大学物理(第四版)课后习题及答案_相对论
清华大学《大学物理》题库及答案___相对论(PDF)
一、选择题1.4351:宇宙飞船相对于地面以速度v 作匀速直线飞行,某一时刻飞船头部的宇航员向飞船尾部发出一个光讯号,经过∆t (飞船上的钟)时间后,被尾部的接收器收到,则由此可知飞船的固有长度为 (c 表示真空中光速)(A) c ·∆t (B) v ·∆t (C) (D)[ ]2.4352一火箭的固有长度为L ,相对于地面作匀速直线运动的速度为v 1,火箭上有一个人从火箭的后端向火箭前端上的一个靶子发射一颗相对于火箭的速度为v 2的子弹。
在火箭上测得子弹从射出到击中靶的时间间隔是:(c 表示真空中光速)(A) (B) (C) (D)[ ]3.8015:有下列几种说法:(1) 所有惯性系对物理基本规律都是等价的;(2) 在真空中,光的速度与光的频率、光源的运动状态无关;(3) 在任何惯性系中,光在真空中沿任何方向的传播速率都相同。
若问其中哪些说法是正确的,答案是(A) 只有(1)、(2)是正确的 (B) 只有(1)、(3)是正确的(C) 只有(2)、(3)是正确的 (D) 三种说法都是正确的 [ ]4.4164:在狭义相对论中,下列说法中哪些是正确的?(1) 一切运动物体相对于观察者的速度都不能大于真空中的光速(2) 质量、长度、时间的测量结果都是随物体与观察者的相对运动状态而改变的(3) 在一惯性系中发生于同一时刻,不同地点的两个事件在其他一切惯性系中也是同时发生的(4)惯性系中的观察者观察一个与他作匀速相对运动的时钟时,会看到这时钟比与他相对静止的相同的时钟走得慢些(A) (1),(3),(4) (B) (1),(2),(4) (C) (1),(2),(3) (D) (2),(3),(4) [ ]5.4169在某地发生两件事,静止位于该地的甲测得时间间隔为4 s ,若相对于甲作匀速直线运动的乙测得时间间隔为5 s ,则乙相对于甲的运动速度是(c 表示真空中光速)(A) (4/5) c (B) (3/5) c (C) (2/5) c (D) (1/5) c [ ]6.4356:一宇航员要到离地球为5光年的星球去旅行。
大学物理第四版下册课后题答案(供参考)
习题1111-1.直角三角形ABC 的A 点上,有电荷C 108.191-⨯=q ,B 点上有电荷C 108.492-⨯-=q ,试求C 点的电场强度(设0.04m BC =,0.03m AC =)。
解:1q 在C 点产生的场强:11204ACq E i r πε=, 2q 在C 点产生的场强:22204BCq E j r πε=,∴C 点的电场强度:4412 2.710 1.810E E E i j =+=⨯+⨯;C 点的合场强:22412 3.2410VE E E m =+=⨯,方向如图:1.8arctan33.73342'2.7α===。
11-2.用细的塑料棒弯成半径为cm 50的圆环,两端间空隙为cm 2,电量为C 1012.39-⨯的正电荷均匀分布在棒上,求圆心处电场强度的大小和方向。
解:∵棒长为2 3.12l r d m π=-=, ∴电荷线密度:911.010q C m l λ--==⨯⋅可利用补偿法,若有一均匀带电闭合线圈,则圆心处的合场强为0,有一段空隙,则圆心处场强等于闭合线圈产生电场再减去m d 02.0=长的带电棒在该点产生的场强,即所求问题转化为求缺口处带负电荷的塑料棒在O 点产生的场强。
解法1:利用微元积分:21cos 4O x Rd dE R λθθπε=⋅,∴2000cos 2sin 2444O dE d R R R ααλλλθθααπεπεπε-==⋅≈⋅=⎰10.72V m -=⋅;解法2:直接利用点电荷场强公式:由于d r <<,该小段可看成点电荷:112.010q d C λ-'==⨯,则圆心处场强:1191220 2.0109.0100.724(0.5)O q E V mR πε--'⨯==⨯⨯=⋅。
方向由圆心指向缝隙处。
11-3.将一“无限长”带电细线弯成图示形状,设电荷均匀分布,电荷线密度为λ,四分之一圆弧AB 的半径为R ,试求圆心O 点的场强。
大学物理第四版课后习题答案
大学物理第四版课后习题答案大学物理第四版课后习题答案大学物理是一门广受学生喜爱的学科,它涵盖了众多的知识点和概念,需要学生付出大量的努力来掌握。
而课后习题则是检验学生对所学知识的理解和掌握程度的重要方式之一。
然而,对于大多数学生来说,完成课后习题往往是一项具有挑战性的任务。
因此,有一本完整的课后习题答案对学生来说无疑是非常有帮助的。
在大学物理第四版中,课后习题是根据每一章节的内容设计的。
这些习题旨在帮助学生巩固所学的知识,并提供一些实际应用的练习。
然而,由于习题的难度和复杂性不同,学生在解答时可能会遇到一些困难。
因此,拥有一本详细的习题答案可以帮助他们更好地理解和解决问题。
对于大学物理第四版的课后习题,以下是一些可能的答案和解决方法:1. 机械振动和波动习题:一个质点以振幅为0.2m的简谐运动在频率为5Hz的弹簧上进行,求其最大速度和最大加速度。
答案:根据简谐运动的公式,最大速度v_max = Aω,其中A为振幅,ω为角频率。
最大加速度a_max = Aω²。
代入数据,可得到v_max = 0.2m × 2π × 5Hz ≈ 6.28m/s,a_max = 0.2m × (2π × 5Hz)² ≈ 62.8m/s²。
2. 电磁场和电磁波习题:一个半径为0.1m的圆形线圈中通有电流,求该线圈在中心处产生的磁场强度。
答案:根据安培环路定理,磁场强度B = μ₀I/(2πr),其中μ₀为真空中的磁导率,I为电流,r为距离。
代入数据,可得到B = (4π × 10⁻⁷T·m/A) × I/(2π × 0.1m) ≈ 2 × 10⁻⁵T。
3. 热力学习题:一个理想气体从初始状态(P₁,V₁,T₁)经历了一个等温过程,最终达到状态(P₂,V₂,T₁),求气体对外做功。
答案:由于等温过程中气体的温度保持不变,根据理想气体状态方程PV = nRT,可得到P₁V₁ = P₂V₂。
大学物理(第四版)课后习题及答案_相对论
第十六章相对论题16.1:设'S 系以速率v = 0.60c 相对于S 系沿'xx 轴运动,且在t ='t = 0时,0'==x x 。
(1)若有一事件,在 S 系中发生于t = 2.0×10-7 s ,x = 50 m 处,该事件在 'S 系中发生于何时刻?(2)如有另一事件发生于 S 系中 t = 3.0×10-7 s ,x = 10 m 处,在 S ′系中测得这两个事件的时间间隔为多少?题16.1解:(1)由洛伦兹变换可得S ′系的观察者测得第一事件发生的时刻为s 1025.1/1'7221211-⨯=--=c v x c v t t(2)同理,第二个事件发生的时刻为s 105.3/1'7222222-⨯=--=c v x c v t t所以,在S ′系中两事件的时间间隔为s 1025.2'''721-⨯=-=∆t t t题16.2:设有两个参考系S 和S ′,它们的原点在t = 0和t ′ = 0时重合在一起。
有一事件,在 S ′系中发生在 t ′ = 8.0×10-8 s ,x ′ = 60 m ,y ′ = 0,z ′ = 0处,若S ′系相对于S 系以速率v = 0.6c 沿xx ′轴运动,问该事件在S 系中的时空坐标各为多少?题16.2解:由洛伦兹逆变换得该事件在S 系的时空坐标分别为m 93/1''22=-+=c v vt x x 0'==y y0'==z zs 105.2/1''7222-⨯=-+=c v x c v t t题16.3:一列火车长 0.30 km (火车上观察者测得),以 100 km/h 的速度行驶,地面上观察者发现有两个闪电同时击中火车的前后两端。
问火车上的观察者测得两闪电击中火车前后两端的时间间隔为多少?题16.3解:设地面为S 系,火车为S ′系,把闪电击中火车前后端视为两个事件(即两组不同的时空坐标)。
大学物理(第四版)课后习题及答案_电介质
电解质题8.1:一真空二极管,其主要构件是一个半径R 1 = 5.0⨯10-4 m 的圆柱形阴极和一个套在阴极外,半径m 105.432-⨯=R 的同轴圆筒形阳极。
阳极电势比阴极电势高300 V ,阴极与阳极的长度均为L = 2.5⨯10-2 m 。
假设电子从阴极射出时的速度为零。
求:(1)该电子到达阳极时所具有的动能和速率;(2)电子刚从阳极射出时所受的力。
题8.1分析:(1)由于半径L R <<1,因此可将电极视作无限长圆柱面,阴极和阳极之间的电场具有轴对称性。
从阴极射出的电子在电场力作用下从静止开始加速,电于所获得的动能等于电场力所作的功,也即等于电子势能的减少。
由此,可求得电子到达阳极时的动能和速率。
(2)计算阳极表面附近的电场强度,由E F q =求出电子在阴极表面所受的电场力。
解:(1)电子到达阳极时,势能的减少量为J 108.417ep -⨯-=-=∆eV E由于电子的初始速度为零,故 J 108.417ep ek ek -⨯=∆-=∆-E E E因此电子到达阳极的速率为17eks m 1003.122-⋅⨯===meVmE v (2)两极间的电场强度为r 02e E r πελ-=两极间的电势差1200ln 2d 2d 2121R R r r V R R R R πελπελ-=-=⋅=⎰⎰r E 负号表示阳极电势高于阴极电势。
阴极表面电场强度r 121r 10ln 2e e E R R R V R =-=πελ电子在阴极表面受力N e E F r 141037.4-⨯=-=e这个力尽管很小,但作用在质量为9.11⨯10-31 kg 的电子上,电子获得的加速度可达重力加速度的5⨯1015倍。
题8.2:一导体球半径为R 1,外罩一半径为R 2的同心薄导体球壳,外球壳所带总电荷为Q ,而内球的电势为V 0。
求此系统的电势和电场的分布。
题8.2分析:不失一般情况,假设内导体球带电q ,导体达到静电平衡时电荷的分布如图所示,依照电荷的这一分布,利用高斯定理可求得电场分布。
《大学物理》课后解答题 第四章狭义相对论基础
第四章 狭义相对论基础一、思考讨论题1、根据相对论问答下列问题: (1)在一个惯性系中同时、同地点发生的两事件,在另一惯性系中是否也是同时同地点发生? (2)在一个惯性系中同地点、不同时发生的两事件,可否在另一惯性系中为同时、同地点发生?(3)在一惯性系中的不同地点发生的两事件,应满足什么条件才可找另一惯性系,使它们成为同地点发生的事件?(4)在一惯性系中的不同时刻发生的两事件,应满足什么条件才可找到另一惯性系,使它们成为同时的事件?答:依据洛仑兹时空坐标变换)(ut x x -='γ )(2c ux t t -='γ (其中2211c u -=γ)得 )(t u x x ∆-∆='∆γ )(2c x u t t ∆-∆='∆γ(其中12x x x -=∆,'-'='∆12x x x ,12t t t -=∆,'-'='∆12t t t ) 所以有 (1)是。
(2)不能。
(3)若0≠∆x ,而欲0='∆x 应有0=∆-∆t u xxu c t∆∴=<∆ (4)若0≠∆t 而欲0='∆t ,应有02=∆-∆x u t2x c c t u∆∴=>∆ 2、一个光源沿相反方向放出两个光子(以光速c 运动),问两光子的相对速度的大小是多少?答:由相对论速度变换式易算得,相对速度大小仍为c 。
3、一发射台向东西两侧距离均为L 0的两个接收站发射光讯号,今有一飞机自西向东匀速飞行,在飞机上观察,两个接收站是否同时接到讯号?哪个先接到?如飞机在水平内向其它方向运动,又如何?解:以地面为S 系,飞机为S '系,设飞机相对于地面的速度为u 。
西、东两接收站接到光信号的时刻分别为:系中)(和系)(和S t t S t t '''2121S显然 021=∆⇒=t t t 0111222022222212<---=-∆-=-∆-∆='-'cu c L u cu c x u cu c x u t t t'<'∴12t t 即东边的接收台先接到。
大学物理(第四版)课后习题及答案 波动之欧阳数创编
第十四章波动时间:2021.03.02 创作:欧阳数14-1 一横波再沿绳子传播时得波动方程为[]x m t s m y )()5.2(cos )20.0(11---=ππ。
(1)求波得振幅、波速、频率及波长;(2)求绳上质点振动时得最大速度;(3)分别画出t=1s 和t=2s 时得波形,并指出波峰和波谷。
画出x=1.0m 处质点得振动曲线并讨论其与波形图得不同。
14-1 ()[]x m t s m y )(5.2cos )20.0(11---=ππ 分析(1)已知波动方程(又称波函数)求波动的特征量(波速u 、频率ν、振幅A 及彼长 等),通常采用比较法。
将已知的波动方程按波动方程的一般形式⎥⎦⎤⎢⎣⎡+⎪⎭⎫ ⎝⎛=0cos ϕωu x t A y 书写,然后通过比较确定各特征量(式中前“-”、“+”的选取分别对应波沿x 轴正向和负向传播)。
比较法思路清晰、求解简便,是一种常用的解题方法。
(2)讨论波动问题,要理解振动物理量与波动物理量之间的内在联系与区别。
例如区分质点的振动速度与波速的不同,振动速度是质点的运动速度,即dt dy v =;而波速是波线上质点运动状态的传播速度(也称相位的传播速度、波形的传播速度或能量的传播速度),其大小由介质的性质决定。
介质不变,彼速保持恒定。
(3)将不同时刻的t 值代人已知波动方程,便可以得到不同时刻的波形方程)(x y y =,从而作出波形图。
而将确定的x 值代入波动方程,便可以得到该位置处质点的运动方程)(t y y =,从而作出振动图。
解(1)将已知波动方程表示为 与一般表达式()[]0cos ϕω+-=x t A y 比较,可得 则 m u Hz v 0.2,25.12====λπω(2)绳上质点的振动速度则1max 57.1-⋅=s m v(3) t=1s 和 t =2s 时的波形方程分别为波形图如图14-1(a )所示。
x =1.0m 处质点的运动方程为振动图线如图14-1(b )所示。
大学物理学(第四版)课后习题答案(下册)
大学物理学课后习题答案(下册)习题99.1 选择题(1)正方形的两对角线处各放置电荷Q,另两对角线各放置电荷q,若Q 所受到合力为零,则Q 与q 的关系为:()(A )Q=-2 3/2q (B) Q=2 3/2q (C) Q=-2q (D) Q=2q[答案:A](2)下面说法正确的是:()(A )若高斯面上的电场强度处处为零,则该面内必定没有电荷;(B )若高斯面内没有电荷,则该面上的电场强度必定处处为零;(C)若高斯面上的电场强度处处不为零,则该面内必定有电荷;(D )若高斯面内有电荷,则该面上的电场强度必定处处不为零。
[答案:D](3)一半径为R 的导体球表面的面点荷密度为σ,则在距球面R 处的电场强度()(A )σ/ε0(B)σ/2ε0(C)σ/4ε0(D )σ/8ε0[答案:C](4)在电场中的导体内部的()(A )电场和电势均为零;(B)电场不为零,电势均为零;(C)电势和表面电势相等;(D)电势低于表面电势。
[答案:C]9.2 填空题(1)在静电场中,电势不变的区域,场强必定为。
[ 答案:相同](2)一个点电荷q 放在立方体中心,则穿过某一表面的电通量为,若将点电荷由中心向外移动至无限远,则总通量将。
[ 答案:q/6ε0, 将为零](3)电介质在电容器中作用(a)——(b)——。
[ 答案:(a)提高电容器的容量;(b) 延长电容器的使用寿命](4)电量Q 均匀分布在半径为R 的球体内,则球内球外的静电能之比。
[ 答案:5:6]9.3 电量都是q 的三个点电荷,分别放在正三角形的三个顶点.试问:(1) 在这三角形的中心放一个什么样的电荷,就可以使这四个电荷都达到平衡( 即每个电荷受其他三个电荷的库仑力之和都为零)?(2) 这种平衡与三角形的边长有无关系?解: 如题9.3 图示(1)以A 处点电荷为研究对象,由力平衡知:q 为负电荷2 14π0qcos30a 214π(qq3a)23解得(2)与三角形边长无关.q3q3题9.3 图题9.4 图9.4 两小球的质量都是m,都用长为l 的细绳挂在同一点,它们带有相同电量,静止时两线夹角为2 , 如题9.4 图所示.设小球的半径和线的质量都可以忽略不计,求每个小球所带的电量.解: 如题9.4 图示T sin T cosF emg14π 0 (2lq 2sin ) 2解得q2l sin 4 0 mg t an9.5 根据点电荷场强公式 Eq4 0 r,当被考察的场点距源点电荷很近(r→0)时,则场强→∞,这是没有物理意义的,对此应如何理解?q解: E4 π0rr0 仅对点电荷成立,当r0 时,带电体不能再视为点电荷,再用上式求场强是错误的,实际带电体有一定形状大小,考虑电荷在带电体上的分布求出的场强不会是无限大.9.6 在真空中有 A ,B 两平行板,相对距离为 d ,板面积为S ,其带电量分别为+ q 和- q .则q 2 这两板之间有相互作用力 f ,有人说 f =4 d 2, 又有人说,因为 f = qE , Eq,所S222d2l l 22以 f =q .试问这两种说法对吗 ?为什么 ? f 到底应等于多少 ?S解: 题中的两种说法均不对. 第一种说法中把两带电板视为点电荷是不对的,第二种说法把q合场强 E看成是一个带电板在另一带电板处的场强也是不对的.正确解答应为一个S板的电场为 E q,另一板受它的作用力fq q q2,这是两板间相互作用的电场力.2 0 S2 0 S2 0 S9.7 长 l =15.0cm 的直导线 AB 上均匀地分布着线密度=5.0x10 -9C 2 m-1的正电荷.试求:(1) 在导线的延长线上与导线B 端相距a 1 =5.0cm 处 P 点的场强; (2) 在导线的垂直平分线上与导线中点相距d 2 =5.0cm 处 Q 点的场强.解: 如题 9.7 图所示(1) 在带电直线上取线元dx ,其上电量dq 在 P 点产生场强为 dE PE P14 π 0 ( adE Pdxx) 22 dx题 9.7 图4π 02(a x) 2[ 11]4π 0a l al 2 2lπ 0 (4 al 2)用 l15 cm ,5.0 10 9 C m 1, a 12.5 cm 代入得(2) 同理2E P6.74 10 N CdE1 dx 1方向水平向右方向如题 9.7 图所示Q 4 π 0 x2由于对称性dE Qxl0 ,即 E Q 只有 y 分量,2d 220 l 1∵dE Qy1x d2 224 π 0 xd 2x22EdEd 2 2 dxQylQyl4π 2l 2(x23d 2 )22π 0 l4d2以5.0 10 9C cm , l 15 cm , d 2 5 cm 代入得E Q E Qy14.96 102 N C ,方向沿 y 轴正向9.8一个半径为 R 的均匀带电半圆环,电荷线密度为, 求环心处 O 点的场强.解: 如 9.8 图在圆上取 dl Rd题 9.8 图dqdl R d ,它在 O 点产生场强大小为Rd dE24π 0 R方向沿半径向外则dE xdE sinsin d 4π 0 RdE ydE cos()cos d 4π 0 R积 分 E xsin d4π 0 R2π 0 RE ycos d 04π 0 R∴E E x2π R,方向沿x 轴正向.122222 229.9均匀带电的细线弯成正方形,边长为 l ,总电量为 q .(1) 求这正方形轴线上离中心为 r处的场强 E ; (2) 证明:在 rl 处,它相当于点电荷 q 产生的场强 E .解: 如 9.9 图示,正方形一条边上电荷q在 P 点产生物强4dE P 方向如图,大小为dE Pcos 4π 0 1 cos 2 l2r24∵cos 1l22r 2l 2∴dE Pcos 2cos 1ll2l24π0 rr42dE P 在垂直于平面上的分量dE∴dEl dE P cosr4π 0 rlr 2lr2l424题 9.9 图由于对称性, P 点场强沿 OP 方向,大小为E P 4 dE∵4π 0(r 2q 4l4 lr l2l2) r 24222e .e内r 0 内1∴E P4π 0 (r qrl) r 2l4 2方向沿OP9.10(1) 点电荷q 位于一边长为a的立方体中心,试求在该点电荷电场中穿过立方体的一个面的电通量;(2) 如果该场源点电荷移动到该立方体的一个顶点上,这时穿过立方体各面的电通量是多少?解: (1) 由高斯定理 E dS qs立方体六个面,当q 在立方体中心时,每个面上电通量相等∴各面电通量q 6 0(2) 电荷在顶点时,将立方体延伸为边长2a 的立方体,使q 处于边长2a 的立方体中心,则边长2a 的正方形上电通量q 6 0对于边长 a 的正方形,如果它不包含q 所在的顶点,则qe,24 0如果它包含q 所在顶点则 e 0 .如题9.10 图所示.题9.10 图9.11均匀带电球壳内半径6cm,外半径10cm,电荷体密度为238cm ,12cm 各点的场强.10 5 C2 m-3 求距球心5cm,解: 高斯定理 E dSsq2q , E4πr0 0当r 5 cm时,q 0 , E 0r 8 cm 时,q4π3p (r r 3 ) 34πr 3 r 2∴ E34π 23.48 10 4 N C ,方向沿半径向外.22外3 r 3r 12 cm 时, q4π(r3 r 内)4π 3 外 ∴E33r 内 4.10 10 4N C1沿半径向外 .4π 0 r9.12半径为 R 1 和 R 2 ( R 2 > R 1 ) 的两无限长同轴圆柱面,单位长度上分别带有电量 和-, 试求:(1)r < R 1 ; (2) R 1 < r < R 2 ;(3) r > R 2 处各点的场强.解: 高斯定理qE dSs取同轴圆柱形高斯面,侧面积则S E d S S2πrl E 2πrl对(1)r R 1 q 0, E 0(2)R 1rR 2q l∴E2π 0 r沿径向向外(3)∴r R 2q 0E题 9.13 图9.13 两个无限大的平行平面都均匀带电,电荷的面密度分别为 1 和 2 ,试求空间各处场强. 解:如题 9.13 图示,两带电平面均匀带电,电荷面密度分别为1 与2 ,两面间,E1( 2 02)n1 面外,E1 (1 2)n20 210 1 2 面外, E(12 02) nn :垂直于两平面由1 面指为2 面.9.14半径为 R 的均匀带电球体内的电荷体密度为, 若在球内挖去一块半径为r < R 的 小球体,如题 9.14图所示.试求:两球心 O 与 O 点的场强,并证明小球空腔内的电场是均匀的. 解:将此带电体看作带正电的均匀球与带电的均匀小球的组合,见题9.14 图 (a) .(1)球在 O 点产生电场球在 O 点产生电场 E 10E 200,4 πr 33OO' 4π 0d∴O 点电场 E 0r33 d3OO ';4 d 3(2)在 O 产生电场 E 103 4π 0dOO '球在 O 产生电场 E 20∴ O 点电场E 0OO'3 0题 9.14 图(a)题 9.14 图 (b)(3) 设空腔任一点 P 相对 O 的位矢为 r ,相对 O 点位矢为 r ( 如 题 8-13(b) 图)r 则E PO,3r E PO,3 03 3q -8r0 6OO∴E PE PO E PO(r r )3 0 OO' d3 0 3 0∴腔内场强是均匀的.-69.15 一电偶极子由 =1.0 3 10 C 的两个异号点电荷组成,两电荷距离d=0.2cm ,把这电5-1偶极子放在 1.0 3 10 N2 C的外电场中,求外电场作用于电偶极子上的最大力矩.解:∵ 电偶极子 p 在外场 E 中受力矩Mp E∴M maxpE qlE 代入数字M max1.0 1062 1031.0 1052.0 10 4N m9.16 两点电荷1 =1.5 3 10 C , -82 =3.03 10C ,相距 r 1 =42cm ,要把它们之间的距离变为r 2 =25cm ,需作多少功 ?解: Ar 2 F drr 2 q 1 q 2dr q 1q 2(11 ) r 1r 24π 24π 0 r 1r 26.55 10 J外力需作的功AA 6.55 106J题 9.17 图9.17 如题 9.17图所示,在 A , B 两点处放有电量分别为+q ,- q 的点电荷, AB 间距离为2 R ,现将另一正试验点电荷q 0 从 O 点经过半圆弧移到 C 点,求移动过程中电场力作的功. 解:如题 9.17 图示U 1 ( q 4π 0 Rq) 0 RU 1 ( q q ) 4π 0 3 R Rq 6 π 0 Rq q4-31-19∴A q 0 (U O U C )q o q 6π 0 R9.18 如题 9.18图所示的绝缘细线上均匀分布着线密度为 的正电荷 , 两直导线的长度和半圆环的半径都等于R .试求环中心 O 点处的场强和电势.解: (1) 由于电荷均匀分布与对称性, AB 和 CD 段电荷在 O 点产生的场强互相抵消,取dl Rd则 dqRd 产生 O 点 d E 如图,由于对称性, O 点场强沿 y 轴负方向题 9.18 图EdE2Rd cosy24π 0 R[ sin() 4 π 0 R2sin]22 π 0 R(2)AB 电荷在 O 点产生电势,以 UAdx 1B4 π 0 x2 R dxR4π 0 x4π 0ln 2同理 CD 产生半圆环产生U 24 π 0πR 3ln 24π 0 R4 0∴U O U 1 U 2 U 32π 0ln 24 09.19 一电子绕一带均匀电荷的长直导线以23 10 m 2 s 的匀速率作圆周运动. 求带电直线上的线电荷密度. ( 电子质量m 0 =9.1 3 10 kg ,电子电量 e =1.60 3 10 C)2U U -1E 解:设均匀带电直线电荷密度为 ,在电子轨道处场强E2π 0 r电子受力大小F eeEe 2 π 0 r∴e mv2π 0 rr2π 0 得mv 2 12.5 10 13 C m 1e-19.20 空气可以承受的场强的最大值为=30kV2 cm,超过这个数值时空气要发生火花放 电. 今有一高压平行板电容器,极板间距离为 d =0.5cm ,求此电容器可承受的最高电压. 解:平行板电容器内部近似为均匀电场UEd 1.5 104V9.21 证明:对于两个无限大的平行平面带电导体板 ( 题9.21 图) 来说, (1) 相向的两面上,电荷的面密度总是大小相等而符号相反; (2) 相背的两面上,电荷的面密度总是大小相等而符号相同. 证:如题 9.21 图所示,设两导体 A 、B 的四个平面均匀带电的电荷面密度依次为1 ,2 ,3 ,4题 9.21 图(1) 则取与平面垂直且底面分别在A 、B 内部的闭合柱面为高斯面时,有E d S ( s3) S 0∴2 3说明相向两面上电荷面密度大小相等、符号相反;(2) 在 A 内部任取一点 P ,则其场强为零,并且它是由四个均匀带电平面产生的场强叠加而成的,即2212342 02222-77又∵2 3∴1 4说明相背两面上电荷面密度总是大小相等,符号相同.9.22 三个平行金属板 A , B 和 C 的面积都是 200cm , A 和 B 相距 4.0mm , A 与 C 相距 2.0 mm . B , C 都接地,如题 9.22图所示.如果使 A 板带正电 3.0 3 10 C ,略去边缘效应,问 B 板和 C 板上的感应电荷各是多少 ?以地的电势为零,则 A 板的电势是多少 ? 解: 如题 9.22 图示,令 A 板左侧面电荷面密度为1 ,右侧面电荷面密度为2题 9.22 图(1) ∵U AC U AB ,即∴E AC d ACE AB d A B1E AC d AB ∴22E AB且1 +2q A23S d ACq A S2 q A 13S而qCS 2q 32 10 7Cq B2S1 10 C(2)U A E AC d A Cd AC2.3 103V9.23 两个半径分别为R 1 和 R 2 ( R 1 < R 2 ) 的同心薄金属球壳,现给内球壳带电+ q ,试计算:(1) 外球壳上的电荷分布及电势大小;(2) 先把外球壳接地,然后断开接地线重新绝缘,此时外球壳的电荷分布及电势; *(3) 再使内球壳接地,此时内球壳上的电荷以及外球壳上的电势的改变量.得, 1A 1R 2解: (1) 内球带电q ;球壳内表面带电则为 q , 外表面带电为 q ,且均匀分布,其电势qdrq UE drRR4π r 2 4π R22题 9.23 图(2) 外壳接地时,外表面电荷 q 入地,外表面不带电,内表面电荷仍为 q .所以球壳电势由内球q 与内表面 q 产生:Uq 4π 0 R 2q 04π 0 R 2(3) 设此时内球壳带电量为q ;则外壳内表面带电量为 q ,外壳外表面带电量为 q q( 电荷守恒 ) ,此时内球壳电势为零,且q' q' U Aq q' 04 π 0 R 14π 0 R 24π 0 R 2得外球壳上电势UqR 1 qR 2q' q'q q'R 1 R 2 qB4π 0 R 24π 0 R 24π 0 R 24π 0 29.24 半径为 R 的金属球离地面很远,并用导线与地相联,在与球心相距为一点电荷 + q ,试求:金属球上的感应电荷的电量. d3R 处有解:如题 9.24 图所示,设金属球感应电荷为q ,则球接地时电势 U O由电势叠加原理有:题 9.24 图q' q O4π 0 R4π 0 3 RUF 01223得qq 39.25 有三个大小相同的金属小球,小球1, 2带有等量同号电荷,相距甚远,其间的库仑力为 F 0 .试求:(1) 用带绝缘柄的不带电小球3先后分别接触 1,2后移去,小球 1,2之间的库仑力;(2) 小球 3依次交替接触小球 1, 2很多次后移去,小球 1, 2之间的库仑力.解: 由题意知q 4π 0r2(1) 小球 3 接触小球 1后,小球 3 和小球 1均带电qq ,2小球 3 再与小球 2 接触后,小球 2 与小球 3 均带电q3 q 4∴此时小球 1与小球 2 间相互作用力3 q 2F q' q" 8 3 F 4π 0 r4π 0 r8(2) 小球 3 依次交替接触小球 1、 2 很多次后,每个小球带电量均为2q .3∴小球 1 、 2 间的作用力 F 22 23 q 3 q 40 4π 0r 299.26 在半径为R 1 的金属球之外包有一层外半径为R 2 的均匀电介质球壳, 介质相对介电常数为r ,金属球带电Q .试求:(1) 电介质内、外的场强; (2) 电介质层内、外的电势; (3) 金属球的电势.解: 利用有介质时的高斯定理D dS qS(1) 介质内(R 1 rR 2 ) 场强DQr4 πr, E 内 Qr ;4 π 0 r r20 F 3r外 2介质外 (r R 2 ) 场强DQr 4πr 3, E 外Qr4 π 0 r(2) 介质外 (rR 2 ) 电势UE drrQ 4 π 0 r介质内(R 1 rR 2 ) 电势UE 内 dr rE 外 drrq1 ( 4π 0 r r 1 Q )R 2 4 π 0 R 2(3) 金属球的电势Q(1 r1 4π 0 r rR 2R 2 U E 内 drE 外 drR 1 R 2R 2 Qdr QdrR4π 0 r R 24 π 0rQ4π 0( 1 r1 rR 1R 29.27 如题 9.27图所示,在平行板电容器的一半容积内充入相对介电常数为 r 的电介质.试求:在有电介质部分和无电介质部分极板上自由电荷面密度的比值. 解: 如题 9.27 图所示,充满电介质部分场强为E 2 ,真空部分场强为 E 1 ,自由电荷面密度分别为2 与1由 D dSq 0 得D 11 ,D 22而D 1E 1 , D 20 rE 23)2)2E 1 E 2∴2 U d0 rE 2 r10 E 1题 9.27 图题 9.28 图9.28 两个同轴的圆柱面,长度均为l ,半径分别为 R 1 和 R 2 ( R 2 > R 1 ) , 且 l >> R 2 - R 1 ,两柱面之间充有介电常数的均匀电介质 . 当两圆柱面分别带等量异号电荷Q 和- Q 时,求:(1) 在半径 r 处(R 1 < r < R 2 =,厚度为 dr ,长为 l 的圆柱薄壳中任一点的电场能量密度和整个薄壳中的电场能量; (2) 电介质中的总电场能量; (3) 圆柱形电容器的电容.解: 取半径为 r 的同轴圆柱面(S)则D d S ( S)2πrlD当 (R 1 r∴R 2 ) 时,q QDQ 2 πrl D 2Q2 (1) 电场能量密度w2 8π2r 2l 2Q2 Q 2dr 薄壳中 dWwd8π2r 2l22πrdrl4π rl(2) 电介质中总电场能量WdWR 2 Q2drQ lnR 2VR 14πrl4πl R 1(3) 电容:∵WQ2C2Q 2 2πl∴C2W ln( R2 / R1 )题9.29 图9.29 如题9.29 图所示,C1 =0.25 F,C2 =0.15 F,C3 =0.20 F .C1上电压为50V.求:U AB .解: 电容C1 上电量Q1 C1U 1电容C2 与C3 并联C23 C2 C3其上电荷∴Q23 Q1Q232C1U 125 50UABC23U 1 U 2C2350(13525)3586 V9.30C1 和C2 两电容器分别标明“200 pF 、500 V ”和“300 pF 、900 V ”,把它们串联起来后等值电容是多少?如果两端加上1000 V 的电压,是否会击穿?解: (1) C1 与C2 串联后电容C C1C2200 300 120pF(2) 串联后电压比C1 C2U 1 C2200 300 3U 2 C1,而U 1 U 221000∴U 1600 V , U 2400 V即电容C1 电压超过耐压值会击穿,然后C2 也击穿.9.31半径为R1 =2.0cm 的导体球,外套有一同心的导体球壳,壳的内、外半径分别为R2 =4.0cmU2222 2和 R 3 =5.0cm ,当内球带电荷 Q =3.0 3 10 C 时,求:(1) 整个电场储存的能量;(2) 如果将导体壳接地,计算储存的能量; (3) 此电容器的电容值.解: 如图,内球带电 Q ,外球壳内表面带电Q ,外表面带电 Q(1) 在 rR 1 和 R 2题 9.31 图r R 3 区域在 Rr R 时E 0E Qr 1214π 0 rrR 3 时Qr 24π 0 r∴在 R 1rR 2 区域W 1R 2 1 R 1 2Q( 2 4π 0 r) 24πr drR 2 Q drQ( 1 1 ) R 18π 0 r8π 0 R 1R 2在 rR 3 区域W 1 ( Q) 2 4πr 2drQ 1R 32 0 4π 0 r8π0 R 3∴ 总能量W W 1 W 2Q( 1 1 1 ) 8π 0 R 1R 2R 31.82 10 4J(2) 导体壳接地时,只有R 1rR 2 时 EQr , W 2 04π 0 r2 -83E 3 22312∴W W 1Q21( 8π 0 R 11 ) 1.01 R 210 4 J(3) 电容器电容C2W Q2 4 π 0 /(11 ) R 1R 24.49 10F习 题 1010.1 选择题(1) 对于安培环路定理的理解,正确的是:( A )若环流等于零,则在回路 L 上必定是 H 处处为零; ( B )若环流等于零,则在回路 L 上必定不包围电流;( C )若环流等于零,则在回路L 所包围传导电流的代数和为零;( D )回路 L 上各点的 H 仅与回路 L 包围的电流有关。
大学物理学第四版课后习题答案(赵近芳)上册
习题11.1选择题(1) 一运动质点在某瞬时位于矢径),(y x r的端点处,其速度大小为(A)dtdr(B)dt r d(C)dtr d ||(D)22)()(dt dy dt dx[答案:D](2) 一质点作直线运动,某时刻的瞬时速度s m v /2 ,瞬时加速度2/2s m a ,则一秒钟后质点的速度(A)等于零 (B)等于-2m/s (C)等于2m/s (D)不能确定。
[答案:D](3) 一质点沿半径为R 的圆周作匀速率运动,每t 秒转一圈,在2t 时间间隔中,其平均速度大小和平均速率大小分别为(A)t R t R 2,2 (B)tR2,0 (C)0,0 (D)0,2tR[答案:B]1.2填空题(1) 一质点,以1 s m 的匀速率作半径为5m 的圆周运动,则该质点在5s 内,位移的大小是 ;经过的路程是 。
[答案:10m ; 5πm](2) 一质点沿x 方向运动,其加速度随时间的变化关系为a=3+2t (SI),如果初始时刻质点的速度v 0为5m·s -1,则当t 为3s 时,质点的速度v= 。
[答案:23m·s -1](3) 轮船在水上以相对于水的速度1V 航行,水流速度为2V,一人相对于甲板以速度3V 行走。
如人相对于岸静止,则1V 、2V和3V 的关系是 。
[答案:0321 V V V]1.3 一个物体能否被看作质点,你认为主要由以下三个因素中哪个因素决定:(1) 物体的大小和形状; (2) 物体的内部结构; (3) 所研究问题的性质。
解:只有当物体的尺寸远小于其运动范围时才可忽略其大小的影响,因此主要由所研究问题的性质决定。
1.4 下面几个质点运动学方程,哪个是匀变速直线运动?(1)x=4t-3;(2)x=-4t 3+3t 2+6;(3)x=-2t 2+8t+4;(4)x=2/t 2-4/t 。
给出这个匀变速直线运动在t=3s 时的速度和加速度,并说明该时刻运动是加速的还是减速的。
大学物理(第四版)课后习题及答案 磁场之欧阳音创编
习题时间:2021.03.11 创作:欧阳音题10.1:如图所示,两根长直导线互相平行地放置,导线内电流大小相等,均为I = 10 A,方向相同,如图所示,求图中M、N两点的磁感强度B的大小和方向(图中r0 = 0.020 m)。
题10.2:已知地球北极地磁场磁感强度B的大小为6.0105 T。
如设想此地磁场是由地球赤道上一圆电流所激发的(如图所示),此电流有多大?流向如何?题10.3:如图所示,载流导线在平面内分布,电流为I,它在点O的磁感强度为多少?题10.4:如图所示,半径为R的木球上绕有密集的细导线,线圈平面彼此平行,且以单层线圈覆盖住半个球面,设线圈的总匝数为N,通过线圈的电流为I,求球心O处的磁感强度。
题10.5:实验中常用所谓的亥姆霍兹线圈在局部区域内获得一近似均匀的磁场,其装置简图如图所示,一对完全相同、彼此平行的线圈,它们的半径均为R,通过的电流均为I,且两线圈中电流的流向相同,试证:当两线圈中心之间的距离d等于线圈的半径R时,在两线圈中心连线的中点附近区域,磁场可看成是均匀磁场。
(提示:如以两线圈中心为坐标原点O ,两线圈中心连线为x 轴,则中点附近的磁场可看成是均匀磁场的条件为x B d d = 0;0d d 22=xB ) 题10.6:如图所示,载流长直导线的电流为I ,试求通过矩形面积的磁通量。
题10.7:如图所示,在磁感强度为B 的均匀磁场中,有一半径为R 的半球面,B 与半球面轴线的夹角为α,求通过该半球面的磁通量。
题10.8:已知10 mm 2裸铜线允许通过50 A 电流而不会使导线过热。
电流在导线横截面上均匀分布。
求:(1)导线内、外磁感强度的分布;(2)导线表面的磁感强度。
题10.9:有一同轴电缆,其尺寸如图所示,两导体中的电流均为I,但电流的流向相反,导体的磁性可不考虑。
试计算以下各处的磁感强度:(1)r<R1;(2)R1<r<R2;(3)R2<r<R3;(4)r>R3。
大学物理(第四版)课后习题及答案_量子物理
第十七第十七 章量子物理章量子物理题17.1:天狼星的温度大约是11000℃。
试由维思位移定律计算其辐射峰值的波长。
℃。
试由维思位移定律计算其辐射峰值的波长。
题17.1解:由维思位移定律可得天狼星单色辐出度的峰值所对应的波长该波长nm 257m 1057.27m =´==-Tbl属紫外区域,所以天狼星呈紫色属紫外区域,所以天狼星呈紫色题17.2:已知地球跟金星的大小差不多,金星的平均温度约为773 773 KK ,地球的平均温度约为293 K 。
若把它们看作是理想黑体,这两个星体向空间辐射的能量之比为多少?题17.2解:由斯特藩一玻耳兹曼定律4)(T T M s =可知,这两个星体辐射能量之比为可知,这两个星体辐射能量之比为4.484=÷÷øöççèæ=地金地金T T M M 题17.3:太阳可看作是半径为7.0 ´ 108 m 的球形黑体,试计算太阳的温度。
设太阳射到地球表面上的辐射能量为1.4 ´ 103W ×m -2,地球与太阳间的距离为1.5 ´ 1011m 。
题17.3解:以太阳为中心,地球与太阳之间的距离d 为半径作一球面,地球处在该球面的某一位置上。
太阳在单位时间内对外辐射的总能量将均匀地通过该球面,因此有 2244)(REd T M p p= (1)4)(T T M s = (2)由式(1)、(2)可得)可得K 58004122=÷÷øöççèæ=s R E d T题17.4:钨的逸出功是4.52 eV,钡的选出功是2.50 eV ,分别计算钨和钡的截止频率。
哪一种金属可以用作可见光范围内的光电管阴极材料?题17.4解:钨的截止频率钨的截止频率 Hz 1009.115101´==h W n 钡的截止频率 Hz 1063.015202´==hWn对照可见光的频率范围可知,钡的截止频率02n 正好处于该范围内,而钨的截止频率01n 大于可见光的最大频率,因而钡可以用于可见光范围内的光电管材料。
大学物理(第四版)课后习题及答案质点
题1.1:已知质点沿x 轴作直线运动,其运动方程为3322)s m 2()s m 6(m 2t t x --⋅-⋅+= 。
求(l )质点在运动开始后s 0.4内位移的大小;(2)质点在该时间内所通过的路程。
题1.1解:(1)质点在4.0 s 内位移的大小 m 3204-=-=∆x x x(2)由0)s m 6()s m 12(d d 232=⋅-⋅=--t t tx得知质点的换向时刻为s2=P t (t = 0不合题意) 则:m 0.8021=-=∆x x xm 40x 242-=-=∆x x所以,质点在4.0 s 时间间隔内的路程为m 4821=∆+∆=x x s题1.2:一质点沿x 轴方向作直线运动,其速度与时间的关系如图所示。
设0=t 时,0=x 。
试根据已知的图t v -,画出t a -图以及t x -图。
题1.2解:将曲线分为AB 、BC 、CD 三个过程,它们对应的加速度值分别为2A B A B AB s m 20-⋅=--=t t vv a (匀加速直线运动)0BC =a (匀速直线)2CD CD CD s m 10-⋅-=--=t t v v a (匀减速直线运动) 根据上述结果即可作出质点的a -t 图在匀变速直线运动中,有20021at t v x x ++= t /s 0 0.5 1 1.5 2 4 4.5 5 5.5 6 x /m5.7-10-5.7-4048.75558.760间内,质点是作v = 201s m -⋅的匀速直线运动,其x -t 图是斜率k = 20的一段直线。
题1.3:如图所示,湖中有一小船。
岸上有人用绳跨过定滑轮拉船靠岸。
设滑轮距水面高度为h ,滑轮到原船位置的绳长为0l ,试求:当人以匀速v 拉绳,船运动的速度v '为多少?题1.3解1:取如图所示的直角坐标系,船的运动方程为 ()()()j i r h t x t -+= 船的运动速度为()i i i r v tr r h h r tt t x t d d 1d d d d d d 2/12222-⎪⎪⎭⎫ ⎝⎛-=-===' 而收绳的速率trv d d -=,且因vt l r -=0,故 ()i v 2/12021-⎪⎪⎭⎫ ⎝⎛---='vt l hv题1.3解2:取图所示的极坐标(r ,θ),则θr r r d d d d d d d d d d e e e e r v tr t r t r t r t θ+=+==' r d d e t r 是船的径向速度,θd d e tr θ是船的横向速度,而trd d 是收绳的速率。
大学物理学第四版课后习题答案(赵近芳)上册
1.2 填空题
(1) 一质点,以 m s 1 的匀速率作半径为 5m 的圆周运动,则该质点在
是
;经过的路程是
。
[答案: 10m; 5πm]
5s 内,位移的大小
(2) 一质点沿 x 方向运动,其加速度随时间的变化关系为 速度 v0 为 5m·s-1,则当 t 为 3s 时,质点的速度 v=
[答案: 23m·s-1 ]
量值)方面随时间的变化率,而没有考虑位矢 速度的贡献。
r 及速度 v 的方向随时间的变化率对速度、加
1.8 一质点在 xOy 平面上运动,运动方程为
x =3 t +5,
y
1
=
t 2+3 t -4.
2
式中 t 以 s 计, x , y 以 m计. (1) 以时间 t 为变量,写出质点位置矢量的表示式;
方向南偏东 36.87o .
习题 2
2.1 选择题 (1) 一质点作匀速率圆周运动时, (A) 它的动量不变,对圆心的角动量也不变。 (B) 它的动量不变,对圆心的角动量不断改变。 (C) 它的动量不断改变,对圆心的角动量不变。 (D) 它的动量不断改变,对圆心的角动量也不断改变。 [ 答案: C]
a=3+2t (SI) ,如果初始时刻质点的 。
(3) 轮船在水上以相对于水的速度 V1 航行,水流速度为 V2 ,一人相对于甲板以速度 V3行走。
如人相对于岸静止,则 V1 、 V 2 和 V3的关系是
。
[答案: V1 V2 V3 0 ]
1.3 一个物体能否被看作质点,你认为主要由以下三个因素中哪个因素决定: (1) 物体的大小和形状; (2) 物体的内部结构; (3) 所研究问题的性质。 解:只有当物体的尺寸远小于其运动范围时才可忽略其大小的影响,因此主要由所研
大学物理(第四版)课后习题及答案 波动之欧阳语创编
第十四章波动时间:2021.03.01 创作:欧阳语14-1 一横波再沿绳子传播时得波动方程为[]x m t s m y )()5.2(cos )20.0(11---=ππ。
(1)求波得振幅、波速、频率及波长;(2)求绳上质点振动时得最大速度;(3)分别画出t=1s 和t=2s 时得波形,并指出波峰和波谷。
画出x=1.0m 处质点得振动曲线并讨论其与波形图得不同。
14-1 ()[]x m t s m y )(5.2cos )20.0(11---=ππ 分析(1)已知波动方程(又称波函数)求波动的特征量(波速u 、频率ν、振幅A 及彼长 等),通常采用比较法。
将已知的波动方程按波动方程的一般形式⎥⎦⎤⎢⎣⎡+⎪⎭⎫ ⎝⎛=0cos ϕωu x t A y 书写,然后通过比较确定各特征量(式中前“-”、“+”的选取分别对应波沿x 轴正向和负向传播)。
比较法思路清晰、求解简便,是一种常用的解题方法。
(2)讨论波动问题,要理解振动物理量与波动物理量之间的内在联系与区别。
例如区分质点的振动速度与波速的不同,振动速度是质点的运动速度,即dt dy v =;而波速是波线上质点运动状态的传播速度(也称相位的传播速度、波形的传播速度或能量的传播速度),其大小由介质的性质决定。
介质不变,彼速保持恒定。
(3)将不同时刻的t 值代人已知波动方程,便可以得到不同时刻的波形方程)(x y y =,从而作出波形图。
而将确定的x 值代入波动方程,便可以得到该位置处质点的运动方程)(t y y =,从而作出振动图。
解(1)将已知波动方程表示为 与一般表达式()[]0cos ϕω+-=u x t A y 比较,可得 则 m v u Hz v 0.2,25.12====λπω(2)绳上质点的振动速度则1max 57.1-⋅=s m v(3) t=1s 和 t =2s 时的波形方程分别为波形图如图14-1(a )所示。
x =1.0m 处质点的运动方程为振动图线如图14-1(b )所示。
大学物理学第四版课后习题答案(赵近芳)上册
dt
dt dt
∵有 v v(表轨道节线方向单位矢),所以
式中 dv 就是加速度的切向分量. dt
dv dv v d dt dt dt
( drˆ 与 dˆ 的运算较复杂,超出教材规定,故不予讨论) dt dt
1.7 设质点的运动方程为 x = x ( t ), y = y ( t ),在计算质点的速度和加速度时,有人先求
dt
dt
a R 118 2 36 m s2
an R 2 1 (9 22 )2 1296 m s2
(2)当加速度方向与半径成 45ο 角时,有
tan 45 a 1 an
即
R 2 R
亦即 则解得 于是角位移为
(9t 2 )2 18t t3 2 9
解: ∵
a dv dv dx v dv dt dx dt dx
分离变量:
vdv adx (2 6x2 )dx
两边积分得
1 v2 2x 2x3 c 2
由题知, x 0时, v0 10 ,∴ c 50
∴
v 2 x3 x 25 m s1
1.10 已知一质点作直线运动,其加速度为 a =4+3 t m s2 ,开始运动时,x =5 m,v =0,
2 3t3 2 3 2 2.67rad 9
1.12
质点沿半径为 R 的圆周按 s = v0t
1 bt 2 的规律运动,式中 s 为质点离圆周上某点的弧 2
长, v0 ,b 都是常量,求:(1) t 时刻质点的加速度;(2) t 为何值时,加速度在数值上等于 b .
解:(1)
(D) 2R ,0 t
大学物理学第四版课后习题答案(赵近芳)上册
大学物理学第四版课后习题答案(赵近芳)上册大学物理学第四版课后习题答案(赵近芳)上册I. 力学基础1.1 物理量、单位和量纲1.2 一维运动1.3 二维运动1.4 多维运动1.5 动力学定律1.6 四个基本定律的应用II. 力学进阶2.1 万有引力定律2.2 物体的机械平衡2.3 力的合成和分解2.4 刚体的平衡条件2.5 动力学定律的矢量形式2.6 力的合成与分解在动力学中的应用III. 力学应用3.1 动量和冲量3.2 动量定理和动量守恒定律3.3 质心运动3.4 矩和对称性3.5 碰撞和动能IV. 振动与波动4.1 简谐振动的基本概念4.2 简谐振动的物理规律4.3 简谐振动的叠加4.4 波的基本概念4.5 机械波的传播4.6 声波的特性V. 热学基础5.1 温度和热量5.2 热学平衡5.3 理想气体状态方程5.4 热力学第一定律5.5 热力学第二定律5.6 热力学循环VI. 热学进阶6.1 热传导6.2 理想气体的物态方程6.3 热机的工作原理6.4 理想气体的热力学过程6.5 热力学第三定律6.6 热力学中的熵VII. 光学基础7.1 几何光学的基本假设7.2 反射和折射7.3 薄透镜的成像7.4 光的衍射7.5 光的干涉与衍射VIII. 光学进阶8.1 光的波动性8.2 波动光学中的衍射现象8.3 干涉与衍射的应用8.4 偏振光的特性和产生8.5 偏振的应用IX. 电学基础9.1 电荷和电场9.2 电场中的电荷9.3 静电场中的电势能9.4 电介质中的电场9.5 电容器和电容9.6 电容器在电场中的应用X. 电学进阶10.1 电流和电阻10.2 欧姆定律和电功率10.3 理想电源和内阻10.4 串联和并联电路10.5 微观电流与输运过程10.6 磁场和电流的相互作用XI. 磁学基础11.1 磁场的基本概念11.2 安培力和磁场的作用11.3 安培环路定理和比奥-萨伐尔定律11.4 磁场中的磁矩和磁矢势11.5 磁场中的电荷和电流XII. 电磁感应12.1 法拉第电磁感应定律12.2 电磁感应的应用12.3 洛伦兹力和电磁感应的关系12.4 电磁感应中的能量转换XIII. 光学和电磁波13.1 光的多普勒效应13.2 光的全反射和光导纤维13.3 电磁波的基本特性13.4 电磁波的干涉和衍射13.5 电磁波的产生和传播XIV. 原子物理14.1 原子的组成和结构14.2 原子能级和辐射14.3 布拉格衍射和X射线的产生14.4 原子谱和拉曼散射14.5 布居和粒子统计XV. 物质内部结构15.1 固体的晶体结构15.2 固体的导电性15.3 半导体的性质和应用15.4 介质的极化和磁化15.5 核能和放射性以上是《大学物理学第四版课后习题答案(赵近芳)上册》的大纲,根据各个章节的内容进行详细解答可帮助学生更好地掌握物理学知识。
大学物理(第四版)课后习题及答案 波动之欧阳家百创编
第十四章波动欧阳家百(2021.03.07)14-1 一横波再沿绳子传播时得波动方程为[]x m t s m y )()5.2(cos )20.0(11---=ππ。
(1)求波得振幅、波速、频率及波长;(2)求绳上质点振动时得最大速度;(3)分别画出t=1s 和t=2s 时得波形,并指出波峰和波谷。
画出x=1.0m 处质点得振动曲线并讨论其与波形图得不同。
14-1 ()[]x m t s m y )(5.2cos )20.0(11---=ππ 分析(1)已知波动方程(又称波函数)求波动的特征量(波速u 、频率ν、振幅A 及彼长 等),通常采用比较法。
将已知的波动方程按波动方程的一般形式⎥⎦⎤⎢⎣⎡+⎪⎭⎫ ⎝⎛=0cos ϕωu x t A y 书写,然后通过比较确定各特征量(式中前“-”、“+”的选取分别对应波沿x 轴正向和负向传播)。
比较法思路清晰、求解简便,是一种常用的解题方法。
(2)讨论波动问题,要理解振动物理量与波动物理量之间的内在联系与区别。
例如区分质点的振动速度与波速的不同,振动速度是质点的运动速度,即dt dy v =;而波速是波线上质点运动状态的传播速度(也称相位的传播速度、波形的传播速度或能量的传播速度),其大小由介质的性质决定。
介质不变,彼速保持恒定。
(3)将不同时刻的t 值代人已知波动方程,便可以得到不同时刻的波形方程)(x y y =,从而作出波形图。
而将确定的x 值代入波动方程,便可以得到该位置处质点的运动方程)(t y y =,从而作出振动图。
解(1)将已知波动方程表示为 与一般表达式()[]0cos ϕω+-=u x t A y 比较,可得则 m v u Hz v 0.2,25.12====λπω(2)绳上质点的振动速度则1max 57.1-⋅=s m v(3) t=1s 和 t =2s 时的波形方程分别为波形图如图14-1(a )所示。
x =1.0m 处质点的运动方程为振动图线如图14-1(b )所示。
大学物理(第四版)课后习题及答案 质点
题1.1:已知质点沿x 轴作直线运动,其运动方程为3322)s m 2()s m 6(m 2t t x --⋅-⋅+= 。
求(l )质点在运动开始后s 0.4内位移的大小;(2)质点在该时间内所通过的路程。
题1.1解:(1)质点在4.0 s 内位移的大小 m 3204-=-=∆x x x(2)由0)s m 6()s m 12(d d 232=⋅-⋅=--t t tx得知质点的换向时刻为s2=P t (t = 0不合题意) 则:m 0.8021=-=∆x x xm 40x 242-=-=∆x x所以,质点在4.0 s 时间间隔内的路程为 m 4821=∆+∆=x x s题1.2:一质点沿x 轴方向作直线运动,其速度与时间的关系如图所示。
设0=t 时,0=x 。
试根据已知的图t v -,画出t a -图以及t x -图。
题1.2解:将曲线分为AB 、BC 、CD 三个过程,它们对应的加速度值分别为2AB A B AB s m 20-⋅=--=t t vv a (匀加速直线运动)0BC =a (匀速直线)2CD CD CD s m 10-⋅-=--=t t v v a (匀减速直线运动) 根据上述结果即可作出质点的a -t 图在匀变速直线运动中,有20021at t v x x ++=间内,质点是作v = 201s m -⋅的匀速直线运动,其x -t 图是斜率k = 20的一段直线。
题1.3:如图所示,湖中有一小船。
岸上有人用绳跨过定滑轮拉船靠岸。
设滑轮距水面高度为h ,滑轮到原船位置的绳长为0l ,试求:当人以匀速v 拉绳,船运动的速度v '为多少?题1.3解1:取如图所示的直角坐标系,船的运动方程为 ()()()j i r h t x t -+= 船的运动速度为()i i i r v tr r h h r t t t x t d d 1d d d d d d 2/12222-⎪⎪⎭⎫⎝⎛-=-===' 而收绳的速率trv d d -=,且因vt l r -=0,故 ()i v 2/12021-⎪⎪⎭⎫ ⎝⎛---='vt l hv题1.3解2:取图所示的极坐标(r ,θ),则 θr r r d d d d d d d d d d e e e e r v tr t r t r t r t θ+=+==' r d d e t r 是船的径向速度,θd d e tr θ是船的横向速度,而trd d 是收绳的速率。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十六章相对论题16.1:设'S 系以速率v = 0.60c 相对于S 系沿'xx 轴运动,且在t ='t = 0时,0'==x x 。
(1)若有一事件,在 S 系中发生于t = 2.0×10-7 s ,x = 50 m 处,该事件在 'S 系中发生于何时刻?(2)如有另一事件发生于 S 系中 t = 3.0×10-7 s ,x = 10 m 处,在 S ′系中测得这两个事件的时间间隔为多少?题16.1解:(1)由洛伦兹变换可得S ′系的观察者测得第一事件发生的时刻为s 1025.1/1'7221211-⨯=--=c v x c v t t(2)同理,第二个事件发生的时刻为s 105.3/1'7222222-⨯=--=c v x c v t t所以,在S ′系中两事件的时间间隔为s 1025.2'''721-⨯=-=∆t t t题16.2:设有两个参考系S 和S ′,它们的原点在t = 0和t ′ = 0时重合在一起。
有一事件,在 S ′系中发生在 t ′ = 8.0×10-8 s ,x ′ = 60 m ,y ′ = 0,z ′ = 0处,若S ′系相对于S 系以速率v = 0.6c 沿xx ′轴运动,问该事件在S 系中的时空坐标各为多少?题16.2解:由洛伦兹逆变换得该事件在S 系的时空坐标分别为m 93/1''22=-+=c v vt x x 0'==y y0'==z zs 105.2/1''7222-⨯=-+=c v x c v t t题16.3:一列火车长 0.30 km (火车上观察者测得),以 100 km/h 的速度行驶,地面上观察者发现有两个闪电同时击中火车的前后两端。
问火车上的观察者测得两闪电击中火车前后两端的时间间隔为多少?题16.3解:设地面为S 系,火车为S ′系,把闪电击中火车前后端视为两个事件(即两组不同的时空坐标)。
由洛伦兹变换可得两事件时间间隔为221221212/1)''()''(cv x x c v t t t t --+-=-(1) 221221212/1)()(''cv x x c v t t t t ----=-(2) 利用这两式都可以得到结果。
解法1:由题意闪电在S 系中的时间间隔∆t = t 2 - t 1 = 0。
两事件在 S ′系中的空间间隔即火车的长度为Δx ′ = x 2′ - x 1′ = 0.30 ⨯ 103 m 。
则由(1)式可得s 1026.9)''('''1412212-⨯-=--=-=∆x x cv t t t 负号说明火车上的观察者测得闪电先击中车头x 2′ 处。
解法2:可利用(2)式求解,此时应注意式中x 2-x 1为地面观察者测得两事件的空间间隔,即S 系中测得的火车长度,而不是火车原长。
根据长度收缩效应有212121)''(⎪⎭⎫ ⎝⎛--=-c v x x x x 考虑这一关系由(2)式可得s 1026.9)''(''1412212-⨯-=--=-x x c v t t 结果与解法1相同,相比之下解法1较简单,这是因为解法1中直接利用了x 2-x 1 = 0.3 km 这一已知条件。
题16.4:在惯性系 S 中,某事件 A 发生在x 1处,2.0 ⨯ 10-6 s 后,另一事件 B 发生在 x 2处,已知 x 2-x l = 300 m 。
问:(1)能否找到一个相对 S 系作匀速直线运动的参考系S ′,在S ′系中,两事件发生在同一地点?(2)在S ′系中,上述两事件的时间间隔为多少?题16.4解:设惯性系S ′以速度v 相对S 系沿x 轴正向运动,因在S 系中两事件的时空坐标已知,由洛伦兹时空变换式,可得22121212/1)()(''cv t t v x x x x ----=- 221221212/1)()(''c v x x c v t t t t ----=- (1)令0''12=-x x ,由式(1)可得c t t x x v 50.0m/s 1050.181212=⨯=--= (2)将v 值代入式(2),可得()s1073.1/1)(/11''6221222121221212-⨯=--=-⎪⎪⎭⎫ ⎝⎛----=-c v t t c v t t x x c v t t t t这表明在S ′系中事件A 先发生题16.5:设想有一粒子以0.050c 的速率相对实验室参考系运动。
此粒子衰变时发射一个电子,电子的速率为0.80c ,电子速度的方向与粒子运动方向相同。
试求电子相对实验室参考系的速度。
题16.5解:由洛伦兹速度逆变换式可得电子相对S 系的速度为c u c v v u u 817.0'1'x 2x x =++= 题16.6:设在宇航飞船中的观察者测得脱离它而去的航天器相对它的速度为1.2 ⨯ 108 m/s i 。
同时,航天器发射一枚空间火箭,航天器中的观察者测得此火箭相对它的速度为 1.0 ⨯ 108 m/s i 。
问:(l )此火箭相对宇航飞船的速度为多少?(2)如果以激光光束来替代空间火箭,此激光光束相对宇航飞船的速度又为多少?请将上述结果与伽利略速度变换所得结果相比较,并理解光速是运动体的极限速度。
题16.16解:设宇航飞船为S 系,航天器为S ′系,则S ′系相对S 系的速度v = 1.2 ⨯ 108 m/s ,空间火箭相对航天器的速度为18x s m 100.1'-⋅⨯=u ,激光束相对航天器的速度为光速c 。
由洛伦兹变换可得:(1) 空间火箭相对S 系的速度为13x 2x s m 1094.1'1'-⋅⨯=++=u c v v u u x (2) 激光束相对S 系的速度为 c c c v v c u x =++=21 即激光束相对宇航飞船的速度仍为光速c ,这是光速不变原理所预料的。
如用伽利略变换,则有c v c u >+=x 。
这表明对伽利略变换而言,运动物体没有极限速度,但对相对论的洛伦兹变换来说,光速是运动物体的极限速度题16.7:在惯性系S 中观察到有两个事件发生在同一地点,其时间间隔为4.0 s ,从另一惯性系S 中观察到这两个事件的时间间隔为6.0 s ,试问从S ′系测量到这两个事件的空间间隔是多少?设S ′系以恒定速率相对S 系沿'xx 轴运动。
题16.7解:由题意知在 S 系中的时间间隔为固有时,即Δt = 4.0 s ,而Δt ′ = 6.0 s 。
根据时间延缓效应的关系式22/1'cv tt -∆=∆ 可得S ′系相对S 系的速度为c c t t v 35'1212=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛∆∆-= 两事件在S ′系中的空间间隔为m 1034.1''9⨯=∆=∆t v x题16.8:在惯性系S 中,有两个事件同时发生在'xx 轴上相距为 1. 0 ⨯ 103 m 的两处,从惯性系 S ′观测到这两个事件相距为 2. 0 ⨯ 103 m ,试问由 S ′系测得此两事件的时间间隔为多少? 题16.8解:设此两事件在S 系中的时空坐标为(x l , 0, 0, t 1)和(x 2, 0, 0, t 2),且有0m 100.112312=-⨯=-t t x x ,。
而在 S ′系中,此两事件的时空坐标为)',0,0'(11t x ,和)',0,0,'(22t x ,且,m 100.2''312⨯=-x x ,根据洛伦兹变换,有22121212/1)()(''c v t t v x x x x ----=- (1)221221212/1)()(''c v x x c v t t t t ----=- (2) 由式(1)可得 c c x x x x v 23)''()(121212212=⎥⎦⎤⎢⎣⎡---= 将v 值代人式(2),可得s 1077.5''612-⨯=-t t题16.9:若从一惯性系中测得宇宙飞船的长度为其固有长度的一半,试问宇宙飞船相对此惯性系的速度为多少?(以光速c 表示)题16.9解:设宇宙飞船的固有长度为0l ,它相对于惯性系的速率为v ,而从此惯性系测得宇宙飞船的长度为20l ,根据洛伦兹长度收缩公式,有200121⎪⎭⎫ ⎝⎛-=c v l l 可解得 c c v 866.023== 题16.10:一固有长度为 4.0 m 的物体,若以速率0.60c 沿x 轴相对某惯性系运动,试问从该惯性系来测量,此物体的长度为多少?题16.10解:由洛伦兹长度收缩公式m 2.31200=⎪⎭⎫ ⎝⎛-=c v l l 题16.11:半人马星座α星是离太阳系最近的恒星,它距地球为4.3×1016 m 。
设有一宇宙飞船自地球往返于半人马星座α星之间。
(1)若宇宙飞船的速率为0.999C ,按地球上时钟计算,飞船往返一次需多少时间?(2)如以飞船上时钟计算,往返一次的时间又为多少? 题16.11解:(1)以地球上的时钟计算,飞船往返一次的时间间隔为a 0.91087.228≈⨯==∆s vs t (2)以飞船上的时钟计算,飞船往返一次的时间间隔为a 0.40s 1028.11'722≈⨯=-∆=∆cv t t 题16.12:若一电子的总能量为5.0 MeV ,求该电子的静能、动能、动量和速率。
题16.12解:电子静能为)kg 101.9(,MeV 512.0310200-⨯===m c m E电子动能为MeV 488.40K =-=E E E由20222E c p E +=,得电子动量为 1211202s m kg 1066.2)(1--⋅⋅⨯=-=E E c p 由212201-⎪⎪⎭⎫ ⎝⎛-=c v E E 可得电子速率为c E E E c v 995.0212202=⎪⎪⎭⎫ ⎝⎛-=题16.13:一被加速器加速的电子,其能量为 3. 00 ⨯ 109 eV 。
试问:(1)这个电子的质量是其静质量的多少倍?(2)这个电子的速率为多少?题16.13解:(1)由相对论质能关系2mc E =和200c m E =可得电子的动质量m 与静质量m 0之比为320001086.5⨯===cm E E E m m (2)由相对论质速关系式212201-⎪⎪⎭⎫ ⎝⎛-=c v m m 可解得c c mm v 999999985.012120=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛-=, 可见此时的电子速率已十分接近光速了 题16.14:在电子偶的湮没过程中,一个电子和一个正电子相碰撞而消失,并产生电磁辐射。