铁、氧自由基与肾小管上皮细胞(一)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
铁、氧自由基与肾小管上皮细胞(一)
关键词:铁氧自由基肾小管上皮细胞铁,过渡态金属元素之一,外层轨道电子分布呈3d64s2,化学性质活泼,极易得失电子,产生高反应性氧自由基或铁氧、过铁氧复合物,导致组织损伤。正常情况下,体内的铁以血红素铁或非血红素铁等非反应态存在,但在急、慢性肾脏病变,尤其是伴发蛋白尿的临床和动物模型中可发现小管液及上皮细胞浆内博莱霉素敏感铁即具有催化活性的游离铁显著增加〔1〕,并且可积聚于肾近曲、远曲小管细胞的溶酶体中,偶见于线粒体内。铁的积聚与蛋白尿、肾小管间质病变、脂质过氧化、次全切除肾的肾小球滤过率、残余肾重量等病损程度直接相关〔1,2〕,铁负荷可增加缺血肾的损伤易感性〔3〕;而肾小管上皮细胞是铁介导的氧自由基损伤的主要部位,小管间质病变又是继发性肾单位毁损和慢性进展性肾功能衰竭的主要决定因素〔2〕。因此阐明铁、氧自由基、肾小管上皮细胞间的相互作用机制正受到日益重视。
一、铁代谢与肾小管上皮细胞
蛋白尿时,尿转铁蛋白排泄增多,转铁蛋白是铁的主要转运形式,相对分子质量为88000,球形,等电点5.2,与白蛋白(相对分子质量为65000,pI4.7)相比,其通过肾小球滤膜更多的是由膜孔的改变而不是受电荷屏障影响〔2〕。尿铁/尿转铁蛋白比例增高提示蛋白尿损害加重,铁的毒性作用与下列因素有关:铁的游离、Fe3+→Fe2+及用以生成·OH的H2O2或其他过氧化体。转铁蛋白结合铁或小管腔内解离铁(亦可来源于血红蛋白、肌红蛋白)可经位于基底膜侧的转铁蛋白受体或刷状缘胞饮作用进入肾小管细胞。一般认为,铁的解离与尿液pH 有关,当尿pH接近至6时,有催化活性的游离铁迅速增加,但尿液中铁螯合剂存在的浓度、种类,离子成分,可能存在的还原成分,使尿pH在<6或>6时,也能使铁游离〔4〕。尿中游离铁溶解度极低(<10-6),当pH>4时,铁以羟氧化体和磷酸形成不溶性复合物存在,因此小管液中非转铁蛋白结合铁,必须与小分子物质如焦磷酸、ADP或柠檬酸(可能性更大)结合,增加铁的溶解度与反应性。值得注意的是,凡是可缓解肾功能恶化、改善组织学形态的方法,均可同时降低小管液铁,如血管紧张素转换酶抑制剂(如开博通与铁结合可降解O2-〔5〕)、铁缺失、甲状腺切除、限制饮食蛋白、限磷。
入胞后的铁大部分以铁蛋白、含铁血黄素形式积聚于溶酶体。胞浆内催化铁的来源途径可能有三:小管腔的重吸收、跨基底膜的摄取、原有细胞内铁储存池的释放。铁释放的因素包括:氧自由基,铁蛋白的动员(Fe3+→Fe2+),细胞色素P450转换不足,后者可能是缺血再灌注损伤中额外铁、催化铁的重要来源〔6〕。其他来源包括:血红蛋白、线粒体中的细胞色素、过氧化氢酶、某些情况下肾外的血红蛋白、肌红蛋白、脱氢酶4Fc=4S簇等。
二、肾小管细胞的铁毒性作用机理
近曲小管细胞是铁介导的氧自由基损伤的主要部位铁对小管细胞的毒性作用取决于铁剂的剂量、接触时间、接触铁的类型、有无转运蛋白等〔7〕。10-4mol/L铁作用于小管细胞即可引起溶酶体铁积聚,各种细胞损伤,包括内质网扩张、线粒体变性、中间纤维增多、自嗜体鞘样结构增加、β1整合素亚基表达下调,损伤修复障碍,肌红蛋白尚有抗细胞增殖作用〔8〕。但目前对于哪个自由基触发和引起损伤、铁源性自由基产生部位和作用途径、导致细胞死亡的关键生化事件等尚有争议。
1.氧化损伤学说(oxidantstress):在缺血、免疫、中毒性(包括肌注甘油后、肌红蛋白、顺铂、庆大霉素)肾病的临床和实验动物模型中,均发现氧自由基作用的直接和间接证据(脂质过氧化产物MDA)。铁通过催化Fenton/Haber-Weiss反应使O2逐步还原,依次形成O2-、H2O2、·OH。·OH的产生具有部位特异性,由于附着于刷状缘胞外膜磷脂的游离铁原位催化而来,且作用于小管腔中<100nm的有效范围,去铁胺(DNA,deferoxamine)可阻断其通路,而只有到达该部位的·OH清除剂才能发挥作用;H2O2和O2-则分别可自由穿过胞膜及经离子通道出入细胞。自由基可直接作用于蛋白质、脂质、多糖、DNA,破坏生物大分子;同时
自由基可使铁游离为催化活性铁,加重损伤。·OH可氧化含-HS的复合物,-SH的氧化导致细胞内关键酶和转运蛋白如Na+-K+-ATPase的失活,该酶在维持细胞内外离子梯度、细胞转运中有重要作用。脂质过氧化终末产物丙二醛(MDA)、短链烷烃,可破坏细胞膜的脂双层,使生物膜通透性增加,氧化磷酸化中电子传递障碍,溶酶体通透性增加;此外,自由基尚可降解DNA,阻碍损伤后的细胞修复过程,H2O2与Ca2+协同诱导DNA断裂,被认为是氧化损伤的早期事件。
目前认为缺血后肾脏病变是由再灌注相的自由基损伤介导,再灌注相时由黄嘌呤氧化酶XO 催化的O2还原可能是O2-的主要来源。正常组织中以NAD+为电子受体的胞浆酶黄嘌呤脱氢酶(TypeD)在缺血时可向以O2为电子受体的黄嘌呤氧化酶(TypeO)转化,转化的发生与细胞内钙离子浓度增加,TypeD中的-SH氧化或Ca2+/钙调蛋白依赖的丝氨酸蛋白激酶裂解有关,在肾脏中这种转换约需30分钟,且不可逆;同时,ATP降解产物AMP、腺嘌呤、次黄嘌呤、黄嘌呤相应增多,当次黄嘌呤、黄嘌呤氧化时,电子传递至再灌注所供O2,产生O2-。缺血再灌注肾小管上皮内,自由基其他可能来源如下:线粒体内膜电子传递物复合体Ⅰ、Ⅱ、Ⅲ中泛醌-细胞色素b(O2-),随线粒体呼吸的增加而相应增加;质膜、细胞器内膜中含脂加氧酶和环加氧酶催化的分解代谢(脂肪酸自由基中间产物);-SH、抗坏血酸还原螯合的Fe3+,Fe2+的自身氧化(O2-);O2-经自发或催化的歧化作用(H2O2);内质网和核膜内所含的细胞色素P450、黄素蛋白、近曲小管上皮中大量的过氧化体。
·OH一度被认为是介导脂质过氧化的触发因素,但Zager等发现在无机铁作用的小管细胞中苯甲酸、二甲基硫脲、甘露醇对MDA无影响;DFO的细胞保护作用不引起·OH产物的显著下降或与·OH产物下降无关,而谷胱甘肽(GSH)、过氧化氢酶则有细胞保护作用,提示可能存在非·OH途径。Zager等第一次指出H2O2是肌红蛋白触发细胞死亡的关键决定因素〔9〕。血红素的氧化损伤研究目前集中于H2O2、线粒体呼吸链、血红素加氧酶(HO),HO参与介导游离铁的释放,自由基的来源见于线粒体电子传递链的可能较存在酶通路如黄嘌呤氧化酶、花生四烯酸代谢(经环加氧酶、脂加氧酶或细胞色素P450系统)的可能性更大。呼吸链末端部分不仅是自由基形成的关键部位,同时也是肌红蛋白诱导细胞死亡的关键可调控点。此外,线粒体虽然为脂质过氧化提供能源,但不是氧化损伤的对象〔10〕。
2.缺血性小管损伤和ATP耗竭:血红素蛋白小管细胞的损伤因素呈多元性,并可相互叠加、相互作用。现在公认的途径包括肾血管收缩、管型形成,坏死残骸(necroticdebris),内毒素/TNF的激活等,其中缺血损伤与血红素蛋白的肾毒性作用密不可分。缺血时,ATP含量下降,血红素可在容量不足的情况下在近曲小管细胞水平,加强肾缩血管,加重缺血性损伤,该现象可能与胞饮、蛋白重吸收(或某些继发事件),而不是铁负荷本身有关,而胞饮、重吸收或膜脂质的运输(trafficking)、重建可直接增加质膜对缺血触发损伤的敏感性。血红素内饮直接增加质膜对磷脂酶A2(PLA2)的易损性,质膜脱酰化,乳酸脱氢酶和花生四烯酸释放增加是可能的途径之一,另一途径是否与缩血管作用无关,但由铁介导的细胞能量代谢紊乱有关,有待于进一步证实〔11〕。
3.溶酶体失稳定:蛋白尿时,滤过蛋白的过吞饮和溶酶体的超载可引起溶酶体铁的积聚。小管细胞中溶酶体积聚铁的损伤机制目前有两种观点:Harris等在嘌呤霉素肾病中发现溶酶体中铁的积聚是小管间质病变中唯一的、独立的先兆〔12〕,可能与溶酶体内蛋白酶活性增加、溶酶体失稳定,水解酶入胞浆、重吸收蛋白降解不全等有关;部分肾切除模型中小管可见细胞溶酶体酶NAG(N-乙酰-β-D-氨基葡萄糖苷酶)、AP(碱性磷酸酶)活性增加,慢性铁负荷中酶活性增加尤其显著〔1〕。但也有认为溶酶体酶释放是氧化损伤的结果,而不是原因,理由如下:(1)溶酶体内酶的最适pH3.5~
4.0。当释放入中性胞浆时活性受抑;(2)尚未有溶酶体脆性增加的依据,且随着慢性铁负荷加重,脆性反而下降;(3)蛋白尿时,溶酶体膜在电镜下未呈结构缺陷;(4)尿中NAG增多仅见于病变严重时。