业、带动创业,进而提升区域经济发展活力.某夜市的一位工艺品售卖者,通过对每天销售情况的调查发现:该工艺品在过去的一个月内(以30天计),每件的销售价格P(x)(单位:元)与时间x(单位:天)的函数关系近似满足P(x)=10+(k 为常数,且k>0),日销售量Q(x)(单位:件)与时间x(单位:天)的部分数据如表所示:x1015202530 Q(x)5055605550已知第10天的日销售收入为505元.(1)求k的值;(2)给出以下四个函数模型:①Q(x)=ax+b;②Q(x)=a|x﹣m|+b;③Q(x)=a•b x;④Q(xr)=a•log b x.请你根据表中的数据,从中选择你认为最合适的一种函数模型来描述日销售量Q(x)与时间x的变化关系,并求出该函数的解析式;(3)设该工艺品的日销售收入为f(x)(单位:元),求f(x)的最小值.22.(12分)已知函数f(x)=ln(e x+1)+kx是偶函数(其中e为自然对数的底数,e=2.71828…).(1)求k的值;(2)若方程f(x)=x+b在区间[﹣1,0]上有实数根,求实数b的取值范围.参考答案一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集U={1,2,3,4,5,6,7},集合A={2,4,6,7},B={1,3,4,6},则A∩∁U B=()A.{2,7}B.{4,6}C.{2,5,7}D.{2,4,5,6,7}解:∵U={1,2,3,4,5,6,7},A={2,4,6,7},B={1,3,4,6},∴∁U B={2,5,7},A∩∁U B={2,7}.故选:A.2.某单位共有500名职工,其中不到35岁的有125人,35﹣49岁的有a人,50岁及以上的有b人,现用分层抽样的方法,从中抽出100名职工了解他们的健康情况.如果已知35﹣49岁的职工抽取了56人,则50岁及以上的职工抽取的人数为()A.19B.95C.220D.280解:计算抽样比例为,所以不到35岁的应抽取125×=25(人),所以50岁及以上的应抽取100﹣25﹣56=19(人).故选:A.3.设x∈R,则“x<1”是“2x<1”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解:由2x<1,解得x<0,由x<0,可得x<1,反之不成立.∴“x<1”是“2x<1”的必要不充分条件.故选:B.4.2020年12月4日,中国科学技术大学宣布该校潘建伟等人成功构建76个光子的量子计算原型机“九章”.据介绍,将这台量子原型机命名为“九章”,是为了纪念中国古代的数学专著《九章算术》.在该书的《方程》一章中有如下一题:“今有上禾二秉,中禾三秉,下禾四秉,实皆不满斗.上取中,中取下,下取上,各一秉,而实满斗.问上中下禾实一秉各几何?”其译文如下:“今有上等稻禾2束,中等稻禾3束,下等稻禾4束,各等稻禾总数都不足1斗.如果将2束上等稻禾加上1束中等稻禾,或者将3束中等稻禾加上1束下等稻禾,或者将4束下等稻禾加上1束上等稻禾,则刚好都满1斗.问每束上、中、下等的稻禾各多少斗?”现请你求出题中的1束上等稻禾是多少斗?()A.B.C.D.解:设上等稻禾x斗/束,中等稻禾y斗/束,下等稻禾z斗/束,由已知得:,解得:,故一束上等稻禾是斗.故选:D.5.在△ABC中,,.若点D满足,则=()A.B.C.D.解:在△ABC中,,;如图;∴=﹣=﹣,又,∴==(﹣);∴=+=+(﹣)=+;故选:C.6.设a=50.6,b=()﹣0.7,c=log0.60.7,则a,b,c的大小关系为()A.a<b<c B.b<a<c C.c<b<a D.c<a<b解:∵y=5x在R上递增,∴1=50<a=50.6<b=()﹣0.7=50.7,而c=log0.60.7<1,故c<a<b,故选:D.7.已知实数a>0,b>0,且2a+b=2ab,则a+2b的最小值为()A.B.C.D.解:∵a>0,b>0,且2a+b=2ab,∴=1,则a+2b=(a+2b)()==.当且仅当且=1,即a=b=时取等号.∴a+2b的最小值为.故选:B.8.已知函数f(x)=+x(其中e为自然对数的底数,e=2.71828…),若实数m满足f(m)=﹣1,则f(﹣m)=()A.4B.3C.2D.1解:根据题意,函数f(x)=+x,则f(﹣x)=+(﹣x)=﹣x,则f(x)+f(﹣x)=(+x)+(﹣x)=2,即有f(m)+f(﹣m)=2,若f(m)=﹣1,则f(﹣m)=3,故选:B.二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求,全部选对的得5分,有选错的得0分,部分选对的得3分.9.下列命题中错误的是()A.若a>b,则<B.若a>b,则>C.若a>b,c<d,则a﹣d>b﹣cD.若b>a>0,m>0,则>解:对于A:令a=0,b=﹣1,显然错误;对于B:若a>b,则>,故B正确;对于C:若a>b,c<d,则a>b,﹣c>﹣d,则a﹣c>b﹣d,故C错误;对于D:若b>a>0,m>0,则bm>am,则ab+bm>ab+am,则b(a+m)>a(b+m),则>,故D正确;故选:AC.10.在某次高中学科竞赛中,5000名考生的参赛成绩统计如图所示,60分以下视为不及格,若同一组中的数据用该组区间中点值为代表,则下列说法中正确的是()A.考生成绩在[70,80)的人数最多B.考生成绩在[80,90)对应的频率为0.015C.不及格的考生人数为1000D.考生成绩的平均分约为70.5解:由成绩统计图知,考生成绩在[70,80)内的小矩形图最高,所以频率最大,对应人数最多,A正确;考生成绩在[80,90)对应的频率为0.015×10=0.15,所以B错误;60分以下的人数为(0.010+0.015)×10×5000=1250(人),所以C错误;计算考生成绩的平均分为45×0.10+55×0.15+65×0.20+75×0.30+85×0.15+95×0.10=70.5,所以D正确.故选:AD.11.已知函数f(x)=|()x﹣1|﹣b有两个零点,分别为x1,x2(x1<x2),则下列结论正确的是()A.﹣1<x1<0B.0<x2<2C.()+()=2D.0<b<1解:函数f(x)=|()x﹣1|﹣b有两个零点,即有两个根,问题即转化为y=b与g(x)=的有两个不同交点.做出函数g(x)的图象如右:其函数解析式为:,由题意两交点横坐标分别为x1,x2(x1<x2),①若有两个交点,则0<b<1,D对;②当x<0时,令g(x)=1,得x=﹣1,故﹣1<x1<0,A对;③易知,整理得:,C对;④由③得,所以x2>0,B错.故选:ACD.12.若关于x的方程=的解集中只含有一个元素,则满足条件的实数k可以为()A.﹣B.﹣1C.1D.解:易知,当k=1时,方程只有一个根1,满足题意;当k≠1时,原方程可化为,即①方程只有一个非零实数根即可.对于方程①,显然x≠0,即x2﹣x+k﹣1=0只有一个非零实根,所以,解得.故选:CD.三、填空题:本题共4小题,每小题5分,共20分.13.计算lg8+lg25﹣lg2的结果是2.解:原式=3lg2+2lg5﹣lg2=2lg2+2lg5=2(lg2+lg5)=2.故答案为:2.14.设A,B,C为三个随机事件,若A与B互斥,B与C对立,且P(A)=,P(C)=,则P(A+B)=.解:∵随机事件A,B,C中,A与B互斥,B与C对立,且P(A)=,P(C)=,∴P(B)=1﹣P(C)=,∴P(A+B)=P(A)+P(B)=+=.故答案为:.15.已知函数f(x)=则不等式x+f(x﹣1)≤2的解集是{x|x≤1}.解:∵函数f(x)=,∴当x﹣1≥0即x≥1时,x+f(x﹣1)≤2⇒x+1+(x﹣1)≤2⇒x≤1,故x=1;当x﹣1<0即x<1时,x+f(x﹣1)≤2⇒x+1﹣(x﹣1)≤2⇒2≤2,故x<1;∴不等式x+f(x﹣1)≤2的解集是:{x|x≤1}.故答案为:{x|x≤1}.16.给定函数y=f(x),设集合A={x|y=f(x)},B={y|y=f(x)}.若对于∀x∈A,∃y∈B,使得x+y=0成立,则称函数f(x)具有性质P.给出下列三个函数:①;②;③y=lgx.其中,具有性质P的函数的序号是①③.解:对①,A=(﹣∞,0)∪(0,+∞),B=(﹣∞,0)∪(0,+∞),显然对于∀x∈A,∃y∈B,使得x+y=0成立,即具有性质P;对②,A=R,B=(0,+∞),当x>0时,不存在y∈B,使得x+y=0成立,即不具有性质P;对③,A=(0,+∞),B=R,显然对于∀x∈A,∃y∈B,使得x+y=0成立,即具有性质P;故答案为:①③.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(10分)设A,B,C,D为平面直角坐标系中的四点,且A(2,﹣2),B(4,1),C(1,3).(1)若=,求D点的坐标及||;(2)设向量=,=,若k﹣与+3平行,求实数k的值.解:(1)设D(x,y),则,且,,∴(2,3)=(x﹣1,y﹣3),∴,解得,∴D(3,6),,∴;(2),∴,,且与平行,∴9(2k+3)+7(3k﹣2)=0,解得.18.(12分)已知全集U=R,集合A={x|x2﹣4x<0},B={x|m≤x≤3m﹣2}.(1)当m=2时,求∁U(A∩B);(2)如果A∪B=A,求实数m的取值范围.解:(1)A={x|0<x<4},m=2时,B={x|2≤x≤4},∴A∩B={x|2≤x<4},且U=R,∴∁U(A∩B)={x|x<2或x≥4};(2)∵A∪B=A,∴B⊆A,①B=∅时,m>3m﹣2,解得m<1;②B≠∅时,,解得1≤m<2;综上,实数m的取值范围为(﹣∞,2).19.(12分)中学阶段是学生身体发育重要的阶段,长时间熬夜学习严重影响学生的身体健康.某校为了解甲、乙两个班的学生每周熬夜学习的总时长(单位:小时),从这两个班中各随机抽取6名同学进行调查,将他们最近一周熬夜学习的总时长作为样本数据,如表所示.如果学生一周熬夜学习的总时长超过21小时,则称为“过度熬夜”.甲班91113202431乙班111218202225(1)分别计算出甲、乙两班样本的平均值;(2)为了解学生过度热夜的原因,从甲、乙两班符合“过度熬夜”的样本数据中,抽取2个数据,求抽到的数据来自于同一个班级的概率;(3)从甲班的样本数据中有放回地抽取2个数据,求恰有1个数据为“过度熬夜”的概率.解:(1)甲班样本的平均值为:=(9+11+13+20+24+31)=18.乙班样本的平均成绩为:=(11+12+18+20+22+25)=18.(2)甲班符合“过度熬夜”的样本数据有2个,乙班符合“过度熬夜”的样本数据有2个,从甲、乙两班符合“过度熬夜”的样本数据中,抽取2个数据,基本事件总数n==6,抽到的数据来自于同一个班级包含的基本事件个数m==2,∴抽到的数据来自于同一个班级的概率p===.(3)甲班的6个样本数据中,为“过度熬夜”的数据有2个,从甲班的样本数据中有放回地抽取2个数据,基本事件总数n=6×6=36,恰有1个数据为“过度熬夜”包含的基本事件总数m==16,∴恰有1个数据为“过度熬夜”的概率P===.20.(12分)已知函数f(x)=x2+2ax+1(a∈R).(1)求f(x)在区间[1,3]上的最小值g(a);(2)设函数h(x)=,用定义证明:h(x)在(0,1)上是减函数.解:(1)因为f(x)=x2+2ax+1的对称轴x=﹣a,开口向上,当﹣a≤1即a≥﹣1时,g(a)=f(1)=2+2a,当﹣a≥3即a≤﹣3时,g(a)=f(3)=10+6a,当1<﹣a<3即﹣3<a<﹣1时,g(a)=f(﹣a)=1﹣a2,故g(a)=.(2)证明:h(x)==x++2a,设0<x1<x2<1,则h(x1)﹣h(x2)==(x1﹣x2)+=(x1﹣x2)()>0,∴h(x1)>h(x2),∴h(x)在(0,1)上是减函数.21.(12分)近来,国内多个城市纷纷加码布局“夜经济”,以满足不同层次的多元消费,并拉动就业、带动创业,进而提升区域经济发展活力.某夜市的一位工艺品售卖者,通过对每天销售情况的调查发现:该工艺品在过去的一个月内(以30天计),每件的销售价格P(x)(单位:元)与时间x(单位:天)的函数关系近似满足P(x)=10+(k 为常数,且k>0),日销售量Q(x)(单位:件)与时间x(单位:天)的部分数据如表所示:x1015202530 Q(x)5055605550已知第10天的日销售收入为505元.(1)求k的值;(2)给出以下四个函数模型:①Q(x)=ax+b;②Q(x)=a|x﹣m|+b;③Q(x)=a•b x;④Q(xr)=a•log b x.请你根据表中的数据,从中选择你认为最合适的一种函数模型来描述日销售量Q(x)与时间x的变化关系,并求出该函数的解析式;(3)设该工艺品的日销售收入为f(x)(单位:元),求f(x)的最小值.解:(1)由题意,Q(10)•P(10)=50(10+)=505,即k=1;(2)由表中数据可知,当时间变化时,日销售量有增有减,函数不单调,而①③④均为单调函数,故Q(x)=a|x﹣m|+b,则,解得a=1,m=10,b=50.故函数解析式为Q(x)=|x﹣10|+50;(3)由(2)可知,Q(x)=|x﹣10|+50=,则f(x)=P(x)•Q(x)=.当1≤x≤10时,f(x)=600﹣1+,该函数为单调减函数,f(x)min=f(10)=505;当10<x≤30时,f(x)=400+1+10x+,在(10,30]上为增函数,则f(x)>505.综上,该工艺品的日销售收入f(x)的最小值为505元.22.(12分)已知函数f(x)=ln(e x+1)+kx是偶函数(其中e为自然对数的底数,e=2.71828…).(1)求k的值;(2)若方程f(x)=x+b在区间[﹣1,0]上有实数根,求实数b的取值范围.解:(1)由f(x)是偶函数得:f(x)﹣f(﹣x)=ln(e x+1)+kx﹣ln(e﹣x+1)﹣(﹣kx)===(2k+1)x=0恒成立,故2k+1=0,即k=﹣.(2)由(1)知f(x)=ln(e x+1)x.由f(x)=x+b得b=ln(e x+1)﹣x,x∈[﹣1,0].令g(x)=ln(e x+1)﹣x=,x∈[﹣1,0].当x∈[﹣1,0]时,∈[2,1+e],故ln(1)∈[ln2,ln(1+e)].故b∈[ln2,ln(1+e)]时,方程f(x)=x+b在区间[﹣1,0]上有实数根.即b的取值范围是[ln2,ln(1+e)].。
福建省漳州市2020-2021学年学年高一数学上学期期末考试试题(含解析)
福建省漳州市2020-2021学年学年高一数学上学期期末考试试题(含解析)本试卷共5页,22题.全卷满分150分.考试用时120分钟.注意事项:1.答题前,考生务必在试题卷、答题卡规定的地方填写自己的准考证号、姓名.考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名”与考生本人准考证号、姓名是否一致.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束,考生必须将试题卷和答题卡一并交回.一.单项选择题:本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知集合{|4}A x x =>,{|2}B x x ,则A B =( )A. (2,)+∞B. (4,)+∞C. (2,4)D. (,4)-∞【答案】B 【解析】 【分析】由交集的定义求解即可. 【详解】{|{|2}4}{|4}x A B x x x x x =>>=>故选:B【点睛】本题主要考查了集合间的交集运算,属于基础题. 2.sin(600)-︒的值是( )A.12B. 12-C.2D. 【答案】C 【解析】 【分析】原式中的角度变形后,利用诱导公式及特殊角的三角函数值计算即可得到结果.【详解】解:()()()sin 600sin 720120sin120sin 18060sin60-︒=-︒+︒=︒=︒-︒=︒= 故选C .【点睛】此题考查了运用诱导公式化简求值,熟练掌握诱导公式是解本题的关键. 3.下列各函数的值域与函数y x =的值域相同的是( ) A. 2yxB. 2xy =C. sin y x =D.2log y x =【答案】D 【解析】 【分析】分别求出下列函数的值域,即可判断. 【详解】函数y x =的值域为R20y x =≥,20x y =>则A ,B 错误;函数sin y x =的值域为[]1,1-,则C 错误; 函数2log y x =的值域为R ,则D 正确; 故选:D【点睛】本题主要考查了求具体函数的值域,属于基础题.4.已知函数42,0,()log ,0,x x f x x x ⎧=⎨>⎩则((1))f f -=( )A. 2-B. 12-C.12D. 2【答案】B 【解析】 【分析】分别计算(1)f -,12f ⎛⎫ ⎪⎝⎭即可得出答案.【详解】121(1)2f --==,241211log log 12222f -⎛⎫===- ⎪⎝⎭所以1((1))2f f -=- 故选:B【点睛】本题主要考查了已知自变量求分段函数的函数值,属于基础题. 5.函数log ||()(1)||a x x f x a x =>图象的大致形状是( )A. B.C. D.【答案】A 【解析】 【分析】判断函数函数()f x 为奇函数,排除BD 选项,取特殊值排除C ,即可得出答案. 【详解】log ||log ||()()||||a a x x x x f x f x x x ---==-=--所以函数()f x 为奇函数,故排除BD.log ||()10||a a a f a a ==>,排除C故选:A【点睛】本题主要考查了函数图像的识别,属于基础题.6.已知0.22log 0.2,2,sin 2a b c ===,则( )A. a b c <<B. a c b <<C. c a b <<D.b c a <<【答案】B【解析】 【分析】分别求出a ,b ,c 的大概范围,比较即可.【详解】因为22log 0.2log 10<=,0sin 21<<,0.20221>= 所以a c b <<. 故选:B【点睛】本题主要考查了指数,对数,三角函数的大小关系,找到他们大概的范围再比较是解决本题的关键,属于简单题.7.已知以原点O 为圆心的单位圆上有一质点P ,它从初始位置01(,22P 开始,按逆时针方向以角速度1/rad s 做圆周运动.则点P 的纵坐标y 关于时间t 的函数关系为 A. sin(),03y t t π=+≥ B. sin(),06y t t π=+≥ C. cos(),03y t t π=+≥D. cos(),06y t t π=+≥【答案】A 【解析】当时间为t 时,点P 所在角的终边对应的角等于3t π+, 所以点P 的纵坐标y 关于时间t 的函数关系为sin(),03y t t π=+≥.8.已知函数()f x 为定义在(0,)+∞的增函数,且满足()()()1f x f y f xy +=+.若关于x 的不等式(1sin )(1)(cos )(1sin )f x f f a x f x --<+-+恒成立,则实数a 的取值范围为( ) A. 1a >- B. 14a >-C. 1a >D. 2a >【答案】D 【解析】 【分析】将题设不等式转化为2(cos )(cos )f x f a x <+,根据函数()f x 的单调性解不等式得出2cos cos x a x <+,通过换元法,构造函数2()g x t t =-,[]1,1t ∈-求出最大值,即可得到实数a 的取值范围.【详解】(1sin )(1)(cos )(1sin )f x f f a x f x --<+-+(1sin )(1sin )(cos )(1)f x f x f a x f ∴-++<++因为()()()2(1sin )(1sin )1sin 1sin 1(cos)1f x f x fx x f x -++=-++=+,(cos )(1)(cos )1f a x f f a x ++=++所以2(cos )(cos )f x f a x <+在(0,)x ∈+∞恒成立故2cos cos x a x <+在(0,)x ∈+∞恒成立,即2cos cos x x a -<在(0,)x ∈+∞恒成立 令[]cos ,1,1x t t =∈-,则22()cos cos g x x x t t =-=-所以函数2()g x t t =-在11,2⎡⎤-⎢⎥⎣⎦上单调递减,在1,12⎛⎤ ⎥⎝⎦上单调递增,(1)2(1)0g g -=>= 所以2a > 故选:D【点睛】利用函数的单调性解抽象不等式以及不等式的恒成立问题,属于中档题.二.多项选择题:本大题共4小题,每小题5分,共20分,在每小题给出的四个选项中,有多个选项符合题目要求,全部选对的得5分,选对但不全的得3分,有选错的得0分.9.设11,,1,32α⎧⎫∈-⎨⎬⎩⎭,则使函数y x α=的定义域是R ,且为奇函数的α值可以是( )A. 1-B.12C. 1D. 3【答案】CD 【解析】 【分析】求出对应α值函数y x α=的定义域,利用奇偶性的定义判断即可.【详解】当α的值为11,2-时,函数y x α=的定义域分别为()(),00,-∞+∞,[)0,+∞当1α=时,函数y x =的定义域为R ,令()f x x =,()()f x x f x -=-=-,则函数y x =为R 上的奇函数当3α=时,函数3y x =的定义域为R ,令3()f x x =,3()()f x x f x -=-=-,则函数3y x=为R 上的奇函数故选:CD【点睛】本题主要考查了判断函数的奇偶性,属于基础题. 10.要得到sin 25y x π⎛⎫=- ⎪⎝⎭的图象,可以将函数sin y x =的图象上所有的点( ) A. 向右平行移动5π个单位长度,再把所得各点的横坐标缩短到原来的12倍B. 向右平行移动10π个单位长度,再把所得各点的横坐标缩短到原来的12倍C. 横坐标缩短到原来的12倍,再把所得各点向右平行移动5π个单位长度D. 横坐标缩短到原来的12倍,再把所得各点向右平行移动10π个单位长度【答案】AD 【解析】 【分析】由正弦函数的伸缩变换以及平移变换一一判断选项即可. 【详解】将函数sin y x =的图象上所有的点向右平行移动5π个单位长度,得到函数n 5si y x π⎛⎫=- ⎪⎝⎭的图象,再把所得各点的横坐标缩短到原来的12倍,得到sin 25y x π⎛⎫=- ⎪⎝⎭的图象,故A 正确;将函数sin y x =的图象上所有的点向右平行移动10π个单位长度,得到函数sin 10y x π⎛⎫=- ⎪⎝⎭的图象,再把所得各点的横坐标缩短到原来的12倍,得到sin 210y x π⎛⎫=- ⎪⎝⎭的图象,故B 错误;将函数sin y x =的图象上所有的点横坐标缩短到原来的12倍,得到sin 2y x =的图象,再把所得各点向右平行移动5π个单位长度,得到25sin 2y x π⎛⎫=-⎪⎝⎭的图象,故C 错误; 将函数sin y x =的图象上所有的点横坐标缩短到原来的12倍,得到sin 2y x =的图象,再把所得各点向右平行移动10π个单位长度,得到sin 25y x π⎛⎫=- ⎪⎝⎭的图象,故D 正确;故选:AD【点睛】本题主要考查了正弦函数的伸缩变换以及平移变换,属于基础题.11.对于函数()sin(cos )f x x =,下列结论正确的是( ) A. ()f x 为偶函数B. ()f x 的一个周期为2πC. ()f x 的值域为[sin1,sin1]-D. ()f x 在[]0,π单调递增【答案】ABC 【解析】 【分析】利用奇偶性的定义以及周期的定义判断A ,B 选项;利用换元法以及正弦函数的单调性判断C 选项;利用复合函数的单调性判断方法判断D 选项. 【详解】函数()f x 的定义域为R ,关于原点对称()()()()sin cos sin cos ()f x x x f x -=-==,则函数()f x 偶函数,故A 正确;()()()sin co 22s sin cos ()f x x x f x ππ+=+==⎡⎤⎣⎦,则函数()f x 的一个周期为2π,故B正确;令[]cos ,1,1t x t =∈-,则()sin f x t =,由于函数sin y t=[]1,1-上单调递增,则()sin 1()sin1sin1()sin1f x f x -≤≤⇒-≤≤,故C 正确;当[]0,x π∈时,函数cos t x =为减函数,由于[]cos 0,1t x =∈,则函数sin y t =在0,1上为增函数,所以函数()f x 在[]0,π单调递减,故D 错误; 故选:ABC【点睛】本题主要考查了判断函数的奇偶性,周期性,求函数值域,复合函数的单调性,属于中档题.12.已知()f x 为R 上的奇函数,且当0x >时,()lg f x x =.记()sin ()cos g x x f x x =+⋅,下列结论正确的是( ) A. ()g x 为奇函数B. 若()g x 的一个零点为0x ,且00x <,则()00lg tan 0x x --=C. ()g x 在区间,2ππ⎛⎫-⎪⎝⎭的零点个数为3个 D. 若()g x 大于1的零点从小到大依次为12,,x x ,则1223x x ππ<+<【答案】ABD 【解析】 【分析】根据奇偶性的定义判断A 选项;将()0g x =等价变形为tan ()x f x =-,结合()f x 的奇偶性判断B 选项,再将零点问题转化为两个函数的交点问题,结合函数()g x 的奇偶性判断C 选项,结合图象,得出12,x x 的范围,由不等式的性质得出12x x +的范围. 【详解】由题意可知()g x 的定义域为R ,关于原点对称因为()()()sin ()cos sin ()cos ()g x x f x x x f x x g x -=-+-⋅-=--⋅=-,所以函数()g x 为奇函数,故A 正确; 假设cos 0x =,即,2x k k Z ππ=+∈时,sin ()co cos s sin 02x k x f x k πππ⎛⎫++⋅==≠ ⎪⎝⎭所以当,2x k k Z ππ=+∈时,()0g x ≠当,2x k k Z ππ≠+∈时,sin ()cos 0tan ()x f x x x f x +⋅=⇔=-当00x <,00x ->,则()000()()lg f x f x x =--=--由于()g x 的一个零点为0x , 则()()00000tan ()lg t lg an 0x x f x x x =-=⇒--=-,故B 正确;当0x >时,令12tan ,lg y x y x ==-,则()g x 大于0的零点为12tan ,lg y x y x ==-的交点,由图可知,函数()g x 在区间()0,π的零点有2个,由于函数()g x 为奇函数,则函数()g x 在区间,02π⎛⎫-⎪⎝⎭的零点有1个,并且(0)sin 0(0)cos00g f =+⋅= 所以函数在区间,2ππ⎛⎫-⎪⎝⎭的零点个数为4个,故C 错误;由图可知,()g x 大于1的零点123,222x x ππππ<<<< 所以1223x x ππ<+< 故选:ABD【点睛】本题主要考查了判断函数的奇偶性以及判断函数的零点个数,属于较难题. 三、填空题:本大题共4题,每小题5分,共20分.13.函数()1xf x a =+(0a >且1a ≠)的图象恒过点__________【答案】()0,2 【解析】分析:根据指数函数xy a =过()0,1可得结果.详解:由指数函数的性质可得xy a =过()0,1,所以1xy a =+过()0,2,故答案为()0,2.点睛:本题主要考查指数函数的简单性质,属于简单题. 14.已知扇形的圆心角为12π,面积为6π,则该扇形的弧长为_______; 【答案】6π 【解析】 【分析】由扇形面积公式求出扇形半径,根据扇形弧长公式即可求解.【详解】设扇形的半径为r 由扇形的面积公式得:216212r ππ=⨯,解得2r该扇形的弧长为2126ππ⨯=故答案为:6π 【点睛】本题主要考查了扇形面积公式以及弧长公式,属于基础题. 15.函数()2sin 23f x x π⎛⎫=- ⎪⎝⎭在区间0,2π⎡⎤⎢⎥⎣⎦上的值域为______;【答案】[2] 【解析】 【分析】由x 的范围,确定23x π-的范围,利用换元法以及正弦函数的单调性,即可得出答案.【详解】0,2x π⎡⎤∈⎢⎥⎣⎦,22,333x πππ⎡⎤∴-∈-⎢⎥⎣⎦令22,333t x πππ⎡⎤=-∈-⎢⎥⎣⎦,函数()2sin g t t =在,32ππ⎡⎤-⎢⎥⎣⎦上单调递增,在2,23ππ⎡⎤⎢⎥⎣⎦上单调递减2si ()(n 33)g ππ--==2si 2()2n 2g ππ==, 222sin (3)3g ππ==所以函数()f x 在区间0,2π⎡⎤⎢⎥⎣⎦上的值域为[2]故答案为:[2]【点睛】本题主要考查了正弦型函数的值域,属于中档题. 16.已知函数1()f x x=,()2sin g x x =,则函数()f x 图象的对称中心为_____,函数()y f x =的图象与函数()y g x =的图象所有交点的横坐标与纵坐标之和为____. 【答案】 (1). (0,0) (2). 0 【解析】 【分析】判断函数()f x ,()g x 为奇函数,即可得出函数()f x ,()g x 图象的对称中心都为原点; 根据对称性即可得出所有交点的横坐标与纵坐标之和. 【详解】1()()f x f x x-=-=-,则函数()f x 为奇函数,即函数()f x 图象的对称中心为(0,0) ()()2sin 2sin ()g x x x g x -=-=-=-,则函数()g x 为奇函数,即函数()g x 的对称中心为(0,0)所以函数()y f x =的图象与函数()y g x =的图象所有交点都关于原点对称 即所有交点的横坐标之和为0,纵坐标之和也为0则函数()y f x =的图象与函数()y g x =的图象所有交点的横坐标与纵坐标之和为0 故答案为:(0,0);0【点睛】本题主要考查了函数奇偶性的应用以及对称性的应用,属于中档题.四、解答题:本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤. 17.已知α为锐角,且3cos 5α=. (1)求tan 4πα⎛⎫+ ⎪⎝⎭的值;(2)求cos sin(2)2παπα⎛⎫-+-⎪⎝⎭的值. 【答案】(1)-7(2)4425【解析】 【分析】(1)利用平方关系以及商数关系得出tan α,再利用两角和的正切公式求解即可; (2)利用诱导公式以及二倍角的正弦公式求解即可. 【详解】解:(1)因为α为锐角,且3cos 5α=. 所以24sin 1cos 5αα, 所以sin 4tan cos 3ααα==, 所以41tan tan34tan 7441tan tan 1143παπαπα++⎛⎫+===- ⎪⎝⎭--⨯. (2)因为cos sin 2παα⎛⎫-=⎪⎝⎭, sin(2)sin 2παα-=,所以cos sin(2)sin sin 22παπααα⎛⎫-+-=+ ⎪⎝⎭sin 2sin cos ααα=+4432555=+⨯⨯ 4425= 【点睛】本题主要考查了两角和的正切公式,诱导公式,二倍角的正弦公式,属于中档题. 18.已知集合{}|2216xA x =<<,{|sin 0,(0,2)}B x x x π=>∈. (1)求AB ;(2)集合{|1}C x x a =<<()a ∈R ,若AC C =,求a 的取值范围.【答案】(1){|04}A B x x ⋃=<<(2)4a 【解析】 【分析】(1)利用指数函数以及正弦函数的性质化简集合,A B ,再求并集即可;(2)由题设条件得出C A ⊆,分别讨论集合C =∅和C ≠∅的情况,即可得出答案.【详解】解:(1)依题意{|14}A x x =<<,{|0}B x x π=<<,所以{|04}A B x x ⋃=<<. (2)因为AC C =,所以C A ⊆.①当C =∅时,1a ,满足题意;②当C ≠∅时,1a >,因为C A ⊆,得4a ≤,所以14a <; 综上,4a .【点睛】本题主要考查了集合的并集运算以及根据集合间的包含关系求参数范围,属于中档题.19.已知函数()2sin (sin cos )f x x x x =⋅+. (1)求()f x 的最小正周期; (2)求()f x 的单调区间.【答案】(1)最小正周期为π.(2)单调递增区间为3,()88k k k ππππ⎡⎤-++∈⎢⎥⎣⎦Z ,()f x 的单调递减区间为37,()88k k k ππππ⎡⎤++∈⎢⎥⎣⎦Z .【解析】 【分析】利用倍角公式以及辅助角公式化简函数()f x ,根据周期公式得出第一问;根据正弦函数的单调增区间和减区间求()f x 的单调区间,即可得出第二问. 【详解】解:因为2()2sin 2sin cos f x x x x =+⋅22sin sin 2x x =+1cos2sin2x x =-+ sin2cos21x x =-+214x π⎛⎫=-+ ⎪⎝⎭(1)所以函数()f x 的最小正周期为22T ππ==.(2)由222,242k x k k πππππ-+-+∈Z ,得3222,44k x k k ππππ-++∈Z , 即3,88k xk k ππππ-++∈Z , 所以()f x 的单调递增区间为3,()88k k k ππππ⎡⎤-++∈⎢⎥⎣⎦Z ,同理可得,()f x 的单调递减区间为37,()88k k k ππππ⎡⎤++∈⎢⎥⎣⎦Z .【点睛】本题主要考查了求正弦型函数的最小正周期以及单调区间,属于中档题. 20.已知2()1x af x x bx +=++是定义在[1,1]-上的奇函数. (1)求a 与b 的值;(2)判断()f x 的单调性,并用单调性定义加以证明; (3)若[0,2)απ∈时,试比较(sin )f α与(cos )f α的大小.【答案】(1)0a =. 0b =.(2)()f x 在[1,1]-单调递增.见解析 (3)见解析 【解析】 【分析】(1)根据奇函数的性质得出(0)0f =,(1)(1)f f -=-,求解方程,即可得出a 与b 的值; (2)利用函数单调性的定义证明即可;(3)分别讨论α的取值使得sin cos αα=,sin cos αα<,sin cos αα>,结合函数()f x 的单调性,即可得出(sin )f α与(cos )f α的大小.【详解】解:(1)因为()f x 是定义在[1,1]-上的奇函数,所以(0)0f =,得0a =.又由(1)(1)f f -=-,得到1122b b -=--+,解得0b =. (2)由(1)可知2()1xf x x =+,()f x 在[1,1]-上为增函数.证明如下:任取12,[1,1]x x ∈-且设12x x <, 所以()()1212221211x x f x f x x x -=-++()()22121212221211x x x x x x x x +--=++ ()()()()122112221211x x x x x x x x -+-=++()()()()21122212111x x x x xx --=++由于12x x <且12,[1,1]x x ∈-,所以210x x ->,且2110x x -<,又2110x +>,2210x +>,所以()()()()211222121011x x x x xx --<++,所以()()12f x f x <,从而()f x 在[1,1]-单调递增. (3)当4πα=或54πα=时,sin cos αα=,所以(sin )(cos )f f αα=;当04πα<或524παπ<<时,sin cos αα<, 又因为sin [1,1]α∈-,cos [1,1]α∈-,且()f x 在[1,1]-上为增函数,所以(sin )(cos )f f αα<当544ππα<<时,sin cos αα>,同理可得(sin )(cos )f f αα>; 综上,当4πα=或54πα=时,(sin )(cos )f f αα=;当50,,244ππαπ⎡⎫⎛⎫∈⋃⎪ ⎪⎢⎣⎭⎝⎭时,(sin )(cos )f f αα<;当5,44ππα⎛⎫∈ ⎪⎝⎭时,(sin )(cos )f f αα>.【点睛】本题主要考查由函数的奇偶性求参数,判断函数的单调性以及利用单调性比较函数值大小,属于中档题.21.海水受日月的引力,在一定的时候发生涨落的现象叫潮.一般地,早潮叫潮,晚潮叫汐.在通常情况下,船在涨潮时驶进航道,靠近码头;卸货后,在落潮时返回海洋.下面是某港口在某季节每天的时间与水深关系表: .(1)设港口在x 时刻的水深为y 米,现给出两个函数模型:sin()(0,0,)y A x h A ωϕωπϕπ=++>>-<<和2(0)y ax bx c a =++≠.请你从两个模型中选择更为合适的函数模型来建立这个港口的水深与时间的函数关系式(直接选择模型,无需说明理由);并求出7x =时,港口的水深.(2)一条货船的吃水深度(船底与水面的距离)为4米,安全条例规定至少要有1.5米的安全间隙(船底与洋底的距离),问该船何时能进入港口,何时应离开港口?一天内货船可以在港口呆多长时间?【答案】(1)选择函数模型Asin()y x h ωϕ=++更适合. 水深为3米 (2)货船可以在1时进入港口,在5时出港;或者在13时进港,17时出港.一天内货船可以在港口呆的时间为8小时. 【解析】 【分析】(1)观察表格中水深的变化具有周期性,则选择函数模型Asin()y x h ωϕ=++更适合,由表格数据得出,,,A h ωϕ的值,将7x =代入解析式求解即可; (2)由题意 5.5y 时,船可以进港,解不等式2.5sin4.255.56x π+,得出x 的范围,由x的范围即可确定进港,出港,一天内在港口呆的时间. 【详解】解:(1)选择函数模型Asin()y x h ωϕ=++更适合因为港口在0:00时刻的水深为4.25米,结合数据和图象可知 4.25h =6.75 1.752.52A -==因为12T =,所以22126T πππω===, 所以 2.5sin 4.256y x πϕ⎛⎫=++⎪⎝⎭, 因为0x =时, 4.25y =,代入上式得sin 0ϕ=,因为πϕπ-<<,所以0ϕ=, 所以 2.5sin4.256y x π=+.当7x =时,712.5sin4.25 2.5 4.25362y π⎛⎫=+=⨯-+= ⎪⎝⎭, 所以在7x =时,港口的水深为3米(2)因为货船需要的安全水深是4 1.5 5.5+=米, 所以 5.5y 时,船可以进港, 令2.5sin4.255.56x π+,则1sin62xπ, 因为024x <,解得15x 或1317x ,所以货船可以在1时进入港口,在5时出港;或者在13时进港,17时出港. 因为(51)(173)8-+-=,一天内货船可以在港口呆的时间为8小时. 【点睛】本题主要考查了三角函数在生活中的应用,属于中档题. 22.已知函数3(1)log (1)f x a x +=+,且(2)1f =. (1)求()f x 的解析式;(2)已知()f x 的定义域为[2,)+∞. (ⅰ)求()41xf +的定义域;(ⅱ)若方程()()412xxf f k k x +-⋅+=有唯一实根,求实数k 取值范围.【答案】(1)2()log f x x =(2)(ⅰ)[0,)+∞.(ⅱ)1k = 【解析】 【分析】(1)利用换元法以及(2)1f =,即可求解()f x 的解析式;(2)(ⅰ)解不等式412x +≥,即可得出()41xf +的定义域;(ⅱ)根据()41xf +,()2x f k k ⋅+的定义域得出1k ,结合函数()f x 的解析式将方程化为()2(1)2210x x k k -⋅+⋅-=,利用换元法得出2()(1)1,[1,)g t k t k t t =-+⋅-∈+∞,讨论k的值,结合二次函数的性质即可得出实数k 的取值范围.【详解】解:(1)令1(0)t x t =+>,则3()log f t a t =,所以3()log f x a x =, 因为3(2)log 21f a ==,所以231log 3log 2a ==, 所以3232()log log 3log log f x a x x x ==⨯= (2)(ⅰ)因为()f x 的定义域为[2,)+∞, 所以412x +≥,解得0x , 所以()41xf +的定义域为[0,)+∞.(ⅱ)因为0,22,x x k k ⎧⎨⋅+⎩,所以221xk +在[0,)+∞恒成立, 因为221x y =+在[0,)+∞单调递减,所以221x y =+最大值为1,所以1k .又因为()()412xxf f k k x +-⋅+=,所以()()22log 41log 2xxk k x +-⋅+=, 化简得()2(1)2210xx k k -⋅+⋅-=,令2(1)xt t =,则2(1)10k t k t -⋅+⋅-=在[1,)+∞有唯一实数根, 令2()(1)1,[1,)g t k t k t t =-+⋅-∈+∞,当1k =时,令()0g t =,则1t =,所以21x =,得0x =符合题意,所以1k =; 当1k >时,2440k k ∆=+->,所以只需(1)220g k =-,解得1k ,因为1k >,所以此时无解; 综上,1k =.【点睛】本题主要考查了利用换元法求函数解析式以及根据函数的零点确定参数的范围,属于较难题.。
山东省烟台市2020-2021学年高一上学期期末数学试卷 (解析版)
2020-2021学年山东省烟台市高一(上)期末数学试卷一、单项选择题(共8小题).1.sin17°cos13°+sin73°cos77°=()A.B.C.D.2.下列函数中,既是其定义域上的单调函数,又是奇函数的是()A.y=tan x B.y=3x C.D.y=x33.设a=log0.33,,c=log23,则()A.c>b>a B.c>a>b C.a>c>b D.b>c>a4.函数f(x)=x3+3x﹣2的零点所在区间为()A.B.C.D.5.已知函数y=a x+3+3(a>0,且a≠1)的图象恒过点P,若角α的终边经过点P,则cosα=()A.B.C.D.6.改善农村人居环境,建设美丽宜居乡村,是实施乡村振兴战略的一项重要任务.某地计划将一处废弃的水库改造成水上公园,并绕水库修建一条游览道路.平面示意图如图所示,道路OC长度为8(单位:百米),OA是函数y=log a(x+b)图象的一部分,ABC 是函数y=M sin(ωx+φ)(M>0,ω>0,|φ|<,x∈[4,8])的图象,最高点为B(5,),则道路OABC所对应函数的解析式为()A.B.C.D.7.酒驾是严重危害交通安全的违法行为.为了保障交通安全,根据国家有关规定:100mL 血液中酒精含量达到20~79mg的驾驶员即为酒后驾车,80mg及以上认定为醉酒驾车.假设某驾驶员一天晚上8点喝了一定量的酒后,其血液中的酒精含量上升到0.6mg/mL,如果在停止喝酒后,他血液中酒精含量会以每小时10%的速度减少,则他次日上午最早几点(结果取整数)开车才不构成酒后驾车?()(参考数据:lg3≈0.477)A.6B.7C.8D.98.将函数的图象向左平移个单位长度得到函数g(x)的图象,若x1,x2使得f(x1)g(x2)=﹣1,且|x1﹣x2|的最小值为,则φ=()A.B.C.D.二、多项选择题(共4小题).9.下列说法正确的有()A.经过30分钟,钟表的分针转过﹣2π弧度B.若sinθ>0,cosθ<0,则θ为第二象限角C.若sinθ+cosθ>1,则θ为第一象限角D.函数y=sin|x|是周期为π的偶函数10.已知函数f(x)=sin x+cos x,则()A.f(x)在上单调递减B.f(x)图象关于点对称C.f(x)图象的两条相邻对称轴之间的距离为πD.当时,f(x)取得最小值11.已知函数f(x)=log a x+log a(a﹣x)(a>0,且a≠1),则()A.f(x)定义域为(0,a)B.f(x)的最大值为2﹣2log a2C.若f(x)在(0,2)上单调递增,则1<a≤4D.f(x)图象关于直线对称12.定义新运算“⊗”:x⊗y=log2(2x+2y),x,y∈R,则对任意实数a,b,c有()A.a⊗a=2a B.(a⊗b)⊗c=a⊗(b⊗c)C.D.(a⊗b)﹣c=(a﹣c)⊗(b﹣c)三、填空题(共4小题).13.已知函数f(x)=x2﹣2x﹣a有两个不同的零点,则实数a的取值范围是.14.若幂函数的图象不经过原点,则实数m的值为.15.函数y=的定义域为.16.如图,边长为1的正六边形木块自图中实线标记位置起在水平桌面上从左向右做无滑动翻滚,点P为正六边形的一个顶点,当点P第一次落在桌面上时,点P走过的路程为.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.化简求值:(1);(2)已知tanα=﹣2,求的值.18.在①f(x)图象过点,②f(x)图象关于直线对称,③f(x)图象关于点对称,这三个条件中任选一个,补充在下面问题中,并给出解答.问题:已知的最小正周期为2π,_____.(1)求函数f(x)的解析式;(2)将f(x)的图象上所有点向左平移个单位长度,再将得到的图象上每个点的横坐标缩短到原来的(纵坐标不变),得到函数y=g(x)的图象,求g(x)的单调递增区间.19.(1)求函数y=,的值域;(2)解关于x的不等式:(a>0,且a≠1).20.已知函数.(1)设,求f(x)的最值及相应x的值;(2)设,求的值.21.为提升居民生活质量,增加城市活力,某市决定充分利用城市空间修建口袋公园.如图所示,现有一处边长为40 m的正方形空地ABCD,若已规划出以A为圆心、半径为30 m 的扇形健身场地AEF,欲在剩余部修建一块矩形草坪PMCN,其中点P在圆弧EF上,点M,N分别落在BC和CD上,设∠PAB=θ,矩形草坪PMCN的面积为S.(1)求S关于θ的函数关系式;(2)求S的最大值以及相应θ的值.22.已知f(x)为R上的奇函数,g(x)为R上的偶函数,且f(x)+g(x)=2e x,其中e =2.71828….(1)求函数f(x)和g(x)的解析式;(2)若不等式f(x2+3)+f(1﹣ax)>0在(0,+∞)恒成立,求实数a的取值范围;(3)若∀x1∈[0,1],∃x2∈[m,+∞),使成立,求实数m的取值范围.参考答案一、单项选择题(共8小题).1.sin17°cos13°+sin73°cos77°=()A.B.C.D.解:sin17°cos13°+sin73°cos77°=sin17°cos13°+cos17°sin13°=sin(17°+13°)=,故选:B.2.下列函数中,既是其定义域上的单调函数,又是奇函数的是()A.y=tan x B.y=3x C.D.y=x3解:y=tan x在定义域上不具备单调性,不满足条件.y=3x是增函数,为非奇非偶函数,不满足条件.y=的定义域为[0,+∞),为非奇非偶函数,不满足条件.y=x3是增函数,是奇函数,满足条件.故选:D.3.设a=log0.33,,c=log23,则()A.c>b>a B.c>a>b C.a>c>b D.b>c>a 解:∵log0.33<log0.31=0,,log23>log22=1,∴c>b>a.故选:A.4.函数f(x)=x3+3x﹣2的零点所在区间为()A.B.C.D.解:函数f(x)=x3+3x﹣2是连续函数且单调递增,∵f()=+﹣2=﹣<0,f()=+﹣2=>0∴f()f()<0,由零点判定定理可知函数的零点在(,).故选:C.5.已知函数y=a x+3+3(a>0,且a≠1)的图象恒过点P,若角α的终边经过点P,则cosα=()A.B.C.D.解:令x+3=0,求得x=﹣3,y=4,函数y=a x+3+3(a>0,且a≠1)的图象恒过点P(﹣3,4),角α的终边经过点P,则cosα==﹣,故选:B.6.改善农村人居环境,建设美丽宜居乡村,是实施乡村振兴战略的一项重要任务.某地计划将一处废弃的水库改造成水上公园,并绕水库修建一条游览道路.平面示意图如图所示,道路OC长度为8(单位:百米),OA是函数y=log a(x+b)图象的一部分,ABC 是函数y=M sin(ωx+φ)(M>0,ω>0,|φ|<,x∈[4,8])的图象,最高点为B(5,),则道路OABC所对应函数的解析式为()A.B.C.D.解:由三角函数的图象知M=,=8﹣5=3,即T=12,则,得ω=,则y=sin(x+φ),由函数过B(5,),得sin(×5+φ)=,得sin(+φ)=1,即+φ=2kπ+,得φ=2kπ﹣,∵|φ|<,∴当k=0时,φ=﹣,则y=sin(x﹣),(4≤x≤8),排除B,D,当x=4时,y=sin(×4﹣)=sin=×=2,即A(4,2),y=log a(x+b)过(0,0),则log a b=0,则b=1,则y=log a(4+1)=log a5=2,得a=,则y=log(x+1),(0≤x<4),排除A,故选:C.7.酒驾是严重危害交通安全的违法行为.为了保障交通安全,根据国家有关规定:100mL 血液中酒精含量达到20~79mg的驾驶员即为酒后驾车,80mg及以上认定为醉酒驾车.假设某驾驶员一天晚上8点喝了一定量的酒后,其血液中的酒精含量上升到0.6mg/mL,如果在停止喝酒后,他血液中酒精含量会以每小时10%的速度减少,则他次日上午最早几点(结果取整数)开车才不构成酒后驾车?()(参考数据:lg3≈0.477)A.6B.7C.8D.9解:设他至少经过t小时候才可以驾车,则0.6×100(1﹣10%)t<20,即3×,即t×,所以t,所以t≥11,即至少经过11个小时即次日最早7点才可以驾车,故选:B.8.将函数的图象向左平移个单位长度得到函数g(x)的图象,若x1,x2使得f(x1)g(x2)=﹣1,且|x1﹣x2|的最小值为,则φ=()A.B.C.D.解:将函数的图象向左平移个单位长度得到函数g(x)的图象,则g(x)=cos[2(x+φ)﹣]=cos(2x+2φ﹣),若x1,x2使得f(x1)g(x2)=﹣1,则f(x1)=1,g(x2)=﹣1或f(x1)=﹣1,g(x2)=1,不妨设f(x1)=1,g(x2)=﹣1,则2x1﹣=2k1π,2x2+2φ﹣=2k2π+π,k1∈Z,k2∈Z,即2x1=2k1π+,2x2+=2k2π+π﹣2φ+,两式作差得2(x1﹣x2)=2(k1﹣k2)π+2φ﹣π,即(x1﹣x2)=(k1﹣k2)π+φ﹣,∵|x1﹣x2|的最小值为,∴当k1﹣k2=0时,最小,此时|φ﹣|=,∵0<φ<,∴φ﹣=﹣,得φ=﹣=,故选:D.二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求,全部选对得5分,部分选对得3分,有选错的得0分.9.下列说法正确的有()A.经过30分钟,钟表的分针转过﹣2π弧度B.若sinθ>0,cosθ<0,则θ为第二象限角C.若sinθ+cosθ>1,则θ为第一象限角D.函数y=sin|x|是周期为π的偶函数解:对于A,经过30分钟,钟表的分针转过﹣π弧度,不是﹣2π弧度,所以A错;对于B,由sinθ>0,cosθ<0,可知θ为第二象限角,所以B对;对于C,sinθ+cosθ>1⇒sin2θ+cos2θ+2sinθcosθ>1⇒2sinθcosθ>0,又sinθ+cosθ=1>0,所以sinθ>0,cosθ>0,即θ为第一象限角,所以C对;对于D,函数y=sin|x|是偶函数,但不以π周期,如f()=1,f(π+)=﹣1,二者不等,所以D错;故选:BC.10.已知函数f(x)=sin x+cos x,则()A.f(x)在上单调递减B.f(x)图象关于点对称C.f(x)图象的两条相邻对称轴之间的距离为πD.当时,f(x)取得最小值解:函数f(x)=sin x+cos x=sin(x+),当x∈(,π)上,x+∈(,),故f(x)在上单调递减,故A 正确;令x=,求得f(x)=0,可得f(x)图象关于点对称,故B正确;f(x)图象的两条相邻对称轴之间的距离为=π,故C正确;当x=+2kπ,k∈Z时,f(x)=,为最大值,故D错误.故选:ABC.11.已知函数f(x)=log a x+log a(a﹣x)(a>0,且a≠1),则()A.f(x)定义域为(0,a)B.f(x)的最大值为2﹣2log a2C.若f(x)在(0,2)上单调递增,则1<a≤4D.f(x)图象关于直线对称解:函数f(x)=log a x+log a(a﹣x)(a>0,且a≠1),对于选项A,令x>0且a﹣x>0,解得0<x<a,故函数f(x)的定义域为(0,a),故选项A正确;对于选项B,f(x)=log a x+log a(a﹣x)=log a[(a﹣x)x]=log a(﹣x2+ax),因为y=﹣x2+ax图象开口向下,故y有最大值,但若0<a<1时,函数y=log a x单调递减,此时f(x)无最大值,故选项B错误;对于选项C,若f(x)在(0,2)上单调递增,①当0<a<1时,则y=﹣x2+ax在(0,2)上单调递减,故,解得a≤0,故不符合题意;②当a>1时,则y=﹣x2+ax在(0,2)上单调递增,故,解得a≥4,故选项C错误;对于选项D,f(x)=log a x+log a(a﹣x),则f(a﹣x)=log a(a﹣x)+log a x=f(x),所以f(x)图象关于直线对称,故选项D正确.故选:AD.12.定义新运算“⊗”:x⊗y=log2(2x+2y),x,y∈R,则对任意实数a,b,c有()A.a⊗a=2a B.(a⊗b)⊗c=a⊗(b⊗c)C.D.(a⊗b)﹣c=(a﹣c)⊗(b﹣c)解:对于A,由题意a⊗a=log2(2a+2a)=a+1,故A错误;对于B,(a⊗b)⊗c=[log2(2a+2b)]⊗c=log2[2+2c]=log2(2a+2b+2c],a⊗(b⊗c)=a⊗[log2(2b+2c)]=log2[2a+2]=log2(2a+2b+2c]=(a⊗b)⊗c,故正确;对于C,a⊗b=log2(2a+2b),2a+2b≥2≥2=2+1,所以log2(2a+2b)≥log22+1,即,故正确;对于D,(a⊗b)﹣c=log2(2a+2b)﹣c(a﹣c)⊗(b﹣c)=log2(2a﹣c+2b﹣c)=log22=log22﹣c+log2(2a+2b)=﹣c+log2(2a+2b),故正确.故选:BCD.三、填空题:本题共4小题,每小题5分,共20分.13.已知函数f(x)=x2﹣2x﹣a有两个不同的零点,则实数a的取值范围是(﹣1,+∞).解:函数f(x)=x2﹣2x﹣a有两个不同的零点,即方程x2﹣2x﹣a=0有两个不等实根,故△=(﹣2)2﹣4×(﹣a)>0⇒a>﹣1,故答案为:(﹣1,+∞).14.若幂函数的图象不经过原点,则实数m的值为﹣1.解:由函数是幂函数,所以m2﹣m﹣1=1,解得m=﹣1或m=2;当m=﹣1时,f(x)=x﹣1,图象不经过原点,满足题意;当m=2时,f(x)=x8,图象经过原点,不满足题意;所以m=﹣1.故答案为:﹣1.15.函数y=的定义域为[2kπ﹣,2kπ+],k∈Z.解:要使函数有意义,则sin x+≥0,及sin x≥﹣,及2kπ﹣≤x≤2kπ+,即函数的定义域为[2kπ﹣,2kπ+],k∈Z,故答案为:[2kπ﹣,2kπ+],k∈Z16.如图,边长为1的正六边形木块自图中实线标记位置起在水平桌面上从左向右做无滑动翻滚,点P为正六边形的一个顶点,当点P第一次落在桌面上时,点P走过的路程为.解:可以分为三步,每步走60°,每步以与桌面右侧接触点为圆心,到P的距离为半径,第一步:r=2,L1=,第二步:r=,L2=,第三步:r=1,L3=,所以当点P第一次落在桌面上时,点P走过的路程为L1+L3+L3==.故答案为:.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.化简求值:(1);(2)已知tanα=﹣2,求的值.解:(1)原式===.(2)由于tanα=﹣2,原式====﹣1.18.在①f(x)图象过点,②f(x)图象关于直线对称,③f(x)图象关于点对称,这三个条件中任选一个,补充在下面问题中,并给出解答.问题:已知的最小正周期为2π,_____.(1)求函数f(x)的解析式;(2)将f(x)的图象上所有点向左平移个单位长度,再将得到的图象上每个点的横坐标缩短到原来的(纵坐标不变),得到函数y=g(x)的图象,求g(x)的单调递增区间.解:若选①:(1)由已知得,则ω=1,于是f(x)=2sin(x+φ)因为f(x)图象过点,所以,即,)又因为,所以,故.(2)由已知得,于是,解得,故g(x)的单调递增区间为.若选②:(1)由已知得,,则ω=1,于是f(x)=2sin(x+φ).因为f(x)图象关于直线对称,所以,即又因为,所以,故.(2)由已知得.由,)即.故g(x)的单调递增区间为.若选③:(1)由已知得,则ω=1,于是f(x)=2sin(x+φ).因为f(x)图象关于点对称,所以,即,又因为,所以,故.(2)由已知得,由,k∈Z,即故g(x)的单调递增区间为.19.(1)求函数y=,的值域;(2)解关于x的不等式:(a>0,且a≠1).解:(1)解:令t=log2x,由于,则t∈[﹣1,1].于是原函数变为,由于y(t)图象为开口向上的抛物线,对称轴,且,故当,y取最小值;当t=1时,y取最大值2.所以原函数的值域为.(2)解:当a>1时,原不等式可化为:,解得.故a>1时,原不等式的解集为.当0<a<1时,原不等式可化为:,即,解得﹣1<x<1.故0<a<1时,原不等式的解集为{x|﹣1<x<1}.综上可得,a>1时,原不等式的解集为.0<a<1时,原不等式的解集为{x|﹣1<x<1}.20.已知函数.(1)设,求f(x)的最值及相应x的值;(2)设,求的值.解:(1)===,∵,所以2x+∈[﹣,],故当,即时,函数f(x)取得最小值1;当,即时,函数f(x)取得最大值.(2)由,得.于是==.21.为提升居民生活质量,增加城市活力,某市决定充分利用城市空间修建口袋公园.如图所示,现有一处边长为40 m的正方形空地ABCD,若已规划出以A为圆心、半径为30 m 的扇形健身场地AEF,欲在剩余部修建一块矩形草坪PMCN,其中点P在圆弧EF上,点M,N分别落在BC和CD上,设∠PAB=θ,矩形草坪PMCN的面积为S.(1)求S关于θ的函数关系式;(2)求S的最大值以及相应θ的值.解:(1)如图,PM=40﹣30cosθ,PN=40﹣30sinθ,于是S=(40﹣30sinθ)(40﹣30cosθ)=﹣1200(sinθ+cosθ)+900sinθcosθ+1600,其中,,故S关于θ的函数关系式为S=﹣1200(sinθ+cosθ)+900sinθcosθ+1600,(0≤θ≤);(2)令t=sinθ+cosθ,则,又,当时,,所以,于是=450t2﹣1200t+1150,S(t)为开口向上的抛物线,对称轴,又,故当t=1时,S取得最大值为400 m2,此时,θ=0或.22.已知f(x)为R上的奇函数,g(x)为R上的偶函数,且f(x)+g(x)=2e x,其中e =2.71828….(1)求函数f(x)和g(x)的解析式;(2)若不等式f(x2+3)+f(1﹣ax)>0在(0,+∞)恒成立,求实数a的取值范围;(3)若∀x1∈[0,1],∃x2∈[m,+∞),使成立,求实数m的取值范围.解:(1)由题意知f(x)+g(x)=2e x,①可得f(﹣x)+g(﹣x)=2e﹣x,由f(x)为R上的奇函数,g(x)为R上的偶函数,可得f(﹣x)=﹣f(x),g(﹣x)=g(x),所以﹣f(x)+g(x)=2e﹣x,②于是①+②可得2g(x)=2 e x+2 e﹣x,即g(x)=e x+e﹣x,所以f(x)=e x﹣e﹣x;(2)由已知f(x2+3)+f(1﹣ax)>0在(0,+∞)上恒成立,又因为f(x)为R上的奇函数,所以f(x2+3)>f(ax﹣1)在(0,+∞)上恒成立,又因为f(x)=e x﹣e﹣x为R上的增函数,所以x2+3>ax﹣1在(0,+∞)上恒成立,即在(0,+∞)上恒成立,所以.因为,当且仅当,即x=2时取等号.所以a<4;(3)设h(x)=e﹣|x﹣m|,f(x)在[m,+∞)上的最小值为f(x)min,h(x)在[0,1]上的最小值为h(x)min,由题意,只需f(x)min≤h(x)min,因为f(x)=e x﹣e﹣x为R上的增函数,所以.当m≥0时,因为h(x)在(﹣∞,m)单调递增,在(m,+∞)单调递减,所以当x∈[0,1]时,h(x)min=min{h(0),h(1)}.于是,由h(0)=e﹣|m|≥e m﹣e﹣m得e m≤2 e﹣m,即e2m≤2,解得.考虑到,故h(1)=e﹣11﹣m|=e m﹣1≥e m﹣e﹣m,即,解得.因为,所以.当m<0时,h(x)在[0,1]单调递减,所以.又e m﹣1>0,e m﹣e ﹣m<0,所以对任意m<0,恒有h(1)=e m﹣1≥e m﹣e﹣m=f(x)min恒成立.综上,实数m的取值范围为.。
甘肃省临夏州临夏中学2020-2021学年高一上学期期末考试数学试卷含答案
2020-2021学年甘肃省临夏州临夏中学高一(上)期末数学试卷一、单选题(共60分)1.(5分)已知集合A={1,2,3},B={x|x﹣2≥0,x∈R},则A∩B=()A.{3}B.{2,3}C.{2}D.{1,2,3}2.(5分)函数f(x)=的图象可能是()A.B.C.D.3.(5分)若x>0,y>0,n∈N*,则下列各式中,恒等的是()A.lgx•lgy=lgx+lgy B.lgx2=(lgx)2C.D.4.(5分)函数y=x2﹣2x﹣3的零点是()A.1,﹣3B.3,﹣1C.1,2D.(3,0),(﹣1,0)5.(5分)函数f(x)=+lg的定义域是()A.(2,4)B.(3,4)C.(2,3)∪(3,4]D.[2,3)∪(3,4)6.(5分)函数的零点一定位于下列哪个区间()A.B.C.D.7.(5分)已知,则()A.a<b<c B.b<c<a C.c<a<b D.a<c<b8.(5分)已知幂函数f(x)=kx a的图象过点(2,),则k+a=()A.1B.﹣1C.2D.﹣29.(5分)长方体ABCD﹣A1B1C1D1中,若AB=5,AD=4,AA1=3,且此长方体内接于球O,则球O的表面积为()A.B.C.50πD.200π10.(5分)过球的一条半径的中点,作垂直于该半径的平面,则所得截面的面积与球的表面积的比为()A.B.C.D.11.(5分)如图,在棱长为1的正方体ABCD﹣A1B1C1D1中,M,N分别是A1D1,A1B1的中点,过直线BD的平面α∥平面AMN,则平面α截该正方体所得截面的面积为()A.B.C.D.12.(5分)已知函数f(x)=ln(x+2)+ln(4﹣x),则下列说法错误的是()A.f(x)在区间(﹣2,1)上单调递增B.f(x)在区间(1,4)上单调递减C.f(x)的图象关于直线x=1对称D.f(x)的图象关于点(1,0)对称二、填空题(共20分)13.(5分)若直线a∥平面α,直线b⊂平面α,则直线a与b的位置关系为.14.(5分)设g(x)=,则g(g())=.15.(5分)已知圆锥的轴截面是边长为2的正三角形,则这个圆锥的表面积等于.16.(5分)给出下列结论:①;②y=x2+1,x∈[﹣1,2],y的值域是[2,5];③幂函数图象一定不过第四象限:④函数f(x)=a x+1﹣2(a>0,a≠1)的图象过定点(﹣1,﹣1).其中正确的序号是.三、解答题(共70分)17.(10分)(1)计算:;(2)计算:.18.(12分)已知函数的定义域A,g(x)=﹣x2+1的值域为B,C={x|2a≤x≤a+3}.(1)求A∩B;(2)若B∪C=B,求实数a的取值范围.19.(12分)如图所示,在四边形ABCD中,∠DAB=90°,∠ADC=135°,AB=5,CD =2,AD=2,求四边形ABCD绕AD旋转一周所成几何体的表面积及体积.20.(12分)如图,在三棱柱ABC﹣A1B1C1中,AA1⊥平面ABC,E.F分别为A1B,A1C 的中点,D为B1C1上的点,且A1D⊥B1C.(1)求证:EF∥平面ABC;(2)求证:平面A1FD⊥平面BCC1B1;(3)若三棱柱所有棱长都为a,求二面角A1﹣B1C﹣C1的平面角的正切值.21.(12分)如图,在直三棱柱ABC﹣DEF中,AC=BC=2,,,AD=4,M、N分别为AD、CF的中点.(1)求证:AN⊥平面BCM;(2)设G为BE上一点,且,求点G到平面BCM的距离.22.(12分)已知函数为奇函数.(1)求实数a的值;(2)判断函数f(x)的单调性,并用函数单调性的定义证明;(3)解不等式f(lnx)>0.2020-2021学年甘肃省临夏州临夏中学高一(上)期末数学试卷参考答案与试题解析一、单选题(共60分)1.(5分)已知集合A={1,2,3},B={x|x﹣2≥0,x∈R},则A∩B=()A.{3}B.{2,3}C.{2}D.{1,2,3}【分析】可以求出集合B,然后进行交集的运算即可.【解答】解:∵A={1,2,3},B={x|x≥2},∴A∩B={2,3}.故选:B.【点评】本题考查了列举法、描述法的定义,交集的定义及运算,考查了计算能力,属于基础题.2.(5分)函数f(x)=的图象可能是()A.B.C.D.【分析】判定函数为奇函数排除B,C;分别求出f()与f(1)的值排除D.【解答】解:函数f(x)的定义域为{x|x≠0},又f(﹣x)=,∴f(x)为奇函数,排除B,C;又f()=>0,f(1)=0,∴排除D.故选:A.【点评】本题考查函数的图象及图象变换,考查函数奇偶性的判定及其应用,是基础题.3.(5分)若x>0,y>0,n∈N*,则下列各式中,恒等的是()A.lgx•lgy=lgx+lgy B.lgx2=(lgx)2C.D.【分析】根据对数的运算性质判断每个选项的等式是否恒等即可.【解答】解:A.lgx+lgy=lg(xy)≠lgx•lgy,∴该式不恒等;B.lgx2=2lgx≠(lgx)2,∴该式不恒等;C.,∴该式恒等,该选项正确;D.,∴该式不恒等.故选:C.【点评】本题考查了对数的运算性质,考查了计算能力,属于基础题.4.(5分)函数y=x2﹣2x﹣3的零点是()A.1,﹣3B.3,﹣1C.1,2D.(3,0),(﹣1,0)【分析】函数y=x2﹣2x﹣3的零点即对应方程的根,故只要解二次方程即可.【解答】解:y=x2﹣2x﹣3=(x﹣3)(x+1)=0,x=3或x=﹣1,所以函数y=x2﹣2x ﹣3的零点是3或﹣1故选:B.【点评】本题考查函数的零点的概念和求法.属基本概念、基本运算的考查.5.(5分)函数f(x)=+lg的定义域是()A.(2,4)B.(3,4)C.(2,3)∪(3,4]D.[2,3)∪(3,4)【分析】根据函数成立的条件,即可求函数的定义域.【解答】解:要使函数有意义,则,即,解得:2≤x<3或3<x<4,故函数的定义域为[2,3)∪(3,4).故选:D.【点评】本题主要考查函数定义域的求法,根据函数成立的条件是解决此类问题的关键.6.(5分)函数的零点一定位于下列哪个区间()A.B.C.D.【分析】判断函数是连续函数,利用零点判断定理,判断选项即可.【解答】解:函数是连续函数,f(2)=+2﹣2=>0,f()=+2=<0,可得f(2)f()<0,由零点判断定理可知函数的零点在(,2).故选:C.【点评】本题考查函数的零点判断定理的应用,是基础题.7.(5分)已知,则()A.a<b<c B.b<c<a C.c<a<b D.a<c<b【分析】根据指数函数和对数函数的单调性即可得出a,b,c的大小关系.【解答】解:∵log20.2<log21=0,20.2>20=1,0<0.20.3<0.20=1,∴a<c<b.故选:D.【点评】本题考查了对数函数和指数函数的单调性,指数函数的值域,考查了计算能力,属于简单题.8.(5分)已知幂函数f(x)=kx a的图象过点(2,),则k+a=()A.1B.﹣1C.2D.﹣2【分析】由幂函数的定义和解析式求出k的值,把已知点代入求出a的值,可得答案.【解答】解:∵f(x)=k•x a是幂函数,∴k=1,幂函数f(x)=x a的图象过点(2,),∴2a=,则a=﹣2,则k+a=﹣1,故选:B.【点评】本题考查了幂函数的定义与解析式的应用,属于基础题.9.(5分)长方体ABCD﹣A1B1C1D1中,若AB=5,AD=4,AA1=3,且此长方体内接于球O,则球O的表面积为()A.B.C.50πD.200π【分析】由长方体的对角线公式,算出长方体对角线AC1的长,从而得到长方体外接球的直径,结合球的表面积公式即可得到,该球的表面积.【解答】解:∵长方体ABCD﹣A1B1C1D1中,AB=5,AD=4,AA1=3,∴长方体的对角线,∵长方体ABCD﹣A1B1C1D1的各顶点都在同一球面上,∴球的一条直径为,可得半径,因此,该球的表面积为,故选:C.【点评】本题主要考查球与多面体的切接问题,空间想象能力的培养,球的表面积的计算等知识,属于基础题.10.(5分)过球的一条半径的中点,作垂直于该半径的平面,则所得截面的面积与球的表面积的比为()A.B.C.D.【分析】由题意设出球的半径,圆M的半径,二者与OM构成直角三角形,求出圆M的半径,然后可求球的表面积,截面面积,再求二者之比.【解答】解:设球的半径为R,圆M的半径r,由图可知,R2=R2+r2,∴R2=r2,∴S球=4πR2,截面圆M的面积为:πr2=πR2,则所得截面的面积与球的表面积的比为:.故选:A.【点评】本题是基础题,考查球的体积、表面积的计算,仔细体会,理解并能够应用小圆的半径、球的半径、以及球心与圆心的连线的关系,是本题的突破口.11.(5分)如图,在棱长为1的正方体ABCD﹣A1B1C1D1中,M,N分别是A1D1,A1B1的中点,过直线BD的平面α∥平面AMN,则平面α截该正方体所得截面的面积为()A.B.C.D.【分析】作出平面AMN的过直线BD的平行平面a,求解即可【解答】解:取B1C1的中点E,C1D1的中点F,连接EF,BE,DF,B1D1,则EF∥B1D1,B1D1∥BD,所以EF∥BD,故EFBD在同一平面内,连接ME,因为M,E分别为A1D1B1C1的中点,所以ME∥AB,且ME=AB,所以四边形ABEM是平行四边形,所以AM∥BE,又因为BE⊂平面BDFE,AM不在平面BDFE内,所以AM∥平面BDFE,同理AN∥平面BDFE,因为AM∩AN=A,所以平面AMN∥平面BDFE,即平面a截该正方体所得截面为平面BDFEBD=,EF==,DF=,梯形BDFE如图:过E,F作BD的垂线,则四边形EFGH为矩形,∴FG===,故四边形BDFE的面积为=.故选:B.【点评】本题考查正方体截面面积的求法,平面平行的判定,等知识,综合考查证明和计算,属于基础题.12.(5分)已知函数f(x)=ln(x+2)+ln(4﹣x),则下列说法错误的是()A.f(x)在区间(﹣2,1)上单调递增B.f(x)在区间(1,4)上单调递减C.f(x)的图象关于直线x=1对称D.f(x)的图象关于点(1,0)对称【分析】先求出函数的定义域,再根据复合函数的单调性判断单调区间,根据f(1+x)=f(1﹣x)判断函数对称轴,判断f(2﹣x)=﹣f(x)是否成立,从而判断函数是否关于(1,0)对称.【解答】解:由f(x)=ln(x+2)+ln(4﹣x),可得:,解得﹣2<x<4,因为f(x)=ln(x+2)+ln(4﹣x)=ln[(x+2)(4﹣x)]=ln(﹣x2+2x+8),令t(x)=﹣x2+2x+8,开口向下,对称轴为x=1,所以函数t(x)在(﹣2,1)上单调递增,在(1,4)上单调递减,根据复合函数的单调性可得f(x)在(一2,1)上单调递增,在(1,4)上单调递减,故A,B正确;因为f(1﹣x)=ln(3﹣x)+ln(3+x),f(1+x)=ln(3+x)+ln(3﹣x),所以f(1+x)=f(1﹣x),所以函数f(x)的图象关于x=1对称,故C正确,因为f(2﹣x)=ln4+ln(x+2),﹣f(x)=﹣ln(x+2)﹣ln(4﹣x),因为f(2﹣x)≠﹣f(x),所以f(x)的图象不关于点(1,0)对称,故D错误.故选:D.【点评】本题考查了复合函数的单调性,“同增异减”,利用判定函数的对称轴,注意复合函数的定义域是研究单调区间的前提,属于中档题.二、填空题(共20分)13.(5分)若直线a∥平面α,直线b⊂平面α,则直线a与b的位置关系为平行或异面.【分析】以长方体为截体,列举出所有情况,由此能判断线a与b的位置关系.【解答】解:直线a∥平面α,直线b⊂平面α,如图,在正方体AC1中,A1B1∥平面ABCD,AB⊂平面ABCD,AB∥A1B1;A1B1∥平面ABCD,BC⊂平面ABCD,A1B1与BC是异面直线.则直线a与b的位置关系为平行或异面.故答案为:平行或异面.【点评】本题考查空间中线线间的位置关系的判断等基础知识,考查空间思维能力,是基础题.14.(5分)设g(x)=,则g(g())=.【分析】根据分段函数的解析式,先求出g()的值,再求g(g())的值.【解答】解:∵g(x)=,∴g()=ln=﹣ln2<0,∴g(g())=g(﹣ln2)=e﹣ln2==2﹣1=.故答案为:.【点评】本题考查了求分段函数的函数值的问题,解题时应对自变量进行分析,是基础题.15.(5分)已知圆锥的轴截面是边长为2的正三角形,则这个圆锥的表面积等于3π.【分析】根据圆角轴截面的定义结合正三角形的性质,可得圆锥底面半径长和高的大小,由此结合圆锥的表面积公式,能求出结果.【解答】解:∵圆锥的轴截面是正三角形ABC,边长等于2∴圆锥的高AO=×,底面半径r=×2=1∴这个圆锥的表面积:S=πrl+πr2=π×1×2+π×12=3π.故答案为:3π.【点评】本题给出圆锥轴截面的形状,求圆锥的表面积,着重考查了等边三角形的性质和圆锥的轴截面等等基础知识,考查运算求解能力,是基础题.16.(5分)给出下列结论:①;②y=x2+1,x∈[﹣1,2],y的值域是[2,5];③幂函数图象一定不过第四象限:④函数f(x)=a x+1﹣2(a>0,a≠1)的图象过定点(﹣1,﹣1).其中正确的序号是③④.【分析】由题意,①可根据指数的运算判断;②可由二次函数的性质判断;③由幂函数的性质判断;④由指数函数的性质判断.【解答】解:①不正确,因为等号左边是正数,右边是负数;②∵y=x2+1,x∈[﹣1,2],∴y在x=0时取到最小值1,故函数的值域不是[2,5],此结论错误;③幂函数图象一定不过第四象限,由幂函数的性质知,此结论正确:④对于函数f(x)=a x+1﹣2(a>0,a≠1),令x+1=0解得x=﹣1,此时函数f(x)的值是﹣1,故函数的图象过定点(﹣1,﹣1),此结论正确.综上得,③④结论正确.故答案为:③④.【点评】本题考查命题真假的判断,解答的关键是熟练掌握所判断的命题的背景知识及命题真假判断的原理,本题属于简单题,三、解答题(共70分)17.(10分)(1)计算:;(2)计算:.【分析】(1)利用指数性质、运算法则直接求解.(2)利用对数、指数性质、运算法则直接求解.【解答】解:(1)=+100+﹣3+=100.(2)=﹣﹣2+1=﹣.【点评】本题考查指数式、对数式化简求值,考查对数、指数性质、运算法则等基础知识,考查运算求解能力,是基础题.18.(12分)已知函数的定义域A,g(x)=﹣x2+1的值域为B,C={x|2a≤x≤a+3}.(1)求A∩B;(2)若B∪C=B,求实数a的取值范围.【分析】(1)求出集合A,B,利用交集定义求出A∩B.(2)由B∪C=B,知C⊆B,当C=∅时,则2a>a+3,当C≠∅时,则,由此求出实数a的取值范围.【解答】解:(1)函数的定义域A,g(x)=﹣x2+1的值域为B,由题,可得,解得﹣1≤x<2且x≠1,∴函数f(x)的定义域A={x|﹣1≤x<2且x≠1},∵对任意x∈R,x2≥0,所以﹣x2+1≤1,∴函数g(x)的值域B={y|y≤1},∴A∩B={x|﹣1≤x<1}.(2)C={x|2a≤x≤a+3},由B∪C=B,知C⊆B,当C=∅时,则2a>a+3,解得a>3;当C≠∅时,则,解得a≤﹣2.综上,实数a的取值范围为{a|a>3或a≤﹣2}.【点评】本题考查集合的运算,考查交集定义、函数性质等基础知识,考查运算求解能力,是基础题.19.(12分)如图所示,在四边形ABCD中,∠DAB=90°,∠ADC=135°,AB=5,CD =2,AD=2,求四边形ABCD绕AD旋转一周所成几何体的表面积及体积.【分析】四边形ABCD绕AD旋转一周形成的几何体是一个圆台挖去一个圆锥所得的组合体,S表面=S圆台底面+S圆台侧面+S圆锥侧面,V=V圆台﹣V圆锥,进而得到答案.【解答】(12分)解:四边形ABCD绕AD旋转一周形成的几何体是一个圆台挖去一个圆锥所得的组合体,S表面=S圆台底面+S圆台侧面+S圆锥侧面=π×52+π×(2+5)×5+π×2×2=(4+60)π.V=V圆台﹣V圆锥=π(+r1r2+)h﹣πr2h′=π(25+10+4)×4﹣π×4×2=π【点评】本题考查的知识点是旋转体,圆台和圆锥的体积和表面积,难度中档.20.(12分)如图,在三棱柱ABC﹣A1B1C1中,AA1⊥平面ABC,E.F分别为A1B,A1C 的中点,D为B1C1上的点,且A1D⊥B1C.(1)求证:EF∥平面ABC;(2)求证:平面A1FD⊥平面BCC1B1;(3)若三棱柱所有棱长都为a,求二面角A1﹣B1C﹣C1的平面角的正切值.【分析】(1)由EF∥BC,即可证EF∥平面ABC;(2)由A1D⊥平面BCC1B1,即可证平面A1FD⊥平面BCC1B1;(3)由二面角的平面角的作法可得:∠A1HD是二面角A1﹣B1C﹣C1的平面角,再运算即可得解.【解答】(1)证明:因为E,F分别为A1B,A1C的中点,所以EF∥BC,又EF⊄平面ABC,BC⊂平面ABC,故EF∥平面ABC;(2)证明:∵BB1⊥平面A1B1C1,A1D⊂平面A1B1C1,∴BB1⊥A1D,∵A1D⊥B1C,B1C∩BB1=B1,∴A1D⊥平面BCC1B1,又A1D⊂平面A1FD,∴平面A1FD⊥平面BCC1B1;(3)解:此时,D为B1C1的中点,过点D作B1C垂线,垂足为H,连接A1H,∵A1D⊥B1C,DH⊥B1C,A1D∩DH=D,∴B1C⊥平面A1DH,B1C⊥A1H,则∠A1HD是二面角A1﹣B1C﹣C1的平面角,∴,,,故二面角A1﹣B1C﹣C1的平面角的正切值为.【点评】本题考查了线面平行,面面垂直的证明和二面角的计算,属于中档题.21.(12分)如图,在直三棱柱ABC﹣DEF中,AC=BC=2,,,AD=4,M、N分别为AD、CF的中点.(1)求证:AN⊥平面BCM;(2)设G为BE上一点,且,求点G到平面BCM的距离.【分析】(1)根据AC2+BC2=AB2得AC⊥BC,并且得出四边形ACMN为正方形,进而即可求证;(2)先算出点M到平面GBC的距离即为AC=2,由,可求出,设点G到平面BCM的距离为h,则,进而求出点G到平面BCM的距离.【解答】解:(1)证明:在直三棱柱ABC﹣DEF中,AC=BC=2,,AD=4,M、N分别为AD、CF的中点,∵AC=BC=2,,∴AC2+BC2=AB2,即AC⊥BC,又ABC﹣DEF是直三棱柱,∴BC⊥平面ACFD,则BC⊥AN,∵M、N分别为AD、CF的中点,且AD=4,AC=2,∴四边形ACNM为正方形,则CM⊥AN,又BC∩CM=C,∴AN⊥平面BCM;(2)由(1)知,即AC⊥BC,又ABC﹣DEF是直三棱柱,∴AC⊥平面BCFE,∴MA∥FC,则点M到平面GBC的距离即为AC=2,∴=,由(1)知,BC⊥CM,且,∴,设点G到平面BCM的距离为h,则,∴,则,即点G到平面BCM的距离为.【点评】本题考查了线面垂直的证明和点到平面的距离计算,属于中档题.22.(12分)已知函数为奇函数.(1)求实数a的值;(2)判断函数f(x)的单调性,并用函数单调性的定义证明;(3)解不等式f(lnx)>0.【分析】(1)由定义在R上的奇函数f(0)=0,即可求得a值;(2)判断f(x)在R上是增函数,利用单调性的定义即可证明;(3)由f(lnx)>0,可得,解之即可得解.【解答】解:(1)∵e x+1≠0的解集是R,∴f(x)的定义域是R.又∵f(x)是奇函数,∴f(0)=0.∴f(0)=a﹣1=0,即a=1.经检验知,当a=1时,f(﹣x)=﹣f(x),符合题意.(2)由(1)知,经判断可知f(x)在R上是增函数.任取x1,x2∈R,且x1<x2,则f(x1)﹣=,∵y=e x为增函数,x1<x2,∴0.∴>0,>0 <0.∴f(x1)﹣f(x2)<0,即f(x1)<f(x2).∴f(x)在R上是增函数.(3)由,可得,∴,解得x>1,∴原不等式的解集为(1,+∞).【点评】本题主要考查函数的奇偶性与单调性的综合,考查利用单调性的定义证明函数的单调性,考查不等式的解法,属于中档题.。
浙江省温州市2020-2021学年高一上学期期末教学质量统一检测数学试题(B卷) (解析版)
2020-2021学年浙江省温州市高一(上)期末数学试卷(B卷)一、选择题(共8小题).1.已知集合A={1,2,3},B={2,4},则A∪B=()A.{2}B.{2,3}C.{1,2,3}D.{1,2,3,4}2.下列函数既不是奇函数也不是偶函数的是()A.y=x3B.y=x2C.y=x D.3.已知函数,则f(x2)的定义域为()A.(﹣∞,﹣1)∪(1,+∞)B.(﹣∞,0)∪(1,+∞)C.(﹣1,1)D.(0,1)4.在平面直角坐标系中,角α的顶点与原点重合,终边与单位圆的交点为,则sin(π-α)=( ) A.B.C.D.5.已知a=e0.3,b=ln0.3,c=0.3e,则()A.a>b>c B.a>c>b C.c>b>a D.b>c>a6.已知a,b,c是实数,且a≠0,则“∀x∈R,ax2+bx+c<0”是“b2﹣4ac<0”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件7.已知a>0,b>0,a+b=1,则下列等式可能成立的是()A.a2+b2=1B.ab=1C.a2+b2=D.a2﹣b2=8.某工厂有如图1所示的三种钢板,其中长方形钢板共有100张,正方形钢板共有60张,正三角形钢板共有80张.用这些钢板制作如图2所示的甲、乙两种模型的产品,要求正方形钢板全部用完,则制成的甲模型的个数最少有()A.10个B.15个C.20个D.25个二、多项选择题(共4小题).9.已知函数y=x2﹣2x+2的值域是[1,2],则其定义域可能是()A.[0,1]B.[1,2]C.[]D.[﹣1,1]10.已知,且tanθ=m,则下列正确的有()A.B.tan(π﹣θ)=m C.D.11.已知函数f(x)=2sin(ωx+φ)(ω>0)的图象过两点,则ω的可能取值为()A.1B.2C.3D.412.在同一直角坐标系中,函数f(x)=log a(x﹣b),g(x)=b x﹣a的图象可能是()A B C D三、填空题:本题共4小题,每小题5分,共20分。
高一上学期期末数学考试卷及答案
2020~2021学年度上学期高一年级期末考试卷数 学 试 卷注意事项:1.本试卷分第Ⅰ卷(阅读题)和第Ⅱ卷(表达题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.作答时,请认真阅读答题卡上的注意事项,将答案写在答题卡上。
写在本试卷上无效。
一、单选题 本题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的.1、已知全集U={-1,0,1,2,3},集合A={0,1,2},B={-1,0,1}, 则(C U A)∩B= ( )A.{-1}B.{0,1}C{-1,2,3} D.{-1,0,1,3}2.“”是“”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件3.已知函数,则( )A.B.C.6D.74.已知f(x)=(x-a)(x-b)+2(a<b),且α,β(α<β)是方程f(x)=0的两根,则α,β,a,b的大小关系是( )A.a<α<β<b B.a<α<b<βC.α<a<b<βD.α<a<β<b5.是定义在上的偶函数,在上是增函数,且,则使的的范围是( )A.B.C. D.6.已知,,且,则( )A.B.C.D.7.函数的定义域是( )A.B.C.D.8.函数的零点个数有( )A.0个B.1个C.2个D.3个二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分. 9.下列命题是“,”的表述方法的是()A.有一个,使得成立B.对有些,使得成立C.任选一个,都有成立D.至少有一个,使得成立10.下列命题中是真命题的有( )A.幂函数的图象都经过点和B.幂函数的图象不可能过第四象限C.当时,幂函数是增函数D.当时,幂函数在第一象限内函数值随值的增大而减小11.如果函数在上是增函数,对于任意的,则下列结论中正确的是( )A.B.C.D.12.已知函数有两个零点,,以下结论正确的是( )A.B.若,则C.D.函数有四个零点三、填空题 (每题5分,满分20分,将答案填在答题纸上)13.已知,则的解析式为___________.14.用二分法研究函数f(x)=x3+3x-1的零点时,第一次计算得f(0)<0,f(0.5)>0,第二次应计算f(x1),则x1=________.15.已知函数,若,则____.16.已知函数 (a>0,且a≠1),若在区间[1,2]上恒成立,则实数a的取值范围是________.四 解答题(本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤)17.(10分)(1);(2).18.(12分)已知函数,试画出的图象,并根据图象解决下列两个问题.(1)写出函数的单调区间;(2)求函数在区间上的最大值.19.(12分)已知函数f(x)=,g(x)=(a>0且a≠1).(1)求函数φ(x)=f(x)+g(x)的定义域;(2)试确定不等式f(x)≤g(x)中x的取值范围.20.(12分)已知函数(1)判断函数在上的单调性,并给予证明;(2)求函数在,的最大值和最小值.21.(12分)已知函数(1)若在恒成立,求的取值范围;(2)设函数,解不等式.22.(12分)设函数是定义域为R的奇函数.(1)求的值;(2)若,试判断的单调性(不需证明),并求使不等式恒成立的t的取值范围;(3),求在上的最小值.数 学 试 卷 参考答案1 A 2.B 3.A 4.A 5.B 6.C 7.A 8.C9.ABD 10.BD 11.AB 12.ABC13. 14.0.25 15.1或-2 16.17.(1)原式;(2)原式.18. 的图象如图所示.(1) 在和上是增函数,在上是减函数,∴单调递增区间为,;单调递减区间为;(2)∵,,∴在区间上的最大值为.19. 解:(1)φ(x)=f(x)+g(x)的定义域为:,解得:,所以定义域为.(2) f(x)≤g(x),即为,定义域为.当时,,解得:,所以x的取值范围为.当时,,解得:,所以x的取值范围为.综上可得:当时,x的取值范围为.当时,x的取值范围为.20(1),函数在上是增函数,证明:任取,,且,则,,,,,即,在上是增函数;(2)在上是增函数,在,上单调递增,它的最大值是,最小值是.21.(1)在恒成立,即在恒成立, 分离参数得:,∵,∴从而有:.(3)令,得,,因为函数的定义域为,所以等价于(1)当,即时,恒成立,原不等式的解集是(2)当,即时,原不等式的解集是(3)当,即时,原不等式的解集是(4)当,即时,原不等式的解集是综上所述:当时,原不等式的解集是当时,原不等式的解集是当时,原不等式的解集是当时,原不等式的解集是22.(1) ∵是定义域为R的奇函数,∴ f(0)=0,∴ 1-(k-1)=0,∴ k=2, (2)单减,单增,故f(x)在R上单减 ,故不等式化为∴,解得令∵在上为递增的 ∴∴设∴.即在上的最小值为.。
福建省厦门市 2020-2021 学年高一上学期期末考试数学试题(含答案解析)
集合 A 是由小于 3 的自然数组成,0 A , 1 A,只有 C 正确,
故选:C.
2.D
【分析】
利用特称命题的否定可得出结论.
【详解】
命题 p 为特称命题,该命题的否定为: x 0, x ex .
故选:D.
3.A
【分析】
利用对数函数的单调性得出 c 0 ,利用指数函数单调性可得出 a 、b 、 0 的大小关系,综合
绝密★启用前
福建省厦门市 2020-2021 学年高一上学期期末考试数学试题
注意事项: 1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上
第 I 卷(选择题)
一、单选题
1.已知集合 A x N x 3 ,则( )
A. 0 A
B. 1 A
C.0 A
D.1 A
2.设命题 p : x 0 , x ex ,则 p 的否定为( )
主要步骤为:作差——变形——判断正负.在所给不等式是积、商、幂的形式时,可考虑比
答案第 3 页,共 14 页
商
9.ABD
【分析】
由诱导公式和商数关系可得.
【详解】
∵ tan 3sin ,∴ sin 3sin ,
cos 若 sin 0 ,则 cos 1或 1, 若 sin 0 ,则 cos 1 .
p2
2 p1 p2 p1 p2
p1 p2 2 4 p1 p2 2 p1 p2
p1 p2 2 2 p1 p2
0 ,所以,
p1 2
p2
2 p1 p2 p1 p2
.
因此,乙方案的平均价格较低.
故选:B.
【点睛】
方法点睛:比较法是不等式性质证明的理论依据,是不等式证明的主要方法之一,作差法的
2020-2021学年高一上学期期末考试数学卷及答案
2020-2021学年高一上学期期末考试数学卷及答案1.集合A和B分别表示y=x+1和y=2两个函数的图像上所有的点,求A和B的交集。
答案:A={(-∞,1]}。
B={2}。
A∩B=A={(-∞,1]}2.已知函数y=(1-x)/(2x^2-3x-2),求函数的定义域。
答案:分母2x^2-3x-2=(2x+1)(x-2),所以函数的定义域为x∈(-∞,-1/2]∪(2,∞)。
3.如果直线mx+y-1=0与直线x-2y+3=0平行,求m的值。
答案:两条直线平行,说明它们的斜率相等,即m=2.4.如果直线ax+by+c=0经过第一、第二,第四象限,求a、b、c应满足的条件。
答案:第一象限中x>0.y>0,所以ax+by+c>0;第二象限中x0,所以ax+by+c0.y<0,所以ax+by+c<0.综上所述,应满足ab<0.bc<0.5.已知两条不同的直线m和n,两个不同的平面α和β,判断下列命题中正确的是哪个。
答案:选项A是正确的。
因为如果m与α垂直,n与β平行,那么m和n的夹角就是α和β的夹角,所以m和n垂直。
6.已知圆锥的表面积为6π,且它的侧面展开图是一个半圆,求这个圆锥的底面半径。
答案:设底面半径为r,侧面的母线长为l,则圆锥的侧面积为πrl。
根据题意,πrl=6π,所以l=6/r。
而侧面展开图是一个半圆,所以底面周长为2πr,即底面直径为2r,所以侧面母线长l=πr。
将上述两个式子代入公式S=πr^2+πrl中,得到r=2.7.已知两条平行线答案:两条平行线的距离等于它们的任意一点到另一条直线的距离。
我们可以先求出l2上的一点,比如(0,7/8),然后带入l1的方程,得到距离为3/5.8.已知函数y=ax-1/(3x^2+5),如果它的图像经过定点P,求点P的坐标。
答案:点P的坐标为(1,2)。
因为当x=1时,y=a-1/8,所以a=17/8.又因为当x=2时,y=1/13,所以17/8×2-1/13=2,解得a=17/8,所以y=17x/8-1/(3x^2+5),当x=1时,y=2.9.已知a=3/5,b=1/3,c=4/3,求a、b、c的大小关系。
2020-2020学年浙江省杭州市高一上期末数学试卷(含答案解析)
2020-2020学年浙江省杭州市高一(上)期末数学试卷一、选择题(本大题有14小题,每小题3分,共42分.每小题的四个选项中,只有一项是符合要求的,请将答案填写在答案卷相应的答题栏内)1.(3分)sin120°的值为()A.B.C.D.﹣2.(3分)已知sinα=,α为第二象限角,则cosα的值为()A.B.﹣ C.D.﹣3.(3分)已知集合A={x∈R|x2﹣4x<0},B={x∈R|2x<8},则A∩B=()A.(0,3) B.(3,4) C.(0,4) D.(﹣∞,3)4.(3分)函数f(x)=log3x+x﹣3的零点所在的区间是()A.(0,1) B.(1,2) C.(2,3) D.(3,+∞)5.(3分)函数y=的定义域是()A.[1,+∞)B.(1,+∞)C.(0,1]D.(,1]6.(3分)一名心率过速患者服用某种药物后心率立刻明显减慢,之后随着药力的减退,心率再次慢慢升高,则自服药那一刻起,心率关于时间的一个可能的图象是()A.B.C.D.7.(3分)已知函数f(x)=,则f(5)的值为()A.B.1 C.2 D.38.(3分)已知函数y=f(2x)+2x是偶函数,且f(2)=1,则f(﹣2)=()A.5 B.4 C.3 D.29.(3分)函数f(x)=|sinx+cosx|+|sinx﹣cosx|是()A.最小正周期为π的奇函数B.最小正周期为π的偶函数C.最小正周期为的奇函数D.最小正周期为的偶函数10.(3分)记a=sin1,b=sin2,c=sin3,则()A.c<b<a B.c<a<b C.a<c<b D.a<b<c11.(3分)要得到函数y=cos(2x﹣)的图象,只需将函数y=sin2x的图象()A.向左平移个单位B.向左平移个单位C.向右平移个单位D.向右平移个单位12.(3分)已知函数在(﹣∞,+∞)上是增函数,则实数a的取值范围是()A.1<a<3 B.1<a≤3 C.<a<5 D.<a≤513.(3分)定义min{a,b}=,若函数f(x)=min{x2﹣3x+3,﹣|x﹣3|+3},且f(x)在区间[m,n]上的值域为[,],则区间[m,n]长度的最大值为()A.1 B.C.D.14.(3分)设函数f(x)=|﹣ax|,若对任意的正实数a,总存在x0∈[1,4],使得f(x0)≥m,则实数m的取值范围为()A.(﹣∞,0]B.(﹣∞,1]C.(﹣∞,2]D.(﹣∞,3]二、填空题(本大题有6小题,15~17题每空3分,18~20题每空4分,共30分,把答案填在答题卷的相应位置)15.(3分)设集合U={1,2,3,4,5,6},M={2,3,4},N={4,5},则M∪N=,∁U M=.16.(3分)()+()=;log412﹣log43=.17.(3分)函数f(x)=tan(2x﹣)的最小正周期是;不等式f(x)>1的解集是.18.(4分)已知偶函数f(x)和奇函数g(x)的定义域都是(﹣4,4),且在(﹣4,0]上的图象如图所示,则关于x的不等式f(x)•g(x)<0的解集是.19.(4分)已知不等式(ax+2)•ln(x+a)≤0对x∈(﹣a,+∞)恒成立,则a 的值为.20.(4分)已知函数f(x)=x+,g(x)=f2(x)﹣af(x)+2a有四个不同的零点x1,x2,x3,x4,则[2﹣f(x1)]•[2﹣f(x2)]•[2﹣f(x3)]•[2﹣f(x4)]的值为.三、解答题:(本大题有4小题,共48分.解答应写出文字说明,证明过程或演算步骤)21.(10分)已知幂函数f(x)=xα(α∈R),且.(1)求函数f(x)的解析式;(2)证明函数f(x)在定义域上是增函数.22.(12分)已知函数f(x)=2sin(ωx+φ)(﹣π<φ<0,ω>0)的图象关于直线对称,且两相邻对称中心之间的距离为.(1)求函数y=f(x)的单调递增区间;(2)若关于x的方程f(x)+log2k=0在区间上总有实数解,求实数k 的取值范围.23.(12分)一辆汽车在某段路程中的行驶速率与时间的关系如图所示.(1)求图中阴影部分的面积,并说明所求面积的实际含义;(2)假设这辆汽车在行驶该段路程前里程表的读数是8018km,试求汽车在行驶这段路程时里程表读数s(km)与时间t (h)的函数解析式,并作出相应的图象.24.(13分)已知函数f(x)=(x﹣1)|x﹣a|﹣x﹣2a(x∈R).(1)若a=﹣1,求方程f(x)=1的解集;(2)若,试判断函数y=f(x)在R上的零点个数,并求此时y=f(x)所有零点之和的取值范围.2020-2020学年浙江省杭州市高一(上)期末数学试卷参考答案与试题解析一、选择题(本大题有14小题,每小题3分,共42分.每小题的四个选项中,只有一项是符合要求的,请将答案填写在答案卷相应的答题栏内)1.(3分)sin120°的值为()A.B.C.D.﹣【解答】解:因为sin120°=sin(90°+30°)=cos30°=.故选C.2.(3分)已知sinα=,α为第二象限角,则cosα的值为()A.B.﹣ C.D.﹣【解答】解:∵sinα=,且α为第二象限的角,∴cosα=﹣=﹣.故选:D.3.(3分)已知集合A={x∈R|x2﹣4x<0},B={x∈R|2x<8},则A∩B=()A.(0,3) B.(3,4) C.(0,4) D.(﹣∞,3)【解答】解:∵集合A={x∈R|x2﹣4x<0}={x|0<x<4},B={x∈R|2x<8}={x|x<3},∴A∩B={x|0<x<3}=(0,3).故选:A.4.(3分)函数f(x)=log3x+x﹣3的零点所在的区间是()A.(0,1) B.(1,2) C.(2,3) D.(3,+∞)【解答】解:∵函数f(x)=log3x+x﹣3,定义域为:x>0;函数是连续函数,∴f(2)=log32+2﹣3<0,f(3)=log33+3﹣3=1>0,∴f(2)•f(3)<0,根据函数的零点的判定定理,故选:C.5.(3分)函数y=的定义域是()A.[1,+∞)B.(1,+∞)C.(0,1]D.(,1]【解答】解:要使函数有意义,则log0.5(3x﹣2)≥0,即0<3x﹣2≤1,得<x≤1,即函数的定义域为(,1],故选:D6.(3分)一名心率过速患者服用某种药物后心率立刻明显减慢,之后随着药力的减退,心率再次慢慢升高,则自服药那一刻起,心率关于时间的一个可能的图象是()A.B.C.D.【解答】解:患者服用某种药物后心率立刻明显减慢,则函数的图象应呈下降趋势,之后随着药力的减退,心率再次慢慢升高,则函数的图象应一直呈上升趋势,但上升部分的图象比下降的图象要缓,排除AB,根据正常人的心率约为65,可排除D,只有C符合,故选:C7.(3分)已知函数f(x)=,则f(5)的值为()A.B.1 C.2 D.3【解答】解:∵函数f(x)=,∴f(5)=f(3)=f(1)=2.故选:C.8.(3分)已知函数y=f(2x)+2x是偶函数,且f(2)=1,则f(﹣2)=()A.5 B.4 C.3 D.2【解答】解:∵函数y=f(2x)+2x是偶函数,∴设g(x)=f(2x)+2x,则g(﹣x)=f(﹣2x)﹣2x=g(x)=f(2x)+2x,即f(﹣2x)=f(2x)+4x,当x=1时,f(﹣2)=f(2)+4=1+4=5,故选:A9.(3分)函数f(x)=|sinx+cosx|+|sinx﹣cosx|是()A.最小正周期为π的奇函数B.最小正周期为π的偶函数C.最小正周期为的奇函数D.最小正周期为的偶函数【解答】解:f(﹣x)=|sin(﹣x)+cos(﹣x)|+|sin(﹣x)﹣cos(﹣x)|=|﹣sinx+cosx|+|﹣sinx﹣cosx|=|six+cosx|+|sinx﹣cosx|=f(x),则函数f(x)是偶函数,∵f(x+)=|sin(x+)+cos(x+)|+|sin(x+)﹣cos(x+)|=|cosx﹣sinx|+|cosx+sinx|=|sinx+cosx|+|sinx﹣cosx|=f(x),∴函数f(x)的周期是,故选:D10.(3分)记a=sin1,b=sin2,c=sin3,则()A.c<b<a B.c<a<b C.a<c<b D.a<b<c【解答】解:如图所示,∵>π﹣2>1>0,∴sin2=sin(π﹣2)>sin1,∵,∴sin1=sin(π﹣1)>sin3.综上可得:sin2>sin1>sin3.故选B.11.(3分)要得到函数y=cos(2x﹣)的图象,只需将函数y=sin2x的图象()A.向左平移个单位B.向左平移个单位C.向右平移个单位D.向右平移个单位【解答】解:∵y=cos(2x﹣)=cos(﹣2x)=sin(2x+)=sin[2(x+)],∴将函数y=sin2x的图象向左平移个单位即可得到函数y=cos(2x﹣)的图象.故选:B.12.(3分)已知函数在(﹣∞,+∞)上是增函数,则实数a的取值范围是()A.1<a<3 B.1<a≤3 C.<a<5 D.<a≤5【解答】解:函数在(﹣∞,+∞)上是增函数,可得:,解得:1<a≤3.故选:B.13.(3分)定义min{a,b}=,若函数f(x)=min{x2﹣3x+3,﹣|x﹣3|+3},且f(x)在区间[m,n]上的值域为[,],则区间[m,n]长度的最大值为()A.1 B.C.D.【解答】解:根据定义作出函数f(x)的图象如图:(蓝色曲线),其中A(1,1),B(3,3),即f(x)=,当f(x)=时,当x≥3或x≤1时,由3﹣|x﹣3|=,得|x﹣3|=,即x C=或x G=,当f(x)=时,当1<x<3时,由x2﹣3x+3=,得x E=,由图象知若f(x)在区间[m,n]上的值域为[,],则区间[m,n]长度的最大值为x E﹣x C=﹣=,故选:B.14.(3分)设函数f(x)=|﹣ax|,若对任意的正实数a,总存在x0∈[1,4],使得f(x0)≥m,则实数m的取值范围为()A.(﹣∞,0]B.(﹣∞,1]C.(﹣∞,2]D.(﹣∞,3]【解答】解:对任意的正实数a,总存在x0∈[1,4],使得f(x0)≥m⇔m≤f (x)max,x∈[1,4].令u(x)=﹣ax,∵a>0,∴函数u(x)在x∈[1,4]单调递减,∴u(x)max=u(1)=4﹣a,u(x)min=1﹣4a.①a≥4时,0≥4﹣a>1﹣4a,则f(x)max=4a﹣1≥15.②4>a>1时,4﹣a>0>1﹣4a,则f(x)max={4﹣a,4a﹣1}max>3.③a≤1时,4﹣a>1﹣4a≥0,则f(x)max=4﹣a≥3.综上①②③可得:m≤3.∴实数m的取值范围为(﹣∞,3].故选:D.二、填空题(本大题有6小题,15~17题每空3分,18~20题每空4分,共30分,把答案填在答题卷的相应位置)15.(3分)设集合U={1,2,3,4,5,6},M={2,3,4},N={4,5},则M∪N={2,3,4,5} ,∁U M={1,5,6} .【解答】解:集合U={1,2,3,4,5,6},M={2,3,4},N={4,5},则M∪N={2,3,4,5};∁U M={1,5,6},故答案为:{2,3,4,5},{1,5,6}16.(3分)()+()=3;log412﹣log43=1.【解答】解:()+()==;log412﹣log43=.故答案为:3,1.17.(3分)函数f(x)=tan(2x﹣)的最小正周期是;不等式f(x)>1的解集是.【解答】解:由正切函数的周期公式得函数的周期T=;由f(x)>1得tan(2x﹣)>1,得+kπ<2x﹣<+kπ,得+<x<+,k∈Z,即不等式的解集为;故答案为:,;18.(4分)已知偶函数f(x)和奇函数g(x)的定义域都是(﹣4,4),且在(﹣4,0]上的图象如图所示,则关于x的不等式f(x)•g(x)<0的解集是(﹣4,﹣2)∪(0,2).【解答】解:设h(x)=f(x)g(x),则h(﹣x)=f(﹣x)g(﹣x)=﹣f(x)g (x)=﹣h(x),∴h(x)是奇函数,由图象可知:当﹣4<x<﹣2时,f(x)>0,g(x)<0,即h(x)>0,当0<x<2时,f(x)<0,g(x)>0,即h(x)<0,∴h(x)<0的解为(﹣4,﹣2)∪(0,2).故答案为(﹣4,﹣2)∪(0,2)19.(4分)已知不等式(ax+2)•ln(x+a)≤0对x∈(﹣a,+∞)恒成立,则a 的值为﹣1.【解答】解:∵x∈(﹣a,+∞),∴当﹣a<x<1﹣a时,y=ln(x+a)<0,当x>1﹣a时,y=ln(x+a)>0,又(ax+2)•ln(x+a)≤0对x∈(﹣a,+∞)恒成立,①若a>0,y=ax+2与y=ln(x+a)均为定义域上的增函数,在x∈(﹣a,+∞)上,可均大于0,不满足题意;②若a=0,则2lnx)≤0对x∈(0,+∞)不恒成立,不满足题意;∴a<0.作图如下:由图可知,当且仅当方程为y=ln(x+a)的曲线与方程为y=ax+2的直线相交于点A,即满足时,(ax+2)•ln(x+a)≤0对x∈(﹣a,+∞)恒成立,解方程得,解得a=﹣1.故答案为:﹣1.20.(4分)已知函数f(x)=x+,g(x)=f2(x)﹣af(x)+2a有四个不同的零点x1,x2,x3,x4,则[2﹣f(x1)]•[2﹣f(x2)]•[2﹣f(x3)]•[2﹣f(x4)]的值为16.【解答】解:∵令t=f(x),则y=g(x)=f2(x)﹣af(x)+2a=t2﹣at+2a,∵g(x)=f2(x)﹣af(x)+2a有四个不同的零点x1,x2,x3,x4,故t2﹣at+2a=0有两个根t1,t2,且t1+t2=a,t1t2=2a,且f(x1),f(x2),f(x3),f(x4)恰两两相等,为t2﹣at+2a=0的两根,不妨令f(x1)=f(x2)=t1,f(x3)=f(x4)=t2,则[2﹣f(x1)]•[2﹣f(x2)]•[2﹣f(x3)]•[2﹣f(x4)]=(2﹣t1)•(2﹣t1)•(2﹣t2)•(2﹣t2)=[(2﹣t1)•(2﹣t2)]2=[4﹣2(t1+t2)+t1t2]2=16.故答案为:16三、解答题:(本大题有4小题,共48分.解答应写出文字说明,证明过程或演算步骤)21.(10分)已知幂函数f(x)=xα(α∈R),且.(1)求函数f(x)的解析式;(2)证明函数f(x)在定义域上是增函数.【解答】(1)解:由得,,所以;(2)证明:定义域是[0,+∞),设任意的x2>x1≥0,则,∵,∴f(x2)>f(x1),函数f(x)在定义域上是增函数.22.(12分)已知函数f(x)=2sin(ωx+φ)(﹣π<φ<0,ω>0)的图象关于直线对称,且两相邻对称中心之间的距离为.(1)求函数y=f(x)的单调递增区间;(2)若关于x的方程f(x)+log2k=0在区间上总有实数解,求实数k 的取值范围.【解答】解:(1)周期T=π,所以ω=2,当时,,(2分)得,又﹣π<φ<0,所以取k=﹣1,得(2分)所以,(1分)由,得,k∈Z所以函数y=f(x)的单调递增区间是得(k∈Z),(2分)(2)当时,,所以,(2分)所以log2k=﹣f(x)∈[﹣1,2],得.(3分)23.(12分)一辆汽车在某段路程中的行驶速率与时间的关系如图所示.(1)求图中阴影部分的面积,并说明所求面积的实际含义;(2)假设这辆汽车在行驶该段路程前里程表的读数是8018km,试求汽车在行驶这段路程时里程表读数s(km)与时间t (h)的函数解析式,并作出相应的图象.【解答】解:(1)阴影部分的面积为:50+70+90+60=270,表示汽车在4小时内行驶的路程为270 km.(4分)(2)∵这辆汽车在行驶该段路程前里程表的读数是8018km,汽车在行驶这段路程时里程表读数s(km)与时间t (h)的函数解析式为:(4分)图象如下图:(4分)24.(13分)已知函数f(x)=(x﹣1)|x﹣a|﹣x﹣2a(x∈R).(1)若a=﹣1,求方程f(x)=1的解集;(2)若,试判断函数y=f(x)在R上的零点个数,并求此时y=f(x)所有零点之和的取值范围.【解答】解:(1)方法一:当a=﹣1时,(2 分)由f(x)=1得或(2 分)解得x=0,1,﹣2,即解集为{0,1,﹣2}.(2分)方法二:当a=﹣1时,由f(x)=1得:(x﹣1)|x+1|﹣(x﹣1)=0(x﹣1)(|x+1|﹣1)=0(3分)∴得x=1或|x+1|=1∴x=1或x=0或x=﹣2即解集为{0,1,﹣2}.(3分)(2)当x≥a时,令x2﹣(a+2)x﹣a=0,∵,∴△=a2+8a+4=(a+4)2﹣12>0得,(2分)且先判断2﹣a,与大小:∵,即a<x1<x2,故当x≥a时,f(x)存在两个零点.(2分)当x<a时,令﹣x2+ax﹣3a=0,即x2﹣ax+3a=0得∵,∴△=a2﹣12a=(a﹣6)2﹣36>0得,同上可判断x3<a<x4,故x<a时,f(x)存在一个零点.(2分)综上可知当时,f(x)存在三个不同零点.且设,易知g(a)在上单调递增,故g(a)∈(0,2)∴x1+x2+x3∈(0,2).(2分)。
2020-2021学年四川省遂宁市高一(上)期末数学试卷(附答案详解)
2020-2021学年四川省遂宁市高一(上)期末数学试卷一、单选题(本大题共12小题,共60.0分)1.已知集合A={x∈Z|−2≤x<1},B={−1,0,1,2,3},求A∩B=()A. {−1,2}B. {−1,0}C. {0,1}D. {1,2}2.下面各组函数中表示同一函数的是()A. f(x)=x,g(x)=(√x)2B. f(x)=2log2x,g(x)=log2x2C. f(x)=|x|,g(x)=√x2D. f(x)=|x|x ,g(x)={1,x≥0−1,x<03.下列函数中,既是偶函数,又在区间(0,+∞)上单调递减的函数为()A. y=cosxB. y=−log2xC. y=2xD. y=x−24.四个物体同时从某一点出发向前运动,其路程f i(x)(i=1,2,3,4)关于时间x(x>1)的函数关系是f1(x)=x2,f2(x)=2x,f3(x)=log2x,f4(x)=2x,如果它们一直运动下去,最终在最前面的物体具有的函数关系是()A. f1(x)=x2B. f2(x)=2xC. f3(x)=log2xD. f4(x)=2x5.若函数f(x)=x3+x2−2x−2的一个正数零点附近的函数值用二分法计算,其参考数据如表:那么方程x3+x2−2x−2=0的一个近似根(精确到0.01)可以是()A. 1.25B. 1.39C. 1.41D. 1.56.已知3a=4b=12,c=log a b,则a,b,c的大小关系为()A. a<b<cB. c<b<aC. b<a<cD. c<a<b7.若sin(π−θ)−sin(π2−θ)=√72,且θ∈(34π,π),则sin(π−θ)−cos(π−θ)=()A. −12B. ±12C. 12D. −438.函数f(x)=x3+sinxe x+e−x(e≈2.718281828459)的部分图象大致是()A.B.C.D.9. 若幂函数f(x)=qx −p2+2p+3(q ∈R,p ∈Z)在(0,+∞)上是增函数,且在定义域上是偶函数,则p +q =( )A. 0B. 1C. 2D. 310. 设函数f(x)=3sin(ωx +φ)+1(ω>0,|φ|<π2)的最小正周期为π,其图象关于直线x =π3对称,则下列说法正确是( )A. f(x)的图象过点(0,32) B. f(x)在[π12,2π3]上单调递减 C. f(x)的一个对称中心是(7π12,0)D. 将f(x)的图象向左平移12|φ|个单位长度得到函数y =3sin2x +1的图象11. 若函数f(x)={a x ,x ≥1(5−a)x +1,x <1,满足对任意不相等的实数x 1,x 2都有(x 2−x 1)(f(x 1)−f(x 2))<0成立,则a 的取值范围是( )A. (3,+∞)B. (5,+∞)C. [3,5)D. (3,5)12. 设函数f(x)=Asin(ωx +φ)(A,ω,φ是常数,A >0,ω>0).若f(x)在区间[π3,π2]上具有单调性,且f(π2)=−f(π3),f(π2)=f(2π3),则ω=( )A. 6B. 3C. 2D. 1二、单空题(本大题共4小题,共20.0分)13. 设函数f(x)={16x −1,x ≤1x 2+x −2,x >1,则f(1f(2))= ______ .14. 计算:(2.25)−12+(−9.6)0−(827)13+log 2512⋅log 45= ______ .15. 高斯被誉为历史上最伟大的数学家之一,与阿基米德、牛顿、欧拉同享盛名,高斯函数f(x)=[x]也应用于生活、生产的各个领域.高斯函数也叫取整函数,其符号[x]表示不超过x 的最大整数,如:[3.14]=3,[−1.6]=−2,定义函数:f(x)=sin([x]π2),则f(x)值域的子集的个数为______ .16. 已知方程4x −k ⋅2x+1−3⋅2x +4=0(x >0)有两个不相等实根,则k 的取值范围为______ .三、解答题(本大题共6小题,共70.0分)17. 在平面直角坐标系中,以x 轴的非负半轴为角的始边,如果角α终边与单位圆交于点A(−35,45),角β的终边落在射线y =x(x >0)上. (1)求sinα⋅tanβ的值; (2)求sin(π2−α)sin(3π+α)+sin 2(3π2−β)sin 2β+3sinβcosβ的值.18. 已知集合A ={x|log 2(x +2)<2},B ={x|3a −2<x <2a +1}.(1)当a =1时,求A ∩B ;(2)若A ,B 满足:①若A ∩B =⌀,②A ∪B =A ,从①②中任选一个作为条件,求a 的取值范围.19. 遂宁市为打造最佳的宜居城市,践行绿水青山就是金山银山的理念,大力开展植树造林.假设西山森林公园原来的面积为m 亩,计划每年种植一些树苗,且西山森林公园面积的年增长率相同,当面积是原来的2倍时,所用时间是10年. (1)求西山森林公园面积的年增长率;(2)到今年为止,西山森林公园面积为原来的√2倍,则该地已经植树造林多少年?(3)为使西山森林公园面积至少达到6m亩,至少需要植树造林多少年?(参考数据:lg2=0.3010,lg3=0.4771)20.定义在R上的函数f(x),对任意x1、x2∈R,满足下列条件:①f(x1+x2)=f(x1)+f(x2)−2;②f(2)=4.(1)是否存在一次函数f(x)满足条件①②,若存在,求出f(x)的解析式;若不存在,说明理由.(2)证明:g(x)=f(x)−2为奇函数.21.如图是函数f(x)=sin(ωx+φ)(ω>0,0<φ<π)的部分图象.(1)求φ的值及f(x)单调递增区间.(2)若f(x)的图象横坐标不变,纵坐标扩大为原来的2倍,然后再将所得图象向右平移π个单位,最后向上平移1个单位,得到函数g(x)的图3象,若g(x)在[0,b](b>0)上恰有10个零点,求b的取值范围.22.已知函数f(x)=1−b为定义在R上的奇函数.2x+a(1)求a,b的值;(2)判断f(x)=1−2的单调性,并用定义证明你的结论;2x+1(3)若f(lnm)+f(lnm−1)≤1−2lnm,求f(x)的取值范围.答案和解析1.【答案】B【解析】解:∵A ={−2,−1,0},B ={−1,0,1,2,3}, ∴A ∩B ={−1,0}. 故选:B .可求出集合A ,然后进行交集的运算即可.本题考查了描述法和列举法的定义,交集及其运算,考查了计算能力,属于基础题.2.【答案】C【解析】解:A.y =x 的定义域是R ,y =(√x)2=x 的定义域为[0,+∞),两个函数的定义域不相同,不是同一函数,B .f(x)的定义域为(0,+∞),g(x)的定义域为{x|x ≠0},两个函数的定义域不相同,不是同一函数,C .g(x)=|x|,两个函数的定义域都是R ,对应法则相同,是同一函数,D .f(x)={1,x >0−1,x <0,定义域为{x|x ≠0},g(x)的定义域是R ,两个函数的定义域不相同,不是同一函数, 故选:C .分别判断两个函数的定义域和对应法则是否相同即可.本题主要考查同一函数的判断,结合两个函数的定义域和对应法则是否相同是解决本题的关键,是基础题.3.【答案】D【解析】解:y =cosx 在(0,+∞)上没有单调性;y =−log 2x 和y =2x 都是非奇非偶函数;y =x −2是偶函数,且在(0,+∞)上是减函数. 故选:D .可看出选项A 的函数在(0,+∞)上没有单调性,选项B ,C 的函数都是非奇非偶函数,从而只能选D .本题考查了偶函数和减函数的定义及判断,偶函数图象的对称性,考查了计算能力,属4.【答案】D【解析】解:路程f i(x)(i=1,2,3,4)关于时间x(x>1)的函数关系是:f1(x)=x2,f2(x)=2x,f3(x)=log2x,f4(x)=2x,它们相应的函数模型分别是幂函数,一次函数,对数函数和指数函数模型.根据四种函数的变化特点,指数函数是一个变化最快的函数,当运动的时间足够长,最前面的物体一定是按照指数函数运动的物体,即一定是第四种物体,故选:D.指数函数是一个变化最快的函数,当运动的时间足够长,最前面的动物一定是按照指数函数运动的物体,即一定是第四种物体.本题考查几种基本初等函数的变化趋势,只要注意到对数函数、指数函数与幂函数的增长差异,属于基础题.5.【答案】C【解析】解:由表中数据可得f(1.40625)⋅f(1.4375)<0,根据零点的存在性定理可知,零点在区间(1.40625,1.4375)内,观察四个选项,方程x3+x2−2x−2=0的一个近似根为1.41.故选:C.利用表中的数据,得到f(1.40625)⋅f(1.4375)<0,由零点的存在性定理分析求解即可.本题考查了函数与方程关系的应用,涉及了函数零点的存在性定理的应用,属于基础题.6.【答案】B【解析】解:因为3a=4b=12,所以a=log312,b=log412,所以2=log39<a=log312<log327=3,1<log44<b=log412<log416=2,即2<a<3,1<b<2,所以c=log a b<log a a=1,所以c<b<a.通过指数对数互逆表示出a 、b ,然后判断a 、b 的范围,从而可确定c 的范围,即可得到它们的大小关系.本题主要考查了对数的大小关系,涉及指数与对数的互化,同时考查了学生的转化能力,属于基础题.7.【答案】A【解析】解:因为sin(π−θ)−sin(π2−θ)=√72,可得sinθ−cosθ=√72,两边平方可得1−2sinθcosθ=74,可得2sinθcosθ=−34<0,因为θ∈(34π,π),可得sinθ>0,cosθ<0,sinθ+cosθ<0,则sin(π−θ)−cos(π−θ)=sinθ+cosθ=−√(sinθ+cosθ)2=−√1+2sinθcosθ=−√1+(−34)=−12.故选:A .利用诱导公式化简已知等式,两边平方,利用同角三角函数基本关系式可求2sinθcosθ=−34<0,进而根据诱导公式,同角三角函数基本关系式化简所求即可得解.本题主要考查了诱导公式,同角三角函数基本关系式在三角函数化简求值中的应用,考查了转化思想,属于基础题.8.【答案】A【解析】解:f(−x)=−x 3−sinx e −x +e x=−f(x),则函数为奇函数,图象关于原点对称,排除BD ,当x =π时,f(x)>0,排除D , 故选:A .根据函数的奇偶性和对称性,利用排除法进行判断即可.本题主要考查函数图象的识别和判断,利用函数奇偶性和对称性的关系,结合排除法是解决本题的关键,是基础题.【解析】解:∵幂函数f(x)=qx−p2+2p+3(q∈R,p∈Z)在(0,+∞)上是增函数,且在定义域上是偶函数,∴q=1,且−p2+2p+3为正的偶数,∴p=1.∴p+q=2,故选:C.由题意利用幂函数的定义和性质,求出p、q的值,可得结论.本题主要考查幂函数的定义和性质,属于基础题.10.【答案】D【解析】解:函数f(x)=3sin(ωx+φ)+1(ω>0,|φ|<π2)的最小正周期为π,故ω=2,其图象关于直线x=π3对称,所以2π3+φ=kπ+π2(k∈Z),由于|ϕ|<π2,故φ=−π6,所以f(x)=3sin(2x−π6)+1.对于A:当x=0时,f(0)=3sin(−π6)+1=−32+1=−12,故A错误;对于B:由于x∈[π12,2π3],所以2x−π6∈[0,7π6],故B错误,对于C:当x=7π12时,f(7π12)=3sinπ+1=1,故C错误;对于D:将f(x)的图象向左平移12|φ|=π12个单位长度得到函数y=3sin2x+1的图象,故D正确.故选:D.首先利用函数的性质求出函数的关系式,进一步判定A、B、C、D的结论.本题考查的知识要点:三角函数关系的变换,函数的关系式的求法,正弦型函数的性质的应用,函数的图象的平移变换和伸缩变换,主要考查学生的运算能力和转换能力及思维能力,属于基础题.11.【答案】C【解析】解:对任意不相等的实数x 1,x 2都有(x 2−x 1)(f(x 1)−f(x 2))<0成立, 可得函数f(x)={a x ,x ≥1(5−a)x +1,x <1是R 上的增函数,∴{a >15−a >05−a +1≤a ,即3≤a <5. ∴a 的取值范围是[3,5). 故选:C .由题意可得,函数f(x)={a x ,x ≥1(5−a)x +1,x <1是R 上的增函数,进一步得到关于a 的不等式组求解.本题考查分段函数的单调性及其应用,考查化归与转化思想,考查运算求解能力,是基础题.12.【答案】B【解析】解:∵f(x)在区间[π3,π2]上具有单调性,且f(π2)=−f(π3),f(π2)=f(2π3), ∴由f(π2)=−f(π3),得函数关于(π2+π32,0)对称,即关于(5π12,0)对称, 由f(π2)=f(2π3),得函数关于x =π2+2π32=7π12对称,则T4=7π12−5π12=2π12,得T =2π3,即2πω=2π3,得ω=3,故选:B .结合条件得到函数关于(5π12,0)对称,关于关于x =7π12对称,根据对称性求出函数的周期即可取出ω的值.本题主要考查三角函数的图象和性质,根据条件求出函数的对称性,结合对称性求出函数的周期是解决本题的关键,是中档题.13.【答案】1【解析】解:因为f(x)={16x −1,x ≤1x 2+x −2,x >1,所以f(2)=22+2−2=4, 所以f(1f(2))=f(14)=1614−1=24×14−1=1.故答案为:1.先利用x >1的解析式求出f(2),再利用x ≤1的解析式求解f(1f(2))即可.本题考查的是函数的求值问题,主要考查的是分段函数求值,解题的关键是弄清该使用哪一段解析式求解,属于基础题.14.【答案】34【解析】解:(2.25)−12+(−9.6)0−(827)13+log 2512⋅log 45=11.5+1−23+lg 12lg25⋅lg5lg4 =23+1−23+(−14) =34.故答案为:34.利用指数、对数的性质、运算法则直接求解.本题考查指数式、对数式化简求值,考查指数、对数的性质、运算法则等基础知识,考查运算求解能力,是基础题.15.【答案】8【解析】解:由[x]的定义知,当x ≥0时,[x]=0,1,2,3,…… 则f(x)=0,f(x)=sin π2=1,f(x)=sinπ=0,f(x)=sin 3π2=−1,f(x)=sin2π=0,……,则f(x)的值域为{0,1,−1},所以子集的个数为23=8个, 故答案为:8.根据[x]的定义,结合三角函数定义进行计算即可.本题主要考查真子集的计算,结合[x]的定义计算出函数的值域是解决本题的关键,是基础题.16.【答案】(12,1)【解析】解:方程4x −k ⋅2x+1−3⋅2x +4=0(x >0), 即(2x )2−(2k +3)2x +4=0(x >0), 令2x =t ,则t >1, 则有t 2−(2k +3)t +4=0,若方程4x −k ⋅2x+1−3⋅2x +4=0(x >0)有两个不相等实根, 即t 2−(2k +3)t +4=0(t >1)有两个不相等实根,则{2k+32>1△=[−(2k +3)]2−4×4>0f(1)=1−(2k +3)+4>0,解得:12<k <1,故答案为:(12,1).令2x =t ,问题转化为t 2−(2k +3)t +4=0(t >1)有两个不相等实根,根据二次函数的性质求出k 的范围即可.本题考查了二次函数,二次方程与二次不等式问题,考查转化思想,是中档题.17.【答案】解:(1)由题意可得A 点到原点O 的距离√(45)2+(−35)2=1, 由三角函数的定义知sinα=45,设角β的终边落在射线y =x(x >0)上任意一点B(m,m),m >0, 则tanβ=1, 所以sinα⋅tanβ=45.(2)由(1)及三角函数的定义知tanα=45−35=−43,原式=−cosαsinα+cos 2βsin 2β+3sinβcosβ=−1tanα+1tan 2β+3tanβ=−1−43+11+3=1.【解析】(1)由题意利用任意角的三角函数的定义可求sinα,设角β的终边落在射线y =x(x >0)上任意一点B(m,m),m >0,可求tanβ=1,即可计算得解.(2)由(1)及三角函数的定义可求tanα的值,利用诱导公式,同角三角函数基本关系式化简求解即可得解.本题考查了任意角的三角函数的定义,考查了诱导公式,同角三角函数基本关系式在三角函数化简求值中的应用,考查了计算能力和转化思想,属于基础题.18.【答案】解:(1)集合A ={x|log 2(x +2)<2}={x|−2<x <2},当a =1时,B ={x|1<x <3}, ∴A ∩B ={x|1<x <2}. (2)当选①∵A ∩B =⌀,∴当B =⌀时,3a −2≥2a +1,解得a ≥3,符合题意; 当B ≠⌀时,{3a −2<2a +13a −2≥2或{3a −2<2a +12a +1≤−2解得43≤a <3或a ≤−32,综上,a 的取值范围为(−∞,−32]∪[43,+∞). 当选②∵A ∪B =A ,∴B ⊆A∴当B =⌀时,3a −2≥2a +1,即a ≥3,符合题意; 当B ≠⌀时,{a <3−2≤3a −22≥2a +1,解得0≤a ≤12,综上,a 的取值范围为[0,12]∪[3,+∞).【解析】(1)可以求出A ={x|−2<x <2},a =1时,求出集合B ,然后进行交集的运算即可;(2)若选①根据A ∩B =⌀,可讨论B 是否为空集:B =⌀时,3a −2≥2a +1;B ≠⌀时,根据集合关系列出不等式组,解出a 的范围即可.若选②由A ∪B =A ,得到B ⊆A ,由此能求出实数a 的取值范围.本题考查对数不等式的解法,考查交集运算、集合之间的关系,子集的定义等基础知识,考查运算求解能力,属于基础题.19.【答案】解:(1)设增长率为x ,依题意得:m(1+x)10=2m ,所以(1+x)10=2,从而[(1+x)10]110=2110, 即1+x =2110,解得x =2110−1, 故年增长率为2110−1;(2)设已经植树造林n年,则m(1+2110−1)n=√2m,即2110n=212,解得n=5,故已经植树造林5年;(3)设已经植树造林n年,则m(1+2110−1)n=√2m,即2110k≥6,即110k≥log26=log22+log23,解得k≥10+10lg3lg2≈25.8,故至少还需要26年.【解析】(1)设增长率为x,依题意得:m(1+x)10=2m,然后解方程即可;(2)设已经植树造林n年,则m(1+2110−1)n=√2m,解方程即可求解;(3)设已经植树造林n年,则m(1+2110−1)n=√2m,解不等式即可.本题考查了根据实际问题建立函数模型的问题,涉及到解指数式方程以及对数式方程,考查了学生的运算能力,属于中档题.20.【答案】(1)解:假设存在一次函数f(x),设f(x)=kx+b(k≠0),则f(x1+x2)=k(x1+x2)+b,f(x1)+f(x2)−2=k(x1+x2)+2b−2,所有b=2b−2,b=2,f(2)=2k+b=4,k=1,故满足条件的一次函数为:f(x)=x+2;(2)证明:定义在R上的函数f(x)对任意的x1、x2∈R,都有f(x1+x2)=f(x1)+f(x2)−2成立,令x1=x2=0,则f(0+0)=f(0)+f(0)−2,∴f(0)=2,令x1=x,x2=−x,则f(x−x)=f(x)+f(−x)−2,∴[f(x)−2]+[f(−x)−2]=0,即g(x)+g(−x)=0,于是g(−x)=−g(x),∴g(x)=f(x)−2为奇函数.【解析】(1)假设存在一次函数f(x),设出解析式,然后结合题目条件建立等式,解之即可求出所求;(2)令x1=x2=0,求出f(0),再令x1=x,x2=−x,变形可得g(−x)=−g(x),根据奇函数的定义可得结论.本题主要考查了抽象函数及其应用,及其赋值法的应用和奇函数的判定,同时考查了学生的转化能力,属于中档题.21.【答案】解:(1)由图易知T2=2π3−π6=π2,则T=π,ω=2πT=2,由题意结合图象知,2×π6+φ=kπ,k∈Z,又0<φ<π,故φ=2π3,则f(x)=sin(2x+2π3).令:2kπ−π2 ≤2x+2π3≤2kπ+π2,k∈Z,整理得kπ−7π12≤x≤kπ−π12,k∈Z,所以函数f(x)的单调增区间是[kπ−7π12,kπ−π12](k∈Z).(2)若f(x)的图象横坐标不变,纵坐标扩大为原来的2倍,然后再将所得图象向右平移π3个单位,最后向上平移1个单位,得到函数g(x)=2sin2x+1.令g(x)=0,得x=kπ+7π12或x=kπ+11π12 (k∈Z).所以在[0,π]上恰好有两个零点,若g(x)在[0,b]上恰有10个零点,则b不小于第10个零点的横坐标,小于第11个零点的横坐标即可,即b的范围为:b≥4π+11π12 =59π12.且b<4π+11π12+π−11π12+7π12 =67π12即59π12≤b<67π12.【解析】(1)直接利用函数的图象求出函数的关系式,进一步求出函数的单调区间;(2)利用函数的图象的平移变换和伸缩变换,根据图象和零点的关系求出参数的取值范围.本题考查的知识要点:函数的额关系式的求法和应用,函数的图象的平移变换和伸缩变换,函数的图象和零点的关系,主要考查学生的运算能力和转换能力及思维能力,属于基础题.22.【答案】解:(1)根据题意,函数f(x)=1−b2x+a为定义在R上的奇函数.所以f(x)+f(−x)=1−b2x+a +1−b2−x+a=0在R上恒成立,变形可得:(b −2a)(2x +2−x )+2ab −2a 2−2=0恒成立, 所以{b =2a ab =1+a2,解得:{a =1b =2或{a =−1b =−2, 当{a =1b =2时,f(x)=1−22x +1=2x −12x +1,是定义域为R 的奇函数,符合题意,当{a =−1b =−2时,f(x)=1+22x −1,其定义域为{x|x ≠0},不符合题意, 故a =1,b =2;(2)函数f(x)为R 上的单调增函数;证明:设x 1,x 2是R 上的任意两个值,且x 1<x 2,则f(x 1)−f(x 2)=1−22x 1+1−(1−22x 2+1)=22x 2+1−22x 1+1=2(2x 1−2x 2)(2x 1+1)(2x 2+1) 因为x 1<x 2,又y =2x 为R 上的单调增函数,所以0<2x 1<2x 2,则有f(x 1)−f(x 2)<0,即f(x 1)<f(x 2), 所以函数f(x)为R 上的单调增函数;(3)因为f(lnm)+f(lnm −1)≤1−2lnm ,即f(lnm)+lnm ≤−f(lnm −1)+1−lnm 而函数f(x)为R 上的奇函数,则有f(lnm)+lnm ≤f(1−lnm)+1−lnm , 令ℎ(x)=f(x)+x ,设x 1,x 2是R 上的任意两个值,且x 1<x 2,因为x 1−x 2<0, 由(2)知f(x 1)−f(x 2)<0,所以ℎ(x 1)−ℎ(x 2)=f(x 1)+x 1−(f(x 2)+x 2)=f(x 1)−f(x 2)+(x 1−x 2)<0, 即ℎ(x 1)<ℎ(x 2),所以ℎ(x)为R 上的单调增函数.因为f(lnm)+lnm ≤f(1−lnm)+1−lnm ,所以ℎ(lnm)≤ℎ(1−lnm) 所以lnm ≤1−lnm ,即lnm ≤12,解可得:0<m ≤√e ,所以m 的范围是(0,√e].【解析】(1)根据题意,由奇函数的定义可得f(x)+f(−x)=0,结合函数的解析式分析可得a 、b 的值,验证函数的定义域可得答案, (2)根据题意,由作差法分析可得结论,(3)根据题意,原不等式变形可得f(lnm)+lnm ≤f(1−lnm)+1−lnm ,令ℎ(x)=f(x)+x ,由作差法可得ℎ(x)是R 上的单调增函数,则原不等式可以转化为lnm ≤1−lnm ,即lnm ≤12,解可得m 的取值范围,即可得答案.本题考查函数奇偶性、单调性的综合应用,涉及对数不等式的解法,属于中档题.。
2020-2021学年四川省南充市高一数学上学期期末考试数学试题含解析
A. B. C. D.
6.角 终边上有一点 , ,则 ()
A. B. C. D. 1
7.为了得到函数 的图象,可以将函数 的图象()
A向右平移 个单位长度B.向左平移 个单位长度
C.向左平移 个单位长度D.向右平移 个单位长度
8.已知f(x)= +a +bx-8,且f(-2)=10,那么f(2)等于()
〖分析〗
根据函数的解析式,代入准确计算,即可求解.
〖详 解〗由题意,函数 ,可得 .
故选:D.
4.已知向量 ,则 ()
A. B. C. D.
〖答 案〗A
〖解 析〗
〖分析〗
利用平面向量坐标公式求解即可.
〖详 解〗 ,
故选:A
5.若函数 ( 且 )有两个不同零点,则a的取值范围是()
A. B. C. D.
3.考试结束后,将答题卡交回.
一、选择题:本题共12小题每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1.已知集合 ,则 ()
A. B. C. D.
2. ()
A. B. C. D.
3.已知函数 ,则 ()
A. 5B.3C. D.
4.已知向量 ,则 ()
A. B. C. D.
A.-26B.-18C.-10D.10
9.已知 ,则 ()
A. B. C. D.
10.给定集合 , ,定义 ,若 , ,则集合 中的所有元素之和为()
A. 15B.14C. 27D.
11.已知 是单位向量, ,若平面向量 满足 , 且 ,则 ()
A. 9B.8C. 7D. 6
湖南省永州市2020-2021学年高一上学期期末考试数学试题 (解析版)
2020-2021学年湖南省永州市高一(上)期末数学试卷一、选择题(共8小题).1.设全集U={1,2,3},A={1,2},则∁U A=()A.{1}B.{2}C.{3}D.{1,3} 2.365°是()A.第一象限角B.第二象限角C.第三象限角D.第四象限角3.命题“∃x∈R,x﹣1>2”的否定是()A.∃x∈R,x﹣1<2B.∃x∈R,x﹣1≤2C.∀x∈R,x﹣1<2D.∀x∈R,x﹣1≤2 4.扇形的半径为1,圆心角为2,则扇形的面积为()A.1B.2C.3D.45.已知a=log2,b=()﹣2,c=2,则a,b,c的大小关系是()A.b<c<a B.b<a<c C.a<c<b D.a<b<c6.王昌龄是盛唐著名的边塞诗人,被誉为“七绝圣手”,其《从军行》传诵至今,内容为:“青海长云暗雪山,孤城遥望玉门关.黄沙百战穿金甲,不破楼兰终不还.”由此推断,“返回家乡”是“攻破楼兰”的()A.必要不充分条件B.充分不必要条件C.充要条件D.既不充分也不必要条件7.函数f(x)=x+cos x的零点所在的区间为()A.(﹣1,﹣)B.(﹣)C.(0,)D.()8.设函数f(x)的定义域为R,f(x+1)=f(x),当x∈(0,1]时,f(x)=x(1﹣x).若存在x∈[m,+∞),使得f(x)=有解,则实数m的取值范围为()A.(﹣∞,]B.(﹣∞,]C.(﹣∞,]D.(﹣∞,]二、多项选择题(共4小题).9.我国著名的数学家华罗庚先生曾说:数缺形时少直观,形缺数时难入微;数形结合百般好,隔裂分家万事休.在数学学习和研究中,常用函数的图象来研究函数的性质.下列函数中,在(0,+∞)上单调递增且图象关于y轴对称的是()A.f(x)=x3B.f(x)=x2C.y=x﹣2D.f(x)=|x| 10.设a,b,c∈R,a<b,则下列不等式一定成立的是()A.a+c<b+c B.e﹣a>e﹣b C.ac2<bc2D.<11.将函数f(x)=sin(2x﹣φ)(0<φ<)的图象上所有的点向左平行移动个单位长度,得到偶函数h(x)的图象,则下列结论中正确的有()A.h(x)的图象关于点(,0)对称B.h(x)的图象关于x=对称C.h(x)在[,]上的值域为[,]D.h(x)在[]上单调递减12.若函数f(x)对∀x1,x2∈(1,+∞),(x1≠x2),不等式<1成立,则称f(x)在(1,+∞)上为“平方差减函数”,则下列函数中是“平方差减函数”的有()A.f(x)=﹣2x+1B.f(x)=x2+2x+1C.f(x)=x2﹣log2x D.f(x)=x2﹣x+三、填空题(共4小题).13.已知幂函数y=f(x)的图象过点(2,),则f(4)=.14.已知sinα=,则cos()=.15.若f(x)=,则不等式f(x)>4的解集为.16.十六、十七世纪之交,随着天文、航海、工程、贸易及军事的发展,改进数字计算方法成了当务之急,数学家约翰•纳皮尔正是在研究天文学的过程中,为了简化其中的计算而发明了对数,后来数学家欧拉发现了对数与指数的关系,即a b=N⇔b=log a N,现已知a=log36,2b=36,则()×3=.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(10分)已知集合A={x|x≥2},B={x|3<x≤5}.(1)求A∪B;(2)定义M﹣N={x|x∈M且x∉N},求A﹣B.18.(12分)给定两个条件:①充分不必要,②必要不充分,从上述两个条件中,任选一个补充在下面问题中,并加以解答.问题:已知p:实数x满足x2﹣3ax+2a2<0,a>0.(1)若a=1,求实数x的取值范围;(2)已知q:实数x满足2<x≤3.若存在实数a,使得p是q的_____条件,则求出a 的取值范围;若不存在,请说明理由.19.(12分)如图,在平面直角坐标系xOy中,以Ox轴为始边作两个锐角α,β,它们的终边分别与单位圆相交于P,Q两点,P,Q的纵坐标分别为,.(1)求sinα的值;(2)求α+β.20.(12分)已知函数f(x)=cos4x﹣2sin x cos x﹣sin4x+m(x∈[0,])的最大值为1.(1)求函数f(x)的最小正周期;(2)求使f(x)≥0成立时自变量x的集合.21.(12分)某市为发展农业经济,鼓励农产品加工,助推美丽乡村建设,成立了生产一种饮料的食品加工企业,每瓶饮料的售价为14元,月销售量为9万瓶.(1)根据市场调查,若每瓶饮料的售价每提高1元,则月销售量将减少5000瓶.要使月销售收入不低于原来的月销售收入,该饮料每瓶售价最多为多少元?(2)为了提高月销售量,该企业对此饮料进行技术和销售策略改革,提高每瓶饮料的售价到x元,并投入x2万元作为技术革新费用,投入2万元作为固定宣传费用.试问:技术革新后,要使革新后的月销售收入不低于原来的月销售收入与总投入之和,求月销售量t(万瓶)的最小值,以及t取最小值时的每瓶饮料的售价.22.(12分)已知函数f(x)=e x,g(x)=ln(e x+e﹣x)+2021.(1)判断函数g(x)的奇偶性并证明;(2)若∀x1∈(0,+∞),∃x2∈R,使得f(2x1)+mf(x1)﹣g(x2)>0成立,求实数m 的取值范围.参考答案一、选择题(共8小题).1.设全集U={1,2,3},A={1,2},则∁U A=()A.{1}B.{2}C.{3}D.{1,3}解:∵U={1,2,3},A={1,2},∴∁U A={3}.故选:C.2.365°是()A.第一象限角B.第二象限角C.第三象限角D.第四象限角解:因为365°=360°+5°,5°是第一象限角,所以365°是第一象限角.故选:A.3.命题“∃x∈R,x﹣1>2”的否定是()A.∃x∈R,x﹣1<2B.∃x∈R,x﹣1≤2C.∀x∈R,x﹣1<2D.∀x∈R,x﹣1≤2解:命题“∃x∈R,x﹣1>2”的否定是∀x∈R,x﹣1≤2,故选:D.4.扇形的半径为1,圆心角为2,则扇形的面积为()A.1B.2C.3D.4解:扇形的半径为1,圆心角为2,扇形的弧长为2,所以扇形的面积为:故选:A.5.已知a=log2,b=()﹣2,c=2,则a,b,c的大小关系是()A.b<c<a B.b<a<c C.a<c<b D.a<b<c解:∵,∴a=﹣1,∵=4,∴b=4,∵,∴c=,∴a<c<b,故选:C.6.王昌龄是盛唐著名的边塞诗人,被誉为“七绝圣手”,其《从军行》传诵至今,内容为:“青海长云暗雪山,孤城遥望玉门关.黄沙百战穿金甲,不破楼兰终不还.”由此推断,“返回家乡”是“攻破楼兰”的()A.必要不充分条件B.充分不必要条件C.充要条件D.既不充分也不必要条件解:由题意可知:“返回家乡”则可推出“攻破楼兰”,故“攻破楼兰”是“返回家乡”的必要条件,故选:A.7.函数f(x)=x+cos x的零点所在的区间为()A.(﹣1,﹣)B.(﹣)C.(0,)D.()解:根据题意,f(x)=x+cos x,则f(﹣1)=﹣1+cos1<0,f(﹣)=﹣+cos>﹣+cos>0,则函数f(x)=x+cos x的零点所在的区间为(﹣1,﹣),故选:A.8.设函数f(x)的定义域为R,f(x+1)=f(x),当x∈(0,1]时,f(x)=x(1﹣x).若存在x∈[m,+∞),使得f(x)=有解,则实数m的取值范围为()A.(﹣∞,]B.(﹣∞,]C.(﹣∞,]D.(﹣∞,]解:f(x+1)=f(x),当x∈(0,1]时,f(x)=x(1﹣x).当x∈(1,2]时,f(x)=﹣(x﹣1)(x﹣2).当x∈(2,3]时,f(x)=﹣(x﹣2)(x﹣3).当x∈(3,4]时,f(x)=﹣(x﹣3)(x﹣4).根据f(x)=,结合图象可得,=﹣(x﹣2)(x﹣3),所以x=,所以m,所以m的取值范围为.故选:C.二、多项选择题(共4小题).9.我国著名的数学家华罗庚先生曾说:数缺形时少直观,形缺数时难入微;数形结合百般好,隔裂分家万事休.在数学学习和研究中,常用函数的图象来研究函数的性质.下列函数中,在(0,+∞)上单调递增且图象关于y轴对称的是()A.f(x)=x3B.f(x)=x2C.y=x﹣2D.f(x)=|x|解:对于A,f(x)=x3为奇函数,图象关于原点对称,不符合题意;对于B,f(x)=x2为偶函数,图象关于y轴对称,且在(0,+∞)上单调递增,符合题意;对于C,y=x﹣2=为偶函数,在(0,+∞)上单调递减,不符合题意;对于D,f(x)=|x|为偶函数,图象关于y轴对称,且在(0,+∞)上单调递增,符合题意.故选:BD.10.设a,b,c∈R,a<b,则下列不等式一定成立的是()A.a+c<b+c B.e﹣a>e﹣b C.ac2<bc2D.<解:对于A,因为a<b,所以a+c<b+c,故A正确;对于B,因为a<b,所以﹣a>﹣b,所以e﹣a>e﹣b,故B正确;对于C,若c=0,则ac2=bc2,故C错误;对于D,取a=﹣2,b=﹣1,则=2,=,则>,故D错误.故选:AB.11.将函数f(x)=sin(2x﹣φ)(0<φ<)的图象上所有的点向左平行移动个单位长度,得到偶函数h(x)的图象,则下列结论中正确的有()A.h(x)的图象关于点(,0)对称B.h(x)的图象关于x=对称C.h(x)在[,]上的值域为[,]D.h(x)在[]上单调递减解:将函数f(x)=sin(2x﹣φ)(0<φ<)的图象上所有的点向左平行移动个单位长度,得到函数h(x)=sin(2x+﹣φ)的图象,由于函数h(x)为偶函数,故﹣φ=kπ,所以φ=kπ+,由于0<φ<,所以当k=0时,φ=.所以h(x)=sin(2x+)=sin(2x+)=cos2x,对于A:当x=﹣时,h(﹣)=0,故A正确;对于B:当x=时h()=cos(﹣π)=﹣1,故B正确;当x时,,所以,故C错误;对于D:,所以,根据函数的性质,函数在该区间上单调递减,故D正确.故选:AD.12.若函数f(x)对∀x1,x2∈(1,+∞),(x1≠x2),不等式<1成立,则称f(x)在(1,+∞)上为“平方差减函数”,则下列函数中是“平方差减函数”的有()A.f(x)=﹣2x+1B.f(x)=x2+2x+1C.f(x)=x2﹣log2x D.f(x)=x2﹣x+解:根据题意,设g(x)=f(x)﹣x2,若f(x)在(1,+∞)上为“平方差减函数”,则对∀x1,x2∈(1,+∞),(x1≠x2),不等式<1成立,则有﹣1==×=<0,则有<0,则函数g(x)=f(x)﹣x2在[1,+∞)为减函数,反之,若函数g(x)=f(x)﹣x2在[1,+∞)为减函数,则有=(x1+x2)<0,即f(x)在(1,+∞)上为“平方差减函数”,分析选项:对于A,f(x)=﹣2x﹣1,g(x)=f(x)﹣x2=﹣x2﹣2x﹣1,为开口向下,对称轴为x =﹣1的二次函数,g(x)在区间[1,+∞)为减函数,则f(x)在(1,+∞)上为“平方差减函数”;对于B,f(x)=x2+2x+1,g(x)=f(x)﹣x2=2x+1,g(x)在区间[1,+∞)为增函数,则f(x)在(1,+∞)上不是“平方差减函数”;对于C,f(x)=x2﹣log2x,g(x)=f(x)﹣x2=﹣log2x,g(x)在区间[1,+∞)为减函数,则f(x)在(1,+∞)上为“平方差减函数”;对于D,f(x)=x2﹣x+,g(x)=f(x)﹣x2=﹣x+,g(x)在区间[1,+∞)为减函数,则f(x)在(1,+∞)上为“平方差减函数”;故选:ACD.三、填空题(共4小题).13.已知幂函数y=f(x)的图象过点(2,),则f(4)=2.解:设幂函数y=f(x)=xα,α∈R,其图象过点(2,),∴2α=,解得α=,∴f(x)=,∴f(4)==2.故答案为:2.14.已知sinα=,则cos()=.解:∵sinα=,∴cos()=sinα=,故答案为:.15.若f(x)=,则不等式f(x)>4的解集为(﹣∞,﹣)∪(2,+∞).解:x≥0时,由2x>4,解得x>2,x<0时,由﹣2x+1>4,解得x<﹣,故不等式的解集是(﹣∞,﹣)∪(2,+∞),故答案为:(﹣∞,﹣)∪(2,+∞).16.十六、十七世纪之交,随着天文、航海、工程、贸易及军事的发展,改进数字计算方法成了当务之急,数学家约翰•纳皮尔正是在研究天文学的过程中,为了简化其中的计算而发明了对数,后来数学家欧拉发现了对数与指数的关系,即a b=N⇔b=log a N,现已知a=log36,2b=36,则()×3=.解:因为a=log36,2b=36,所以b=log236,故,,所以,故()×3=.故答案为:.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(10分)已知集合A={x|x≥2},B={x|3<x≤5}.(1)求A∪B;(2)定义M﹣N={x|x∈M且x∉N},求A﹣B.解:(1)∵A={x|x≥2},B={x|3<x≤5},∴A∪B={x|x≥2};(2)∵M﹣N={x|x∈M且x∉N},A={x|x≥2},B={x|3<x≤5},∴A﹣B={x|2≤x≤3或x>5}.18.(12分)给定两个条件:①充分不必要,②必要不充分,从上述两个条件中,任选一个补充在下面问题中,并加以解答.问题:已知p:实数x满足x2﹣3ax+2a2<0,a>0.(1)若a=1,求实数x的取值范围;(2)已知q:实数x满足2<x≤3.若存在实数a,使得p是q的_____条件,则求出a 的取值范围;若不存在,请说明理由.解:(1)因为a=1,解不等式x2﹣3x+2<0,可得1<x<2,所以实数x的取值范围为(1,2);(2)由x2﹣3ax+2a2<0,a>0,可得a<x<2a,若选①:因为p是q的充分不必要条件,则有a≥2且2a≤3,不等式组无解,所以实数a的值不存在;若选②:因为p是q的必要不充分条件,则有a≤2且2a>3,解得,所以实数a的取值范围为.19.(12分)如图,在平面直角坐标系xOy中,以Ox轴为始边作两个锐角α,β,它们的终边分别与单位圆相交于P,Q两点,P,Q的纵坐标分别为,.(1)求sinα的值;(2)求α+β.解:(1)以Ox轴为始边作两个锐角α,β,它们的终边分别与单位圆相交于P,Q两点,P,Q的纵坐标分别为,.∴sinα=,sinβ=.(2)由题意可得cosα==,cosβ==.∵α+β∈(0,π),cos(α+β)=cosαcosβ﹣sinαsinβ=﹣=0,∴α+β=.20.(12分)已知函数f(x)=cos4x﹣2sin x cos x﹣sin4x+m(x∈[0,])的最大值为1.(1)求函数f(x)的最小正周期;(2)求使f(x)≥0成立时自变量x的集合.解:(1)函数f(x)=cos4x﹣2sin x cos x﹣sin4x+m=(cos2x+sin2x)(cos2x﹣sin2x)﹣sin2x+m =cos2x﹣sin2x+m=sim(﹣2x)+m,(x∈[0,]).∴函数f(x)的最小正周期T==π;(2)∵x∈[0,],∴(﹣2x)∈[﹣,],∴sim(﹣2x)∈[﹣,],∴sim(﹣2x)+m∈[m﹣1,m+1],∵f(x)的最大值为1,∴m+1=1,解得m=0.使f(x)≥0成立,即sim(﹣2x)≥0,化为:sim(2x﹣)≤0,∴﹣≤2x﹣≤0,解得:0≤x≤,∴使f(x)≥0成立时自变量x的集合为[0,].21.(12分)某市为发展农业经济,鼓励农产品加工,助推美丽乡村建设,成立了生产一种饮料的食品加工企业,每瓶饮料的售价为14元,月销售量为9万瓶.(1)根据市场调查,若每瓶饮料的售价每提高1元,则月销售量将减少5000瓶.要使月销售收入不低于原来的月销售收入,该饮料每瓶售价最多为多少元?(2)为了提高月销售量,该企业对此饮料进行技术和销售策略改革,提高每瓶饮料的售价到x元,并投入x2万元作为技术革新费用,投入2万元作为固定宣传费用.试问:技术革新后,要使革新后的月销售收入不低于原来的月销售收入与总投入之和,求月销售量t(万瓶)的最小值,以及t取最小值时的每瓶饮料的售价.解:(1)设饮料每瓶售价最多为x元,则[9﹣0.5(x﹣14)]x≥14×9,即x2﹣32x+252≤0,解得:14≤x≤18,所以要使月销售收入不低于原来的月销售收入,该饮料每瓶售价最多为18元.(2)当x>14时,由题意可得,tx≥14×9++2,即当x>14时,t,∵=16,当且仅当即x=16时,等号成立,∴t≥16,所以技术革新后,该饮料月销售量t至少达到16万个时,可使月销售收入不低于原来的月销售收入与总投入之和,此时每瓶饮料的售价为16元.22.(12分)已知函数f(x)=e x,g(x)=ln(e x+e﹣x)+2021.(1)判断函数g(x)的奇偶性并证明;(2)若∀x1∈(0,+∞),∃x2∈R,使得f(2x1)+mf(x1)﹣g(x2)>0成立,求实数m 的取值范围.解:(1)g(x)=ln(e x+e﹣x)+2021为偶函数.理由:g(x)的定义域为R,且g(﹣x)=ln(e﹣x+e x)+2021=g(x),所以g(x)为偶函数;(2)由e﹣x+e x≥2=2,当且仅当x=0时,取得等号,可得g(x)≥ln2+2021,由∀x1∈(0,+∞),∃x2∈R,使得f(2x1)+mf(x1)﹣g(x2)>0成立,可得f(2x)+mf(x)>ln2+2021对x∈(0,+∞)恒成立,即为e2x+me x>ln2+2021对x∈(0,+∞)恒成立,可令t=e x(t>1),则t2+mt>ln2+2021对t∈(1,+∞)恒成立,可得m>=﹣t对t∈(1,+∞)恒成立,设h(t)=﹣t,可得h(t)在t∈(1,+∞)递减,则h(t)<h(1)=ln2+2020,则m≥ln2+2020.即m的取值范围是[ln2+2020,+∞).。
2020年四川省成都市大邑中学(邑新大道)高一数学理上学期期末试题含解析
2020年四川省成都市大邑中学(邑新大道)高一数学理上学期期末试题含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 化简 ()结果为 ( )A.B.C. D.参考答案:A2. 样本中共有5个个体,其值分别为a、0、1、2、3.若该样本的平均值为1,则样本的方差为()A. -1B. 0C. 1D. 2参考答案:D【分析】根据样本的平均数计算出的值,再利用方差公式计算出样本的方差.【详解】由题意可知,,解得,因此,该样本的方差为,故选:D. 【点睛】本题考查方差与平均数的计算,灵活利用平均数与方差公式进行求解是解本题的关键,考查运算求解能力,属于基础题.3. 过直线的交点,且与直线垂直的直线方程是()A. B. C. D .参考答案:D考点:直线方程4. 若a,b是函数的两个不同的零点,且这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则的值等于()A. 6B. 7C. 8D. 9参考答案:D试题分析:由题意可得:a+b=p,ab=q,∵p>0,q>0,可得a>0,b>0,又a,b,-2这三个数可适当排序后成等差数列,也可适当排序后成等比数列,可得①或②.解①得:;解②得:.∴p=a+b=5,q=1×4=4,则p+q=9.考点:等比数列的性质;等差数列的性质5. 在数列中,(c为非零常数),前项和,则实数为A. B. 0 C. 1D. 2参考答案:A6. 函数的部分图象可能是().A.B.C.D.参考答案:B∵,∴,∴函数的定义域为,又,∴函数为偶函数,且图象关于轴对称,可排除、.又∵当时,,可排除.综上,故选.7. 已知x与y之间的几组数据如下表:假设根据上表数据所得线性回归直线方程为=x+,若某同学根据上表中的前两组数据(1,0)和(2,2)求得的直线方程为y=b′x+a′,则以下结论正确的是()A.>b′,>a′B. >b′,<a′C. <b′,>a′D. <b′,<a′参考答案:C略8. sin480°等于()A. B. C. D.参考答案:D试题分析:因为,所以选D.考点:诱导公式,特殊角的三角函数值.9. 函数的最小值为()参考答案:B10. 平面向量与的夹角为,,则等于()A.2B.2C.4 D.参考答案:A【考点】平面向量数量积的运算;向量的模.【分析】利用已知条件,通过平方关系,求解即可.【解答】解:平面向量与的夹角为,,则===2.故选:A.二、填空题:本大题共7小题,每小题4分,共28分11. 化简参考答案:112. 如图,抛物线y=ax2+2x+c经过点A(0,3),B(﹣1,0),抛物线的顶点为点D,对称轴与x轴交于点E,连结BD,则抛物线表达式:BD的长为.参考答案:y=﹣x2+2x+3,2.【考点】二次函数的性质.【分析】由抛物线y=ax2+2x+c经过点A(0,3),即c=3,将B(﹣1,0)代入y=ax2+2x+3,即可求得a的值,即可求得抛物线的表达式,求得顶点坐标,利用两点之间的距离公式,即可求得BD的长.【解答】解:由抛物线的性质可知:抛物线y=ax2+2x+c经过点A(0,3),即c=3,∴抛物线y=ax2+2x+3经过点B(﹣1,0),代入求得a=﹣1,∴抛物线的表达式y=﹣x2+2x+3,由y=﹣x2+2x+3=﹣(x﹣1)2+4,∴抛物线的顶点为点D(1,4),由两点之间的距离公式丨BD丨==2,丨BD丨=2,故答案为:y=﹣x2+2x+3,2.13. (4分)在等差数列{a n}中,S10=10,S20=30,则S30=.参考答案:考点:等差数列的性质.专题:计算题.分析:首项根据等差数列的性质S m,S2m﹣S m,S3m﹣S2m仍然成等差数列,可得S10,S20﹣S10,S30﹣S20仍然成等差数列.进而代入数值可得答案.解答:若数列{a n}为等差数列则S m,S2m﹣S m,S3m﹣S2m仍然成等差数列.所以S10,S20﹣S10,S30﹣S20仍然成等差数列.因为在等差数列{a n}中有S10=10,S20=30,所以S30=60.故答案为60.点评:解决此类问题的关键是熟悉等差数列的前n项和的有关性质,此类题目一般以选择题或填空题的形式出现.14. 命题“若,则”的逆命题是___________参考答案:若,则15. 已知向量与的夹角为60°,且||=1,||=2;则·=.参考答案:1【分析】根据平面向量数量积的定义写出运算结果即可.【解答】解:向量与的夹角θ为60°,且||=1,||=2;则=||×||×cos60°=1×2×=1.故答案为:1.16. 已知全集U={1,2,3,4,5},集合A={x|x2-3x+2=0},B={x|x=2a,a∈A},则集合?U(A∪B)中元素的个数为________.参考答案:解析:由题意得,A={1,2},B={2,4},所以A∪B={1,2,4},所以?U(A∪B)={3,5},故有2个元素.17. 若直线与曲线恰有一个公共点,则实数的取值范围是。
2020-2021学年山东省济南市高一(上)期末数学试卷
2020-2021学年山东省济南市高一(上)期末数学试卷一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)下列集合与集合{1A =,3}相等的是( ) A .(1,3) B .{(1,3)}C .2{|430}x x x -+=D .{(,)|1x y x =,3}y =2.(5分)命题:“0x R ∃∈,210x ->”的否定为( ) A .x R ∃∈,210x - B .x R ∀∈,210x - C .x R ∃∈,210x -< D .x R ∀∈,210x -<3.(5分)“α是锐角”是“α是第一象限角”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分又不必要条件4.(5分)sin 20cos10sin70sin10(︒︒+︒︒= )A .14B C .12D 5.(5分)已知()||f x lnx =,若1()5a f =,1()4b f =,c f =(3),则( )A .a b c <<B .b c a <<C .c a b <<D .c b a <<6.(5分)要得到函数cos(3)5y x π=+的图象,需将函数cos3y x =的图象( ) A .向左平移15π个单位长度 B .向左平移5π个单位长度 C .向右平移15π个单位长度D .向右平移5π个单位长度7.(5分)我国著名数学家华罗庚先生曾说:“数缺形时少直观,形少数时难入微,数形结合百般好,隔离分家万事休.”在数学的学习和研究中,常用函数图象来研究函数性质,也常用函数解析式来分析函数图象的特征.如函数||2sin 2x y x =的图象大致是( )A .B .C .D .8.(5分)质数也叫素数,17世纪法国数学家马林⋅梅森曾对“21P -” (p 是素数)型素数作过较为系统而深入的研究,因此数学界将“21P -” (p 是素数)形式的素数称为梅森素数.已知第12个梅森素数为12721M =-,第14个梅森素数为60721N =-,则下列各数中与NM最接近的数为( ) (参考数据:120.3010)g ≈ A .14010B .14210C .14110D .14610二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分.9.(5分)若函数2()2()f x x ax a Z =-+∈在区间[0,1]上单调递增,在区间[3,4]上单调递减,则a 的取值为( ) A .4B .3C .2D .110.(5分)若0a b >>,则下列不等式成立的是( ) A .11a b< B .11b b a a +<+ C .11a b b a+>+ D .11a b a b+>+ 11.(5分)下列说法中正确的是( ) A .函数sin()2y x π=+是偶函数B .存在实数α,使sin α cos 1α=C .直线8x π=是函数5sin(2)4y x π=+图象的一条对称轴 D .若α,β都是第一象限角,且αβ>,则sin sin αβ>12.(5分)已知定义域为R 的奇函数()f x ,当0x >时,21,01()1,121x x x f x x x ⎧-+<⎪=⎨>⎪-⎩,下列说法中正确的是( )A .当121122x x -<<<时,恒有12()()f x f x >B .若当(0x ∈,]m 时,()f x 的最小值为34,则m 的取值范围为17[,]26C .不存在实数,使函数()()F x f x x =-有5个不相等的零点D .若关于x 的方程3[()][()]04f x f x a --=所有实数根之和为0,则34a =-三、填空题:本题共4小题,每小题5分,共20分. 13.(5分)23182252lg lg ++的值为 .14.(5分)函数()sin()(0f x A x A ωϕ=+>,0ω>,0)πϕ-<<的部分图象如图所示,则()4f π的值为 .15.(5分)已知函数()f x 为定义在R 上的奇函数,对任意x R ∈都有(3)()f x f x +=-,当3[2x ∈-,0]时,()2f x x =-,则(100)f 的值为 .16.(5分)设函数()f x 的定义域为D ,如果存在正实数,使对任意的x D ∈,都有x D +∈,且()()f x f x +>恒成立,则称函数()f x 为D 上的“型增函数”.已知()f x 是定义在R 上的奇函数,且当0x >时,()||2f x x a a =--,若()f x 为R 上的“2021型增函数”,则实数a 的取值范围是 .四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(10分)已知集合{|52}A x x =-<<,2{|340}B x x x =-->.(1)求A B ,()R AB ;(2)若{|11}C x m x m =-<<+,BC ≠∅,求实数m 的取值范围.18.(12分)在①2sin 3sin 2αα=,②cos 2α=,③tan α=补充在下面问题中,并解决问题.已知(0,)2πα∈,(0,)2πβ∈,1cos()4αβ+=-,____,求cos β.19.(12分)设函数2()cos cos()6f x x x x π=⋅-(1)求()f x 的最小正周期和单调递增区间;(2)当[,]122x ππ∈时,求函数()f x 的最大值和最小值.20.(12分)2020年11月5日至10日,第三届中国国际进口博览会在上海举行,经过三年发展,进博会让展品变商品、让展商变投资商,交流创意和理念联通中国和世界,成为国际采购、投资促进、人文交流、开放合作的四大平台,成为全球共享的国际公共产品. 在消费品展区,某企业带来了一款新型节能环保产品参展,并决定大量投放市场已知该产品年固定研发成本150万元,每生产一台需另投入380元.设该企业一年内生产该产品x 万台且全部售完,每万台的销售收入为()R x 万元,且25002,020()21406250370,20x x R x x x x -<⎧⎪=⎨+->⎪⎩. (1)写出年利润S (万元)关于年产量x (万台)的函数解析式;(利润=销售收入-成本) (2)当年产量为多少万台时,该企业获得的利润最大?并求出最大利润.21.(12分)已知函数3()1(26)31xx a f x b x b ⋅=--<<+是奇函数.(1)求a ,b 的值;(2)证明:()f x 是区间(26,)b b -上的减函数; (3)若(2)(21)0f m f m -++>,求实数m 的取值范围. 22.(12分)已知函数()f x =. (1)若()f x 的定义域为R ,求实数m 的取值范围;(2)设函数()()g x f x =-,若()0g lnx 对任意的[x e ∈,2]e 恒成立,求实数m 的取值范围.2020-2021学年山东省济南市高一(上)期末数学试卷参考答案与试题解析一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)下列集合与集合{1A =,3}相等的是( ) A .(1,3) B .{(1,3)}C .2{|430}x x x -+=D .{(,)|1x y x =,3}y =【解答】解:2{|430}{1x x x -+==,3},∴与集合{1A =,3}相等的是2{|430}x x x -+=.故选:C .2.(5分)命题:“0x R ∃∈,210x ->”的否定为( ) A .x R ∃∈,210x - B .x R ∀∈,210x - C .x R ∃∈,210x -< D .x R ∀∈,210x -<【解答】解:命题:“0x R ∃∈,2010x ->”的否定为“x R ∀∈,210x -”,故选:B .3.(5分)“α是锐角”是“α是第一象限角”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分又不必要条件【解答】解:因为α是锐角,故090α︒<<︒,则α一定是第一象限角, 若α是第一象限角,不妨取330-︒,则α不是锐角,所以“α是锐角”是“α是第一象限角”的充分不必要条件. 故选:A .4.(5分)sin 20cos10sin70sin10(︒︒+︒︒= )A .14B C .12D 【解答】解:sin20cos10sin10sin70cos70cos10sin70sin10︒︒+︒︒=︒︒+︒︒ cos(7010)=︒-︒1cos602=︒=. 故选:C .5.(5分)已知()||f x lnx =,若1()5a f =,1()4b f =,c f =(3),则( )A .a b c <<B .b c a <<C .c a b <<D .c b a <<【解答】解:11()||555a f ln ln ===,11()||444b f ln ln ===,c f =(3)|3|3ln ln ==,函数y lnx =在(0,)+∞上单调递增,且345<<, 345ln ln ln ∴<<,即c b a <<, 故选:D .6.(5分)要得到函数cos(3)5y x π=+的图象,需将函数cos3y x =的图象( )A .向左平移15π个单位长度B .向左平移5π个单位长度C .向右平移15π个单位长度D .向右平移5π个单位长度【解答】解:将函数cos3y x =的图象,向左平移15π个单位长度,可得函数cos(3)5y x π=+的图象,故选:A .7.(5分)我国著名数学家华罗庚先生曾说:“数缺形时少直观,形少数时难入微,数形结合百般好,隔离分家万事休.”在数学的学习和研究中,常用函数图象来研究函数性质,也常用函数解析式来分析函数图象的特征.如函数||2sin 2x y x =的图象大致是( )A .B .C .D .【解答】解:||||()2sin(2)2sin 2()x x f x x x f x --=-=-=-,函数为奇函数,图象关于原点对称,排除A ,B , 当2x ππ<<时,()0f x <,排除C ,故选:D .8.(5分)质数也叫素数,17世纪法国数学家马林⋅梅森曾对“21P -” (p 是素数)型素数作过较为系统而深入的研究,因此数学界将“21P -” (p 是素数)形式的素数称为梅森素数.已知第12个梅森素数为12721M =-,第14个梅森素数为60721N =-,则下列各数中与NM最接近的数为( ) (参考数据:120.3010)g ≈ A .14010B .14210C .14110D .14610【解答】解:60748012721221N M -=≈-,令4802=,两边同时取常用对数得:4802lg lg =, 4802144.48lg lg ∴=≈, 144.4810∴=,∴与NM最接近的数为14610, 故选:D .二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分.9.(5分)若函数2()2()f x x ax a Z =-+∈在区间[0,1]上单调递增,在区间[3,4]上单调递减,则a 的取值为( ) A .4B .3C .2D .1【解答】解:函数2()2f x x ax =-+是开口向下,对称轴为x a =的二次函数,因为函数2()2()f x x ax a Z =-+∈在区间[0,1]上单调递增,在区间[3,4]上单调递减, 所以13a ,又a 是整数, 所以a 的可能取值为1,2,3, 故选:BCD .10.(5分)若0a b >>,则下列不等式成立的是( ) A .11a b< B .11b b a a +<+ C .11a b b a+>+ D .11a b a b+>+ 【解答】解:若0a b >>,则11a b<,故A 正确; 11(1)b b b a a a a a +--=++,由0a b >>,可得0b a -<,所以0(1)b a a a -<+,即11b b a a +<+,故B 正确; 由A 可知11a b b a+>+,故C 正确; 取12a =,13b =,则152a a +=,1103b b +=,此时11a b a b+<+,故D 错误. 故选:ABC .11.(5分)下列说法中正确的是( ) A .函数sin()2y x π=+是偶函数B .存在实数α,使sin α cos 1α=C .直线8x π=是函数5sin(2)4y x π=+图象的一条对称轴 D .若α,β都是第一象限角,且αβ>,则sin sin αβ>【解答】解:对于A :函数sin()cos 2y x x π=+=,故该函数是偶函数,故A 正确;对于B :由于sin cos 1αα=,故sin α和cos α互为倒数,与22sin cos 1αα+=矛盾,故不存在实数α,使sin cos 1αα=,故B 错误; 对于C :当8x π=时,5()sin()1844f πππ=+=-,故C 正确; 对于D :设136πα=,3πβ=,由于α,β都是第一象限角,但是sin sin βα>,故D 错误; 故选:AC .12.(5分)已知定义域为R 的奇函数()f x ,当0x >时,21,01()1,121x x x f x x x ⎧-+<⎪=⎨>⎪-⎩,下列说法中正确的是( )A .当121122x x -<<<时,恒有12()()f x f x >B .若当(0x ∈,]m 时,()f x 的最小值为34,则m 的取值范围为17[,]26C .不存在实数,使函数()()F x f x x =-有5个不相等的零点D .若关于x 的方程3[()][()]04f x f x a --=所有实数根之和为0,则34a =-【解答】解:根据定义域为R 的奇函数()f x ,当0x >时,21,01()1,121x x x f x x x ⎧-+<⎪=⎨>⎪-⎩, 如图所示:对于A :当121122x x -<<<时,根据函数的图象12()()f x f x >不一定成立,故A 错误;对于B :要使()f x 的最小值为34,令13214x =-,解得76x =,故m 的取值范围为17[,]26,故B 正确;对于C :令()f x x =,故21x x x -+=,整理得2(1)10x x -++=,由于△2(1)40=+->,解得1>或3<-,故存在,故C 错误; 对于3:()4D f x =,解得12x =或76,根据函数的图象的对称性可得34a =-,故D 正确; 故选:BD .三、填空题:本题共4小题,每小题5分,共20分. 13.(5分)23182252lg lg ++的值为 5 .【解答】解:原式2323225215lg lg ⨯=++=+=.故答案为:5.14.(5分)函数()sin()(0f x A x A ωϕ=+>,0ω>,0)πϕ-<<的部分图象如图所示,则()4f π的值为3 .【解答】解:由图象得:2A =,()2362T πππ=--=, 故T π=,故22πωπ==,由()2sin(2)233f ππϕ=⨯+=,故232ππϕ+=,解得:6πϕ=-, 故()2sin(2)6f x x π=-,3()2sin(2)2sin 234463f ππππ=⨯-===,315.(5分)已知函数()f x 为定义在R 上的奇函数,对任意x R ∈都有(3)()f x f x +=-,当3[2x ∈-,0]时,()2f x x =-,则(100)f 的值为 2 .【解答】解:根据题意,对任意x R ∈都有(3)()f x f x +=-, 则(6)(3)()f x f x f x +=-+=, 则函数()f x 是周期为6的周期函数,则(100)(4616)f f f =+⨯=(4)f =-(1)(1)f =-, 当3[2x ∈-,0]时,()2f x x =-,则(1)2f -=-,故(100)f f =(4)f =-(1)(1)2f =-=, 故答案为:2.16.(5分)设函数()f x 的定义域为D ,如果存在正实数,使对任意的x D ∈,都有x D +∈,且()()f x f x +>恒成立,则称函数()f x 为D 上的“型增函数”.已知()f x 是定义在R 上的奇函数,且当0x >时,()||2f x x a a =--,若()f x 为R 上的“2021型增函数”,则实数a 的取值范围是 2021(,)6-∞ .【解答】解:()f x 是定义在R 上的奇函数,(0)0f ∴=.设0x <,则0x ->.()||2||2f x x a a x a a ∴-=---=+-,()()||2f x f x x a a ∴=--=-++.||2,0()0,0||2,0x a a x f x x x a a x -->⎧⎪∴==⎨⎪--+<⎩, ①当0x >时,由(2021)()f x f x +>,可得|2021|2||2x a a x a a +-->--,化为|(2021)|||x a x a -->-,由绝对值的几何意义可得20210a a +-<,解得20212a <; ②当0x <时,由(2021)()f x f x +>,分为以下两类研究:当20210x +<时,可得|2021|2||2x a a x a a -+-+>--+,化为|2021|||x a x a +-<-,由绝对值的几何意义可得20210a a --->,解得20212a <-. 当20210x +>,|2021|2||2x a a x a a +-->-++,化为|2021||||20212|4x a x a a a +-++->,0a 时成立;当0a >时,20216a <,因此可得20216a <. ③当0x =时,由(2021)(0)f f >可得|2021|20a a -->,当0a 时成立,当0a >时,20213a <. 综上可知:a 的取值范围是2021(,)6-∞. 故答案为:2021(,)6-∞. 四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(10分)已知集合{|52}A x x =-<<,2{|340}B x x x =-->.(1)求A B ,()R A B ;(2)若{|11}C x m x m =-<<+,BC ≠∅,求实数m 的取值范围. 【解答】解:(1){|52}A x x =-<<,{|1B x x =<-或4}x >, {|2A B x x ∴=<或4}x >,{|14}R B x x =-,(){|12}R A B x x =-<;(2)B C ≠∅,11m ∴-<-或14m +>,解得0m <或3m >,m ∴的取值范围为:(-∞,0)(3⋃,)+∞.18.(12分)在①2sin 3sin 2αα=,②cos2α=,③tan α=补充在下面问题中,并解决问题. 已知(0,)2πα∈,(0,)2πβ∈,1cos()4αβ+=-,____,求cos β. 【解答】解:选择条件①,2sin 3sin 2αα=.得sin 3sin cos ααα=, 因为(0,)2πα∈,所以sin 0α>,可得1cos 3α=;所以sin α== 由于(0,)2πα∈,(0,)2πβ∈,所以(0,)αβπ+∈,所以sin()αβ+== 所以11cos cos[()]cos()cos sin()sin 43βαβααβααβα=+-=+++=-⨯+. 选择条件②:cos2α=221cos 2cos 12123αα=-=⨯-=,以下解法同条件①. 选择条件③:因为0(0,)2πα∈,所以sin 0α>,cos 0α>;由tan α=22sin cos sin cos 1αααα⎧=⎪⎨⎪+=⎩,解得sin α,1cos 3α=; 以下解法同条件①.19.(12分)设函数2()cos cos()6f x x x x π=⋅- (1)求()f x 的最小正周期和单调递增区间;(2)当[,]122x ππ∈时,求函数()f x 的最大值和最小值. 【解答】解:(1)2()cos cos()6f x x x x π=⋅-21cos sin)cos)2x x x x=+-21sin cos2x x x=1sin24x x=1sin(2)23xπ=-,所以()f x的最小正周期是22Tππ==,由222232xπππππ-+-+,Z∈,解得51212xππππ-++,Z∈,所以函数的单调递增区间为[12ππ-+,5]12ππ+,Z∈.(2)当[,]122xππ∈时,2[36xππ-∈-,2]3π,此时1sin(2)[32xπ-∈-,1],可得1()[4f x∈-,1]2,综上,()f x最大值为12,最小值为14-.20.(12分)2020年11月5日至10日,第三届中国国际进口博览会在上海举行,经过三年发展,进博会让展品变商品、让展商变投资商,交流创意和理念联通中国和世界,成为国际采购、投资促进、人文交流、开放合作的四大平台,成为全球共享的国际公共产品.在消费品展区,某企业带来了一款新型节能环保产品参展,并决定大量投放市场已知该产品年固定研发成本150万元,每生产一台需另投入380元.设该企业一年内生产该产品x万台且全部售完,每万台的销售收入为()R x万元,且25002,020()21406250370,20x xR xxx x-<⎧⎪=⎨+->⎪⎩.(1)写出年利润S(万元)关于年产量x(万台)的函数解析式;(利润=销售收入-成本)(2)当年产量为多少万台时,该企业获得的利润最大?并求出最大利润.【解答】解:(1)当020x<时,S xR=()(380150)x x-+2250023801502120150x x x x x=---=-+-,当20x>时,S xR=()(380150)x x-+625062503702140380150101990x x xx x=+---=--+,∴函数S的解析式为22120150,&0206250101990,&20x x xSx xx⎧-+-<⎪=⎨--+>⎪⎩.(2)当020x <时,2221201502(30)1650S x x x =-+-=--+, ∴函数S 在(0,20]上单调递增,∴当20x =时,S 取得最大值,为1450,当20x >时,62506250101990(10)1990S x x x x =--+=-++ 210199050019901490x -=-+=, 当且仅当625010x x=,即25x =时,等号成立,此时S 取得最大值,为1490, 14901450>,∴当年产量为25万台时,该企业获得的利润最大,最大利润为1490万元.21.(12分)已知函数3()1(26)31xx a f x b x b ⋅=--<<+是奇函数. (1)求a ,b 的值;(2)证明:()f x 是区间(26,)b b -上的减函数;(3)若(2)(21)0f m f m -++>,求实数m 的取值范围.【解答】(1)解:函数3()1(26)31xx a f x b x b ⋅=--<<+是奇函数, 所以()()f x f x -=-恒成立,即331113131x xx x a a --⋅⋅---+-++, 整理得(2)(31)0x a -+=,所以2a =,因为60b b -+=,解得2b =, 所以2a =,2b =.(2)证明:由(1)得23()131xx f x ⋅=-=+,(2,2)x ∈-, 设任意1x ,2(2,2)x ∈-,且12x x <,则122112*********(33)()()(1)(1)3131(31)(31)x x x x x x x x f x f x ⋅⋅--=---=++++, 因为12x x <,所以1233x x <,所以21330x x ->,而1310x +>,2310x +>,所以21122(33)0(31)(31)x x x x ->++,所以12()()0f x f x ->,即12()()f x f x >, 所以()f x 是区间(26,)b b -上的减函数.(3)解:(2)(21)0f m f m -++>,所以(2)(21)f m f m ->-+, 因为函数()f x 是奇函数,所以(2)(21)f m f m ->--, 因为函数()f x 是区间(2,2)-上的减函数,所以2212222212m m m m -<--⎧⎪-<-<⎨⎪-<+<⎩,解得103m <<, 所以实数m 的取值范围是1(0,)3. 22.(12分)已知函数()f x =.(1)若()f x 的定义域为R ,求实数m 的取值范围;(2)设函数()()g x f x =-,若()0g lnx 对任意的[x e ∈,2]e 恒成立,求实数m 的取值范围.【解答】解:(1)函数()f x 的定义域为R ,即220mx mx -+在R 上恒成立, 当0m =时,20恒成立,符合题意,当0m ≠时,00m >⎧⎨⎩即2080m m m >⎧⎨-⎩得08m <, 综上,实数m 的取值范围是[0,8].(2)因为()()g x f x ==, 所以()0g lnx 对任意的[x e ∈,2]e 恒成立等价于220()22()m lnx mlnx lnx -+在[x e ∈,2]e 恒成立,即222()20(*)()22()m lnx mlnx m lnx mlnx lnx ⎧-+⎨-+⎩在[x e ∈,2]e 恒成立, 设t lnx =,因为[x e ∈,2]e ,所以[1t ∈,2],不等式组(*)化为222()20()22m t t m t t t⎧-+⎨-+⎩,[1t ∈,2]时,20t t -(当且仅当1t =时取等号), ()i 当1t =时,不等式组成立,()ii 当(1t ∈,2]时,222()20()22m t t m t t t ⎧-+⎨-+⎩,所以222222m t t t m t t ⎧-⎪⎪-⎨-⎪⎪-⎩恒成立, 因为2222111()24t t t -=----+,所以1m -,因为22222(1)22t t t t t t -+==+-在(1t ∈,2]上单调递减,所以2232m +=, 综上,实数m 的取值范围时[1-,3].。
北京市2020-2021学年高一数学上学期期末考试试题(含解析)
北京市东城区2020-2021学年高一数学上学期期末考试试题(含解析)一、单项选择题:共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.(5分)设集合M={0},N={﹣1,0,1},那么下列结论正确的是()A.M=∅B.M∈N C.M⫋N D.N⫋M2.(5分)下列函数为偶函数的是()A.y=|x| B.y=lnx C.y=e x D.y=x33.(5分)已知函数y=sin x在区间M上单调递增,那么区间M可以是()A.(0,2π)B.(0,π)C.D.4.(5分)命题”∀x∈A,2x∈B”的否定为()A.∃x∈A,2x∉B B.∃x∉A,2x∈B C.∀x∈A,2x∉B D.∀x∉A,2x∈B 5.(5分)若a>b,则下列不等式一定成立的是()A.a2>b2B.2a>2b C.a D.6.(5分)下列各式正确的是()A.B.C.D.7.(5分)“a,b为正实数”是“a+b>2”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件8.(5分)大西洋鲑鱼每年都要逆流而上3000英里游回它们出生的地方产卵繁殖.研究鲑鱼的科学家发现鲑鱼的游速v(单位:m/s)可以表示为v=,其中O表示鲑鱼的耗氧量的单位数.则该鲑鱼游速为2m/s时的耗氧量与静止时耗氧量的比值为()A.8100 B.900 C.81 D.9二、多项选择题:本大题共2小题,每小题5分,共10分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,选对但不全的得2分,有选错的得0分.9.(5分)关于函数f(x)=1+cos x,x∈(,2π)的图象与直线y=t(t为常数)的交点情况,下列说法正确的是()A.当t<0或t≥2时,有0个交点B.当t=0或时,有1个交点C.当时,有2个交点D.当0<t<2时,有2个交点10.(5分)已知函数f(x)=4|x|+x2+a,下列命题正确的有()A.对于任意实数a,f(x)为偶函数B.对于任意实数a,f(x)>0C.存在实数a,f(x)在(﹣∞,﹣1)上单调递减D.存在实数a,使得关于x的不等式f(x)≥5的解集为(﹣∞,﹣1]∪[1,+∞)三、填空题:共6小题,每小题5分,共30分.11.(5分)函数f(x)=ln(1﹣x2)的定义域是.12.(5分)sin的值为.13.(5分)函数f(x)的值域为(0,+∞),且在定义域内单调递减,则符合要求的函数f (x)可以为.(写出符合条件的一个函数即可)14.(5分)在国庆70周年庆典活动中,东城区教育系统近2000名师生参与了国庆中心区合唱、27方阵群众游行、联欢晚会及7万只气球保障等多项重点任务.设A={x|x是参与国庆中心区合唱的学校},B={x|x是参与27方阵群众游行的学校},C={x|x是参与国庆联欢晚会的学校}.请用上述集合之间的运算来表示:①既参与国庆中心区合唱又参与27方阵群众游行的学校的集合为;②至少参与国庆中心区合唱与国庆联欢晚会中一项的学校的集合为.15.(5分)已知函数f(x)=则f(﹣2)=;若f(t)=1,则实数t=.16.(5分)某池塘中原有一块浮草,浮草蔓延后的面积y(平方米)与时间t(月)之间的函数关系式是y=a t﹣1(a>0且a≠1),它的图象如图所示,给出以下命题:①池塘中原有浮草的面积是0.5平方米;②第8个月浮草的面积超过60平方米;③浮草每月增加的面积都相等;④若浮草面积达到10平方米,20平方米,30平方米所经过的时间分别为t1,t2,t3,则2t2>t1+t3.其中正确命题的序号有.(注:请写出所有正确结论的序号)四、解答题:共5小题,共70分.解答应写出文字说明,演算步骤或证明过程.17.(12分)已知集合A={x|x2+3x+2<0},全集U=R.(1)求∁U A;(2)设B={x|m﹣1≤x≤m},若B⊆∁U A,求m的取值范围.18.(13分)已知函数,f(0)=.(1)求f(x)的解析式和最小正周期;(2)求f(x)在区间[0,2π]上的最大值和最小值.19.(14分)在平面直角坐标系xOy中,角α,β的顶点与坐标原点O重合,始边为x轴的非负半轴,终边分别与单位圆交于A,B两点,A,B两点的纵坐标分别为.(1)求tanβ的值;(2)求的值.20.(16分)已知函数f(x)=.(1)判断f(x)的奇偶性并证明;(2)判断f(x)的单调性并说明理由;(3)若f(ax﹣1)+f(2﹣x)>0对任意a∈(﹣∞,2]恒成立,求x的取值范围.21.(15分)对于集合A,定义函数f A(x)=对于两个集合A,B,定义运算A*B={x|f A(x)•f B(x)=﹣1}.(1)若A={1,2,3},B={2,3,4,5},写出f A(1)与f B(1)的值,并求出A*B;(2)证明:f A*B(x)=f A(x)•f B(x);(3)证明:*运算具有交换律和结合律,即A*B=B*A,(A*B)*C=A*(B*C).2020-2021学年北京市东城区高一(上)期末数学试卷参考答案与试题解析一、单项选择题:共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.(5分)设集合M={0},N={﹣1,0,1},那么下列结论正确的是()A.M=∅B.M∈N C.M⫋N D.N⫋M【分析】利用集合与集合的关系直接求解.【解答】解:∵集合M={0},N={﹣1,0,1},∴M⫋N.故选:C.【点评】本题考查集合的关系的判断,考查交集、并集、子集定义等基础知识,考查运算求解能力,是基础题.2.(5分)下列函数为偶函数的是()A.y=|x| B.y=lnx C.y=e x D.y=x3【分析】根据题意,依次分析选项中函数的奇偶性,综合即可得答案.【解答】解:根据题意,依次分析选项:对于A,y=|x|,是偶函数,符合题意;对于B,y=lnx,是对数函数,不是偶函数,不符合题意;对于C,y=e x,是指数函数,不是偶函数,不符合题意;对于D,y=x3,是幂函数,不是偶函数,不符合题意;故选:A.【点评】本题考查函数的奇偶性的判断,关键是掌握常见函数的奇偶性,属于基础题.3.(5分)已知函数y=sin x在区间M上单调递增,那么区间M可以是()A.(0,2π)B.(0,π)C.D.【分析】直接利用函数的单调性和子区间之间的关系求出结果.【解答】解:根据函数y=sin x的单调递增区间:[](k∈Z),当k=0时,单调增区间为[],由于为[]的子区间,故选:D.【点评】本题考查的知识要点:函数的单调性的应用,主要考查学生的运算能力和转换能力及思维能力,属于基础题型.4.(5分)命题”∀x∈A,2x∈B”的否定为()A.∃x∈A,2x∉B B.∃x∉A,2x∈B C.∀x∈A,2x∉B D.∀x∉A,2x∈B 【分析】根据含有量词的命题的否定即可得到结论.【解答】解:命题为全称命题,则命题”∀x∈A,2x∈B”的否定为∃x∈A,2x∉B,故选:A.【点评】本题主要考查含有量词的命题的否定,比较基础.5.(5分)若a>b,则下列不等式一定成立的是()A.a2>b2B.2a>2b C.a D.【分析】直接利用不等式的应用和函数的单调性的应用求出结果.【解答】解:由于a>b,且a和b的正负号不确定,所以选项ACD都不正确.对于选项:B由于函数y=2x为单调递增函数,且a>b,故正确故选:B.【点评】本题考查的知识要点:函数的单调性的应用,不等式的性质的应用,主要考查学生的运算能力和转换能力及思维能力,属于基础题型.6.(5分)下列各式正确的是()A.B.C.D.【分析】利用正弦函数、余弦函数、正切函数的单调性和诱导公式直接求解.【解答】解:在A中,sin>0>sin=﹣sin,故A错误;在B中,<cos,故B正确;在C中,>,故C错误;在D中,>cos=sin,故D错误.故选:B.【点评】本题考查命题真假的判断,考查正弦函数、余弦函数、正切函数的单调性和诱导公式等基础知识,考查运算求解能力,是基础题.7.(5分)“a,b为正实数”是“a+b>2”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【分析】可以取特殊值讨论充要性.【解答】解:若a,b为正实数,取a=1,b=1,则a+b=2,则“a,b为正实数”是“a+b>2”的不充分条件;若a+b>2,取a=1,b=0,则b不是正实数,则“a+b>2”是“a,b为正实数''的不必要条件;则“a,b为正实数”是“a+b>2”的既不充分也不必要条件,故选:D.【点评】本题考查命题充要性,以及不等式,属于基础题.8.(5分)大西洋鲑鱼每年都要逆流而上3000英里游回它们出生的地方产卵繁殖.研究鲑鱼的科学家发现鲑鱼的游速v(单位:m/s)可以表示为v=,其中O表示鲑鱼的耗氧量的单位数.则该鲑鱼游速为2m/s时的耗氧量与静止时耗氧量的比值为()A.8100 B.900 C.81 D.9【分析】由题意令V=2m/s,0m/s,则可求出耗氧量,求出之比.【解答】解:鲑鱼游速为2m/s时的耗氧量为:令v=2=,即,即,即o=8100,鲑鱼静止时耗氧量为:令v=0=,即,即o'=100,故鲑鱼游速为2m/s时的耗氧量与静止时耗氧量的比值为,故选:C.【点评】本题考查对数求值,属于中档题.二、多项选择题:本大题共2小题,每小题5分,共10分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,选对但不全的得2分,有选错的得0分.9.(5分)关于函数f(x)=1+cos x,x∈(,2π)的图象与直线y=t(t为常数)的交点情况,下列说法正确的是()A.当t<0或t≥2时,有0个交点B.当t=0或时,有1个交点C.当时,有2个交点D.当0<t<2时,有2个交点【分析】直接利用函数的图象和函数的性质及参数的范围求出函数的交点的情况,进一步确定结果.【解答】解:根据函数的解析式画出函数的图象:①对于选项A:当t<0或t≥2时,有0个交点,故正确.②对于选项B:当t=0或时,有1个交点,故正确.③对于选项C:当t=时,只有一个交点,故错误.④对于选项D:当,只有一个交点,故错误.故选:AB.【点评】本题考查的知识要点:函数的图象的应用,利用函数的图象求参数的取值范围,主要考查学生的运算能力和转换能力及思维能力,属于基础题型.10.(5分)已知函数f(x)=4|x|+x2+a,下列命题正确的有()A.对于任意实数a,f(x)为偶函数B.对于任意实数a,f(x)>0C.存在实数a,f(x)在(﹣∞,﹣1)上单调递减D.存在实数a,使得关于x的不等式f(x)≥5的解集为(﹣∞,﹣1]∪[1,+∞)【分析】直接利用函数的对称性和函数的单调性的应用求出结果.【解答】解:函数f(x)=4|x|+x2+a,①对于选项A:由于x∈R,且f(﹣x)=f(x),故函数f(x)为偶函数.故选项A正确.②对于选项B:由于x2≥0,所以,故4|x|+x2≥1所以当x=0时a=﹣2时,f(x)<0,故选项B错误.③对于选项C:由于函数f(x)的图象关于y轴对称,在x>0时,函数为单调递增函数,在x<0时,函数为单调递减函数,故f(x)在(﹣∞,﹣1)上单调递减,故选项C正确.④对于选项D:由于函数的图象关于y轴对称,且在x>0时,函数为单调递增函数,在x<0时,函数为单调递减函数,故存在实数a=0时,当x∈(﹣∞,﹣1]∪[1,+∞)时,不等式成立,故选项D正确.故选:ACD.【点评】本题考查的知识要点:函数的性质的应用,主要考查学生的运算能力和转换能力及思维能力,属于基础题型.三、填空题:共6小题,每小题5分,共30分.11.(5分)函数f(x)=ln(1﹣x2)的定义域是(﹣1,1).【分析】解不等式1﹣x2>0即可.【解答】解:令1﹣x2>0,解得﹣1<x<1,即函数的定义域为(﹣1,1).故答案为:(﹣1,1).【点评】本题考查函数定义域的求法及不等式的求解,属于基础题.12.(5分)sin的值为﹣.【分析】原式中的角度变形后,利用诱导公式化简,计算即可得到结果.【解答】解:sin=sin(2π﹣)=﹣sin=﹣.故答案为:﹣【点评】此题考查了运用诱导公式化简求值,熟练掌握诱导公式是解本题的关键.13.(5分)函数f(x)的值域为(0,+∞),且在定义域内单调递减,则符合要求的函数f (x)可以为f(x)=.(写出符合条件的一个函数即可)【分析】由函数f(x)=()x的值域为(0,+∞),且在定义域R内单调递减,即是符合要求的一个函数.【解答】解:∵函数f(x)=()x的值域为(0,+∞),且在定义域R内单调递减,∴函数f(x)=()x即是符合要求的一个函数,故答案为:f(x)=()x.【点评】本题主要考查了指数函数的单调性和值域,是基础题.14.(5分)在国庆70周年庆典活动中,东城区教育系统近2000名师生参与了国庆中心区合唱、27方阵群众游行、联欢晚会及7万只气球保障等多项重点任务.设A={x|x是参与国庆中心区合唱的学校},B={x|x是参与27方阵群众游行的学校},C={x|x是参与国庆联欢晚会的学校}.请用上述集合之间的运算来表示:①既参与国庆中心区合唱又参与27方阵群众游行的学校的集合为A∩B;②至少参与国庆中心区合唱与国庆联欢晚会中一项的学校的集合为A∪C.【分析】①利用交集定义直接求解.②利用并集定义直接求解.【解答】解:①设A={x|x是参与国庆中心区合唱的学校},B={x|x是参与27方阵群众游行的学校},C={x|x是参与国庆联欢晚会的学校}.既参与国庆中心区合唱又参与27方阵群众游行的学校的集合为A∩B.故答案为:A∩B.②至少参与国庆中心区合唱与国庆联欢晚会中一项的学校的集合为A∪C.故答案为:A∪C.【点评】本题考查并集、交集的求法,考查并集、交集定义等基础知识,考查运算求解能力,是基础题.15.(5分)已知函数f(x)=则f(﹣2)=;若f(t)=1,则实数t=0或1 .【分析】结合已知函数解析式,把x=﹣2代入即可求解f(﹣2),结合已知函数解析式及f(t)=1,对t进行分类讨论分别求解.【解答】解:f(x)=则f(﹣2)=2﹣2=,∵f(t)=1,①当t≥1时,可得=1,即t=1,②当t<1时,可得2t=1,即t=0,综上可得t=0或t=1.故答案为:;0或1【点评】本题考查了求分段函数的函数值的问题,解题时应对自变量进行分析,是基础题.16.(5分)某池塘中原有一块浮草,浮草蔓延后的面积y(平方米)与时间t(月)之间的函数关系式是y=a t﹣1(a>0且a≠1),它的图象如图所示,给出以下命题:①池塘中原有浮草的面积是0.5平方米;②第8个月浮草的面积超过60平方米;③浮草每月增加的面积都相等;④若浮草面积达到10平方米,20平方米,30平方米所经过的时间分别为t1,t2,t3,则2t2>t1+t3.其中正确命题的序号有①②④.(注:请写出所有正确结论的序号)【分析】直接利用函数的图象求出函数的解析式,进一步利用函数的额关系式再利用函数的性质的应用求出结果.【解答】解:浮草蔓延后的面积y(平方米)与时间t(月)之间的函数关系式是y=a t ﹣1(a>0且a≠1),函数的图象经过(2,2)所以2=a2﹣1,解得a=2.①当x=0时y=,故选项A正确.②当第8个月时,y=28﹣1=27=128>60,故②正确.③当t=1时,y=1,增加0.5,当t=2时,y=2,增加1,故每月的增加不相等,故③错误.④根据函数的解析式,解得t1=log210+1,同理t2=log220+1,t3=log230+1,所以2t2=2log220+2=log2400+2>t1+t2=log2300+2,所以则2t2>t1+t3.故④正确.故答案为:①②④.【点评】本题考查的知识要点:函数的性质的应用,定义性函数的应用,主要考查学生的运算能力和转换能力及思维能力,属于基础题型.四、解答题:共5小题,共70分.解答应写出文字说明,演算步骤或证明过程.17.(12分)已知集合A={x|x2+3x+2<0},全集U=R.(1)求∁U A;(2)设B={x|m﹣1≤x≤m},若B⊆∁U A,求m的取值范围.【分析】(1)根据题意,求出集合A,进而由补集的性质分析可得答案;(2)根据题意,结合集合间的关系分析可得答案.【解答】解:(1)根据题意,因为A={x|x2+3x+2<0}={x|﹣2<x<﹣1}.因为全集U=R,所以∁U A={x|x≤﹣2或x≥﹣1},(2)根据题意,∁U A={x|x≤﹣2或x≥﹣1},若B⊆∁U A,当m﹣1≥﹣1或m≤﹣2,即m≥0或m≤﹣2,所以m的取值范围为(﹣∞,﹣2]∪[0,+∞).【点评】本题考查集合的补集运算,涉及集合的子集关系,属于基础题.18.(13分)已知函数,f(0)=.(1)求f(x)的解析式和最小正周期;(2)求f(x)在区间[0,2π]上的最大值和最小值.【分析】(1)利用函数值,转化求解函数的解析式,推出函数的周期;(2)利用函数的自变量的范围,求出相位的范围,然后求解正弦函数的最值.【解答】解:(1)因为,所以.又因为φ∈,所以φ=.所以.所以f(x)最的小正周期.(2)因为x∈[0,2π],所以.当,即时,f(x)有最大值2,当,即x=2π时,f(x)有最小值.【点评】本题考查函数的周期以及函数的最值的求法,考查转化思想以及计算能力,是中档题.19.(14分)在平面直角坐标系xOy中,角α,β的顶点与坐标原点O重合,始边为x轴的非负半轴,终边分别与单位圆交于A,B两点,A,B两点的纵坐标分别为.(1)求tanβ的值;(2)求的值.【分析】(1)由题意利用任意角的三角函数的定义,同角三角函数的基本关系,求得tanβ的值.(2)由题意利用诱导公式、同角三角函数的基本关系,求得要求式子的值.【解答】解:(1)因为β的终边与单位圆交于点B,B点的纵坐标为,所以.因为,所以.所以.(2)因为α的终边与单位圆交于点A,A点的纵坐标为,所以.因为,所以,故===.【点评】本题主要考查任意角的三角函数的定义,同角三角函数的基本关系、诱导公式,属于基础题.20.(16分)已知函数f(x)=.(1)判断f(x)的奇偶性并证明;(2)判断f(x)的单调性并说明理由;(3)若f(ax﹣1)+f(2﹣x)>0对任意a∈(﹣∞,2]恒成立,求x的取值范围.【分析】(1)定义域为R,然后求出f(﹣x),得f(﹣x)=﹣f(x),所以为奇函数;(2)直接由指数函数的单调性可判断函数f(x)的单调性;(3)不等式变形,由奇函数的性质得出ax﹣1>x﹣2对任意a∈(﹣∞,2]恒成立,令关于a的函数g(a)=xa+1﹣x>0在(﹣∞,2]上恒成立,g(a)一定单调递减,所以满足则只需解出x的范围.【解答】解:(1)f(x)为奇函数.因为f(x)定义域为R,,所以f(﹣x)=﹣f(x).所以f(x)为奇函数;(2)在(﹣∞,+∞)是增函数.因为y=3x在(﹣∞,+∞)是增函数,且y=3﹣x在(﹣∞,+∞)是减函数,所以在(﹣∞,+∞)是增函数,(3)由(1)(2)知f(x)为奇函数且f(x)(﹣∞,+∞)是增函数.又因为f(ax﹣1)+f(2﹣x)>0,所以f(ax﹣1)>﹣f(2﹣x)=f(x﹣2).所以ax﹣1>x﹣2对任意a∈(﹣∞,2]恒成立.令g(a)=xa+(1﹣x),a∈(﹣∞,2].则只需,解得所以﹣1<x≤0.所以x的取值范围为(﹣1,0].【点评】考查函数的奇函数的判断即函数的单调性,使用中档题.21.(15分)对于集合A,定义函数f A(x)=对于两个集合A,B,定义运算A*B={x|f A(x)•f B(x)=﹣1}.(1)若A={1,2,3},B={2,3,4,5},写出f A(1)与f B(1)的值,并求出A*B;(2)证明:f A*B(x)=f A(x)•f B(x);(3)证明:*运算具有交换律和结合律,即A*B=B*A,(A*B)*C=A*(B*C).【分析】(1)由新定义的元素即可求出f A(1)与f B(1)的值,再分情况求出A*B;(2)对x是否属于集合A,B分情况讨论,即可证明出f A*B(x)=f A(x)•f B(x);(3)利用(2)的结论即可证明出*运算具有交换律和结合律.【解答】解:(1)∵A={1,2,3},B={2,3,4,5},∴f A(1)=﹣1,f B(1)=1,∴A*B={1,4,5};(2)①当x∈A且x∈B时,f A(x)=f B(x)=﹣1,所以x∉A*B.所以f A*B(x)=1,所以f A*B(x)=f A(x)•f B(x),②当x∈A且x∉B时,f A(x)=﹣1,f B(x)=1,所以x∈A*B.所以f A*B(x)=﹣1,所以f A*B(x)=f A(x)•f B(x),③当x∉A且x∈B时,f A(x)=1,f B(x)=﹣1.所以x∈A*B.所以f A*B(x)=﹣1.所以f A*B(x)=f A(x)•f B(x).④当x∉A且x∉B时,f A(x)=f B(x)=1.所以x∉A*B.所以f A*B(x)=1.所以f A*B(x)=f A(x)•f B(x).综上,f A*B(x)=f A(x)•f B(x);(3)因为A*B={x|f A(x)•f B(x)=﹣1},B*A={x|f B(x)•f A(x)=﹣1}={x|f A(x)•f B(x)=﹣1},所以A*B=B*A.因为(A*B)*C={x|f A*B(x)•f C(x)=﹣1}={x|f A(x)•f B(x)•f C(x)=﹣1},A*(B*C)={x|f A(x)•f B*C(x)=﹣1}={x|f A(x)•f B(x)•f C(x)=﹣1},所以(A*B)*C=A*(B*C).【点评】本题主要考查了集合的基本运算,考查了新定义问题,是中档题.。
2020-2021年上海市各区高中高一上数学期末考试试卷含答案
复旦附中2020学年第一学期高一年级数学期末考试试卷一、填空题(本大题共12题,满分54分,第1~6题每题4分,第7~12题每题5分)考生应在答题纸的相应位置直接填写结果. 1.函数()2()log 2f x x =+−的定义域为____________. 【答案】()2,4【解析】由已知得,2420x x ⎧⎪⇒<<−>>2.不等式()()2233131x x −>+的解集为____________. 【答案】()1,0−【解析】()()2233131x x −>+>的解, 解得10x −<<3.函数2()log (31),[0,5]f x x x =+∈的反函数是____________.【答案】21,[0,4]3x y x −=∈【解析】由已知得,[][]312,0,5,0,4yx x y +=∈∈所以()f x 的反函数是21,[0,4]3x y x −=∈4.对于实数,,,a b c d ,定义a b ad bc c d−=. 设函数22log (1)1()log 1x f x x −−=,则方程()1f x =的解为 .【答案】2x =【解析】由已知得,222()log (1)log log (1),(1)f x x x x x x =−+=−> 令方程()1f x =,即(1)2x x −=,2,1x x ==−(舍) 故答案为2x = 5.若函数()1axf x x =+在区间(0,)+∞是严格增函数,则实数a 的取值范围是___ _____.【答案】0a >【解析】由已知得,()1()111a x a ax af x a x x x +−===−+++ 因为函数()1axf x x =+在区间(0,)+∞是严格增函数 所以实数a 的取值范围是0a >6.已知函数24()min 1,log f x x x ⎧⎫=+⎨⎬⎩⎭,若函数()()g x f x k =−恰有两个零点,则k 的取值范围为_______________. 【答案】(1,2)【解析】由已知得,当04x <≤时,241log x x +≥,当4x >时,241log x x+< 故241,4()log ,04x f x xx x ⎧+>⎪=⎨⎪<≤⎩ 因为函数()()g x f x k =−恰有两个零点等价于函数()f x 与y k =的图像有两个交点, 作出函数图像可知,k 的取值范围为(1,2)7.已知函数15()||(0)2f x x x x =+−>,则()f x 的递减区间是_______. 【答案】1(0,)2,(1,2)【解析】由已知得,151,021522()||5112222x x x x f x x x x x x ⎧+−<≤≥⎪⎪=+−⎨⎪−−<<⎪⎩=或,则()f x 的递减区间是1(0,)2,(1,2)8.若函数()232x x f x −=+⋅的图像关于直线x m =成轴对称图形,则m =___ . 【答案】3log 212=m 【解析】对任意的R x ∈,)()(x m f m x f −=+成立,故m x x m m x m x −−−−+⋅+=⋅+232232,整理得0)232)(22(=⋅−−−−mmxx,所以0232=⋅−−m m ,即3log 212=m9.若关于x 的不等式1202x x m −−<在区间[0,1]内恒成立,则实数m 的取值范围为_____.【答案】⎪⎭⎫ ⎝⎛223,【解析】题源选自【2017年浦东一模10】 由1|2|02x x m −−<,得122x x m −<,∴11222xx xm −<−<, 即112222xx x xm −<<+在区间[0,1]内恒成立, 函数1()22xx f x =−在区间[0,1]内单调递增,()f x ∴的最大值为32;令1()22x x g x =+,2(12)x t t =≤≤, 则1y t t=+在[1,2]上为增函数,由内函数2x t =为增函数,1()22x xg x ∴=+在区间[0,1]内单调递增,()g x 的最小值为2.∴322m <<.故答案为:322m <<. 10.已知函数22()(815)()f x x x ax bx c =++++是偶函数,若方程21ax bx c ++=在区间[]1,2上有解,则实数a 的取值范围是_____________.【答案】11,83⎡⎤⎢⎥⎣⎦【解析】题源选自【2020年普陀一模10】函数整理为()()()()432()815815815f x ax a b x a b c x b c x c =+++++++++,因为函数是偶函数,需80a b +=,1580b c +=,即8b a =−,15158c b a =−=,所以21ax bx c ++=可整理:281510ax ax a −+−=.令()28151g x ax ax a =−+−,对称轴4x =在区间[]1,2的右侧,可保证区间内函数()g x 单调,根据零点存在性定理:()()120g g ⋅≤,即()()81514161510a a a a a a −+−⋅−+−≤,易得11,83a ⎡⎤∈⎢⎥⎣⎦11.若函数()221++=+x x af x x ()0x ≥的值域为[),a +∞,则实数a 的取值范围是_____.【答案】(],2−∞【解析】由已知得,()22(1)11(1)(0)1121x x a f x x a a x x x x x +−++++=+−==+≥++因为(0)f a =,所以①当10a −≤ 时,即1a ≤时,1()(1)1a f x x x −=+++在[)0,+∞上的增函数, 所以min ()(0)f x f a ==满足值域为[),a +∞,此时1y x =+为增函数,11a y x −=+也为增函数,因此()y f x =为增函数,②当11a −>时,即2a >时,1()(1)1a f x x x −=+++在1)−上单调递减,在单调递增,min ()1)f x f ∴=−且(0)1)f f >不满足值域为[),a +∞,舍去 ③当011a <−≤时,即12a <≤时,()y f x =在[)0,+∞上单调递增, 所以min ()()(1)f x f x f a ∴≥==满足的值域为[),a +∞ 综上所述,a 的取值范围为2a ≤,即(,2]a ∈−∞12.已知集合[][],14,9A t t t t =+++,0A ∉,存在正数λ,使得对任意a A ∈,都有A aλ∈,则t 的值是____________. 【答案】1或3−【解析】题源选自【2019年上海春考12】 【法一】当0t >时,当[],1a t t ∈+,则[]4,9t t aλ∈++,当[]4,9a t t ∈++,则[],1t t aλ∈+,即当a t =时,9t aλ≤+;当9a t =+时,t aλ≥,即()9t t λ=+;即当1a t =+时,4t aλ≥+,当4a t =+时,1t aλ≤+,即()()14t t λ=++,所以()()()914t t t t +=++,解得1t =.当104t t +<<+时, 当[],1a t t ∈+,则[],1t t aλ∈+,当[]4,9a t t ∈++,则[]4,9t t aλ∈++,即当a t =时,1t aλ≤+,当1a t =+时,t aλ≥,即()1t t λ=+;即当4a t =+时,9t aλ≤+,当9a t =+时,4t aλ≥+即()()49t t λ=++,所以()()()149t t t t +=++,解得3t =−.当90t +<时,同理可得,无解【法二】存在正数λ,使得对任意1a A ∈,都存在2a A ∈,使得12a a λ=, 当0t >时, 思考 当1a t =时,()()124,9a a t t t t λ=∈++⎡⎤⎣⎦ 当11a t =+时,()()()()1214,19a a t t t t λ=∈++++⎡⎤⎣⎦ 当14a t =+时,()()()124,14a a t t t t λ=∈+++⎡⎤⎣⎦ 当19a t =+时,()()()129,19a a t t t t λ=∈+++⎡⎤⎣⎦二、选择题(本大题共4题,满分20分,每题5分)每题有且只有一个正确选项.考生在答题纸的相应位置,将代表正确选项的小方格涂黑.13.已知()f x 为定义在R 上的奇函数,当0x <时,()3xf x =,则函数()f x 的值域为( )A .()1,1−B .[)0,1C .RD .[]0,1 【答案】A【解析】因为()f x 为定义在R 上的奇函数,所以(0)0f = 又因为0x <时,()3xf x =,所以()(0,1)f x ∈当0x >时,则0x −<所以()()3x f x f x −=−−=−,所以()(1,0)f x ∈− 综上所述,函数的值域为()1,1−,故选A14.中国的5G 技术领先世界,5G 技术的数学原理之一便是著名的香农公式:2log 1S C W N ⎛⎫=+ ⎪⎝⎭,它表示:在受噪声干扰的信道中,最大信息传递速率C 取决于信道带宽W 、信道内信号的平均功率S 、信道内部的高斯噪声功率N 的大小,其中SN叫做信噪比. 按照香农公式,若不改变带宽W ,而将信噪比SN从1000提升至5000,则C 大约增加了( ) A .20% B .23%C .28%D .50%【答案】B 【解析】将信噪比SN从1000提升至5000时,C 大约增加了 222log (15000)log (11000)log (11000)W W W +−++2225000lg1000log 5001log 10012lg 2lg1000log 1001lg 2lg lg −−=≈120.2323%3lg −=≈= 故选B15.若函数1()ln f x x a x=−+在区间(1,)e 上存在零点,则常数a 的取值范围( ) A. 01a << B.11a e << C. D. 【答案】C【解析】因为1()ln ,(1,)f x x a x e x=−+∈ 1e -1<a <11e+1<a <1所以()()10f f e ⋅<因为1(1)ln110,()ln 0f a f e e a e=−+<=−+> 所以常数a 的取值范围16.设函数()f x 的定义域是R ,已知以下三个陈述句:p :存在a ∈R 且0a ≠,对任意的x ∈R ,均有(2)(2)()x a x f f f a +<+恒成立;1q :()f x 严格递减,且()0f x >恒成立;2q :()f x 严格递增,存在00x <,使得0()0f x =;用这三个陈述句组成了两个命题,命题S :“若1q ,则p ”;命题T :“若2q ,则p ”,则关于S,T ,以下说法正确的是( )A. 两个命题S,T 都是真命题B. 只有命题S 是真命题C. 只有命题T 是真命题D. 两个命题S,T 都不是真命题 【答案】A【解析】本题考察函数的性质1q :当0a >时,()0f a >,()f x 单调递减,且()0f x >而()()()222()22x a x x axx f f f f a ''++>⇒<<+ ,()()22()x a x f f f a +⇒<+,符合p所以1q 可推得p ,“若1q ,则p ”成立,所以S 为真2q :当00a x =<时,()0f a =,()f x 单调递增而,22x a x x a x ++<<()()()()22202()x a x x x f f f f f a +⇒<=+=+ ()()222()x a x f f f a +⇒<+所以2q 可推得p ,“若2q ,则p ”成立,所以T 为真 综上所述,命题S ,T 均为真命题,故选A1e-1<a <1三、解答题(本大题共5题,满分76分)解答下列各题必须在答题纸的相应位置写出必要的步骤.17.(本题满分14分,第1小题满分6分,第2小题满分8分) 已知函数()()2151m h x m m x+=−+为幂函数,且为奇函数.(1)求m 的值;(2)求函数()()=+g x h x 在11,2x ⎡⎤∈−⎢⎥⎣⎦的值域.【解析】(1)2511m m −+=, 解得0m =或5m =. 即()h x x =或()6h x x =.又因为函数()h x 为奇函数,所以()h x x =,0m =.(2)()()g x h x x ==+设t =11,2x ⎡⎤∈−⎢⎥⎣⎦,所以t ⎡∈⎣,212tx −=. 所以()22111122t y t t −=+=−−+(此处可用单调性代替)当1t =时,max 1y =,当0t =时,min 12y =,故值域为1,12⎡⎤⎢⎥⎣⎦.18.(本题满分14分,第1小题满分6分,第2小题满分8分)已知函数()12|log |h x x =. (1)求()h x 在11,22a a ⎡⎤⎛⎫> ⎪⎢⎥⎣⎦⎝⎭上的最大值;(2)设函数()f x 的定义域为I ,若存在区间A I ⊆,满足:对任何1x A ∈,都存在2x A ∈(其中A 表示A 在I 上的补集),使得()()12f x f x =,则称区间A 为()f x 的“Γ区间”.已知12()|log |h x x =(1,22x ⎡∈⎤⎢⎥⎣⎦),若1,2A a ⎡⎫=⎪⎢⎣⎭是函数()h x 的“Γ区间”,求a 的最大值.【解析】(1)()1212h h ⎛⎫==⎪⎝⎭,① 若112a <≤,则()h x 在1,2a ⎡⎤⎢⎥⎣⎦上单调递减,所以()h x 的最大值为112h ⎛⎫= ⎪⎝⎭; ② 若12a <≤,则()h x 在1,12⎡⎤⎢⎥⎣⎦上单调递减,在[]1,a 上单调递增,因此此时()()1212h a h h ⎛⎫≤==⎪⎝⎭,所以()h x 的最大值为112h ⎛⎫= ⎪⎝⎭; ③ 若2a >,则()h x 在1,12⎡⎤⎢⎥⎣⎦上单调递减,在[]1,a 上单调递增, 因此此时()()122h a h h ⎛⎫≥= ⎪⎝⎭,所以()h x 的最大值为()12|log |h a a =; 综上知:若122a <≤,则()h x 的最大值为1;若2a >,则()h x 的最大值为12|log |a ;(2)由已知: ①当112a <≤时,()f x 在1[,)2a 上的值域为12(|log |,1]a , ()f x 在[,2]a 上的值域为[0,1],因为[]12(|log ,1|]0,1a ⊆, 满足条件,所以此时1,2a ⎡⎫⎪⎢⎣⎭是()f x 的“Γ区间”; ②当12a <≤时,()f x 在1,2a ⎡⎫⎪⎢⎣⎭上得到值域为[]0,1,()f x 在[],2a 上的值域为12|log |,2a ⎡⎤⎣⎦,此时,120|log |,2a ⎡⎤∉⎣⎦所以此时1,2a ⎡⎫⎪⎢⎣⎭不是()f x 的“Γ区间”; 故所求a 的最大值为1. 19.(本题满分14分,第1小题满分6分,第2小题满分8分)新冠肺炎疫情发生以后,口罩供不应求,某口罩厂日夜加班生产,为抗击疫情做贡献. 生产口罩的固定成本为400万元,每生产x 万箱,需另投入成本()p x 万元,当产量不足60万箱时,()21502p x x x =+;当产量不小于60万箱时,()64001011860p x x x=+−. 若每箱口罩售价100元,通过市场分析,该口罩厂生产的口罩可以全部销售完. (1)求口罩销售利润y (万元)关于产量x (万箱)的函数关系式; (2)当产量为多少万箱时,该口罩生产厂在生产中所获得利润最大? 【解析】(1)当060x <<时,2211100504005040022y x x x x x ⎛⎫=−+−=−+− ⎪⎝⎭;当60x ≥时,6400640010010118604001460y x x x x x ⎛⎫⎛⎫=−+−−=−+ ⎪ ⎪⎝⎭⎝⎭. 所以,2150400,060,264001460,60,,x x x x N y x x x N x ⎧−+−<<∈⎪⎪=⎨⎛⎫⎪−+≥∈ ⎪⎪⎝⎭⎩(2)当060x <<时,221150400(50)85022y x x x =−+−=−−+, 当50x =时,y 取得最大值,最大值为850万元; 当60x ≥时,6400146014601300y x x ⎛⎫=−+≤−= ⎪⎝⎭, 当且仅当6400x x=时,即80x =时,y 取得最大值,最大值为1300万元. 综上,当产量为80万箱时,该口罩生产厂在生产中获得利润最大,最大利润为1300万元.20.(本题满分16分,第1小题满分4分,第2小题满分6分,第3小题满分6分) 设0a >,函数1()12xf x a =+⋅. (1)若1a =,求()f x 的反函数1()f x −;(2)求函数()()y f x f x ⋅−=的最大值(用a 表示) ;(3)设()()(1)g x f x f x =−−.若对任意(,0]x ∈−∞,)(()0g x g ≥恒成立,求a 的取值范围.【解析】(1)()f x 值域(0,1)21log yx y−= 121()log (01)xf x x x−−=<<(定义域可不写) (2)21(1)(22)x x y a a −=+++2121a a ≤=++当0x =时,等号成立 所以最大值为2121a a ++ (3)2()2232x xag x a a −=⋅++, 令2(0,1]xt =∈,因此223ay a t a t−=++ 在1t =时取得最小值,即22a t t+ 在1t =时取得最小值 由函数22y a t t =+在严减,在)+∞严增得1≥整理得,0a <≤另解,222()(2)322xx x a g x a a −⋅=+⋅+令2(0,1]x t =∈,则2232aty a t at −=++,由已知,当(0,1]t ∈时,2223232at aa t at a a −−≥++++恒成立,整理得,2(1)(2)0t a t −−≥恒成立,由10t −<得,220a t −≤恒成立,得0a <≤21.(本题满分18分,第1小题满分4分,第2小题满分6分,第3小题满分8分) 已知函数()f x x x a =−,其中a 为常数. (1)当1a =时,解不等式()2f x <;(2)若()f x 是奇函数,判断并证明()f x 的单调性; (3)若在[0,2]上存在2021个不同的实数(1,2,,2021)i x i =,122021x x x <<<,使得122320202021()()()()()()8f x f x f x f x f x f x −+−++−=,求实数a 的取值范围.解:(1) 当1x ≥时,220x x −−<,即12x ≤< 当1x <时,220x x −+>,即1x <综上,该不等式的解集为(,2)−∞− (2)0a = 在R 上严增(分0x ≥和0x <两种情况写不给分) 证明略 (3)①当0a ≤时,()()f x x x a =−在[0,2]上是严格增函数122311()()()()()()()()n n n f x f x f x f x f x f x f x f x −∴−+−++−=−,取值范围是(0,2(2)]a −2(2)8a ∴−≥ 解得:2a ≤−②当4a ≥时,()()f x x a x =−在[0,2]上是增函数122311()()()()()()()()n n n f x f x f x f x f x f x f x f x −∴−+−++−=−取值范围是(0,2(2)]a −2(2)8a ∴−≥ 解得:6a ≥③当24a ≤<时,由三角不等式,122312()()()()()()()(0)(2)224(4)44242n n f x f x f x f x f x f x a a af f f a a −−+−++−≤−−=⨯−+=−+<不满足条件 ④当02a <<时,由三角不等式,122312()()()()()()2()(0)()(2)24(4)44222n n f x f x f x f x f x f x a a af f f a f a a −−+−++−≤−−+=−+=−+<,不满足条件综上,a 的取值范围为(,2][6,)−∞−+∞虹口区2020学年第一学期高一年级数学期末考试试卷2021.01一. 填空题1. 已知集合{1,1,2}A =−,2{|0}B x x x =+=,则A B =【答案】{1}−2. 不等式301x x +≤−的解集为 【答案】[3,1)−3. 函数4()f x x x =+,1[,4]2x ∈的值域为【答案】17[4,]24. 计算:7log 222220log 2log 3log 579+−+= 【答案】45. 用“二分法”求方程340x x +−=在区间(1,2)内的实根,首先取区间中点 1.5x =进行判断,那么下一个取的点是x = 【答案】1.256. 已知条件:211p k x k −≤≤−,:33q x −≤<,且p 是q 的必要条件,则实数k 的取 值范围为 【答案】(,2]−∞−7. 不等式|2||1|5x x ++−≤的解集为 【答案】[3,2]−8.(A 组题)已知函数()3x f x a =+的反函数为1()y f x −=,若函数1()y f x −=的图像过 点(3,2),则实数a 的值为 【答案】6−(B 组题)已知函数||()2x a f x −=在区间[1,)+∞上是严格增函数,则实数a 的取值范围为 【答案】(,1]−∞9.(A 组题)已知集合1{|||3A x x m m =−<+,其中,x m ∈Z ,且0}m >,1{|||3B x x =+< 2m ,其中,x m ∈Z ,且0}m >,则AB 的元素个数为 (用含正整数m 的式子表示) 【答案】2m(B 组题)若集合2{|560}A x x x =+−=,{|30,}B x ax a =+=∈R ,且B A ⊂,则满足条件的实数a 的取值集合为 【答案】1{3,0,}2−10.(A 组题)已知函数2230()30x x x f x x x x ⎧+≥=⎨−<⎩,若2(3)(2)0f a f a −+>,则实数a 的 取值范围为【解析】画图可知,可知()y f x =是R 上的奇函数,严格增函数,由2(3)(2)0f a f a −+>得2(3)(2)(2)f a f a f a −>−=−,所以232a a −>−,解得(,3)(1,)a ∈−∞−+∞.(B 组题)已知函数()y f x =是定义在实数集R 上的偶函数,若()f x 在区间(0,)+∞上 是严格增函数,且(2)0f =,则不等式()0f x x≤的解集为 【答案】(,2](0,2]−∞−二. 选择题11. 已知a 、b 都是实数,那么“a b >”是“33a b >”的( C )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件12. 函数412x xy +=的图像的对称性为( B ) A. 关于x 轴对称 B. 关于y 轴对称C. 关于原点对称D. 关于直线y x =对称 13. 已知全集U =R 及集合21{|284a A a −=≤<,且}a ∈Z ,2{|3100Bb b b =+−>, 其中}b ∈R ,则AB 的元素个数为( B )A. 4B. 3C. 2D. 114. 已知函数2x y x =+,ln y x x =+,lg y x x =+的零点依次为1x 、2x 、3x ,则1x 、2x 、3x 的大小关系为( D )A. 123x x x <<B. 213x x x <<C. 231x x x <<D. 132x x x <<【解析】转化为123()2,()ln ,()lg xf x f x x f x x ===与y x =−交点的横坐标的大小关系,易得132x x x <<,故选D.15.(A 组题)设()y f x =是定义在R 上的奇函数,且当0x ≥时,2()f x x =,若对任意 的[,2]x t t ∈+,不等式()2()f x t f x +≥恒成立,则实数t 的取值范围是( A )A. )+∞B. [2,)+∞C. (0,2]D. [1][2,3]−【解析】当0x ≥时,2()f x x =满足2())f x f =,易得在R 上,2())f x f =,则对任意[,2]x t t ∈+,不等式())f x f t +≥恒成立,易得()y f x =是定义在R 上的严格增函数,所以x t +≥恒成立,所以1)t x ≥恒成立,所以1)(2)t t ≥−+,解得)t ∈+∞. (B 组题)若函数||y x a =−−与1ay x =+在区间[1,2]上都是严格减函数,则实数a 的 取值范围为( D )A. (,0)−∞B. (1,0)(0,1]−C. (0,1)D. (0,1]三. 解答题16. 已知a 、b 是任意实数,求证:4433a b a b ab +≥+,并指出等号成立的条件.【解析】因为()()()()44334343a b a b ab a a b b ab +−+=−+− ()3333()()()a a b b b a a b a b =−+−=−−()22222213()()24a b a ab b a b a b b ⎡⎤⎛⎫=−++=−++⎢⎥ ⎪⎝⎭⎢⎥⎣⎦故()()44330a b a b ab +−+≥,即4433a b a b ab +≥+,当且仅当a b =时,等号成立.17. 某居民小区欲在一块空地上建一面积为12002m 的矩形停车场,停车场的四周留有人行通道,设计要求停车场外侧南北的人行通道宽3m ,东西的人行通道宽4m ,如图所示(图中单位:m ),问如何设计停车场的边长,才能使人行通道占地面积最小?最小面积是多少? 【解析】设矩形停车场的南北侧边长为x 米,则其东西侧边长为1200x 米, 人行通道占地面积为12007200(6)81200848S x x x x ⎛⎫=++−=++⎪⎝⎭,由平均值不等式,得7200848482244896S x x =++≥+=⨯+=, 当且仅当72008x x =,即30x =时,min 96S =,此时120040x=, 设计矩形停车场的南北侧边长为30m ,则其东西侧边长为40m ,才能使人行通道占地面积最小,最小面积是2528m .18. 已知函数23||1x y x −=+. (1)作出这个函数的大致图像; (2)讨论关于x 的方程23||1x t x −=+的根的个数. 【解析】(1)因为235211x y x x −==−++, 故先将5y x=−的图像向左平移1个单位,再向上平移2个单位,得到函数521y x =−+的图像,再将函数521y x =−+的图像在x 轴下方部分 翻折到x 轴上方,便得到函数23||1x y x −=+的大致图像; (2)当0t <时,方程23||1x t x −=+的根的个数为0, 当0t =或2t =时,方程23||1x t x −=+的根的个数为1, 当02t <<或2t >时,方程23||1x t x −=+的根的个数为2.19. 已知函数16()1x f x a a+=−+(0a >,1a ≠)是定义在R 上的奇函数.(1)求实数a 的值及函数()y f x =的值域;(2)若不等式()33x t f x ⋅≥−在[1,2]x ∈上恒成立,求实数t 的取值范围. 【解析】(1)由()f x 是定义在R 上的奇函数得6(0)0,10f a a=−=+,解得3a =, 此时31()31x x f x −=+,故对于任意的x R ∈,有3131()()03131x x x x f x f x −−−−+−=+=++,即()f x 是定义在R 上的奇函数,所以3a =,令31()31x x f x y −==+,则1301x y y +=>−,解得11y −<<, 即函数()y f x =的值域为(1,1)−;(2)法一:由(1)得31()31x x f x −=+,于是不等式()33x t f x ⋅≥−可化为()23(2)3(3)0xx t t −+⋅+−≤,令3[3,9]x u =∈(因为[1,2]x ∈),则不等式2(2)(3)0u t u t −+⋅+−≤在[3,9]u ∈上恒成立,令2()(2)(3)g u u t u t =−+⋅+−,则()0g u ≤在[3,9]u ∈上恒成立,等价于(3)0(9)0g g ≤⎧⎨≤⎩,即(3)93(2)(3)0(9)819(2)(3)0g t t g t t =−++−≤⎧⎨=−++−≤⎩151522t t t ≥⎧⎪⇔⇔≥⎨≥⎪⎩,所以,实数t 的取值范围是15,2⎡⎫+∞⎪⎢⎣⎭. 法二:由(1)得31()31x x f x −=+,当[1,2]x ∈时,()0f x >,于是不等式()33x t f x ⋅≥−可化为 ()()()()2333131433431()313131x x x xx x x xt f x −+−−−≥===−−−−−, 令31[2,8]x v −=∈(因为[1,2]x ∈),则由函数4()φv v v =−在[2,8]上是严格增函数知max 15()(8)2φv φ==, 所以,实数t 的取值范围是15,2⎡⎫+∞⎪⎢⎣⎭. 20.(A 组题)已知函数212log (1)0()log (1)0x x f x x x +≥⎧⎪=⎨−<⎪⎩.(1)判断函数()y f x =的奇偶性;(2)对任意的实数1x 、2x ,且120x x +>,求证:12()()0f x f x +>; (3)若关于x 的方程23[()]()04f x af x a +−+−=有两个不相等的正根,求实数a 取值范围. 【解析】(1)2(0)log (10)0f =+=,当0x >时,0x −<,有122()log [1()]log (1)()f x x x f x −=−−=−+=−,即()()f x f x −=−,当0x <时,0x −>,有212()log [1()]log (1)()f x x x f x −=+−=−−=−,即()()f x f x −=−,综上,函数()y f x =在R 上是奇函数;(2)因为函数2log y x =在(0,)+∞上是严格增函数,函数1u x =+在R 上也是严格增函数,故函数2log (1)y x =+在[0,)+∞上是严格增函数, 由(1)得函数()y f x =在R 上是奇函数,由奇函数的单调性得, 函数12log (1)y x =−在(,0)−∞上也是严格增函数,从而函数()y f x =在R 上是严格增函数,由120x x +>,得12x x >−,所以()()()122f x f x f x >−=−, 即()()120f x f x +>;(3)由(1)得函数()y f x =在R 上是奇函数,故原方程可化为23[()]()04f x af x a −+−=, 令()f x t =,则当0x >时,()0t f x =>,原方程有两个不相等的正根等价于:关于t 的方程2304t at a ⎛⎫−+−= ⎪⎝⎭有两 个不相等的正根,即23401343001,343344a a a a a a a a a a ⎧⎛⎫⎧∆=−−> ⎪⎪⎪<>⎝⎭⎪⎪⎪>⇔>⇔<<>⎨⎨⎪⎪⎪⎪−>>⎩⎪⎩或或,所以实数a 取值范围为3,1(3,)4⎛⎫+∞ ⎪⎝⎭.(B 组题)设a 是正常数,函数2()log )f x ax =满足(1)(1)0f f −+=. (1)求a 的值,并判断函数()y f x =的奇偶性;(2)是否存在一个正整数M ,使得()M f x >对于任意x ∈恒成立?若存在,求出M 的最小值,若不存在,请说明理由.【解析】(1)由(1)(1)0f f −+=得22log )log )0a a +=,即()22log 20a −=,注意到0a >,解得1a =,于是)2()log f x x =+,对于任意实数x ||0x x x x >=+≥,0x +>恒成立,故()y f x =的定义域是R ,在R 中任取一个实数x ,都有x R −∈,并且))22()log log f x x x −=−=)22log log ()x f x ==−+=−,故()()f x f x −=−,因此)2log y x =是奇函数;(2)设12,x x 是区间上任意给定实数,且12x x <,易知2212011x x <+<+,故120x x <+<,因为2log y x =在(0,)+∞上是严格增函数,故))2122log log x x +<+,从而)2log y x =在上是严格增函数,此时函数的最大值为2log (2,由()M f x >对于任意x ∈恒成立,得2log (2M >+, 又M 是正整数,故M 的最小值是2.附加题对于定义在D 上的函数()y f x =,设区间[,]m n 是D 的一个子集,若存在0(,)x m n ∈,使得函数()y f x =在区间0[,]m x 上是严格减函数,在区间0[,]x n 上是严格增函数,则称函数()y f x =在区间[,]m n 上具有性质P .(1)若函数2y ax bx =+在区间[0,1]上具有性质P ,写出实数a 、b 所满足的条件; (2)设c 是常数,若函数3y x cx =−在区间[1,2]上具有性质P ,求实数c 的取值范围. 【解析】(1)当函数2y ax bx =+在区间[0,1]上具有性质P 时,由其图像在R 上是抛物线, 故此抛物线的开口向上(即0a >),且对称轴是(0,1)2bx a=−∈, 于是实数a 、b 所满足的条件为20a b −<<;(2)记3()f x x cx =−,设12,x x 是区间[1,2]上任意给定的两个实数,总有()()()()2212121122f x f x x x x x x x c −=−++−,若3c ≤,当12x x <时,总有120x x −<且2211220x x x x c ++−>, 故()()120f x f x −<,因此3y x cx =−在区间[1,2]上是严格增函数,舍去,若12c ≥,当12x x <时,总有120x x −<且2211220x x x x c ++−<, 故()()120f x f x −>,因此3y x cx =−在区间[1,2]上是严格减函数,舍去,若312c <<,当12x x <且12,x x ⎡∈⎢⎣时,总有120x x −<且2211220x x x x c ++−<,因此3y x cx =−在区间⎡⎢⎣上是严格减函数,当12x x <且12,x x ⎤∈⎥⎦时,总有120x x −<且2211220x x x x c ++−>,故()()120f x f x −<,因此3y x cx =−在区间⎤⎥⎦上是严格增函数,因此,当(3,12)c ∈时,函数3y x cx =−在区间[1,2]上具有性质P .控江中学2020学年度第一学期期终考试高一数学试卷一、填空题(本大题共12小题,满分54分,第1-6题每题4分,第7-12题每题5分) 1.已知全集{}{}210,27U x x A x x =<≤=<<,则A =_________. 【答案】[]7,102.设实数a 满足2log 4a =,则a =_________. 【答案】163.已知幂函数235()(1)m m f x m x −−=−的图像不经过原点,则实数m =_________.【答案】24.函数2()21f x x ax =−−在区间[]1,3上为严格减函数的充要条件是_________. 【答案】3a ≥5.函数22()log (1)f x x =−的定义域为_________. 【答案】(1,1)− 6.设函数2,0(),,0x x f x x x −≤⎧=⎨>⎩若()9f α=,则α=_________. 【答案】3或9−7.若函数()(1)xf x a a =>在[]1,2−上的最大值为4,则其最小值为_________.【答案】128.在同一平面直角坐标系中,函数()y g x =的图像与3xy =的图像关于直线y x =对称,而函数()y f x =的图像与()y g x =的图像关于y 轴对称,若()1f a =−,则a 的值是______.【解析】3()log g x x =,3()log ()()1g a a f a −=−==−,所以13a =−. 9.如果关于x 的方程53x x a −++=有解,则实数a 的取值范围是_________. 【解析】=53(5)(3)8a x x x x −++≥−−+=.10.若定义在R 上的奇函数()f x 在(0,)+∞上是严格增函数,且(4)0f −=,则使得()0xf x >成立的x 的取值范围是_________.【解析】()0xf x >,所以,()x f x 同号,又()f x 在(0,)+∞上是严格增函数且为奇函数,(4)0f −=,所以()f x 在(,0)(0,)−∞+∞和上是严格增函数, (4)(4)(0)0f f f −===画出大致图像,()x f x 和在(,4)(4,)−∞−+∞和上同号, 所以(,4)(4,)x ∈−∞−+∞.11. 函数()lg(221)x xf x a −=++−的值域是R ,则实数a 的取值范围是___________.【解析】2211x xa a −++−≥+,所以101a a +≤⇒≤−.12. 若直角坐标平面内两点,P Q 满足条件:①,P Q 都在函数()f x 的图像上;②,P Q 关于原点对称,则对称点(,)P Q 是函数()f x 的一个“匹配点对”(点对(,)P Q 与(,)Q P 看作同一个“匹配点对”),已知函数2241,0()2,0x x x x f x x e ⎧++<⎪=⎨≥⎪⎩,则()f x 的“匹配点对”有____个.【解析】根据题意:画出两函数的图像,并把2241(0)y x x x =++>的图像关于原点对称的图像,如图:观察图像可得, 他们的交点个数是:2二、选择题13.函数111y x =−+的值域是( C ) A.(,1)−∞ B.(1,)+∞ C.(,1)(1,)−∞+∞ D.(,)−∞+∞ 14.若,0a b c a b c >>++=,则下列各式正确的是( D ) A.ab bc > B.ac bc > C.a b b c > D.ab ac >15.已知函数1,0()0,01,0x f x x x >⎧⎪==⎨⎪−<⎩,若2()()F x x f x =⋅,则()F x 是( B )A.奇函数,在(,)−∞+∞上为严格减函数B.奇函数,在(,)−∞+∞上为严格增函数C.偶函数,在(,0)−∞上严格减,在(0,)+∞上严格增D.偶函数,在(,0)−∞上严格增,在(0,)+∞上严格减16.设0a b c >>>,则221121025()a ac c ab a a b ++−+−取得最小值时,a 的值为( A )2 C. 4D.【解析】2222111121025(5)()()a ac c a c a ab ab ab a a b ab a a b ++−+−+−+++−=− 211(5)()0224()a c ab a a b ab a a b =−+++−+≥++=−, 当且仅当50,1,()1ac ab a a b −==−=,即25a b c ===时取等号, 故选A.三、解答题17.已知函数2()21f x ax ax =++.(1)若实数1a =,请写出函数()3f x y =的单调区间(不需要过程); (2)已知函数()y f x =在区间[3,2]−上的最大值为2,求实数a 的值. 【解析】(1)当1a =时,222(())11333xx x f x y +++===,严格增区间是(1,)−+∞,严格减区间是(,1)−∞−; (2)①当0a >时,对称轴1[3,2]x =−∈−,所以(2)4412f a a =++=,解得18a =, ②当0a =时,()1f x =不合题意, ③当0a <时,对称轴1[3,2]x =−∈−, 所以(1)212f a a −=−+=,解得1a =−,综上,18a =或1a =−. 18.设函数()|2|,()2f x x a g x x =−=+.(1)当1a =时,求不等式()()f x g x ≤的解集;(2)求证:1,,222b b f f f ⎛⎫⎛⎫⎛⎫− ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭中至少有一个不小于12.【解析】(1)当1a =时,不等式()()f x g x ≤即|21|2x x −≤+,所以12212x x x ⎧≤⎪⎨⎪−+≤+⎩或12212x x x ⎧≥⎪⎨⎪−≤+⎩,解得133x −≤≤, 故解集为1,33⎡⎤−⎢⎥⎣⎦;(2)反证法,假设1,,222b b f f f ⎛⎫⎛⎫⎛⎫− ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭都小于12,则111111,,1222222a b a b a −<+<−<−<−<−<,前两式相加,得1122a −<<,由最后一个式子得1322a <<,矛盾,所以1,,222b b f f f ⎛⎫⎛⎫⎛⎫− ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭中至少有一个不小于12.19. 研究表明:在一节40分钟的网课中,学生的注意力指数y 与听课时间x (单位:分钟)之间的变化曲线如图所示,当[0,16]x ∈时,曲线是二次函数图像的一部分;当[16,40]x ∈ 时,曲线是函数0.880log ()y x a =++图像的一部分,当学生的注意力指数不高于68时, 称学生处于“欠佳听课状态”. (1)求函数()y f x =的解析式;(2)在一节40分钟的网课中,学生处于“欠佳听课状态” 的时间有多长?(精确到1分钟)【解析】(1)当[0,16]x ∈时,设2()(12)84(0)f x b x b =−+<由(16)80f =,得:2(1612)84=80b −+,故14b =−...............2分 当[16,40]x ∈时,由(16)80f =,得:0.8log (16)8080a ++=, 故15a =−.................4分所以20.81(12)84,[0,16]()4log (15)80,(16,40]x x f x x x ⎧−−+∈⎪=⎨⎪−+∈⎩...........................6分(2)当[0,16]x ∈时,由21(12)84684x −−+≤,得:[0,4]x ∈......................3分当[16,40]x ∈时,由0.8log (15)8068x −+≤,得:12150.829.6x −≥+≈所以[30,40]x ∈...........................3分因此,在一节40分钟的网课中,学生处于“欠佳听课状态”的时间有14分 钟..............8分.20. 已知1()log 1amxf x x −=−(0a >、1a ≠)是奇函数. (1)求实数m 的值;(2)判断函数()f x 在(1,)+∞上的单调性,并给出证明;(3)当(,2)x n a ∈−时,()f x 的值域是(1,)+∞,求实数a 与n 的值. 【解析】(1)因为函数()f x 是奇函数,所以()()0f x f x −+=在定义域内恒成立,所以11log log 011aa mx mx x x +−+=−−−,即11111mx mxx x +−⋅=−−−, 即22211m x x −=−在定义域内恒成立,所以21m =,又当1m =时,111mxx −=−−矛盾,所以1m =−; (2)由(1)得1()log 1a x f x x +=−,设11221111x x t x x x +−+===+−−−, 设12,1,)x x ∈+∞,且12x x >,则()()()211212122221111x x t t x x x x −−=−=−−−−, 因为12,1,)x x ∈+∞,且12x x >,所以122110,10,0x x x x −>−>−<, 所以120t t −<,即12t t <,当1a >时,12log log a a t t <,()()12f x f x <,()f x 严格减, 同理,当01a <<时,()f x 严格增;(3)函数()f x 的定义域为(,1)1,)−∞−+∞,①当21n a <−≤−时,01a <<,所以()f x 在(,2)n a −上严格增,要使得()f x 的值域是(1,)+∞,则1log 1121an n a +⎧=⎪−⎨⎪−=−⎩,无解; ②当12n a ≤<−时,3a >,所以()f x 在(,2)n a −上严格减,要使得()f x 的值域是(1,)+∞,则1,1log 13a n a a =⎧⎪−⎨=⎪−⎩,解得2a =+或2a =,综上,1,2n a ==+.21.若函数()f x 的定义域为D ,集合M D ⊆,若存在非零实数t 使得任意x M ∈都有x t D +∈,且()()f x t f x +>,则称()f x 为M 上的t −增长函数.(1)已知函数()g x x =,判断()g x 是否为区间[]1,0−上的32−增长函数,并说明理由; (2)已知函数()f x x =,且()f x 是区间[4,2]−−上的n −增长函数,求正整数n 的最小值;(3)如果()f x 是定义域为R 的奇函数,当0x ≥时,22()f x x a a =−−,且()f x 为R 上的4−增长函数,求实数a 的取值范围.【解析】(1)()g x x =是;因为[]1,0x ∀∈−,()3330222g x g x x x ⎛⎫⎛⎫+−=+−=> ⎪ ⎪⎝⎭⎝⎭; (2)由题意得,x n x +>对[4,2]x ∈−−恒成立等价于2222x nx n x ++>,即220nx n +>对[4,2]x ∈−−恒成立 因为0n >,所以22nx n +是关于x 的一次函数且单调递增,于是只需280n n −+>,解得8n >,所以满足题意的最小正整数n 为9.(3)由题意得2222222,(),2,x a x a f x x a x a x a x a ⎧+≤−⎪=−−<<⎨⎪−≥⎩已知任意x ∈R ,(4)()f x f x +≥,因为()f x 在22[,]a a −上递减,所以,4x x +不能同时在区间22[,]a a −上,因此2224()2a a a >−−=,注意到()f x 在2[2,0]a −上非负,在2[0,2]a 上非正若22244a a <≤,当22x a =−时,24[0,2]x a +∈,此时(4)()f x f x +≤,矛盾,因此244a >,即(1,1)a ∈−.当244a >时,下证()f x 为R 上的4-增长函数: ①当24x a +≤−,(4)()f x f x +>显然成立,②当224a x a −<+<时,2243x a a <−<−,此时2(4)(4)f x x a +=−+>−,22()2f x x a a =+<−,(4)()f x f x +>③当24x a +≥时,22(4)422()f x x a x a f x +=+−>+≥ 因此()f x 为R 上的4-增长函数综上,为使得()f x 为R 上的4-增长函数a 的取值范围是()1,1−.长宁区2020学年第一学期高一年级数学期末考试试卷(考试时间90分钟,本卷满分100分)一、填空题(本大题共12小题,每小题3分,共36分.答案填在答题纸相应位置). 1.已知全集为R ,集合{}32A x x =−≤<,则A = . 【答案】()[),32,−∞−+∞2.函数y =的定义域为 .【答案】[)1+∞,3.若幂函数a y x =在区间()0,+∞上是严格减函数,则实数a 的取值范围是 . 【答案】(),0−∞4.设一元二次方程2630x x −−=的两个实根为1x 、2x ,则2212x x += . 【答案】425.已知:31x m α<−,:2x β<,若α是β充分条件,则m 的取值范围是 . 【答案】1m ≤6.若()2log 10x −>,则x 的取值范围是 . 【答案】2x >7.设a 、b 都为正数,且4a b +=,则11a b+的最小值为 . 【答案】18.设关于x 的不等式21110a x b x c ++>与22220a x b x c ++>的解集分别为A 、B ,则不等式组2111222200a xb xc a x b x c ⎧++≤⎪⎨++>⎪⎩的解集可以用集合A 、B 的运算表示为 . 【答案】A B9.已知lg 2a =,103b =,试用a 、b 表示12log 25= . 【答案】()212a a b−+10.已知函数[]()220,1y x ax x =+∈的最小值为2−,则实数a = . 【答案】32−11.设关于x 的方程()223,x x ax b a b −+−=+∈R 解集为M ,关于x 的不等式()()2230x x −−≥的解集为N ,若集合M N =,则a b ⋅= .【答案】15−12.若函数()121log 1,1021,0x x x y x m−−−≤<⎧⎪=⎨⎪−≤≤⎩的值域为[]1,1−,则实数m 的取值范围为 .【答案】12m ≤≤二、选择题(本大题共4小题,每小题3分,共12分.在每小题给出的四个选项中,只有一项是符合题目要求的)13.下列四组函数中,两个函数相同的是( C ). .A y =2y =;.B 1y =和0y x =;.C {}()0,1y x x =∈和{}()20,1y x x =∈;.D 2log a y x =和2log a y x =.14.函数1312xy x ⎛⎫=− ⎪⎝⎭的零点所在区间为( B )..A 10,3⎛⎫ ⎪⎝⎭;.B 11,32⎛⎫⎪⎝⎭;.C 12,23⎛⎫⎪⎝⎭;.D 2,13⎛⎫ ⎪⎝⎭.15.在同一直角坐标系中,二次函数2y ax bx =+与幂函数()0b ay x x =>图像的关系可能为( A ).A .B .C .D 16.已知“非空集合M 的元素都是集合P 的元素”是假命题.给出下列四个命题: ①M 的元素不都是P 的元素; ②M 的元素都不是P 的元素; ③存在x P ∈且x M ∈;④存在x M ∈且x P ∉;这四个命题中,真命题的个数为( B )..A 1个;.B 2个;.C 3个.D 4个;【解析】①④正确.三、解答题(本大题共5小题,共52分.解答要写出文字说明、证明过程或演算步骤). 17.(本题满分6分)已知集合{}23A x x =−<,集合1207x B xx −⎧⎫=>⎨⎬−⎩⎭.求集合A B .【解析】{}()231,5A x x =−<=−,1210,772x B xx −⎧⎫⎛⎫=>=⎨⎬ ⎪−⎩⎭⎝⎭,所以()1,7A B =−18.(本题满分8分,共有2小题,第(1)小题4分,第(2)小题4分). 化简下列代数式(1)())1620a aa +<;(2)010a <<.【解析】(1)()163332a aa a a a a a a +=++=−−+=−;(21lg a ===−.19.(本题满分10分,共有2小题,第(1)小题5分,第(2)小题5分)甲、乙两城相距100km ,某天然气公司计划在两地之间建天然气站P 给甲、乙两城供气.设P 站距甲城km x ,为保证城市安全,天然气站距两城市的距离均不得少于10km .已知建设费用y (万元)与甲、乙两地的供气距离()km 的平方和成正比(供气距离指天然气站到城市的距离),当天然气站P 距甲城的距离为40km 时,建设费用为1300万元. (1)把建设费用y (万元)表示成P 站与甲城的距离()km x 的函数,并求定义域; (2)求天然气供气站建在距甲城多远时建设费用最小,并求出最小费用的值.【解析】(1)设比例系数为k ,则22(100)(1090)y k x x x ⎡⎤=+−≤≤⎣⎦又40,1300x y ==,所以()2213004060k =+,即14k =, 所以()22211(100)1005000(1090)42y x x x x x ⎡⎤=+−=−+≤≤⎣⎦(2)由(1)可得()22211(100)100500042y x x x x ⎡⎤=+−=−+⎣⎦, 所以()22111005000(50)125022y x x x =−+=−+, 所以当50x =时,y 有最小值为1250万元,所以天然气供气站建在距甲城50km 时费用最小,最小费用的值为1250万元.20.(本题满分14分,共有3小题,第(1)小题4分,第(2)小题5分,第(3)小题5分).设()2121x x f x −=+.(1)判断函数()y f x =的奇偶性,并说明理由; (2)求证:函数()y f x =在R 上是严格增函数; (3)若()()2110f t f t −+−<,求t 的取值范围. 【解析】(1)函数()y f x =为奇函数,证明如下:易知()2121x x f x −=+的定义域为(),−∞+∞,关于原点对称,()()()()22121122112221x xx xx xx x f x f x −−−−−−−−====−+++,所以()y f x =为奇函数; (2)任取12,x x R ∈,且12x x <易知()212122=1212121x x x x xf x −+−==−+++,()()()()()1212212212222222211212121212121x x x x x x x x f x f x −⎛⎫−=−−−=−= ⎪++++++⎝⎭因为12x x <,所以2112210,0,10,22212022x x x x x x >>−<+>+>,所以()()120f x f x −<,即()()12f x f x <, 所以函数()y f x =在R 上是严格增函数; (2)因为()y f x =在R 上是奇函数且严格增,所以()()()()()222110111f t f t f t f t f t −+−<⇔−<−−=−()()221120210t t t t t t ⇔−<−⇔+−>⇔+−>,解得1t >或2t <−,所以t 的取值范围是1t >或2t <−.21.(本题满分14分,共有3小题,第1小题4分,第2小题4分,第3小题6分)设()()2af x x a x=−+∈R . (1)求不等式()()11f x f x −−>的解集M ; (2)若函数()y f x =在()0,+∞上最小值为114a −+,求实数a 的值;。
杭高贡院2020学年第一学期高一数学期末试卷
杭高2020学年第一学期期末考试高一(数学)试题卷命题:冯汉 审题:束文清1. 本试卷分试题卷和答题卡两部分。
本卷满分150分,考试时间120分钟。
2. 答题前务必将自己的学校、班级、姓名用黑色字迹的签字笔或钢笔填写在答题卡规定的地方。
3. 答题时,请按照答题卡上“注意事项”的要求,在答题卡相应的位置上规范答题,在本试题卷上答题一律无效。
4. 考试结束后,只需上交答题卡。
一、选择题:本题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集为N ,集合{1,2}A =,{2,3,4}B =,则图中阴影部分所表示的集合是( )A .{1}B .{3,4}C .{2}D .{1,2,3,4}2.已知命题:“2,40x x ax a ∃∈+−=R ”为假命题,则实数a 的取值范围为( ) A .{}160a a −≤≤ B .{160}a a −<< C .{}40a a −≤≤ D .{40}a a −<<3.函数21,1()1,1x x x f x x x⎧−+<⎪=⎨>⎪⎩的值域是( )A .(0,+∞)B .(0,1)C .3,14⎡⎫⎪⎢⎣⎭D .3,4⎡⎫+∞⎪⎢⎣⎭4.已知正数a ,b 满足2a b ab +=,则2a b +的最小值为( )A .8B .10C .9D .6 5.函数sin 31()3x f x ⎛⎫= ⎪⎝⎭的单调递增区间为( ) A .,()6323k k k ππππ⎡⎤++∈⎢⎥⎣⎦Z B .22,()6323k k k ππππ⎡⎤++∈⎢⎥⎣⎦Z C .,()6363k k k ππππ⎡⎤−++∈⎢⎥⎣⎦Z D .22,()6363k k k ππππ⎡⎤−++∈⎢⎥⎣⎦Z 6.已知(0,)απ∈且满足7cos cos 4418ππαα⎛⎫⎛⎫−+=− ⎪ ⎪⎝⎭⎝⎭,则cos2α=( ) A .718− B .718 C .79− D .79 7.已知函数()2sin sin 2x f x x =+,则()f x 的最大值为( ) A .2− B .1− C .0 D .18.已知()f x 是定义域为()0,+∞的单调函数,若对任意的()0,x ∈+∞,都有()13log 4f f x x ⎡⎤+=⎢⎥⎣⎦,且方程()3f x a −=在区间(]0,3上有两解,则实数a 的取值范围是( )A .01a <≤B .1a <C .01a <<D .1a ≥二、选择题:本题共4个小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对的得3分.9.设p :30x x−<,q :()()20x a x a −−+≤.若p 是q 的必要不充分条件,则实数a 可以是 ( ) A .32 B .52 C .72 D .7310.假设存在两个物种,前者有充足的食物和生存空间,而后者仅以前者为食物,则我们称前者为被捕食者,后者为捕食者,现在我们来研究捕食者与被捕食者之间理想状态下的数学模型.假设捕食者的数量以()x t 表示,被捕食者的数量以()y t 表示.下图描述的是这两个物种随时间变化的数量关系,其中箭头方向为时间增加的方向.下列说法不.正确的是( ) A .若在1t 、2t 时刻满足:()()12y t y t =,则()()12x t x t =B .如果()y t 数量是先上升后下降的,那么()x t 的数量一定也是先上升后下降C .被捕食者数量与捕食者数量不会同时到达最大值或最小值D .被捕食者数与捕食者数总和达到最大值时,捕食者的数量也会达到最大值11.已知函数22()sin cos cos f x x x x x =+−,x ∈R ,则( )A .2()2f x −≤≤B .()f x 在区间(0,)π上只有1个零点C .()f x 的最小正周期为πD .23x π=为()f x 图象的一条对称轴12.已知函数)()ln 1f x =,则下列结论正确的是( ) A .()f x 是偶函数 B .()f x 有最小值C .(2)(1)f x f x +>+D .方程()||30f x x +−=有两个不相等的实数根三、填空题:本大题共4小题,每空4分,共16分.13.将函数sin 24y x π⎛⎫=+⎪⎝⎭的图象上各点的纵坐标不变,横坐标伸长到原来的2倍,再向右平移4π单位,所得到的函数解析式是_________. 14.已知log (2)a y ax =−在区间(0,1)上是x 的减函数,则a 的取值范围为__________.15.若sin cos 2sin cos θθθθ+=−,则sin cos θθ⋅=_________.16.对于定义域为D 的函数()f x k =+满足存在区间[],a b D ⊆,使()f x 在[],a b 上的值域为[],a b ,求实数k 的取值范围______.四、解答题:本题共6小题,共74分.解答过程应写出文字说明、证明过程或演算步骤. 17.(本题10分)已知方程()28170x m x m −−+−=有两实根. (1)如果两实根都大于1,求实数m 的取值范围;(2)如果一个根大于2,另一个根小于2,求实数m 的取值范围.18.(本题12分)已知函数()3,4f x x x R π⎛⎫=+∈ ⎪⎝⎭. (1)求f (x )的最小正周期和对称轴;(2)求f (x )的单调递增区间和单调递减区间;(3)当0,2x π⎡⎤∈⎢⎥⎣⎦,求f (x )值域.19.(本题12分)某单位决定投资3200元建一仓库(长方体状),高度恒定,它的后墙利用旧墙不花钱,正面用铁栅,每米长造价40元,两侧墙砌砖,每米长造价45元,顶部每平方米造价20元,设铁栅长为x 米,一堵砖墙长为y 米.求:(1)写出x 与y 的关系式;(2)求出仓库面积S 的最大允许值是多少?为使S 达到最大,而实际投资又不超过预算,那么正面铁栅应设计为多长?20.(本题12分)设函数()()21log ()1x f x a R ax +=∈− ,若1()13f −=−. (1)求()f x 的解析式;(2)()1x g x k +=,若12[,]23x ∈时,()()f x g x ≤有解,求实数k 的取值集合.21.(本题12分)已知函数()()2cos 2sin 2f x x x ϕ=++. (1)若6π=ϕ,02x π≤≤,求()f x 的值域; (2)若0ϕπ≤<,x ∈R ,()f x 的最大值是32,求ϕ的值.22.(本题16分)若函数()y f x =自变量的取值区间为[],a b 时,函数值的取值区间恰为22,b a ⎡⎤⎢⎥⎣⎦,就称区间[],a b 为()y f x =的一个“和谐区间”.已知函数()g x 是定义在R 上的奇函数,当()0,x ∈+∞时,()3g x x =−+.()1求()g x 的解析式;()2求函数()g x 在()0,∞+内的“和谐区间”;()3若以函数()g x 在定义域内所有“和谐区间”上的图像作为函数()y h x =的图像,是否存在实数m ,使集合()(){}(){}2,|,|x y y h x x y y x m =⋂=+恰含有2个元素.若存在,求出实数m 的取值集合;若不存在,说明理由.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高一数学上学期期末统考试卷 (A 卷)第Ⅰ卷(选择题,共60分)整理人:金溪一中:吴志刚 344800 E-mail:jxjxyizh@一、 选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是最符合题目要求的) 1.若2{|1}A x x ==,2{|230}B x x x =--=,则A B I 等于( ) A .{3} B .{1} C . ∅ D .{-1} 2.若函数3()()f x x x R =∈,则函数()y f x =-在其定义域上是( ) A .单调递减的偶函数 B .单调递减的奇函数 C .单调递增的偶函数 D .单调递增的奇函数3.已知点A (a,2)到直线:30l x y -+=,则a 等于( ) A . 2 B . 1 C .1或 -3 D .3 4.已知0a b >>,则3,3,4ab a 的大小关系是( )A .334ab a >> B . 343b a a << C .334b a a << D .343a a b <<则f(g(3))等于( )A .1B . 2C . 3D .不存在6.空间两条直线a ,b 与直线l 都成异面直线,则直线a ,b 的位置关系是( ) A .平行或相交 B .异面 C . 平行 D .平行、相交或异面7.直线12:310,:2(1)10l ax y l x a y ++=+++=,若12l l P ,则a 的值为() A .- 3 B . 2 C .- 3 或2 D .3或 - 2A .1.2B . 1.3C . 1.4D .1.59.如图1-9所示,幂函数在第一象限的图象,则12340,,,,,1αααα的大小关系是( )Oxy11y=x 1αy=x 4αy=x 2αy=x 3αA .134201αααα<<<<<B . 123401αααα<<<<<C .243101αααα<<<<<D . 324101αααα<<<<<10.已知一个几何体是由上下两部分构成一个组合体,其三视图如图所示,则这个组合体的上下两部分分别是( )A .上部是一个圆锥,下部是一个四棱柱B .上部是一个圆锥,下部是一个圆柱C .上部是一个三棱锥,下部是一个四棱柱D .上部是一个四棱柱,下部是一个圆锥11.在平面直角坐标系中,已知两点M(4,2),N(1, -3), 沿x 轴把坐标平面拆成直二面角后,M,N 两点间的距离为( ) A .BCD12. 有一个盛水的容器,由悬在它的上空的一条水管均匀寺注水,最后把容器注满,在注水过程中时刻t ,水面高度y 由左图所示,图中PQ 为一线段,与之对应的容器的形状是( )y t空满PQB第Ⅱ卷(非选择题 共90分)13.已知圆22450x y x +--=,则其圆心坐标是_____________________.14.已知函数2()23f x x mx =-+,当[2,)x ∈-+∞时是增函数,当(,2]x ∈-∞时是减函数,则f(1) =-____________.15.函数2()log (2)f x x =-的定义域是__________________.16.地震震级M (里氏震级)的计算公式为0lg lg M A A =-(其中A 是被测地震最大振幅,常数0A 是“标准地震”的振幅),5级地震给的震感已比较明显,2008年5月12日我国四川发生的汶川大地震震级为8级,则这次地震的最大振幅是5级地震最大振幅的_______倍. 三、解答题(本大题共6小题,共74分,解答应写出文字说明,证明过程或演算步骤) 17.(小题满分12分)求1112490.75()102)2log 84--⨯+⨯+ 式子的值。
18.(小题满分12分)已知集合{|25},{|121}M x x N x a x a =-≤≤=+≤≤-. (1)若M N ⊆,求实数a 的取值范围; (2)若M N ⊇,求实数a 的取值范围。
19.(小题满分12分)如图,已知三角形的顶点为A (2,4), B (0,-2),C (-2,3),求(1)AB 边上的中线CM 所在直线的方程; (2)求ABC ∆的面积。
y xO BA C为了绿化城市,准备在如图所示的区域DFEBC 内修建一个矩形PQRC 的草坪,且PQ//BC ,R Q ⊥BC ,另外△AEF 的内部有一文物保护区不能占用,经测量AB=100m ,BC=80m, AE=30m, AF=20m.(1)求直线的方程; (2)应如何设计才能使草坪的占地面积最大?21.(小题满分12分)已知四棱锥P-ABCD 的直观图和三视图如右图所示,根据图中的信息完成下列问题。
(1)求证:BC ⊥平面PAB ; (2)求三棱锥P-ABC 的体积;(3)请尝试在直观图中构造一个平面α,使得PC//α,并进行作图与证明。
y x F B AC D E PR Q P B C D A 222121主视图左视图俯视图定义在[-1,1]上的奇函数f (x ),当10x -≤<时,2().41xxf x =-+ (1)求f (x )在[-1,1]上的解析式;(2)判断f (x )在(0,1)上的单调性,并给予证明;(3)当时,关于x 的方程220()xx f x λ-+=有解,试求实数λ的取值范围.参考答案二、填空题13.(2,0) 14. 13 15. (2,3)∪(3,+∞) 16.1000三、解答题 17.解:原式433102322=⨯++⨯ 220315=--=-----------12分18.解:(1)由于M N ⊆,则21521211a a a a -≥+⎧⎪≤-⎨⎪-≥+⎩,解得a∈∅-------------6分(2)当N=∅时,则121,2a a a +>-<有---------------------------------8分当N ≠∅时,则有21521211a a a a -≤+⎧⎪≥-⎨⎪-≥+⎩,解得23a ≤≤,---------------11分综上所述,a 的取值范围为a ≤3. 19.解:(1)AB 中点M 的坐标是M (1,1),中线CM 所在的直线方程是11,3121y x --=--- 即2x+3y-5=0.----------------------6分(2)=AB 的方程是3x-y-2=0, 点C 到直线AB 的距离是d ==. 所以△ABC 的面积S=12|AB |×d=11.-------------------------------12分 20.解:(1)如图,在线段EF 上任取一点Q ,分别向BC ,CD 作垂线,由题意,直线EF 的方程为:1,236003020x yx y +=+-=即.--------------------------------------6分 (2)设Q 2(,20)3x x -,则长方体的面积2(100)[80(20)](030)3S x x x =---≤≤,y xO BA C化简后得22206000(030)33S x x x =-++≤≤,配方后易得505,3x y ==时,S 最大,其最大值为6017m 2.-------------------------------------12分。
21. 解:(1)由图中的信息可知,四棱锥P —ABCD 的底面ABCD 为正方形,边长为了2,且PA=PB ,PC=PD ,顶点P 在底面的射影为AB 的中点。
----------------------1分 取AB 的中点为O ,连结PO ,则P O ⊥平面ABCD ,且PO=2-----------------2分 ∵BC ABCD ⊂平面,∴B C ⊥PO ,又B C ⊥AB ,AB ∩PO=O,∴B C ⊥平面PAB------------------------------------------------4分 (2)111114222.332323P ABC ABC V S PO AB AC PO -∆==⨯⨯=⨯⨯=g g g --------8分 (3)(答案不唯一)分别取PD ,CD 的中点为E ,F ,连结OE ,OF ,EF ,则平面OEF 为所构造的平面α,满足PC//平面OEF ,证明如下:在△PCD 中,EF 为中位线,EF//PC ,又EF OEF ⊂平面,PC OEF ⊄平面 ∴PC//平面OEF 。
---------------------------------------------------------12分 22.解:(1)∵f(x)在[-1,1]上是奇函数,∴f(0)=0--------------------1分 设(0,1]x ∈,则[1,0)x -∈22()()().4141x xx x f x f x ∴=--=--=++-------------------------------3分2,[1,0)41()0,02,(0,1]41xx x x x f x x x ⎧-∈-⎪+⎪⎪∴==⎨⎪⎪∈⎪+⎩------------------------------------------4分(2)设1212,(0,1),x x x x ∈<且,则212112212121222(41)2(41)()()4141(41)(41)x x x x x x x x x x f x f x +-+-=-=++++ 211221(22)(12)(41)(41)x x x x x x +--=++---------------------------------7分∵1212,(0,1),x x x x ∈<且,∴211222,21x x x x +>>。
又12410,410xx+>+>,∴2121()()0,()().f x f x f x f x ->>即PBC DA O E F所以()f x 在(0,1)上为减函数。
----------------------------------------9分(3)当(0,1]x ∈时,2()41xx f x =+,则方程220()x x f x λ-+=化为 2221,x x λ=-+---------------------------------------------------------11分∵(0,1]x ∈,122,x∴<≤ 而2213221(2),24xx x -+-=---2133(2) 1.24x ∴-≤---<------------13分因此要使方程220()xx f x λ-+=有解,只须3 1.λ-≤<------------------14分。