2014年高考北京卷数学理试题及答案解析

合集下载

2014年北京高考word版解析数学理答案

2014年北京高考word版解析数学理答案

2014北京高考(理科)数学题解析1.集合{}{}2|2002A x x x =-==,.故{}02AB =,,选C .2. A.y 在[)1-+∞,上为增函数,符合题意. B .2(1)y x =-在(01),上为减函数,不合题意. C .2x y -=为()-∞+∞,上的减函数,不合题意. D .0.5log (1)y x =+为(1)-+∞,上的减函数,不合题意. 故选A .3. 参数方程1cos 2sin x y θθ=-+⎧⎨=+⎩所表示的曲线为圆心在(12)-,,半径为1的圆.其对称中心为圆心(12)-,.逐个代入选项可知,(12)-,在直线2y x =-上,即选项B . 4. 当m 输入的7m =,3n =时,判断框内的判断条件为5k <.故能进入循环的k 依次为7,6,5.顺次执行S S k =⋅,则有765210S =⋅⋅=, 故选C . 5. D对于等比数列{}n a ,若1q >,则当10a <时有{}n a 为递减数列. 故“1q >”不能推出“{}n a 为递增数列”.若{}n a 为递增数列,则{}n a 有可能满足10a <且01q <<,推不出1q >. 综上,“1q >”为“{}n a 为递增数列”的既不充分也不必要条件,即选D . 6. D若0k ≥,z y x =-没有最小值,不合题意.若0k <,则不等式组所表示的平面区域如图所示.由图可知,z y x =-在点20k ⎛⎫- ⎪⎝⎭,处取最小值.故204k ⎛⎫--=- ⎪⎝⎭,解得12k =-,即选项D 正确.7. D (23S S =且13S S ≠)D ABC -在xOy 平面上的投影为ABC △,故12S =, 设D 在yOz 和zOx 平面上的投影分别为2D 和3D ,则D AB C -在yOz 和zOx 平面上的投影分别为2OCD △和3OAD △.∵(201D ,,(310D ,.故23S S =综上,选项D 正确. 8. B用ABC 分别表示优秀、及格和不及格。

2014年(大纲全国卷)数学(理科) 高考真题及答案解析

2014年(大纲全国卷)数学(理科) 高考真题及答案解析

函数是( ).
A.y=g(x) B.y=g(-x) C.y=-g(x) D.y=-g(-x)
【答案】D
【解析】因为函数 y=f(x)的图像与函数 y=g(x)的图像关于直线 x+y=0 对称,
而函数图像与其反函数的图像关于直线 y=x 对称,
所以这两个函数的反函数图像也关于直线 x+y=0 对称.
设函数 y=f(x)的反函数图像上任一点 P(x,y),
62

.
【答案】(-∞,2]
4
【解析】f(x)=cos 2x+asin x=1-2sin2x+asin x.
令 t=sin x,∵x∈
π,π
62
,∴t∈
1 2
,1
,
∴g(t)=1-2t2+at=-2t2+at+1
1 2
<
t
<
1
,
由题意知2×(-2)

1 ,∴a≤2,
2
∴a 的取值范围为(-∞,2].
11.(2014 大纲全国,理 11)已知二面角α-l-β为 60°,AB⊂α,AB⊥l,A 为垂足,CD⊂β,C∈l,∠ACD=135°,则
异面直线 AB 与 CD 所成角的余弦值为( ).
A.1
B. 2
C. 3
D.1
4
4
4
2
【答案】B
【解析】如图,在平面α内过 C 作 CE∥AB,
则∠ECD 为异面直线 AB 与 CD 所成的角或其补角,
【答案】C
【解析】∵a=sin 33°,b=cos 55°=sin 35°,c=tan 35°=csoins3355°°, ∴csoins3355°°>sin 35°>sin 33°. ∴c>b>a,选 C.

2014年北京市高考理科数学试卷及答案解析(word版)

2014年北京市高考理科数学试卷及答案解析(word版)

2014年北京高考数学(理科)试题一.选择题(共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项)1.已知集合2{|20},{0,1,2}A x x x B =-==,则AB =( ).{0}A .{0,1}B .{0,2}C .{0,1,2}D2.下列函数中,在区间(0,)+∞上为增函数的是( ).1A y x =+ 2.(1)B y x =- .2x C y -= 0.5.log (1)D y x =+3.曲线1cos 2sin x y θθ=-+⎧⎨=+⎩(θ为参数)的对称中心( ).A 在直线2y x =上 .B 在直线2y x =-上.C 在直线1y x =-上 .D 在直线1y x =+上4.当7,3m n ==时,执行如图所示的程序框图,输出的S 值为( ).7A .42B .210C .840D5.设{}n a 是公比为q 的等比数列,则"1"q >是"{}"n a 为递增数列的( ).A 充分且不必要条件 .B 必要且不充分条件 .C 充分必要条件 .D 既不充分也不必要条件6.若,x y 满足20200x y kx y y +-≥⎧⎪-+≥⎨⎪≥⎩且z y x =-的最小值为-4,则k 的值为( ).2A .2B - 1.2C 1.2D -7.在空间直角坐标系Oxyz 中,已知()2,0,0A ,()2,2,0B ,()0,2,0C ,(2D ,若1S ,2S ,3S 分别表示三棱锥D ABC -在xOy ,yOz ,zOx 坐标平面上的正投影图形的 面积,则( )(A )123S S S == (B )12S S =且 31S S ≠ (C )13S S =且 32S S ≠ (D )23S S =且 13S S ≠8.有语文、数学两学科,成绩评定为“优秀”“合格”“不合格”三种.若A 同学每科成绩不 低于B 同学,且至少有一科成绩比B 高,则称“A 同学比B 同学成绩好.”现有若干同学,他们之间没有一个人比另一个成绩好,且没有任意两个人语文成绩一样,数学成绩也一样 的.问满足条件的最多有多少学生( )(A )2 (B )3 (C )4 (D )5 二、填空题(共6小题,每小题5分,共30分)9.复数211i i +⎛⎫= ⎪-⎝⎭________.10.已知向量a 、b 满足1a =,()2,1b =,且()0a b R λλ+=∈,则λ=________.11.设双曲线C 经过点()2,2,且与2214y x -=具有相同渐近线,则C 的方程为________; 渐近线方程为________.12.若等差数列{}n a 满足7890a a a ++>,7100a a +<,则当n =________时{}n a 的前n 项和最大.13. 把5件不同产品摆成一排,若产品A 与产品C 不相邻,则不同的摆法有_______种. 14. 设函数)sin()(ϕω+=x x f ,0,0>>ωA ,若)(x f 在区间]2,6[ππ上具有单调性,且 ⎪⎭⎫⎝⎛-=⎪⎭⎫ ⎝⎛=⎪⎭⎫⎝⎛6322πππf f f ,则)(x f 的最小正周期为________.三.解答题(共6题,满分80分)15. (本小题13分)如图,在ABC ∆中,8,3==∠AB B π,点D 在BC 边上,且71cos ,2=∠=ADC CD (1)求BAD ∠sin(2)求AC BD ,的长16. (本小题13分).李明在10场篮球比赛中的投篮情况如下(假设各场比赛互相独立):(1)从上述比赛中随机选择一场,求李明在该场比赛中投篮命中率超过6.0的概率. (2)从上述比赛中选择一个主场和一个客场,求李明的投篮命中率一场超过6.0,一 场不超过6.0的概率.(3)记x 是表中10个命中次数的平均数,从上述比赛中随机选择一场,记X 为李明 在这比赛中的命中次数,比较)(X E 与x 的大小(只需写出结论)17.(本小题14分)如图,正方形AMDE 的边长为2,C B ,分别为MD AM ,的中点,在五棱锥ABCDE P -中,F 为棱PE 的中点,平面ABF 与棱PC PD ,分别交于点H G ,. (1)求证:FG AB //;(2)若⊥PA 底面ABCDE ,且PE AF ⊥,求直线BC 与平面ABF 所成角的大小,并 求线段PH 的长.18.(本小题13分)已知函数()cos sin ,[0,]2f x x x x x π=-∈,(1)求证:()0f x ≤; (2)若sin xa b x<<在(0,)2π上恒成立,求a 的最大值与b 的最小值.19.(本小题14分) 已知椭圆22:24C xy +=,(1)求椭圆C 的离心率. (2)设O 为原点,若点A 在椭圆C 上,点B 在直线2y =上,且OA OB ⊥,求直线AB 与圆222x y +=的位置关系,并证明你的结论.20.(本小题13分)对于数对序列1122(,),(,),,(,)n n P a b a b a b ,记111()T P a b =+,112()max{(),}(2)k k k k T P b T P a a a k n -=++++≤≤,其中112max{(),}k k T P a a a -+++表示1()k T P -和12k a a a +++两个数中最大的数,(1)对于数对序列(2,5),(4,1)P P ,求12(),()T P T P 的值.(2)记m 为,,,a b c d 四个数中最小值,对于由两个数对(,),(,)a b c d 组成的数对序列(,),(,)P a b c d 和'(,),(,)P a b c d ,试分别对m a =和m d =的两种情况比较2()T P 和2(')T P 的大小.(3)在由5个数对(11,8),(5,2),(16,11),(11,11),(4,6)组成的所有数对序列中,写出一个数对序列P 使5()T P 最小,并写出5()T P 的值.(只需写出结论).2014北京高考(理科)数学题解析1.集合{}{}2|2002A x x x =-==,.故{}02AB =,,选C .2. A .1y x =+[)1-+∞,上为增函数,符合题意. B .2(1)y x =-在(01),上为减函数,不合题意. C .2x y -=为()-∞+∞,上的减函数,不合题意. D .0.5log (1)y x =+为(1)-+∞,上的减函数,不合题意. 故选A .3. 参数方程1cos 2sin x y θθ=-+⎧⎨=+⎩所表示的曲线为圆心在(12)-,,半径为1的圆.其对称中心为圆心(12)-,.逐个代入选项可知,(12)-,在直线2y x =-上,即选项B .4. 当m 输入的7m =,3n =时,判断框内的判断条件为5k <.故能进入循环的k 依次为7,6,5.顺次执行S S k =⋅,则有765210S =⋅⋅=,故选C . 5.D对于等比数列{}n a ,若1q >,则当10a <时有{}n a 为递减数列. 故“1q >”不能推出“{}n a 为递增数列”.若{}n a 为递增数列,则{}n a 有可能满足10a <且01q <<,推不出1q >. 综上,“1q >”为“{}n a 为递增数列”的既不充分也不必要条件,即选D . 6.D若0k ≥,z y x =-没有最小值,不合题意. 若0k <,则不等式组所表示的平面区域如图所示.由图可知,z y x =-在点20k ⎛⎫- ⎪⎝⎭,处取最小值.故204k ⎛⎫--=- ⎪⎝⎭,解得12k =-,即选项D 正确.7.D (23S S =且13S S ≠)D ABC -在xOy 平面上的投影为ABC △,故12S =,设D 在yOz 和zOx 平面上的投影分别为2D 和3D ,则D ABC -在yOz 和zOx 平面上的投影分别为2OCD △和3OAD △.∵(2012D ,,,(3102D ,,.D 1O D 3D 2DCB A zyx +y -2=0-2kkx -y +2=022O y x故232S S == 综上,选项D 正确. 8.B用ABC 分别表示优秀、及格和不及格。

2014年高考理科数学全国卷2(含答案解析)

2014年高考理科数学全国卷2(含答案解析)

绝密★启用前2014年普通高等学校招生全国统一考试(全国新课标卷2)理科数学使用地区:海南、宁夏、黑龙江、吉林、新疆、云南、内蒙古、青海、贵州、甘肃、西藏注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.答卷前,考生务必将自己的姓名、准考证号填写在本试卷和答题卡相应位置上.2.回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号.写在本试卷上无效.3.回答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效.4.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合2{|(1)4,}M x x x =-<∈R ,{1,0,1,2,3}N =-,则MN = ( )A .{0,1,2}B .{1,0,1,2}-C .{1,0,2,3}-D .{0,1,2,3} 2.设复数z 满足(1i)2i z -=,则z =( )A .1i -+B .1i --C .1i +D .1i -3.等比数列{}n a 的前n 项和为n S .已知32110S a a =+,59a =,则1a =( )A .13B .13-C .19D .19-4.已知m ,n 为异面直线,m ⊥平面α,n ⊥平面β.直线l 满足l m ⊥,l ⊥n ,l α⊄,l β⊄,则( )A .αβ∥且l α∥B .αβ∥且l β⊥C .α与β相交,且交线垂直于lD .α与β相交,且交线平行于l5.已知5(1)(1)ax x ++的展开式中的2x 的系数为5,则a = ( )A .4-B .3-C .2-D .1-6.执行如图的程序框图,如果输入的10N =,则输出的S = ( ) A .11112310++++B .11112!310++++!!C .11112311++++ D .11112311++++!!!7.一个四面体的顶点在空间直角坐标系O xyz -中的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx 平面为投影面,则得到的正视图可以为( )8.设3log 6a =,5log 10b =,7log 14c =,则( )A .c b a >>B .b a c >>C .a c b >>D .a b c >>9.已知0a >,x ,y 满足约束条件1,3,(3).x x y y a x ⎧⎪+⎨⎪-⎩≥≤≥若2z x y =+的最小值为1,则a = ( )A .14B .12C .1D .210.已知函数32()f x x ax bx c =+++,下列结论中错误的是( )A .0x ∃∈R ,0()0f x =B .函数()y f x =的图象是中心对称图形C .若0x 是()f x 的极小值点,则()f x 在区间0(,)x -∞上单调递减D .若0x 是()f x 的极值点,则0()0f x '=11.设抛物线C :22(0)y px p =>的焦点为F ,点M 在C 上,||5MF =.若以MF 为直径的圆过点(0,2),则C 的方程为( )A .24y x =或28y x =B .22y x =或28y x =C .24y x =或216y x = D .22y x =或216y x =12.已知点(1,0)A -,(1,0)B ,(0,1)C ,直线(0)y ax b a =+>将ABC △分割为面积相等的两部分,则b 的取值范围是( )A .(0,1)B .21(1,)22-C .21(1,]23-D .11[,)32第Ⅱ卷本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须作答.第22题~第24题为选考题,考生根据要求作答.二、填空题:本大题共4小题,每小题5分.13.已知正方形ABCD 的边长为2,E 为CD 的中点,则AE BD =________. 14.从n 个正整数1,2,,n 中任意取出两个不同的数,若取出的两数之和等于5的概率为114,则n =________.15.设θ为第二象限角,若π1tan()42θ+=,则sin cos θθ+=________. 16.等差数列{}n a 的前n 项和为n S .已知100S =,1525S =,则n nS 的最小值为________.三、解答题:解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)ABC △在内角A ,B ,C 的对边分别为a ,b ,c ,已知cos sin a b C c B =+.(Ⅰ)求B ;(Ⅱ)若2b =,求ABC △面积的最大值. 18.(本小题满分12分) --------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------姓名________________ 准考证号_____________如图,直棱柱111ABC A B C -中,D ,E 分别是AB ,1BB 的中点,122AA AC CB AB ===. (Ⅰ)证明:1BC ∥平面1A CD ; (Ⅱ)求二面角1D AC E --的正弦值.19.(本小题满分12分)经销商经销某种农产品,在一个销售季度内,每售出1t 该产品获利润500元,未售出的产品,每1t 亏损300元.根据历史资料,得到销售季度内市场需求量的频率分布直方图,如图所示.经销商为下一个销售季度购进了130t 该农产品.以X (单位:t ,100150X ≤≤)表示下一个销售季度内的市场需求量,T (单位:元)表示下一个销售季度内经销该农产品的利润. (Ⅰ)将T 表示为X 的函数;(Ⅱ)根据直方图估计利润T 不少于57 000元的概率;(Ⅲ)在直方图的需求量分组中,以各组的区间中点值代表该组的各个值,并以需求量落入该区间的频率作为需求量取该区间中点值的概率(例如:若需求量[100,110)X ∈,则取105X =,且105X =的概率等于需求量落入[100,110)的频率),利润T 的数学期望.20.(本小题满分12分)平面直角坐标系xOy 中,过椭圆M :22221(0)x y a b a b+=>>右焦点的直线30x y +-=交M 于A ,B 两点,P 为AB 的中点,且OP 的斜率为12.(Ⅰ)求M 的方程;(Ⅱ)C ,D 为M 上的两点,若四边形ABCD 的对角线CD AD ⊥,求四边形ABCD 面积的最大值.21.(本小题满分12分)已知函数()e ln()xf x x m =-+.(Ⅰ)设0x =是()f x 的极值点,求m ,并讨论()f x 的单调性; (Ⅱ)当2m ≤时,证明:()0f x >.请考生在第22、23、24三题中任选一题作答,如果多做,则按做的第一题积分.作答时请写清题号.22.(本小题满分10分)选修4—1:几何证明选讲如图,CD 为ABC △外接圆的切线,AB 的延长线交直线CD 于点D ,E ,F 分别为弦AB 与弦AC 上的点,且BC AE DC AF =,B ,E ,F ,C 四点共圆.(Ⅰ)证明:CA 是ABC △外接圆的直径;(Ⅱ)若DB BE EA ==,求过B ,E ,F ,C 四点的圆的面积与ABC △外接圆面积的比值.23.(本小题满分10分)选修4—4:坐标系与参数方程已知动点P ,Q 都在曲线C :2cos ,2sin x t y t =⎧⎨=⎩(t 为参数)上,对应参数分别为=t α与=2t α(02π)α<<,M 为PQ 的中点.(Ⅰ)求M 的轨迹的参数方程;(Ⅱ)将M 到坐标原点的距离d 表示为α的函数,并判断M 的轨迹是否过坐标原点.24.(本小题满分10分)选修4—5:不等式选讲设a ,b ,c 均为正数,且1a b c ++=.证明: (Ⅰ)13ab bc ca ++≤;(Ⅱ)2221a b c b c a++≥.2014年普通高等学校招生全国统一考试(全国新课标卷2)理科数学答案解析第Ⅰ卷一、选择题 1.【答案】A【解析】解不等式2(14)x -<,得13x <<-,即|13{}M x x =<<-,而1,0,1,,3{}2N =-,所以0,}2{1,M N =,故选A .【提示】求出集合M 中不等式的解集,确定出M ,找出M 与N 的公共元素,即可确定出两集合的交集.【考点】集合的基本运算(交集),解一元二次不等式. 2.【答案】A【解析】2i 2i 1i 22i 1i 1i 1i 21+i z (+)-+====-(-)(+)-. 【提示】根据所给的等式两边同时除以1i -,得到z 的表示式,进行复数的除法运算,分子和分母同乘以分母的共轭复数,整理成最简形式,得到结果. 【考点】复数代数形式的四则运算. 3.【答案】C【解析】设数列{}n a 的公比为q ,若1q =,则由59a =,得19a =,此时327S =,而219+109a a =,不满足题意,因此1q ≠.∵1q ≠时,33111(1)1+10a S a a q q q --==,∴3+0111q qq =--,整理得29q =.(步骤1) ∵4519a a q ==,即1819a =,∴119a =.(步骤2) 【提示】设等比数列{}n a 的公比为q ,利用已知和等比数列的通项公式即可求出. 【考点】等比数列的通项和前n 项和. 4.【答案】D【解析】因为m α⊥,l m ⊥,l α⊄,所以l α∥.同理可得l β∥.又因为m ,n 为异面直线,所以α与β相交,且l 平行于它们的交线.故选D .【提示】由题目给出的已知条件,结合线面平行,线面垂直的判定与性质,可以直接得到正确的结论.【考点】直线与平面的位置关系. 5.【答案】D【解析】因为5(1+)x 的二项展开式的通项为5C 0)5(r rr r x ≤≤∈Z ,,则含x 2的项为221552C +C )0+5(1x ax x a x =,所以10+55a =,1a =-.【提示由题意利用二项展开式的通项公式求得展开式中2x 的系数为221552C +C )0+5(1x ax x a x =,由此解得a 的值.【考点】二项式定理 6.【答案】B【解析】由程序框图知,当1k =,0S =,1T =时,1T =,1S =;当2k =时,12T =,11+2S =; 当k =3时,123T =⨯,111+223S =+⨯;当k =4时,1234T =⨯⨯,1111+223234S =++⨯⨯⨯;;(步骤1)当k =10时,123410T =⨯⨯⨯⨯,1111+2!3!10!S =+++,k 增加1变为11,满足k N >,输出S ,所以B 正确.(步骤2)【提示】从赋值框给出的两个变量的值开始,逐渐分析写出程序运行的每一步,便可得到程序框图表示的算法的功能. 【考点】循环结构的程序框图. 7.【答案】A【解析】如图所示,该四面体在空间直角坐标系O -xyz 的图象为下图:第7题图则它在平面zOx 上的投影即正视,故选A .【提示】由题意画出几何体的直观图,然后判断以zOx 平面为投影面,则得到正视图即可. 【考点】空间直角坐标系,三视图. 8.【答案】D【解析】根据公式变形,lg6lg 21lg3lg3a ==+,lg10lg 21lg5lg5b ==+,lg14lg 21lg 7lg 7c ==+,因为lg 7lg 5g 3l >>,所以lg2lg2lg2lg7lg5lg3<<,即c b A <<.故选D . 【提示】利用log ()log log (0)a a a xy x y x y =+>、,化简a ,b ,c 然后比较3log 2,5log 2,7log 2大小即可.【考点】对数函数的化简和大小的比较. 9.【答案】B【解析】由题意作出1,3x x y ≥⎧⎨+≤⎩所表示的区域如图阴影部分所示,作直线2+1x y =,因为直线2+1x y =与直线1x =的交点坐标为(1,)1-,结合题意知直线(3)y a x =-过点(1,)1-,代入得12a =,所以12a =.第9题图【提示】先根据约束条件画出可行域,设2z x y =+,再利用z 的几何意义求最值,只需求出直线2zx y=+过可行域内的点B 时,从而得到a 值即可. 【考点】二元线性规划求目标函数的最值.10.【答案】C【解析】由于2()32f x x ax b '=++是二次函数,()f x 有极小值点0x ,必定有一个极大值点1x ,若10x x <,则()f x 在区间0(,)x -∞上不单调递减,C 不正确.【提示】利用导数的运算法则得出()00f x '∆>∆≤,分与讨论,即可得出. 【考点】利用导数求函数的极值. 11.【答案】C【解析】设点M 的坐标为00(,)x y ,由抛物线的定义,得052|+MF x p ==|,则052x p =-.(步骤1)又点F 的坐标为,02p ⎛⎫ ⎪⎝⎭,所以以MF 为直径的圆的方程为00+0()()2p x y x x y y ⎛⎫⎪-- ⎝⎭-=.(步骤2)将0x =,2y =代入得00+840px y -=,即02+2480y y -=,所以04y =. 由0202y px =,得16252p p ⎛⎫=- ⎪⎝⎭,解之得2p =,或8p =.(步骤3)所以C 的方程为24y x =或216y x =.故选C .【提示】已知抛物线焦点到抛物线上点的线段的距离和以这条线段为直径的圆上的一点,求出抛物线的方程.【考点】抛物线的定义和抛物线的标准方程. 12.【答案】B【解析】根据题意画出图形,如图(1),由图可知,直线BC 的方程为1x y +=.由1,,x y y ax b +=⎧⎨=+⎩解得1,11b a b M a a -+⎛⎫⎪++⎝⎭. 可求()0,N b ,,0b D a ⎛⎫- ⎪⎝⎭.直线y ax b =+将△ABC 分割为面积相等的两部分,∴12S S =△△BDM ABC .又12BOC ABC S S =△△,CMN ODN S S ∴=△△,即111(1)221b b b b a a -⎛⎫⨯-⨯=-⨯ ⎪+⎝⎭.整理得22(1)1b b a a -=+. 22(1)1b ab a-+∴=,11b ∴-=,11b =即b =,可以看出,当a 增大时,b 也增大.当a →+∞时,12b →,即12b <.当0a →时,直线+y ax b =接近于y b =.当y b =时,如图(2),2222(1)112CDM ABC S CN b S CO -===△△.1b ∴-1b =1b ∴>-. 由上分析可知1122b -<<,故选B .第12题图(1) 第12题图(2)【提示】已知含有参数的直线将三角形分割为面积相等的两部分和点的坐标,求出参数的取值范围.【考点】函数单调性的综合应用.第Ⅱ卷二、填空题 13.【答案】2【解析】以AB 所在直线为x 轴,AD 所在直线为y 轴建立平面直角坐标系,如图所示,则点A 的坐标为(0,0),点B 的坐标为(2,0),点D 的坐标为(0,2),点E 的坐标为(1,2),则1(),2AE =,)2(2,BD =-,所以2AE BD =.第13题图【提示】结合几何的关系,求出向量的数量积. 【考点】平面向量的数量积运算. 14.【答案】8【解析】从1,2,…,n 中任取两个不同的数共有2C n 种取法,两数之和为5的有(1,4),(2,3)2种,所以221C 14n =,即24111142n n n n ==(-)(-),解得8n =.【提示】列出从n 个正整数1,2,…,n 中任意取出两个不同的数的所有取法种数,求出和等于5的种数,根据取出的两数之和等于5的概率为114列式计算n 的值. 【考点】古典概型,排列组合的应用.15.【答案】 【解析】由π1tan 1tan 41tan 2θθθ+⎛⎫+== ⎪-⎝⎭,得tan 13θ=-,即1s 3in cos θθ-=.(步骤1)将其代入22sin +cos 1θθ=,得210cos 19θ=.因为θ为第二象限角,所以10cos θ-=0in 1s θ=,sin +cos 5θθ=-.(步骤2)【提示】已知等式利用两角和与差的正切函数公式及特殊角的三角函数值化简,求出tan θ的值,再根据θ为第二象限角,利用同角三角函数间的基本关系求出sin cos θθ与的值,即可求出sin cos θθ+的值.【考点】两角和与差的正切,同角三角函数的基本关系. 16.【答案】49-【解析】设数列{}n a 的首项为a 1,公差为d ,则110110910+210+450S a d d a =⨯==,① 1151151415215+10525a d a d S =⨯==+.②(步骤1) 联立①②,得13a =-,23d =,所以2(1)211032333n n n n n n S -=-+⨯=-.(步骤2)令()n f n nS =,则32110()33f n n n =-,220()3f n n n '=-.令()0f n '=,得0n =或203n =.(步骤3)当203n >时,()0f n '>,200<<3n 时,()0f n '<,所以当203n =时,()f n 取最小值,而n ∈N +,则(6)48f =-,(7)49f =-,所以当7n =时,()f n 取最小值-49.(步骤4)【提示】已知等差数列前10项和与前15项和,求出n 与前n 项和乘积的最小值. 【考点】等差数列的前n 项,利用导数求函数的最值. 三、解答题 17.【答案】(1)π4(2【解析】(1)由已知及正弦定理得sin sin cos +sin sin A B C C B =.①又()+A B C π=-,故sin sin +sin cos +co )s i (s n A B C B C B C ==.②由①,②和π()0,C ∈得sin cos B B =,即tan 1B =,又π()0,B ∈,所以π4B =.(步骤1) (2)△ABC的面积1sin 2S ac B ==. 由已知及余弦定理得22π2cos 44+ac a c =-.(步骤2)又22+2a c ac ≥,故ac ≤,当且仅当a c =时,等号成立.因此△ABC.(步骤3)【提示】(1)已知等式利用正弦定理化简,再利用两角和与差的正弦函数公式及诱导公式变形,求出tan B 的值,由B 为三角形的内角,利用特殊角的三角函数值即可求出B 的度数;(2)利用三角形的面积公式表示出三角形ABC 的面积,把sin B 的值代入,得到三角形面积最大即为ac 最大,利用余弦定理列出关系式,再利用基本不等式求出ac 的最大值,即可得到面积的最大值.【考点】正弦定理,余弦定理,三角形面积公式,两角和与差的正弦. 18.【答案】(1)连结AC 1交A 1C 于点F ,则F 为AC 1中点. 又D 是AB 中点,连结DF ,则1BC DF ∥.因为DF ⊂平面A 1CD ,BC 1⊄平面A 1CD ,所以BC 1∥平面A 1CD .(步骤1) (2)由AC CB AB ==,得AC BC ⊥ 以C 为坐标原点,CA 的方向为x 轴正方向,建立如图所示的空间直角坐标系C -xyz .设2CA =,则()1,1,0D ,()0,2,1E ,12,()0,2A ,(1),1,0CD =,(0),2,1CE =,12,0,2()CA =. 设111,(),n x y z =是平面A 1CD 的法向量,则10,0,n CD n CA ⎧=⎪⎨=⎪⎩即1111+0,2+20.x y x z =⎧⎨=⎩ 可取1),(,11n =--.(步骤2)同理,设m 是平面A 1CE 的法向量,则10,0,m CE m CA ⎧=⎪⎨=⎪⎩可取2,1(),2m =-.(步骤3)从而3cos ,3||||n m m n n m <>==,故6sin ,3m n <>= 即二面角D -A 1C -E .(步骤4)第18题图(1)【提示】(1)通过证明1BC 平行平面1ACD 内的直线DF ,利用直线与平面平行的判定定理证明11BC ACD 平面∥ (2).由AC CB AB ==,得AC BC ⊥以C 为坐标原点,CA 的方向为x 轴正方向,建立如图所示的空间直角坐标系C -xyz .设2CA =,111,(),n x y z =是平面A 1CD 的法向量,同理,设m 是平面A 1CE 的法向量,由3cos ,3||||n m m n n m <>==,故6sin ,3m n <>=【考点】直线与平面的判定,空间直角坐标系,空间向量及其运算.19.【答案】(1)80039000,100130,65000,130150.X X T X -≤<⎧=⎨≤≤⎩ (2)0.7(3)59400【解析】(1)当100[),130X ∈时,50030013()080039000T X X X =--=-,当130[],150X ∈时,50013065000T =⨯=. 所以80039000,10013065000,130150X X T X -≤<⎧=⎨≤≤⎩(步骤1)(2)由(1)知利润T 不少于57000元当且仅当120150X ≤≤.由直方图知需求量120[],150X ∈的频率为0.7,所以下一个销售季度内的利润T 不少于57000元的概率的估计值为0.7(步骤2)(3所以450000.1+530000.2+610000.3+650000.459400ET =⨯⨯⨯⨯=.(步骤3)【提示】(1)由题意先分段写出,当100[),130X ∈时,当130[],150X ∈时,和利润值,最后利用分段函数的形式进行综合即可.(2)由(1)知,利润T 不少于57000元,当且仅当120150X ≤≤再由直方图知需求量120[],150X ∈的频率为0.7,利用样本估计总体的方法得出下一个销售季度的利润T 不少于57000元的概率的估计值.(3)利用利润T 的数学期望=各组的区间中点值x 该区间的频率之和即得.【考点】频率分布直方图,分段函数的模型,离散型随机变量的数学期望.20.【答案】(1)22163x y +=(2 【解析】(1)设11(),A x y ,22(),B x y ,00(),P x y ,则2211221x y a b +=,2222221x y a b+=,21211y y x x -=--,由此可得22121221211b x x y y a y y x x (+)-=-=(+)-. 因为120+2x x x =,120+2y y y =,0012y x =,所以222a b =(步骤1)又由题意知,M的右焦点为,故223a b -=. 因此26a =,23b =.所以M 的方程为22163x y +=.(步骤2) (2)由220,1,63x y x y ⎧+=⎪⎨+=⎪⎩解得x y ⎧=⎪⎪⎨⎪=⎪⎩或0,x y =⎧⎪⎨=⎪⎩因此||AB =.(步骤3) 由题意可设直线CD的方程为3y x n n ⎛=+-<< ⎝,设33(),C x y ,44(),D x y .由22,163y x n x y =+⎧⎪⎨+=⎪⎩得223+4+260x nx n -=.于是3,4x (步骤4) 因为直线CD 的斜率为1,所以43|||x x CD - 由已知,四边形ACBD 的面积186||||29S CD AB ==.当n =0时,S 取得最大值,最大值为.所以四边形ACBD .(步骤5)【提示】(1)把右焦点(,0)c 代入直线可解得C .设11(),A x y ,22(),B x y ,线段AB 的中点00(),P x y ,利用“点差法”即可得到a ,b 的关系式,再与222a bc =+联立即可得到a ,b ,c .(2)把直线0x y +=与椭圆的方程联立得到根与系数的关系,即可得到弦长||AB ,由CD AB ⊥,可设直线CD 的方程为y x n =+,与椭圆的方程联立得到根与系数的关系,即可得到弦长||CD .利用1||||2ACBD S AB CD =四边形即可得到关于n 的表达式,利用二次函数的单调性即可得到其最大值.【考点】椭圆的方程、椭圆的简单几何性质、点差法的应用和直线与椭圆的位置关系. 21.【答案】(1)1()e x f x x m=-+. 由0x =是()f x 的极值点得(0)0f '=,所以1m =.于是ln +)1(()xf e x x =-,定义域为()1,+-∞,1()e 1xf x x =-+.(步骤1)函数1()e 1x f x x =-+在()1,+-∞单调递增,且(0)0f '=.因此当,0()1x ∈-时,()0f x '<; 当+()0,x ∈∞时,()0f x '>.所以()f x 在()1,0-单调递减,在(0,+)∞单调递增.(步骤2)(2)当2m ≤,,()+x m ∈-∞时,l ()()n +ln +2x m x ≤,故只需证明当2m =时,()0f x >. 当2m =时,函数1()e 2x f x x =-+在()2,+-∞单调递增. 又1()0f '-<,(0)0f '>,故()0f x '=在()2,+-∞有唯一实根x 0,且0)0(1,x ∈-.(步骤3) 当2+(),x ∈-∞时,()0f x '<;当0(),+x x ∈∞时,()0f x '>,从而当0x x =时,()f x 取得最小值.由0()0f x '=得001e 2x x =+,00ln +2()x x =-,故200000()()+11022f x f x x x x x ≥)=+++=(>. 综上,当2m ≤时,()0f x >.(步骤4)【提示】(1)求出原函数的导函数,因为0x =是函数()f x 的极值点,由极值点处的导数等于0求出m 的值,代入函数解析式后再由导函数大于0和小于0求出原函数的单调区间; (2)证明当2m ≤时,()0f x >,转化为证明当2m =时()0f x >求出当2m =时函数的导函数,可知导函数在(2,)-+∞上为增函数,并进一步得到导函数在(1,0)-上有唯一零点0x ,则当0x x =时函数取得最小值,借助于0x 是导函数的零点证出0()0f x >,从而结论得证. 【考点】利用导数求函数的单调区间和极值,利用导数解决不等式问题. 22.【答案】(1)因为CD 为△ABC 外接圆的切线,所以DCB A ∠=∠,由题设知BC DCFA EA=,故CDB AEF △∽△,所以DBC EFA ∠=∠.(步骤1)因为B ,E ,F ,C 四点共圆,所以CFE DBC ∠=∠,故90EFA CFE ∠=∠=︒.所以90CBA ∠=︒,因此CA 是△ABC 外接圆的直径.(步骤2)(2)连结CE ,因为90CBE ∠=︒,所以过B ,E ,F ,C 四点的圆的直径为CE ,由DB BE =,有CE DC =,又222BC DB BA DB ==,所以222 2.4+6CA DB BC DB ==而2223DC DB D CE DA B ===,故过B ,E ,F ,C 四点的圆的面积与△ABC 外接圆面积的比值为12. (步骤3)第22题图【提示】(1)已知CD 为ABC △外接圆的切线,利用弦切角定理可得DCB A ∠=∠,及BC DCFA EA=,可知CDB AEF △∽△,于是DBC EFA ∠=∠.利用B 、E 、F 、C 四点共圆,可得CFE DBC ∠=∠,进而得到90EFA CFE ∠=∠=︒即可证明CA 是ABC △外接圆的直径;(2)要求过B 、E 、F 、C 四点的圆的面积与ABC △外接圆面积的比值.只需求出其外接圆的直径的平方之比即可.由过B 、E 、F 、C 四点的圆的直径为CE ,及DB BE =,可得CE DC =,利用切割线定理可得222BC DB BA DB ==,222 2.4+6CA DB BC DB ==,都用DB 表示即可.【考点】弦切角,圆内接四边形的性质.23.【答案】(1)cos cos 2,sin sin 2x y αααα=+⎧⎨=+⎩0()2παα<<为参数, (2)d (02π)α<< M 的轨迹过坐标原点【解析】(1)依题意有2cos (n )2si P αα,,2cos2,2si 2()n Q αα,因此cos +cos2,sin +i ()s n2M αααα.M 的轨迹的参数方程为cos cos 2sin sin 2x y αααα=+⎧⎨=+⎩0()2παα<<为参数,.(步骤1)(2)M 点到坐标原点的距离d =(02π)α<<.当πα=时,0d =,故M 的轨迹过坐标原点.(步骤2)【提示】(1)根据题意写出P ,Q 两点的坐标:2cos (n )2si P αα,,2cos2,2si 2()n Q αα,再利用中点坐标公式得PQ 的中点M 的坐标,从而得出M 的轨迹的参数方程;(2)利用两点间的距离公式得到M 到坐标原点的距离d 证当πα=时,0d =,故M 的轨迹过坐标原点. 【考点】参数方程,轨迹方程.24.【答案】(1)由22+2b a ab ≥,22+2b c bc ≥,22+2c a ca ≥,得222++++a b c ab bc ca ≥.(步骤1)由题设得21)++(a b c =,即222+++2+2+21a b c ab bc ca =.所以3+(+)1ab bc ca ≤,即1++3ab bc ca ≤.(步骤2) (2)因为22a b a b +≥,22b c b c +≥,22c a c a+≥,故222(++(2))a b c a b c a b c b c a +++++≥,(步骤3)即222++a b c a c a c b b ++≥. 所以2221a b c b c a++≥(步骤4)【提示】(1)依题意,由21)++(a b c =,即222+++2+2+21a b c ab bc ca =,利用基本不等式可得3+(+)1ab bc ca ≤,从而得证;(2)利用基本不等式可证得:22a b a b +≥,22b c b c +≥,22c a c a +≥,三式累加即可证得结论.【考点】不等式证明,均值不等式.。

2014年全国统一高考数学试卷(理科)及答案

2014年全国统一高考数学试卷(理科)及答案

2014年全国统一高考数学试卷(理科)(新课标Ⅰ)一、选择题(共12小题,每小题5分)1.(5分)(2014•河南)已知集合A={x|x2﹣2x﹣3≥0},B={x|﹣2≤x<2},则A∩B=()A.[﹣2,﹣1]B.[﹣1,2)C.[﹣1,1]D.[1,2)2.(5分)(2014•河南)=()A.1+i B.1﹣i C.﹣1+i D.﹣1﹣i3.(5分)(2014•河南)设函数f(x),g(x)的定义域都为R,且f(x)是奇函数,g(x)是偶函数,则下列结论中正确的是()A.f(x)g(x)是偶函数B.|f(x)|g(x)是奇函数C.f(x)|g(x)|是奇函数D.|f(x)g(x)|是奇函数4.(5分)(2014•河南)已知F为双曲线C:x2﹣my2=3m(m>0)的一个焦点,则点F到C的一条渐近线的距离为()A.B.3C.m D.3m5.(5分)(2014•河南)4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率为()A.B.C.D.6.(5分)(2014•河南)如图,圆O的半径为1,A是圆上的定点,P是圆上的动点,角x的始边为射线OA,终边为射线OP,过点P做直线OA的垂线,垂足为M,将点M到直线OP的距离表示为x的函数f(x),则y=f(x)在[0,π]的图象大致为()A.B.C.D.7.(5分)(2014•河南)执行如图的程序框图,若输入的a,b,k分别为1,2,3,则输出的M=()A.B.C.D.8.(5分)(2014•河南)设α∈(0,),β∈(0,),且tanα=,则()A.3α﹣β=B.3α+β=C.2α﹣β=D.2α+β=9.(5分)(2014•河南)不等式组的解集记为D,有下列四个命题:p1:∀(x,y)∈D,x+2y≥﹣2 p2:∃(x,y)∈D,x+2y≥2p3:∀(x,y)∈D,x+2y≤3 p4:∃(x,y)∈D,x+2y≤﹣1其中真命题是()A.p2,p3B.p1,p4C.p1,p2D.p1,p310.(5分)(2014•河南)已知抛物线C:y2=8x的焦点为F,准线为l,P是l上一点,Q是直线PF与C的一个交点,若=4,则|QF|=()A.B.3C.D.211.(5分)(2014•河南)已知函数f(x)=ax3﹣3x2+1,若f(x)存在唯一的零点x0,且x0>0,则a的取值范围是()A.(2,+∞)B.(1,+∞)C.(﹣∞,﹣2)D.(﹣∞,﹣1)12.(5分)(2014•河南)如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的各条棱中,最长的棱的长度为()A.6B.6C.4D.4二、填空题(共4小题,每小题5分)13.(5分)(2014•河南)(x﹣y)(x+y)8的展开式中x2y7的系数为_________.(用数字填写答案)14.(5分)(2014•河南)甲、乙、丙三位同学被问到是否去过A,B,C三个城市时,甲说:我去过的城市比乙多,但没去过B城市;乙说:我没去过C城市;丙说:我们三人去过同一城市;由此可判断乙去过的城市为_________.15.(5分)(2014•河南)已知A,B,C为圆O上的三点,若=(+),则与的夹角为_________.16.(5分)(2014•河南)已知a,b,c分别为△ABC三个内角A,B,C的对边,a=2,且(2+b)(sinA﹣sinB)=(c﹣b)sinC,则△ABC面积的最大值为_________.三、解答题17.(12分)(2014•河南)已知数列{a n}的前n项和为S n,a1=1,a n≠0,a n a n+1=λS n﹣1,其中λ为常数.(Ⅰ)证明:a n+2﹣a n=λ(Ⅱ)是否存在λ,使得{a n}为等差数列?并说明理由.18.(12分)(2014•河南)从某企业生产的某种产品中抽取500件,测量这些产品的一项质量指标值,由测量结果得如下频率分布直方图:(Ⅰ)求这500件产品质量指标值的样本平均数和样本方差s2(同一组中数据用该组区间的中点值作代表);(Ⅱ)由直方图可以认为,这种产品的质量指标值Z服从正态分布N(μ,σ2),其中μ近似为样本平均数,σ2近似为样本方差s2.(i)利用该正态分布,求P(187.8<Z<212.2);(ii)某用户从该企业购买了100件这种产品,记X表示这100件产品中质量指标值位于区间(187.8,212.2)的产品件数,利用(i)的结果,求EX.附:≈12.2.若Z﹣N(μ,σ2)则P(μ﹣σ<Z<μ+σ)=0.6826,P(μ﹣2σ<Z<μ+2σ)=0.9544.19.(12分)(2014•河南)如图,三棱柱ABC﹣A1B1C1中,侧面BB1C1C为菱形,AB⊥B1C.(Ⅰ)证明:AC=AB1;(Ⅱ)若AC⊥AB1,∠CBB1=60°,AB=BC,求二面角A﹣A1B1﹣C1的余弦值.20.(12分)(2014•河南)已知点A(0,﹣2),椭圆E:+=1(a>b>0)的离心率为,F是椭圆E的右焦点,直线AF的斜率为,O为坐标原点.(Ⅰ)求E的方程;(Ⅱ)设过点A的动直线l与E相交于P,Q两点,当△OPQ的面积最大时,求l的方程.21.(12分)(2014•河南)设函数f(x)=ae x lnx+,曲线y=f(x)在点(1,f(1))处得切线方程为y=e(x﹣1)+2.(Ⅰ)求a、b;(Ⅱ)证明:f(x)>1.四、选做题(22-24题任选一题作答,如果多做,则按所做的第一题计分)选修4-1:集合证明选讲22.(10分)(2014•河南)如图,四边形ABCD是⊙O的内接四边形,AB的延长线与DC的延长线交于点E,且CB=CE.(Ⅰ)证明:∠D=∠E;(Ⅱ)设AD不是⊙O的直径,AD的中点为M,且MB=MC,证明:△ADE为等边三角形.选修4-4:坐标系与参数方程23.(2014•河南)已知曲线C:+=1,直线l:(t为参数)(Ⅰ)写出曲线C的参数方程,直线l的普通方程.(Ⅱ)过曲线C上任意一点P作与l夹角为30°的直线,交l于点A,求|PA|的最大值与最小值.选修4-5:不等式选讲24.(2014•河南)若a>0,b>0,且+=.(Ⅰ)求a3+b3的最小值;(Ⅱ)是否存在a,b,使得2a+3b=6?并说明理由.2014年全国统一高考数学试卷(理科)(新课标Ⅰ)参考答案与试题解析一、选择题(共12小题,每小题5分)1.(5分)(2014•河南)已知集合A={x|x2﹣2x﹣3≥0},B={x|﹣2≤x<2},则A∩B=()A.[﹣2,﹣1]B.[﹣1,2)C.[﹣1,1]D.[1,2)考点:交集及其运算.专题:集合.分析:根据集合的基本运算即可得到结论.解答:解:A={x|x2﹣2x﹣3≥0}={x|x≥3或x≤﹣1},B={x|﹣2≤x<2},则A∩B={x|﹣2≤x≤﹣1},故选:A点评:本题主要考查集合的基本运算,比较基础.2.(5分)(2014•河南)=()A.1+i B.1﹣i C.﹣1+i D.﹣1﹣i考点:复数代数形式的乘除运算.专题:数系的扩充和复数.分析:由条件利用两个复数代数形式的乘除法,虚数单位i的幂运算性质,计算求得结果.解答:解:==﹣(1+i)=﹣1﹣i,故选:D.点评:本题主要考查两个复数代数形式的乘除法,虚数单位i的幂运算性质,属于基础题.3.(5分)(2014•河南)设函数f(x),g(x)的定义域都为R,且f(x)是奇函数,g(x)是偶函数,则下列结论中正确的是()A.f(x)g(x)是偶函数B.|f(x)|g(x)是奇函数C.f(x)|g(x)|是奇函数D.|f(x)g(x)|是奇函数考点:函数奇偶性的判断;函数的定义域及其求法.专题:函数的性质及应用.分析:由题意可得,|f(x)|为偶函数,|g(x)|为偶函数.再根据两个奇函数的积是偶函数、两个偶函数的积还是偶函数、一个奇函数与一个偶函数的积是奇函数,从而得出结论.解答:解:∵f(x)是奇函数,g(x)是偶函数,∴|f(x)|为偶函数,|g(x)|为偶函数.再根据两个奇函数的积是偶函数、两个偶函数的积还是偶函数、一个奇函数与一个偶函数的积是奇函数,可得f(x)|g(x)|为奇函数,故选:C.点评:本题主要考查函数的奇偶性,注意利用函数的奇偶性规律,属于基础题.4.(5分)(2014•河南)已知F为双曲线C:x2﹣my2=3m(m>0)的一个焦点,则点F到C的一条渐近线的距离为()A.B.3C.m D.3m考点:双曲线的简单性质.专题:计算题;圆锥曲线的定义、性质与方程.分析:双曲线方程化为标准方程,求出焦点坐标,一条渐近线方程,利用点到直线的距离公式,可得结论.解答:解:双曲线C:x2﹣my2=3m(m>0)可化为,∴一个焦点为(,0),一条渐近线方程为=0,∴点F到C 的一条渐近线的距离为=.故选:A.点评:本题考查双曲线的方程与性质,考查点到直线的距离公式,属于基础题.5.(5分)(2014•河南)4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率为()A.B.C.D.考点:等可能事件的概率.专题:计算题;概率与统计.分析:求得4位同学各自在周六、周日两天中任选一天参加公益活动、周六、周日都有同学参加公益活动的情况,利用古典概型概率公式求解即可.解答:解:4位同学各自在周六、周日两天中任选一天参加公益活动,共有24=16种情况,周六、周日都有同学参加公益活动,共有24﹣2=16﹣2=14种情况,∴所求概率为=.故选:D.点评:本题考查古典概型,是一个古典概型与排列组合结合的问题,解题时先要判断该概率模型是不是古典概型,再要找出随机事件A包含的基本事件的个数和试验中基本事件的总数.6.(5分)(2014•河南)如图,圆O的半径为1,A是圆上的定点,P是圆上的动点,角x 的始边为射线OA,终边为射线OP,过点P 做直线OA的垂线,垂足为M,将点M到直线OP的距离表示为x 的函数f(x),则y=f(x)在[0,π]的图象大致为()A.B.C.D.考点:抽象函数及其应用.专题:三角函数的图像与性质.分析:在直角三角形OMP中,求出OM,注意长度、距离为正,再根据直角三角形的锐角三角函数的定义即可得到f(x)的表达式,然后化简,分析周期和最值,结合图象正确选择.解答:解:在直角三角形OMP中,OP=1,∠POM=x,则OM=|cosx|,∴点M到直线OP的距离表示为x的函数f(x)=OM|sinx|=|cosx|•|sinx|=|sin2x|,其周期为T=,最大值为,最小值为0,故选C.点评:本题主要考查三角函数的图象与性质,正确表示函数的表达式是解题的关键,同时考查二倍角公式的运用.7.(5分)(2014•河南)执行如图的程序框图,若输入的a,b,k分别为1,2,3,则输出的M=()A.B.C.D.考点:程序框图.专题:概率与统计.分析:根据框图的流程模拟运行程序,直到不满足条件,计算输出M的值.解答:解:由程序框图知:第一次循环M=1+=,a=2,b=,n=2;第二次循环M=2+=,a=,b=,n=3;第三次循环M=+=,a=,b=,n=4.不满足条件n≤3,跳出循环体,输出M=.故选:D.点评:本题考查了当型循环结构的程序框图,根据框图的流程模拟运行程序是解答此类问题的常用方法.8.(5分)(2014•河南)设α∈(0,),β∈(0,),且tanα=,则()A.3α﹣β=B.3α+β=C.2α﹣β=D.2α+β=考点:三角函数的化简求值.专题:三角函数的求值.分析:化切为弦,整理后得到sin(α﹣β)=cosα,由该等式左右两边角的关系可排除选项A,B,然后验证C满足等式sin(α﹣β)=cosα,则答案可求.解答:解:由tanα=,得:,即sinαcosβ=cosαsinβ+cosα,sin(α﹣β)=cosα.由等式右边为单角α,左边为角α与β的差,可知β与2α有关.排除选项A,B后验证C,当时,sin(α﹣β)=sin()=cosα成立.故选:C.点评:本题考查三角函数的化简求值,训练了利用排除法及验证法求解选择题,是基础题.9.(5分)(2014•河南)不等式组的解集记为D,有下列四个命题:p1:∀(x,y)∈D,x+2y≥﹣2 p2:∃(x,y)∈D,x+2y≥2p3:∀(x,y)∈D,x+2y≤3 p4:∃(x,y)∈D,x+2y≤﹣1其中真命题是()A.p2,p3B.p1,p4C.p1,p2D.p1,p3考点:命题的真假判断与应用.专题:不等式的解法及应用.分析:作出不等式组的表示的区域D,对四个选项逐一分析即可.解答:解:作出图形如下:由图知,区域D为直线x+y=1与x﹣2y=4相交的上部角型区域,显然,区域D在x+2y≥﹣2 区域的上方,故A:∀(x,y)∈D,x+2y≥﹣2成立;在直线x+2y=2的右上方区域,:∃(x,y)∈D,x+2y≥2,故p2:∃(x,y)∈D,x+2y≥2正确;由图知,p3:∀(x,y)∈D,x+2y≤3错误;x+2y≤﹣1的区域(左下方的虚线区域)恒在区域D下方,故p4:∃(x,y)∈D,x+2y≤﹣1错误;综上所述,p1、p2正确;故选:C.点评:本题考查命题的真假判断与应用,着重考查作图能力,熟练作图,正确分析是关键,属于难题.10.(5分)(2014•河南)已知抛物线C:y2=8x的焦点为F,准线为l,P是l上一点,Q是直线PF与C的一个交点,若=4,则|QF|=()A.B.3C.D.2考点:抛物线的简单性质.专题:计算题;圆锥曲线的定义、性质与方程.分析:求得直线PF的方程,与y2=8x联立可得x=1,利用|QF|=d可求.解答:解:设Q到l的距离为d,则|QF|=d,∵=4,∴|PQ|=3d,∴直线PF的斜率为﹣2,∵F(2,0),∴直线PF的方程为y=﹣2(x﹣2),与y2=8x联立可得x=1,∴|QF|=d=1+2=3,故选:B.点评:本题考查抛物线的简单性质,考查直线与抛物线的位置关系,属于基础题.11.(5分)(2014•河南)已知函数f(x)=ax3﹣3x2+1,若f(x)存在唯一的零点x0,且x0>0,则a的取值范围是()A.(2,+∞)B.(1,+∞)C.(﹣∞,﹣2)D.(﹣∞,﹣1)考点:函数在某点取得极值的条件;函数的零点.专题:导数的综合应用.分析:分类讨论:当a≥0时,容易判断出不符合题意;当a<0时,由于而f(0)=1>0,x→+∞时,f(x)→﹣∞,可知:存在x0>0,使得f(x0)=0,要使满足条件f(x)存在唯一的零点x0,且x0>0,则必须极小值>0,解出即可.解答:解:当a=0时,f(x)=﹣3x2+1=0,解得x=,函数f(x)有两个零点,不符合题意,应舍去;当a>0时,令f′(x)=3ax2﹣6x=3ax=0,解得x=0或x=>0,列表如下:x (﹣∞,0)0f′(x)+0 ﹣0 +f(x)单调递增极大值单调递减极小值单调递增∵x→+∞,f(x)→+∞,而f(0)=1>0,∴存在x<0,使得f(x)=0,不符合条件:f(x)存在唯一的零点x0,且x0>0,应舍去.当a<0时,f′(x)=3ax2﹣6x=3ax=0,解得x=0或x=<0,列表如下:0 (0,+∞)x(﹣∞,)f′(x)﹣0 + 0 ﹣f(x)单调递减极小值单调递增极大值单调递减而f(0)=1>0,x→+∞时,f(x)→﹣∞,∴存在x0>0,使得f(x0)=0,∵f(x)存在唯一的零点x0,且x0>0,∴极小值=,化为a2>4,∵a<0,∴a<﹣2.综上可知:a的取值范围是(﹣∞,﹣2).故选:C.点评:本题考查了利用导数研究函数的单调性极值与最值、分类讨论的思想方法,考查了推理能力和计算能力,属于难题.12.(5分)(2014•河南)如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的各条棱中,最长的棱的长度为()A.6B.6C.4D.4考点:由三视图求面积、体积.专题:空间位置关系与距离.分析:画出图形,结合三视图的数据求出棱长,推出结果即可.解答:解:几何体的直观图如图:AB=4,BD=4,C到BD的中点的距离为:4,∴.AC==6,AD=4,显然AC最长.长为6.故选:B.点评:本题考查三视图求解几何体的棱长,考查计算能力.二、填空题(共4小题,每小题5分)13.(5分)(2014•河南)(x﹣y)(x+y)8的展开式中x2y7的系数为﹣20.(用数字填写答案)考点:二项式定理的应用;二项式系数的性质.专题:二项式定理.分析:由题意依次求出(x+y)8中xy7,x2y6,项的系数,求和即可.解答:解:(x+y)8的展开式中,含xy7的系数是:=8.含x2y6的系数是=28,∴(x﹣y)(x+y)8的展开式中x2y7的系数为:8﹣28=﹣20.故答案为:﹣20点评:本题考查二项式定理系数的性质,二项式定理的应用,考查计算能力.14.(5分)(2014•河南)甲、乙、丙三位同学被问到是否去过A,B,C三个城市时,甲说:我去过的城市比乙多,但没去过B城市;乙说:我没去过C城市;丙说:我们三人去过同一城市;由此可判断乙去过的城市为A.考点:进行简单的合情推理.专题:推理和证明.分析:可先由乙推出,可能去过A城市或B城市,再由甲推出只能是A,B中的一个,再由丙即可推出结论.解答:解:由乙说:我没去过C城市,则乙可能去过A城市或B城市,但甲说:我去过的城市比乙多,但没去过B城市,则乙只能是去过A,B中的任一个,再由丙说:我们三人去过同一城市,则由此可判断乙去过的城市为A.故答案为:A.点评:本题主要考查简单的合情推理,要抓住关键,逐步推断,是一道基础题.15.(5分)(2014•河南)已知A,B,C为圆O上的三点,若=(+),则与的夹角为90°.考点:数量积表示两个向量的夹角.专题:平面向量及应用.分析:根据向量之间的关系,利用圆直径的性质,即可得到结论.解答:解:在圆中若=(+),即2=+,即+的和向量是过A,O的直径,则以AB,AC为临边的四边形是矩形,则⊥,即与的夹角为90°,故答案为:90°点评:本题主要考查平面向量的夹角的计算,利用圆直径的性质是解决本题的关键,比较基础.16.(5分)(2014•河南)已知a,b,c分别为△ABC三个内角A,B,C的对边,a=2,且(2+b)(sinA﹣sinB)=(c﹣b)sinC,则△ABC面积的最大值为.考点:正弦定理.专题:解三角形.分析:由条件利用正弦定理可得b2+c2﹣bc=4.再利用基本不等式可得bc≤4,当且仅当b=c=2时,取等号,此时,△ABC为等边三角形,从而求得它的面积的值.解答:解:△ABC中,∵a=2,且(2+b)(sinA﹣sinB)=(c﹣b)sinC,∴利用正弦定理可得4﹣b2=(c﹣b)c,即b2+c2﹣bc=4.再利用基本不等式可得4≥2bc﹣bc=bc,∴bc≤4,当且仅当b=c=2时,取等号,此时,△ABC为等边三角形,它的面积为==,故答案为:.点评:本题主要考查正弦定理的应用,基本不等式,属于中档题.三、解答题17.(12分)(2014•河南)已知数列{a n}的前n项和为S n,a1=1,a n≠0,a n a n+1=λS n﹣1,其中λ为常数.(Ⅰ)证明:a n+2﹣a n=λ(Ⅱ)是否存在λ,使得{a n}为等差数列?并说明理由.考点:数列递推式;等差关系的确定.专题:等差数列与等比数列.分析:(Ⅰ)利用a n a n+1=λS n﹣1,a n+1a n+2=λS n+1﹣1,相减即可得出;(Ⅱ)对λ分类讨论:λ=0直接验证即可;λ≠0,假设存在λ,使得{a n}为等差数列,设公差为d.可得λ=a n+2﹣a n=(a n+2﹣a n+1)+(a n+1﹣a n)=2d,.得到λS n=,根据{a n}为等差数列的充要条件是,解得λ即可.解答:(Ⅰ)证明:∵a n a n+1=λS n﹣1,a n+1a n+2=λS n+1﹣1,∴a n+1(a n+2﹣a n)=λa n+1∵a n+1≠0,∴a n+2﹣a n=λ.(Ⅱ)解:①当λ=0时,a n a n+1=﹣1,假设{a n}为等差数列,设公差为d.则a n+2﹣a n=0,∴2d=0,解得d=0,∴a n=a n+1=1,∴12=﹣1,矛盾,因此λ=0时{a n}不为等差数列.②当λ≠0时,假设存在λ,使得{a n}为等差数列,设公差为d.则λ=a n+2﹣a n=(a n+2﹣a n+1)+(a n+1﹣a n)=2d,∴.∴,,∴λS n=1+=,根据{a n}为等差数列的充要条件是,解得λ=4.此时可得,a n=2n﹣1.因此存在λ=4,使得{a n}为等差数列.点评:本题考查了递推式的意义、等差数列的通项公式及其前n项和公式、等差数列的充要条件等基础知识与基本技能方法,考查了推理能力和计算能力、分类讨论的思想方法,属于难题.18.(12分)(2014•河南)从某企业生产的某种产品中抽取500件,测量这些产品的一项质量指标值,由测量结果得如下频率分布直方图:(Ⅰ)求这500件产品质量指标值的样本平均数和样本方差s2(同一组中数据用该组区间的中点值作代表);(Ⅱ)由直方图可以认为,这种产品的质量指标值Z服从正态分布N(μ,σ2),其中μ近似为样本平均数,σ2近似为样本方差s2.(i)利用该正态分布,求P(187.8<Z<212.2);(ii)某用户从该企业购买了100件这种产品,记X表示这100件产品中质量指标值位于区间(187.8,212.2)的产品件数,利用(i)的结果,求EX.附:≈12.2.若Z﹣N(μ,σ2)则P(μ﹣σ<Z<μ+σ)=0.6826,P(μ﹣2σ<Z<μ+2σ)=0.9544.考点:正态分布曲线的特点及曲线所表示的意义;离散型随机变量的期望与方差.专题:计算题;概率与统计.分析:(Ⅰ)运用离散型随机变量的期望和方差公式,即可求出;(Ⅱ)(i)由(Ⅰ)知Z~N(200,150),从而求出P(187.8<Z<212.2),注意运用所给数据;(ii)由(i)知X~B(100,0.6826),运用EX=np即可求得.解答:解:(Ⅰ)抽取产品的质量指标值的样本平均数和样本方差s2分别为:=170×0.02+180×0.09+190×0.22+200×0.33+210×0.24+220×0.08+230×0.02=200,s2=(﹣30)2×0.02+(﹣20)2×0.09+(﹣10)2×0.22+0×0.33+102×0.24+202×0.08+302×0.02=150.(Ⅱ)(i)由(Ⅰ)知Z~N(200,150),从而P(187.8<Z<212.2)=P(200﹣12.2<Z<200+12.2)=0.6826;(ii)由(i)知一件产品的质量指标值位于区间(187.8,212.2)的概率为0.6826,依题意知X~B(100,0.6826),所以EX=100×0.6826=68.26.点评:本题主要考查离散型随机变量的期望和方差,以及正态分布的特点及概率求解,考查运算能力.19.(12分)(2014•河南)如图,三棱柱ABC﹣A1B1C1中,侧面BB1C1C为菱形,AB⊥B1C.(Ⅰ)证明:AC=AB1;(Ⅱ)若AC⊥AB1,∠CBB1=60°,AB=BC,求二面角A﹣A1B1﹣C1的余弦值.考点:用空间向量求平面间的夹角;空间向量的夹角与距离求解公式.专题:空间向量及应用.分析:(1)连结BC1,交B1C于点O,连结AO,可证B1C⊥平面ABO,可得B1C⊥AO,B10=CO,进而可得AC=AB1;(2)以O为坐标原点,的方向为x轴的正方向,||为单位长度,的方向为y轴的正方向,的方向为z轴的正方向建立空间直角坐标系,分别可得两平面的法向量,可得所求余弦值.解答:解:(1)连结BC1,交B1C于点O,连结AO,∵侧面BB1C1C为菱形,∴BC1⊥B1C,且O为BC1和B1C的中点,又∵AB⊥B1C,∴B1C⊥平面ABO,∵AO⊂平面ABO,∴B1C⊥AO,又B10=CO,∴AC=AB1,(2)∵AC⊥AB1,且O为B1C的中点,∴AO=CO,又∵AB=BC,∴△BOA≌△BOC,∴OA⊥OB,∴OA,OB,OB1两两垂直,以O为坐标原点,的方向为x轴的正方向,||为单位长度,的方向为y轴的正方向,的方向为z轴的正方向建立空间直角坐标系,∵∠CBB1=60°,∴△CBB1为正三角形,又AB=BC,∴A(0,0,),B(1,0,0,),B1(0,,0),C(0,,0)∴=(0,,),==(1,0,),==(﹣1,,0),设向量=(x,y,z)是平面AA1B1的法向量,则,可取=(1,,),同理可得平面A1B1C1的一个法向量=(1,﹣,),∴cos<,>==,∴二面角A﹣A1B1﹣C1的余弦值为点评:本题考查空间向量法解决立体几何问题,建立坐标系是解决问题的关键,属中档题.20.(12分)(2014•河南)已知点A(0,﹣2),椭圆E:+=1(a>b>0)的离心率为,F是椭圆E的右焦点,直线AF的斜率为,O为坐标原点.(Ⅰ)求E的方程;(Ⅱ)设过点A的动直线l与E相交于P,Q两点,当△OPQ的面积最大时,求l的方程.考点:直线与圆锥曲线的关系;椭圆的标准方程.专题:圆锥曲线的定义、性质与方程.分析:(Ⅰ)设F(c,0),利用直线的斜率公式可得,可得c.又,b2=a2﹣c2,即可解得a,b;(Ⅱ)设P(x1,y1),Q(x2,y2).由题意可设直线l的方程为:y=kx﹣2.与椭圆的方程联立可得根与系数的关系,再利用弦长公式、点到直线的距离公式、三角形的面积计算公式即可得出S△OPQ.通过换元再利用基本不等式的性质即可得出.解答:解:(Ⅰ)设F(c,0),∵直线AF的斜率为,∴,解得c=.又,b2=a2﹣c2,解得a=2,b=1.∴椭圆E的方程为;(Ⅱ)设P(x1,y1),Q(x2,y2).由题意可设直线l的方程为:y=kx﹣2.联立,化为(1+4k2)x2﹣16kx+12=0,当△=16(4k2﹣3)>0时,即时,,.∴|PQ|===,点O到直线l的距离d=.∴S△OPQ==,设>0,则4k2=t2+3,∴==1,当且仅当t=2,即,解得时取等号.满足△>0,∴△OPQ的面积最大时直线l的方程为:.点评:本题综合考查了椭圆的标准方程及其性质、斜率计算公式、椭圆的方程联立可得根与系数的关系、弦长公式、点到直线的距离公式、三角形的面积计算公式、基本不等式的性质等基础知识与基本技能方法,考查了推理能力和计算能力,考查了换元法和转化方法,属于难题.21.(12分)(2014•河南)设函数f(x)=ae x lnx+,曲线y=f(x)在点(1,f(1))处得切线方程为y=e(x ﹣1)+2.(Ⅰ)求a、b;(Ⅱ)证明:f(x)>1.考点:导数在最大值、最小值问题中的应用;利用导数研究曲线上某点切线方程.专题:综合题;导数的综合应用.分析:(Ⅰ)求出定义域,导数f′(x),根据题意有f(1)=2,f′(1)=e,解出即可;(Ⅱ)由(Ⅰ)知,f(x)>1等价于xlnx>xe﹣x﹣,设函数g(x)=xlnx,函数h(x)=,只需证明g(x)min>h(x)max,利用导数可分别求得g(x)min,h(x)max;解答:解:(Ⅰ)函数f(x)的定义域为(0,+∞),f′(x)=+,由题意可得f(1)=2,f′(1)=e,故a=1,b=2;(Ⅱ)由(Ⅰ)知,f(x)=e x lnx+,从而f(x)>1等价于xlnx>xe﹣x﹣,设函数g(x)=xlnx,则g′(x)=1+lnx,∴当x∈(0,)时,g′(x)<0;当x∈(,+∞)时,g′(x)>0.故g(x)在(0,)上单调递减,在(,+∞)上单调递增,从而g(x)在(0,+∞)上的最小值为g()=﹣.设函数h(x)=,则h′(x)=e﹣x(1﹣x).∴当x∈(0,1)时,h′(x)>0;当x∈(1,+∞)时,h′(x)<0,故h(x)在(0,1)上单调递增,在(1,+∞)上单调递减,从而h(x)在(0,+∞)上的最大值为h(1)=﹣.综上,当x>0时,g(x)>h(x),即f(x)>1.点评:本题考查导数的几何意义、利用导数求函数的最值、证明不等式等,考查转化思想,考查学生分析解决问题的能力.四、选做题(22-24题任选一题作答,如果多做,则按所做的第一题计分)选修4-1:集合证明选讲22.(10分)(2014•河南)如图,四边形ABCD是⊙O的内接四边形,AB的延长线与DC的延长线交于点E,且CB=CE.(Ⅰ)证明:∠D=∠E;(Ⅱ)设AD不是⊙O的直径,AD的中点为M,且MB=MC,证明:△ADE为等边三角形.考点:与圆有关的比例线段.专题:选作题;几何证明.分析:(Ⅰ)利用四边形ABCD是⊙O的内接四边形,可得∠D=∠CBE,由CB=CE,可得∠E=∠CBE,即可证明:∠D=∠E;(Ⅱ)设BC的中点为N,连接MN,证明AD∥BC,可得∠A=∠CBE,进而可得∠A=∠E,即可证明△ADE 为等边三角形.解答:证明:(Ⅰ)∵四边形ABCD是⊙O的内接四边形,∴∠D=∠CBE,∵CB=CE,∴∠E=∠CBE,∴∠D=∠E;(Ⅱ)设BC的中点为N,连接MN,则由MB=MC知MN⊥BC,∴O在直线MN上,∵AD不是⊙O的直径,AD的中点为M,∴OM⊥AD,∴AD∥BC,∴∠A=∠CBE,∵∠CBE=∠E,∴∠A=∠E,由(Ⅰ)知,∠D=∠E,∴△ADE为等边三角形.点评:本题考查圆的内接四边形性质,考查学生分析解决问题的能力,属于中档题.选修4-4:坐标系与参数方程23.(2014•河南)已知曲线C:+=1,直线l:(t为参数)(Ⅰ)写出曲线C的参数方程,直线l的普通方程.(Ⅱ)过曲线C上任意一点P作与l夹角为30°的直线,交l于点A,求|PA|的最大值与最小值.考点:参数方程化成普通方程;直线与圆锥曲线的关系.专题:坐标系和参数方程.分析:(Ⅰ)联想三角函数的平方关系可取x=2cosθ、y=3sinθ得曲线C的参数方程,直接消掉参数t得直线l的普通方程;(Ⅱ)设曲线C上任意一点P(2cosθ,3sinθ).由点到直线的距离公式得到P到直线l的距离,除以sin30°进一步得到|PA|,化积后由三角函数的范围求得|PA|的最大值与最小值.解答:解:(Ⅰ)对于曲线C:+=1,可令x=2cosθ、y=3sinθ,故曲线C的参数方程为,(θ为参数).对于直线l:,由①得:t=x﹣2,代入②并整理得:2x+y﹣6=0;(Ⅱ)设曲线C上任意一点P(2cosθ,3sinθ).P到直线l的距离为.则,其中α为锐角.当sin(θ+α)=﹣1时,|PA|取得最大值,最大值为.当sin(θ+α)=1时,|PA|取得最小值,最小值为.点评:本题考查普通方程与参数方程的互化,训练了点到直线的距离公式,体现了数学转化思想方法,是中档题.选修4-5:不等式选讲24.(2014•河南)若a>0,b>0,且+=.(Ⅰ)求a3+b3的最小值;(Ⅱ)是否存在a,b,使得2a+3b=6?并说明理由.考点:基本不等式;基本不等式在最值问题中的应用.专题:不等式的解法及应用.分析:(Ⅰ)由条件利用基本不等式求得ab≥4,再利用基本不等式求得a3+b3的最小值.(Ⅱ)根据ab≥4及基本不等式求的2a+3b>8,从而可得不存在a,b,使得2a+3b=6.解答:解:(Ⅰ)∵a>0,b>0,且+=,∴=+≥2,∴ab≥2,当且仅当a=b=时取等号.∵a3+b3 ≥2≥2=4,当且仅当a=b=时取等号,∴a3+b3的最小值为4.(Ⅱ)由(1)可知,2a+3b≥2=2≥4>6,故不存在a,b,使得2a+3b=6成立.点评:本题主要考查基本不等式在最值中的应用,要注意检验等号成立条件是否具备,属于基础题.参与本试卷答题和审题的老师有:lincy;caoqz;wyz123;刘长柏;sxs123;wfy814;孙佑中;minqi5;清风慕竹;maths;qiss(排名不分先后)菁优网2014年6月23日。

2014年全国统一高考真题数学试卷(理科)(新课标ⅱ)(含答案及解析)

2014年全国统一高考真题数学试卷(理科)(新课标ⅱ)(含答案及解析)

2014年全国统一高考数学试卷(理科)(新课标Ⅱ)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一个选项符合题目要求.1.(5分)设集合M={0,1,2},N={x|x2﹣3x+2≤0},则M∩N=()A.{1}B.{2}C.{0,1}D.{1,2} 2.(5分)设复数z1,z2在复平面内的对应点关于虚轴对称,z1=2+i,则z1z2=()A.﹣5B.5C.﹣4+i D.﹣4﹣i3.(5分)设向量,满足|+|=,|﹣|=,则•=()A.1B.2C.3D.54.(5分)钝角三角形ABC的面积是,AB=1,BC=,则AC=()A.5B.C.2D.15.(5分)某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两天为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是()A.0.8B.0.75C.0.6D.0.456.(5分)如图,网格纸上正方形小格的边长为1(表示1cm),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm,高为6cm的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为()A.B.C.D.7.(5分)执行如图所示的程序框图,若输入的x,t均为2,则输出的S=()A.4B.5C.6D.78.(5分)设曲线y=ax﹣ln(x+1)在点(0,0)处的切线方程为y=2x,则a=()A.0B.1C.2D.39.(5分)设x,y满足约束条件,则z=2x﹣y的最大值为()A.10B.8C.3D.210.(5分)设F为抛物线C:y2=3x的焦点,过F且倾斜角为30°的直线交C于A,B两点,O为坐标原点,则△OAB的面积为()A.B.C.D.11.(5分)直三棱柱ABC﹣A1B1C1中,∠BCA=90°,M,N分别是A1B1,A1C1的中点,BC=CA=CC1,则BM与AN所成角的余弦值为()A.B.C.D.12.(5分)设函数f(x)=sin,若存在f(x)的极值点x0满足x02+[f(x0)]2<m2,则m的取值范围是()A.(﹣∞,﹣6)∪(6,+∞)B.(﹣∞,﹣4)∪(4,+∞)C.(﹣∞,﹣2)∪(2,+∞)D.(﹣∞,﹣1)∪(1,+∞)二、填空题:本大题共4小题,每小题5分.(第13题~第21题为必考题,每个试题考生都必须作答,第22题~第24题为选考题,考生根据要求作答)13.(5分)(x+a)10的展开式中,x7的系数为15,则a=.14.(5分)函数f(x)=sin(x+2φ)﹣2sinφcos(x+φ)的最大值为.15.(5分)已知偶函数f(x)在[0,+∞)单调递减,f(2)=0,若f(x﹣1)>0,则x的取值范围是.16.(5分)设点M(x0,1),若在圆O:x2+y2=1上存在点N,使得∠OMN=45°,则x0的取值范围是.三、解答题:解答应写出文字说明,证明过程或验算步骤.17.(12分)已知数列{a n}满足a1=1,a n+1=3a n+1.(Ⅰ)证明{a n+}是等比数列,并求{a n}的通项公式;(Ⅱ)证明:++…+<.18.(12分)如图,四棱锥P﹣ABCD中,底面ABCD为矩形,PA⊥平面ABCD,E为PD的中点.(Ⅰ)证明:PB∥平面AEC;(Ⅱ)设二面角D﹣AE﹣C为60°,AP=1,AD=,求三棱锥E﹣ACD的体积.19.(12分)某地区2007年至2013年农村居民家庭人均纯收入y(单位:千元)的数据如表:年份2007200820092010201120122013年份代号t1234567人均纯收入y 2.9 3.3 3.6 4.4 4.8 5.2 5.9(Ⅰ)求y关于t的线性回归方程;(Ⅱ)利用(Ⅰ)中的回归方程,分析2007年至2013年该地区农村居民家庭人均纯收入的变化情况,并预测该地区2015年农村居民家庭人均纯收入.附:回归直线的斜率和截距的最小二乘估计公式分别为:=,=﹣.20.(12分)设F1,F2分别是C:+=1(a>b>0)的左,右焦点,M是C 上一点且MF2与x轴垂直,直线MF1与C的另一个交点为N.(1)若直线MN的斜率为,求C的离心率;(2)若直线MN在y轴上的截距为2,且|MN|=5|F1N|,求a,b.21.(12分)已知函数f(x)=e x﹣e﹣x﹣2x.(Ⅰ)讨论f(x)的单调性;(Ⅱ)设g(x)=f(2x)﹣4bf(x),当x>0时,g(x)>0,求b的最大值;(Ⅲ)已知1.4142<<1.4143,估计ln2的近似值(精确到0.001).请考生在第22、23、24三题中任选一题作答,如果多做,则按所做的第一题计分,作答时请写清题号.【选修4-1:几何证明选讲】22.(10分)如图,P是⊙O外一点,PA是切线,A为切点,割线PBC与⊙O相交于点B,C,PC=2PA,D为PC的中点,AD的延长线交⊙O于点E,证明:(Ⅰ)BE=EC;(Ⅱ)AD•DE=2PB2.【选修4-4:坐标系与参数方程】23.在直角坐标系xOy中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,半圆C的极坐标方程为ρ=2cosθ,θ∈[0,](Ⅰ)求C的参数方程;(Ⅱ)设点D在半圆C上,半圆C在D处的切线与直线l:y=x+2垂直,根据(1)中你得到的参数方程,求直线CD的倾斜角及D的坐标.六、解答题(共1小题,满分0分)24.设函数f(x)=|x+|+|x﹣a|(a>0).(Ⅰ)证明:f(x)≥2;(Ⅱ)若f(3)<5,求a的取值范围.2014年全国统一高考数学试卷(理科)(新课标Ⅱ)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一个选项符合题目要求.1.(5分)设集合M={0,1,2},N={x|x2﹣3x+2≤0},则M∩N=()A.{1}B.{2}C.{0,1}D.{1,2}【考点】1E:交集及其运算.【专题】5J:集合.【分析】求出集合N的元素,利用集合的基本运算即可得到结论.【解答】解:∵N={x|x2﹣3x+2≤0}={x|(x﹣1)(x﹣2)≤0}={x|1≤x≤2},∴M∩N={1,2},故选:D.【点评】本题主要考查集合的基本运算,比较基础.2.(5分)设复数z1,z2在复平面内的对应点关于虚轴对称,z1=2+i,则z1z2=()A.﹣5B.5C.﹣4+i D.﹣4﹣i【考点】A5:复数的运算.【专题】5N:数系的扩充和复数.【分析】根据复数的几何意义求出z2,即可得到结论.【解答】解:z1=2+i对应的点的坐标为(2,1),∵复数z1,z2在复平面内的对应点关于虚轴对称,∴(2,1)关于虚轴对称的点的坐标为(﹣2,1),则对应的复数,z2=﹣2+i,则z1z2=(2+i)(﹣2+i)=i2﹣4=﹣1﹣4=﹣5,故选:A.【点评】本题主要考查复数的基本运算,利用复数的几何意义是解决本题的关键,比较基础.3.(5分)设向量,满足|+|=,|﹣|=,则•=()A.1B.2C.3D.5【考点】9O:平面向量数量积的性质及其运算.【专题】5A:平面向量及应用.【分析】将等式进行平方,相加即可得到结论.【解答】解:∵|+|=,|﹣|=,∴分别平方得+2•+=10,﹣2•+=6,两式相减得4•=10﹣6=4,即•=1,故选:A.【点评】本题主要考查向量的基本运算,利用平方进行相加是解决本题的关键,比较基础.4.(5分)钝角三角形ABC的面积是,AB=1,BC=,则AC=()A.5B.C.2D.1【考点】HR:余弦定理.【专题】56:三角函数的求值.【分析】利用三角形面积公式列出关系式,将已知面积,AB,BC的值代入求出sinB的值,分两种情况考虑:当B为钝角时;当B为锐角时,利用同角三角函数间的基本关系求出cosB的值,利用余弦定理求出AC的值即可.【解答】解:∵钝角三角形ABC的面积是,AB=c=1,BC=a=,∴S=acsinB=,即sinB=,当B为钝角时,cosB=﹣=﹣,利用余弦定理得:AC2=AB2+BC2﹣2AB•BC•cosB=1+2+2=5,即AC=,当B为锐角时,cosB==,利用余弦定理得:AC2=AB2+BC2﹣2AB•BC•cosB=1+2﹣2=1,即AC=1,此时AB2+AC2=BC2,即△ABC为直角三角形,不合题意,舍去,则AC=.故选:B.【点评】此题考查了余弦定理,三角形面积公式,以及同角三角函数间的基本关系,熟练掌握余弦定理是解本题的关键.5.(5分)某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两天为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是()A.0.8B.0.75C.0.6D.0.45【考点】C8:相互独立事件和相互独立事件的概率乘法公式.【专题】5I:概率与统计.【分析】设随后一天的空气质量为优良的概率为p,则由题意可得0.75×p=0.6,由此解得p的值.【解答】解:设随后一天的空气质量为优良的概率为p,则由题意可得0.75×p=0.6,解得p=0.8,故选:A.【点评】本题主要考查相互独立事件的概率乘法公式的应用,属于基础题.6.(5分)如图,网格纸上正方形小格的边长为1(表示1cm),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm,高为6cm的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为()A.B.C.D.【考点】L!:由三视图求面积、体积.【专题】5F:空间位置关系与距离.【分析】由三视图判断几何体的形状,通过三视图的数据求解几何体的体积即可.【解答】解:几何体是由两个圆柱组成,一个是底面半径为3高为2,一个是底面半径为2,高为4,组合体体积是:32π•2+22π•4=34π.底面半径为3cm,高为6cm的圆柱体毛坯的体积为:32π×6=54π切削掉部分的体积与原来毛坯体积的比值为:=.故选:C.【点评】本题考查三视图与几何体的关系,几何体的体积的求法,考查空间想象能力以及计算能力.7.(5分)执行如图所示的程序框图,若输入的x,t均为2,则输出的S=()A.4B.5C.6D.7【考点】EF:程序框图.【专题】5K:算法和程序框图.【分析】根据条件,依次运行程序,即可得到结论.【解答】解:若x=t=2,则第一次循环,1≤2成立,则M=,S=2+3=5,k=2,第二次循环,2≤2成立,则M=,S=2+5=7,k=3,此时3≤2不成立,输出S=7,故选:D.【点评】本题主要考查程序框图的识别和判断,比较基础.8.(5分)设曲线y=ax﹣ln(x+1)在点(0,0)处的切线方程为y=2x,则a=()A.0B.1C.2D.3【考点】6H:利用导数研究曲线上某点切线方程.【专题】52:导数的概念及应用.【分析】根据导数的几何意义,即f′(x0)表示曲线f(x)在x=x0处的切线斜率,再代入计算.【解答】解:,∴y′(0)=a﹣1=2,∴a=3.故选:D.【点评】本题是基础题,考查的是导数的几何意义,这个知识点在高考中是经常考查的内容,一般只要求导正确,就能够求解该题.在高考中,导数作为一个非常好的研究工具,经常会被考查到,特别是用导数研究最值,证明不等式,研究零点问题等等经常以大题的形式出现,学生在复习时要引起重视.9.(5分)设x,y满足约束条件,则z=2x﹣y的最大值为()A.10B.8C.3D.2【考点】7C:简单线性规划.【专题】59:不等式的解法及应用.【分析】作出不等式组对应的平面区域,利用目标函数的几何意义,利用数形结合确定z的最大值.【解答】解:作出不等式组对应的平面区域如图:(阴影部分ABC).由z=2x﹣y得y=2x﹣z,平移直线y=2x﹣z,由图象可知当直线y=2x﹣z经过点C时,直线y=2x﹣z的截距最小,此时z最大.由,解得,即C(5,2)代入目标函数z=2x﹣y,得z=2×5﹣2=8.故选:B.【点评】本题主要考查线性规划的应用,结合目标函数的几何意义,利用数形结合的数学思想是解决此类问题的基本方法.10.(5分)设F为抛物线C:y2=3x的焦点,过F且倾斜角为30°的直线交C于A,B两点,O为坐标原点,则△OAB的面积为()A.B.C.D.【考点】K8:抛物线的性质.【专题】5D:圆锥曲线的定义、性质与方程.【分析】由抛物线方程求出焦点坐标,由直线的倾斜角求出斜率,写出过A,B 两点的直线方程,和抛物线方程联立后化为关于y的一元二次方程,由根与系数关系得到A,B两点纵坐标的和与积,把△OAB的面积表示为两个小三角形AOF与BOF的面积和得答案.【解答】解:由y2=2px,得2p=3,p=,则F(,0).∴过A,B的直线方程为y=(x﹣),即x=y+.联立,得4y2﹣12y﹣9=0.设A(x1,y1),B(x2,y2),则y 1+y 2=3,y 1y 2=﹣.∴S△OAB =S △OAF +S△OFB =×|y 1﹣y 2|==×=.故选:D .【点评】本题考查直线与抛物线的位置关系,考查数学转化思想方法,涉及直线和圆锥曲线关系问题,常采用联立直线和圆锥曲线,然后利用一元二次方程的根与系数关系解题,是中档题.11.(5分)直三棱柱ABC ﹣A 1B 1C 1中,∠BCA=90°,M ,N 分别是A 1B 1,A 1C 1的中点,BC=CA=CC 1,则BM 与AN 所成角的余弦值为( ) A .B .C .D .【考点】LM :异面直线及其所成的角.【专题】5F :空间位置关系与距离.【分析】画出图形,找出BM 与AN 所成角的平面角,利用解三角形求出BM 与AN 所成角的余弦值.【解答】解:直三棱柱ABC ﹣A 1B 1C 1中,∠BCA=90°,M ,N 分别是A 1B 1,A 1C 1的中点,如图:BC 的中点为O ,连结ON ,,则MN0B 是平行四边形,BM 与AN 所成角就是∠ANO ,∵BC=CA=CC 1,设BC=CA=CC 1=2,∴CO=1,AO=,AN=,MB===, 在△ANO 中,由余弦定理可得:cos ∠ANO===.故选:C .【点评】本题考查异面直线对称角的求法,作出异面直线所成角的平面角是解题的关键,同时考查余弦定理的应用.12.(5分)设函数f(x)=sin,若存在f(x)的极值点x0满足x02+[f(x0)]2<m2,则m的取值范围是()A.(﹣∞,﹣6)∪(6,+∞)B.(﹣∞,﹣4)∪(4,+∞)C.(﹣∞,﹣2)∪(2,+∞)D.(﹣∞,﹣1)∪(1,+∞)【考点】H4:正弦函数的定义域和值域.【专题】57:三角函数的图像与性质.【分析】由题意可得,f(x0)=±,且=kπ+,k∈Z,再由题意可得当m2最小时,|x0|最小,而|x0|最小为|m|,可得m2 >m2+3,由此求得m的取值范围.【解答】解:由题意可得,f(x0)=±,即=kπ+,k∈z,即x0=m.再由x02+[f(x0)]2<m2,即x02+3<m2,可得当m2最小时,|x0|最小,而|x0|最小为|m|,∴m2 >m2+3,∴m2>4.求得m>2,或m<﹣2,故选:C.【点评】本题主要正弦函数的图象和性质,函数的零点的定义,体现了转化的数学思想,属于中档题.二、填空题:本大题共4小题,每小题5分.(第13题~第21题为必考题,每个试题考生都必须作答,第22题~第24题为选考题,考生根据要求作答)13.(5分)(x+a)10的展开式中,x7的系数为15,则a=.【考点】DA:二项式定理.【专题】5P:二项式定理.【分析】在二项展开式的通项公式中,令x的幂指数等于3,求出r的值,即可求得x7的系数,再根据x7的系数为15,求得a的值.【解答】解:(x+a)10的展开式的通项公式为T r=•x10﹣r•a r,+1令10﹣r=7,求得r=3,可得x7的系数为a3•=120a3=15,∴a=,故答案为:.【点评】本题主要考查二项式定理的应用,二项展开式的通项公式,求展开式中某项的系数,二项式系数的性质,属于中档题.14.(5分)函数f(x)=sin(x+2φ)﹣2sinφcos(x+φ)的最大值为1.【考点】GP:两角和与差的三角函数;HW:三角函数的最值.【专题】56:三角函数的求值.【分析】由条件利用两角和差的正弦公式、余弦公式化简函数的解析式为f(x)=sinx,从而求得函数的最大值.【解答】解:函数f(x)=sin(x+2φ)﹣2sinφcos(x+φ)=sin[(x+φ)+φ]﹣2sinφcos (x+φ)=sin(x+φ)cosφ+cos(x+φ)sinφ﹣2sinφcos(x+φ)=sin(x+φ)cosφ﹣cos(x+φ)sinφ=sin[(x+φ)﹣φ]=sinx,故函数f(x)的最大值为1,故答案为:1.【点评】本题主要考查两角和差的正弦公式、余弦公式的应用,正弦函数的最值,属于中档题.15.(5分)已知偶函数f(x)在[0,+∞)单调递减,f(2)=0,若f(x﹣1)>0,则x的取值范围是(﹣1,3).【考点】3N:奇偶性与单调性的综合.【专题】51:函数的性质及应用.【分析】根据函数奇偶性和单调性之间的关系将不等式等价转化为f(|x﹣1|)>f(2),即可得到结论.【解答】解:∵偶函数f(x)在[0,+∞)单调递减,f(2)=0,∴不等式f(x﹣1)>0等价为f(x﹣1)>f(2),即f(|x﹣1|)>f(2),∴|x﹣1|<2,解得﹣1<x<3,故答案为:(﹣1,3)【点评】本题主要考查函数奇偶性和单调性之间的关系的应用,将不等式等价转化为f(|x﹣1|)>f(2)是解决本题的关键.16.(5分)设点M(x0,1),若在圆O:x2+y2=1上存在点N,使得∠OMN=45°,则x0的取值范围是[﹣1,1] .【考点】J9:直线与圆的位置关系.【专题】5B:直线与圆.【分析】根据直线和圆的位置关系,画出图形,利用数形结合即可得到结论.【解答】解:由题意画出图形如图:点M(x0,1),要使圆O:x2+y2=1上存在点N,使得∠OMN=45°,则∠OMN的最大值大于或等于45°时一定存在点N,使得∠OMN=45°,而当MN与圆相切时∠OMN取得最大值,此时MN=1,图中只有M′到M″之间的区域满足MN≤1,∴x0的取值范围是[﹣1,1].【点评】本题考查直线与圆的位置关系,直线与直线设出角的求法,数形结合是快速解得本题的策略之一.三、解答题:解答应写出文字说明,证明过程或验算步骤.17.(12分)已知数列{a n}满足a1=1,a n+1=3a n+1.(Ⅰ)证明{a n+}是等比数列,并求{a n}的通项公式;(Ⅱ)证明:++…+<.【考点】87:等比数列的性质;8E:数列的求和.【专题】14:证明题;54:等差数列与等比数列.【分析】(Ⅰ)根据等比数列的定义,后一项与前一项的比是常数,即=常数,又首项不为0,所以为等比数列;再根据等比数列的通项化式,求出{a n}的通项公式;(Ⅱ)将进行放大,即将分母缩小,使得构成一个等比数列,从而求和,证明不等式.【解答】证明(Ⅰ)==3,∵≠0,∴数列{a n+}是以首项为,公比为3的等比数列;∴a n+==,即;(Ⅱ)由(Ⅰ)知,当n≥2时,∵3n﹣1>3n﹣3n﹣1,∴<=,∴当n=1时,成立,当n≥2时,++…+<1+…+==<.时,++…+<.∴对n∈N+【点评】本题考查的是等比数列,用放缩法证明不等式,证明数列为等比数列,只需要根据等比数列的定义就行;数列与不等式常结合在一起考,放缩法是常用的方法之一,通过放大或缩小,使原数列变成一个等比数列,或可以用裂项相消法求和的新数列.属于中档题.18.(12分)如图,四棱锥P﹣ABCD中,底面ABCD为矩形,PA⊥平面ABCD,E为PD的中点.(Ⅰ)证明:PB∥平面AEC;(Ⅱ)设二面角D﹣AE﹣C为60°,AP=1,AD=,求三棱锥E﹣ACD的体积.【考点】LF:棱柱、棱锥、棱台的体积;LS:直线与平面平行;MJ:二面角的平面角及求法.【专题】5F:空间位置关系与距离.【分析】(Ⅰ)连接BD交AC于O点,连接EO,只要证明EO∥PB,即可证明PB∥平面AEC;(Ⅱ)延长AE至M连结DM,使得AM⊥DM,说明∠CMD=60°,是二面角的平面角,求出CD,即可三棱锥E﹣ACD的体积.【解答】(Ⅰ)证明:连接BD交AC于O点,连接EO,∵O为BD中点,E为PD中点,∴EO∥PB,(2分)EO⊂平面AEC,PB⊄平面AEC,所以PB∥平面AEC;(6分)(Ⅱ)解:延长AE至M连结DM,使得AM⊥DM,∵四棱锥P﹣ABCD中,底面ABCD为矩形,PA⊥平面ABCD,∴CD⊥平面AMD,∴CD⊥MD.∵二面角D﹣AE﹣C为60°,∴∠CMD=60°,∵AP=1,AD=,∠ADP=30°,∴PD=2,E为PD的中点.AE=1,∴DM=,CD==.三棱锥E﹣ACD的体积为:==.【点评】本题考查直线与平面平行的判定,几何体的体积的求法,二面角等指数的应用,考查逻辑思维能力,是中档题.19.(12分)某地区2007年至2013年农村居民家庭人均纯收入y(单位:千元)的数据如表:年份2007200820092010201120122013年份代号t1234567人均纯收入y 2.9 3.3 3.6 4.4 4.8 5.2 5.9(Ⅰ)求y关于t的线性回归方程;(Ⅱ)利用(Ⅰ)中的回归方程,分析2007年至2013年该地区农村居民家庭人均纯收入的变化情况,并预测该地区2015年农村居民家庭人均纯收入.附:回归直线的斜率和截距的最小二乘估计公式分别为:=,=﹣.【考点】BK:线性回归方程.【专题】11:计算题;5I:概率与统计.【分析】(Ⅰ)根据所给的数据,利用最小二乘法可得横标和纵标的平均数,横标和纵标的积的和,与横标的平方和,代入公式求出b的值,再求出a的值,写出线性回归方程.(Ⅱ)根据上一问做出的线性回归方程,代入所给的t的值,预测该地区2015年农村居民家庭人均纯收入,这是一个估计值.【解答】解:(Ⅰ)由题意,=×(1+2+3+4+5+6+7)=4,=×(2.9+3.3+3.6+4.4+4.8+5.2+5.9)=4.3,∴== =0.5,=﹣=4.3﹣0.5×4=2.3.∴y关于t的线性回归方程为=0.5t+2.3;(Ⅱ)由(Ⅰ)知,b=0.5>0,故2007年至2013年该地区农村居民家庭人均纯收入逐年增加,平均每年增加0.5千元.将2015年的年份代号t=9代入=0.5t+2.3,得:=0.5×9+2.3=6.8,故预测该地区2015年农村居民家庭人均纯收入为6.8千元.【点评】本题考查线性回归分析的应用,本题解题的关键是利用最小二乘法认真做出线性回归方程的系数,这是整个题目做对的必备条件,本题是一个基础题.20.(12分)设F1,F2分别是C:+=1(a>b>0)的左,右焦点,M是C 上一点且MF2与x轴垂直,直线MF1与C的另一个交点为N.(1)若直线MN的斜率为,求C的离心率;(2)若直线MN在y轴上的截距为2,且|MN|=5|F1N|,求a,b.【考点】K4:椭圆的性质.【专题】5E:圆锥曲线中的最值与范围问题.【分析】(1)根据条件求出M的坐标,利用直线MN的斜率为,建立关于a,c的方程即可求C的离心率;(2)根据直线MN在y轴上的截距为2,以及|MN|=5|F1N|,建立方程组关系,求出N的坐标,代入椭圆方程即可得到结论.【解答】解:(1)∵M是C上一点且MF2与x轴垂直,∴M的横坐标为c,当x=c时,y=,即M(c,),若直线MN的斜率为,即tan∠MF1F2=,即b2==a2﹣c2,即c2+﹣a2=0,则,即2e2+3e﹣2=0解得e=或e=﹣2(舍去),即e=.(Ⅱ)由题意,原点O是F1F2的中点,则直线MF1与y轴的交点D(0,2)是线段MF1的中点,设M(c,y),(y>0),则,即,解得y=,∵OD是△MF1F2的中位线,∴=4,即b2=4a,由|MN|=5|F1N|,则|MF1|=4|F1N|,解得|DF1|=2|F1N|,即设N(x1,y1),由题意知y1<0,则(﹣c,﹣2)=2(x1+c,y1).即,即代入椭圆方程得,将b2=4a代入得,解得a=7,b=.【点评】本题主要考查椭圆的性质,利用条件建立方程组,利用待定系数法是解决本题的关键,综合性较强,运算量较大,有一定的难度.21.(12分)已知函数f(x)=e x﹣e﹣x﹣2x.(Ⅰ)讨论f(x)的单调性;(Ⅱ)设g(x)=f(2x)﹣4bf(x),当x>0时,g(x)>0,求b的最大值;(Ⅲ)已知1.4142<<1.4143,估计ln2的近似值(精确到0.001).【考点】6B:利用导数研究函数的单调性.【专题】16:压轴题;53:导数的综合应用.【分析】对第(Ⅰ)问,直接求导后,利用基本不等式可达到目的;对第(Ⅱ)问,先验证g(0)=0,只需说明g(x)在[0+∞)上为增函数即可,从而问题转化为“判断g′(x)>0是否成立”的问题;对第(Ⅲ)问,根据第(Ⅱ)问的结论,设法利用的近似值,并寻求ln2,于是在b=2及b>2的情况下分别计算,最后可估计ln2的近似值.【解答】解:(Ⅰ)由f(x)得f′(x)=e x+e﹣x﹣2,即f′(x)≥0,当且仅当e x=e﹣x即x=0时,f′(x)=0,∴函数f(x)在R上为增函数.(Ⅱ)g(x)=f(2x)﹣4bf(x)=e2x﹣e﹣2x﹣4b(e x﹣e﹣x)+(8b﹣4)x,则g′(x)=2[e2x+e﹣2x﹣2b(e x+e﹣x)+(4b﹣2)]=2[(e x+e﹣x)2﹣2b(e x+e﹣x)+(4b﹣4)]=2(e x+e﹣x﹣2)(e x+e﹣x+2﹣2b).①∵e x+e﹣x>2,e x+e﹣x+2>4,∴当2b≤4,即b≤2时,g′(x)≥0,当且仅当x=0时取等号,从而g(x)在R上为增函数,而g(0)=0,∴x>0时,g(x)>0,符合题意.②当b>2时,若x满足2<e x+e﹣x<2b﹣2即,得,此时,g′(x)<0,又由g(0)=0知,当时,g(x)<0,不符合题意.综合①、②知,b≤2,得b的最大值为2.(Ⅲ)∵1.4142<<1.4143,根据(Ⅱ)中g(x)=e2x﹣e﹣2x﹣4b(e x﹣e﹣x)+(8b﹣4)x,为了凑配ln2,并利用的近似值,故将ln即代入g(x)的解析式中,得.当b=2时,由g(x)>0,得,从而;令,得>2,当时,由g(x)<0,得,得.所以ln2的近似值为0.693.【点评】1.本题三个小题的难度逐步增大,考查了学生对函数单调性深层次的把握能力,对思维的要求较高,属压轴题.2.从求解过程来看,对导函数解析式的合理变形至关重要,因为这直接影响到对导数符号的判断,是解决本题的一个重要突破口.3.本题的难点在于如何寻求ln2,关键是根据第(2)问中g(x)的解析式探究b的值,从而获得不等式,这样自然地将不等式放缩为的范围的端点值,达到了估值的目的.请考生在第22、23、24三题中任选一题作答,如果多做,则按所做的第一题计分,作答时请写清题号.【选修4-1:几何证明选讲】22.(10分)如图,P是⊙O外一点,PA是切线,A为切点,割线PBC与⊙O相交于点B,C,PC=2PA,D为PC的中点,AD的延长线交⊙O于点E,证明:(Ⅰ)BE=EC;(Ⅱ)AD•DE=2PB2.【考点】N4:相似三角形的判定;NC:与圆有关的比例线段.【专题】17:选作题;5Q:立体几何.【分析】(Ⅰ)连接OE,OA,证明OE⊥BC,可得E是的中点,从而BE=EC;(Ⅱ)利用切割线定理证明PD=2PB,PB=BD,结合相交弦定理可得AD•DE=2PB2.【解答】证明:(Ⅰ)连接OE,OA,则∠OAE=∠OEA,∠OAP=90°,∵PC=2PA,D为PC的中点,∴PA=PD,∴∠PAD=∠PDA,∵∠PDA=∠CDE,∴∠OEA+∠CDE=∠OAE+∠PAD=90°,∴OE⊥BC,∴E是的中点,∴BE=EC;(Ⅱ)∵PA是切线,A为切点,割线PBC与⊙O相交于点B,C,∴PA2=PB•PC,∵PC=2PA,∴PA=2PB,∴PD=2PB,∴PB=BD,∴BD•DC=PB•2PB,∵AD•DE=BD•DC,∴AD•DE=2PB2.【点评】本题考查与圆有关的比例线段,考查切割线定理、相交弦定理,考查学生分析解决问题的能力,属于中档题.【选修4-4:坐标系与参数方程】23.在直角坐标系xOy中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,半圆C的极坐标方程为ρ=2cosθ,θ∈[0,](Ⅰ)求C的参数方程;(Ⅱ)设点D在半圆C上,半圆C在D处的切线与直线l:y=x+2垂直,根据(1)中你得到的参数方程,求直线CD的倾斜角及D的坐标.【考点】QH:参数方程化成普通方程.【专题】5S:坐标系和参数方程.【分析】(1)利用即可得出直角坐标方程,利用cos2t+sin2t=1进而得出参数方程.(2)利用半圆C在D处的切线与直线l:y=x+2垂直,则直线CD的斜率与直线l的斜率相等,即可得出直线CD的倾斜角及D的坐标.【解答】解:(1)由半圆C的极坐标方程为ρ=2cosθ,θ∈[0,],即ρ2=2ρcosθ,可得C的普通方程为(x﹣1)2+y2=1(0≤y≤1).可得C的参数方程为(t为参数,0≤t≤π).(2)设D(1+cos t,sin t),由(1)知C是以C(1,0)为圆心,1为半径的上半圆,∵直线CD的斜率与直线l的斜率相等,∴tant=,t=.故D的直角坐标为,即(,).【点评】本题考查了把极坐标方程化为直角坐标方程、参数方程化为普通方程、直线与圆的位置关系,考查了推理能力与计算能力,属于中档题.六、解答题(共1小题,满分0分)24.设函数f(x)=|x+|+|x﹣a|(a>0).(Ⅰ)证明:f(x)≥2;(Ⅱ)若f(3)<5,求a的取值范围.【考点】R5:绝对值不等式的解法.【专题】59:不等式的解法及应用.【分析】(Ⅰ)由a>0,f(x)=|x+|+|x﹣a|,利用绝对值三角不等式、基本不等式证得f(x)≥2成立.(Ⅱ)由f(3)=|3+|+|3﹣a|<5,分当a>3时和当0<a≤3时两种情况,分别去掉绝对值,求得不等式的解集,再取并集,即得所求.【解答】解:(Ⅰ)证明:∵a>0,f(x)=|x+|+|x﹣a|≥|(x+)﹣(x﹣a)|=|a+|=a+≥2=2,故不等式f(x)≥2成立.(Ⅱ)∵f(3)=|3+|+|3﹣a|<5,∴当a>3时,不等式即a+<5,即a2﹣5a+1<0,解得3<a<.当0<a≤3时,不等式即6﹣a+<5,即a2﹣a﹣1>0,求得<a≤3.综上可得,a的取值范围(,).【点评】本题主要考查绝对值三角不等式,绝对值不等式的解法,体现了转化、分类讨论的数学思想,属于中档题.。

2014年高考理科数学北京卷(含详细答案)

2014年高考理科数学北京卷(含详细答案)
如图建立空间直角坐标系 ,则 , , , , ,
.
设平面ABF的法向量为 ,则 ,即 .
令 ,则 .所以 ,设直线BC与平面ABF所成角为 ,
则 .
设点H的坐标为
因为点H在棱PC上,所以可设 ,即 ,
所以 .
因为 是平面ABF的法向量,所以 ,即 .
解得 ,所以点H的坐标为ቤተ መጻሕፍቲ ባይዱ
所以 .
【提示】由线面平行推出线线平行,利用线面垂直、线线垂直这个条件,作出有关辅助线,建立空间直角坐标系求解.
圆心 到直线AB的距离 .此时直线AB与圆 相切.
当 时,直线AB的方程为 ,即 ,
圆心 到直线AB的距离 .
又 , ,故 ,
此时直线AB与圆 相切.
【提示】根据给出的椭圆方程找出离心率,然后利用椭圆方程与直线的关系及两线垂直,求出直线与圆的位置关系.
【考点】圆与圆锥曲线的综合,椭圆的简单性质
20.【答案】(1)
A.2人
B.3人
C.4人
D.5人
第Ⅱ卷(非选择题共110分)
二、填空题:本大题共6小题,每小题5分.共30分,把答案填写在题中的横线上.
9.复数 .
10.已知向量a,b满足 a ,b ,且 a b 0 ,则 .
11.设双曲线 经过点 ,且与 具有相同渐近线,则 的方程为;渐近线方程为.
12.若等差数列 满足 , ,则当 时, 的前 项和最大.
【提示】由循环语句、条件语句执行程序,直至结束.
【考点】循环结构
5.【答案】D
【解析】当 时,数列 递减;当 ,数列 递增时, ,故选D.
【提示】根据等比数列的性质,结合充分条件和必要条件的定义进行判断即可得到结论.
【考点】充分、必要条件,等比数列的性质

2014年全国高考理科数学试题及答案-新课标1

2014年全国高考理科数学试题及答案-新课标1

2014年普通高等学校招生全国统一考试全国课标1理科数学注意事项:1. 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

答题前,考生务必将自己的姓名、准考证号填写在答题卡上.2. 回答第Ⅰ卷时,选出每个小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮搽干净后,再选涂其他答案标号,写在本试卷上无效. 3. 回答第Ⅱ卷时,将答案写在答题卡上,答在本试题上无效. 4. 考试结束,将本试题和答题卡一并交回.第Ⅰ卷一.选择题:共12小题,每小题5分,共60分。

在每个小题给出的四个选项中,只有一项是符合题目要求的一项。

1. 已知集合A={x |2230x x --≥},B={x |-2≤x <2=,则A B ⋂=A .[-2,-1]B .[-1,2)C .[-1,1]D .[1,2) 2. 32(1)(1)i i +-=A .1i +B .1i -C .1i -+D .1i --3. 设函数()f x ,()g x 的定义域都为R ,且()f x 时奇函数,()g x 是偶函数,则下列结论正确的是A .()f x ()g x 是偶函数B .|()f x |()g x 是奇函数C .()f x |()g x |是奇函数D .|()f x ()g x |是奇函数4. 已知F 是双曲线C :223(0)x m y m m -=>的一个焦点,则点F 到C 的一条渐近线的距离为A B .3 C D .3m5. 4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率A .18B .38C .58D .786. 如图,圆O 的半径为1,A 是圆上的定点,P 是圆上的动点,角x 的始边为射线O A ,终边为射线O P ,过点P 作直线O A 的垂线,垂足为M ,将点M 到直线O P 的距离表示为x 的函数()f x ,则y =()f x 在[0,π]上的图像大致为7. 执行下图的程序框图,若输入的,,a b k 分别为1,2,3,则输出的M =A .203B .165C .72D .1588. 设(0,)2πα∈,(0,)2πβ∈,且1s in ta n c o s βαβ+=,则A .32παβ-=B .22παβ-= C .32παβ+=D .22παβ+=9. 不等式组124x y x y +≥⎧⎨-≤⎩的解集记为D .有下面四个命题:1p :(,),22x y D x y ∀∈+≥-,2p :(,),22x y D x y ∃∈+≥, 3P :(,),23x y D x y ∀∈+≤,4p :(,),21x y D x y ∃∈+≤-.其中真命题是A .2p ,3PB .1p ,4pC .1p ,2pD .1p ,3P10. 已知抛物线C :28y x =的焦点为F ,准线为l ,P 是l 上一点,Q 是直线P F 与C 的一个焦点,若4F P F Q =,则||Q F =A .72B .52C .3D .211. 已知函数()f x =3231a x x -+,若()f x 存在唯一的零点0x ,且0x >0,则a 的取值范围为A .(2,+∞)B .(-∞,-2)C .(1,+∞)D .(-∞,-1) 12. 如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的个条棱中,最长的棱的长度为A .B .C .6D .4第Ⅱ卷本卷包括必考题和选考题两个部分。

2014年高考真题(北京卷)数学(理科) 附详细答案解析

2014年高考真题(北京卷)数学(理科) 附详细答案解析

2014年普通高等学校招生全国统一考试(北京卷)数 学(理科)第一部分(选择题 共40分)一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项. 1.(2014北京,理1)已知集合A={x|x 2-2x=0},B={0,1,2},则A ∩B=( ). A .{0} B .{0,1} C .{0,2} D .{0,1,2} 2.(2014北京,理2)下列函数中,在区间(0,+∞)上为增函数的是( ). A .y=√x +1 B .y=(x-1)2 C .y=2-x D .y=log 0.5(x+1)3.(2014北京,理3)曲线{x =-1+cosθ,y =2+sinθ(θ为参数)的对称中心( ).A .在直线y=2x 上B .在直线y=-2x 上C .在直线y=x-1上D .在直线y=x+1上 4.(2014北京,理4)当m=7,n=3时,执行如图所示的程序框图,输出的S 值为( ). A .7 B .42 C .210 D .8405.(2014北京,理5)设{a n }是公比为q 的等比数列,则“q>1”是 “{a n }为递增数列”的( ).A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件6.(2014北京,理6)若x ,y 满足{x +y -2≥0,kx -y +2≥0,y ≥0,且z=y-x 的最小值为-4,则k 的值为( ).A .2B .-2C .12 D .-127.(2014北京,理7)在空间直角坐标系Oxyz 中,已知A (2,0,0),B (2,2,0),C (0,2,0),D (1,1,√2).若S 1,S 2,S 3分别是三棱锥D-ABC 在xOy ,yOz ,zOx 坐标平面上的正投影图形的面积,则( ).A .S 1=S 2=S 3B .S 2=S 1且S 2≠S 3C .S 3=S 1且S 3≠S 2D .S 3=S 2且S 3≠S 1 8.(2014北京,理8)学生的语文、数学成绩均被评定为三个等级,依次为“优秀”“合格”“不合格”.若学生甲的语文、数学成绩都不低于学生乙,且其中至少有一门成绩高于乙,则称“学生甲比学生乙成绩好”.如果一组学生中没有哪位学生比另一位学生成绩好,并且不存在语文成绩相同、数学成绩也相同的两位学生,那么这组学生最多有( ).A .2人B .3人C .4人D .5人第二部分(非选择题 共110分)二、填空题共6小题,每小题5分,共30分. 9.(2014北京,理9)复数(1+i 1-i )2= .10.(2014北京,理10)已知向量a ,b 满足|a |=1,b =(2,1),且λa +b =0(λ∈R ),则|λ|= .11.(2014北京,理11)设双曲线C 经过点(2,2),且与y 24-x 2=1具有相同渐近线,则C 的方程为 ;渐近线方程为 .12.(2014北京,理12)若等差数列{a n }满足a 7+a 8+a 9>0,a 7+a 10<0,则当n= 时,{a n }的前n 项和最大.13.(2014北京,理13)把5件不同产品摆成一排.若产品A 与产品B 相邻,且产品A 与产品C 不相邻,则不同的摆法有 种.14.(2014北京,理14)设函数f (x )=A sin(ωx+φ)(A ,ω,φ是常数,A>0,ω>0).若f (x )在区间[π6,π2]上具有单调性,且f (π2)=f (2π3)=-f (π6),则f (x )的最小正周期为 .三、解答题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程. 15.(本小题13分)(2014北京,理15)如图,在△ABC 中,∠B=π3,AB=8,点D 在BC 边上,且CD=2,cos ∠ADC=17.(1)求sin ∠BAD ; (2)求BD ,AC 的长.16.(本小题13分)(2014北京,理16)李明在10场篮球比赛中的投篮情况统计如下(假设各场比赛相互独立):场次 投篮次数 命中次数 场次 投篮次数 命中次数 主场1 22 12 客场1 18 8 主场2 15 12 客场2 13 12 主场3 12 8 客场3 21 7 主场4 23 8 客场4 18 15 主场52420客场52512(1)从上述比赛中随机选择一场,求李明在该场比赛中投篮命中率超过0.6的概率;(2)从上述比赛中随机选择一个主场和一个客场,求李明的投篮命中率一场超过0.6,一场不超过0.6的概率;。

2014年高考理科数学试题及答案全国卷i

2014年高考理科数学试题及答案全国卷i

2014年高考理科数学试题及答案全国卷i 2014年高考理科数学试题及答案全国卷I一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一个是正确的。

1. 若函数f(x)=x^2+bx+c,且f(1)=0,则b的值为:A. 1B. -1C. 2D. -22. 已知向量a=(3,2),向量b=(-1,2),向量a与向量b的点积为:A. 4B. 5C. 6D. 73. 若直线l的方程为y=kx+b,且直线l与x轴交于点(2,0),与y轴交于点(0,3),则k的值为:A. 3/2B. -3/2C. 2/3D. -2/34. 已知等差数列{an}的首项为1,公差为2,求该数列的前10项和S10:A. 100B. 105C. 110D. 1155. 若复数z满足|z|=1,且z的实部为1/2,则z的虚部为:A. √3/2B. -√3/2C. √3/2iD. -√3/2i6. 已知函数f(x)=x^3-3x,求f'(x):A. 3x^2-3B. x^2-3C. 3x^2+3D. x^2+37. 若双曲线C的方程为x^2/a^2-y^2/b^2=1,且双曲线C的渐近线方程为y=±(√3/3)x,则a与b的关系为:A. a=bB. a=√3bC. b=√3aD. b=3a8. 已知函数f(x)=x^2-4x+3,求函数f(x)的最小值:A. -1B. 0C. 1D. 49. 若圆C的方程为(x-1)^2+(y-2)^2=9,求圆C的圆心坐标和半径:A. 圆心(1,2),半径3B. 圆心(2,1),半径3C. 圆心(1,2),半径√9D. 圆心(2,1),半径√910. 已知正方体的棱长为a,求正方体的表面积:A. 6a^2B. 12a^2C. 24a^2D. 36a^211. 若函数f(x)=ln(x+√(x^2+1)),求f'(x):A. 1/(x+√(x^2+1))B. 1/(x-√(x^2+1))C. 1/(2x+2√(x^2+1))D. 1/(2x-2√(x^2+1))12. 已知函数f(x)=x^2-6x+8,求函数f(x)的零点:A. 2和4B. 1和5C. 3和3D. 4和2二、填空题:本题共4小题,每小题5分,共20分。

2014年高考理科数学北京卷(含答案解析)

2014年高考理科数学北京卷(含答案解析)

绝密★启用前2014年普通高等学校招生全国统一考试(北京卷)数学(理科)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分,考试时间120分钟.第Ⅰ卷(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合2{|20}A x x x =-=,{0,1,2}B =,则A B = ( )A .{0}B .{0,1}C .{0,2}D .{0,1,2}2.下列函数中,在区间(0,)+∞上为增函数的是( )A.y B .2(1)y x =- C .2x y -=D .0.5log (1)y x =+3.曲线1cos ,2sin ,x y θθ=-+⎧⎨=+⎩(..为参数)的对称中心( )A .在直线2y x =上B .在直线2y x =-上C .在直线1y x =-上D .在直线1y x =+上4.当7m =,3n =时,执行如图所示的程序框图,输出的S 值为( )A .7B .42C .210D .840 5.设{}n a 是公比为q 的等比数列,则“1q >”是“{}n a 为递增数列”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件6.若x ,y 满足20,20,0,x y kx y y +-⎧⎪-+⎨⎪⎩≥≥≥且z y x =-的最小值为4-,则k 的值为( )A .2B .2-C .12D .12-7.在空间直角坐标系O xyz -中,已知()2,0,0A ,()2,2,0B ,(0),2,0C,(D .若1S ,2S ,3S 分别是三棱锥D ABC -在xOy ,yOz ,zOx 坐标平面上的正投影图形的面积,则( ) A .123S S S ==B .21S S =且23S S ≠C .31S S =且32S S ≠D .32S S =且31S S ≠8.学生的语文、数学成绩均被评定为三个等级,依次为“优秀”“合格”“不合格”.若学生甲的语文、数学成绩都不低于学生乙,且其中至少有一门成绩高于乙,则称“学生甲比学生乙成绩好”.如果一组学生中没有哪位学生比另一位学生成绩好,并且不存在语文成绩相同、数学成绩也相同的两位学生,那么这组学生最多有( )A .2 人B .3 人C .4 人D .5 人第Ⅱ卷(非选择题 共110分)二、填空题:本大题共6小题,每小题5分.共30分,把答案填写在题中的横线上.9.复数21i ()1i+=- . 10.已知向量a ,b 满足|a |1=,b (2,1)=,且λa +b =0()λ∈R ,则||λ= .11.设双曲线C 经过点(2,2),且与2214y x =-具有相同渐近线,则C 的方程为 ;渐近线方程为 .12.若等差数列{}n a 满足7890a a a ++>,7100a a +<,则当n = 时,{}n a 的前n 项和最大.13.把5件不同产品摆成一排.若产品A 与产品B 相邻,且产品A 与产品C 不相邻,则不同的摆法有 种.14.设函数()sin()f x A x ωϕ=+(,,A ωϕ是常数,0A >,0)ω>.若()f x 在区间ππ,62⎡⎤⎢⎥⎣⎦上具有单调性,且π2ππ()()()236f f f ==-,则()f x 的最小正周期为 . 三、解答题:本大题共6小题,共80分.解答应写出必要的文字说明、证明过程或演算步骤.15.(本小题满分13分)如图,在ABC △中,π3B ∠=,8AB =,点D 在BC 边上,且2CD =,1cos 7ADC ∠=.(Ⅰ)求sin BAD ∠; (Ⅱ)求BD ,AC 的长.-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无------------------------------------姓名________________ 准考证号_____________16.(本小题满分13分)(Ⅰ)从上述比赛中随机选择一场,求李明在该场比赛中投篮命中率超过0.6的概率;(Ⅱ)从上述比赛中随机选择一个主场和一个客场,求李明的投篮命中率一场超过0.6,一场不超过0.6的概率;(Ⅲ)记x为表中10个命中次数的平均数.从上述比赛中随机选择一场,记X为李明在这场比赛中的命中次数.比较EX与x的大小.(只需写出结论)17.(本小题满分14分)如图,正方形AMDE的边长为2,B,C分别为AM,MD的中点.在五棱锥P ABCDE-中,F为棱PE的中点,平面ABF与棱PD,PC分别交于点G,H.(Ⅰ)求证:AB FG;(Ⅱ)若PA⊥底面ABCDE,且PA AE=,求直线BC与平面ABF所成角的大小,并求线段PH的长. 18.(本小题满分13分)已知函数()cos sinf x x x x=-,π0,2x⎡⎤∈⎢⎥⎣⎦.(Ⅰ)求证:()0f x≤;(Ⅱ)若sin xa bx<<对π(0,)2x∈恒成立,求a的最大值与b的最小值.19.(本小题满分13分)已知椭圆C:2224x y+=.(Ⅰ)求椭圆C的离心率;(Ⅱ)设O为原点.若点A在椭圆C上,点B在直线2y=上,且OA OB⊥,试判断直线AB与圆222x y+=的位置关系,并证明你的结论.20.(本小题满分13分)对于数对序列P:11(,)a b,22(,)a b,⋅⋅⋅,(),n na b,记111()T P a b=+,()k kT P b=+ 112max{(),}k kT P a a a-+⋅⋅⋅++(2)k n≤≤,其中112(ma}x{),k kT P a a a-++⋅⋅⋅+表示1()kT P-和12ka a a++⋅⋅⋅+两个数中最大的数.(Ⅰ)对于数对序列P:(2,5),(4,1),求1()T P,2()T P的值;(Ⅱ)记m为a,b,c,d四个数中最小的数,对于由两个数对(,)a b,(,)c d组成的数对序列P:(,)a b,(,)c d和P':(,)c d,(,)a b,试分别对m a=和m d=两种情况比较2()T P和2()T P'的大小;(Ⅲ)在由五个数对(11,8),(5,2),(16,11),(11,11),(4,6)组成的所有数对序列中,写出一个数对序列P使5()T P最小,并写出5()T P的值.(只需写出结论)2014年普通高等学校招生全国统一考试(北京卷)数学(理科)答案解析第Ⅰ卷一、选择题 1.【答案】C 【解析】{}0,2A =,{0,2}{0,1,2}{0,2}AB ∴==,故选C.【提示】用描述法、列举法写出集合,求其交集. 【考点】交集及其运算 2.【答案】A【解析】由基本初等函数的性质得,选项B 中的函数在(0,1)上递减,选项C ,D 中的函数在(0,)+∞上为减函数,所以排除B ,C ,D ,故选A.【提示】根据基本初等函数的单调性,判断各个选项中函数的单调性,从而得出结论. 【考点】对数函数的单调性与特殊点 3.【答案】B【解析】曲线方程消去参数化为22(1)(2)=1x y ++-,其对称中心点为(1,2)-,验证知其在直线2y x =-上,故选B.【提示】曲线方程消去参数化为普通方程,求经过对称中心的一条直线. 【考点】曲线的参数方程 4.【答案】C【解析】=1765=210S ⨯⨯⨯,故选C.【提示】由循环语句、条件语句执行程序,直至结束. 【考点】循环结构 5.【答案】D【解析】当101a q <>,时,数列{}n a 递减;当10a <,数列{}n a 递增时,01q <<,故选D.【提示】根据等比数列的性质,结合充分条件和必要条件的定义进行判断即可得到结论. 【考点】充分、必要条件,等比数列的性质 6.【答案】D【解析】可行域如图所示,当0k >时,知z y x =-无最小值,当0k <时,目标函数线过可行域内A 点时z 有最小值.联立020y kx y =⎧⎨-+=⎩解得2,0A k ⎛⎫⎪⎝⎭,故min 2=0+=4z k 即1=2k -,故选D.【提示】给出约束条件和目标函数在此区域的最小值,求未知参数. 【考点】简单线性规划 7.【答案】D【解析】设顶点D 在三个坐标平面xOy 、yOz 、zOx 上的正投影分别为1D 、2D 、3D ,则11AD BD ==2AB =, ∴11S 22=22=⨯⨯,22122OCD S S ==⨯=△,33122OAD S S ==⨯△,故选D.【提示】分别求出三棱锥在各个面上的投影坐标即可得到结论. 【考点】空间直角坐标系 8.【答案】B【解析】假设A 、B 两位学生的数学成绩一样,由题意知他们语文成绩不一样,这样他们的语文成绩总有人比另一个人高,语文成绩较高的学生比另一个学生“成绩好”,与已知条件“他们之中没有一个比另一个成绩好”相矛盾.因此,没有任意两位学生数学成绩是相同的.因为数学成绩只有3种,因而学生数量最大为3,即3位学生的成绩分别为(优秀,不合格)、(合格,合格)、(不合格,优秀)时满足条件,故选B. 【提示】分别用ABC 分别表示优秀、及格和不及格,根据题干中的内容推出成绩得A ,B ,C 的学生各最多只有1个,继而推得学生的人数. 【考点】排列组合数的应用第Ⅱ卷二、填空题 9.【答案】1-【解析】22221i (1i)2i 11i (1i)(1i)2⎡⎤+-⎛⎫⎛⎫==-⎢⎥ ⎪ ⎪--+⎝⎭⎝⎭=⎣⎦. 【提示】复数的乘、除运算,直接计算出结果. 【考点】复数代数形式的四则运算 10.【解析】0a b λ+=,a b λ∴=-,||5||||b a λ∴===. 【提示】已知向量和向量的模,及两向量之间的关系,求||λ的值. 【考点】向量的线性运算11.【答案】22=1312x y -2y x ±=【解析】设双曲线C 的方程为224y x λ-=,将(2,2)代入得2222=3=4λ--, ∴双曲线C 的方程为22=1312x y -.令22=04y x -得渐近线方程为2y x =±.【提示】利用双曲线简单的几何性质,求经过一点,与已知曲线有相同渐近线的双曲线. 【考点】双曲线的简单几何性质 12.【答案】8 【解析】7898=30a a a a ++>,710890a a a a +=+<,8900a a ∴><,,∴8n =时,数列{}n a 的前n 项和最大.【提示】可得等差数列{}n a 的前8项为正数,从第9项开始为负数,进而可得结论. 【考点】等差数列性质 13.【答案】36【解析】32132362336A A A =⨯⨯=.【提示】根据题目的要求,利用分步乘法计数原理与排列与组合,求出其中的不同摆法. 【考点】乘法原理,排列数的应用 14.【答案】π【解析】结合图像得π2πππ2326+=422T +-,即πT =.【提示】结合二次函数的图象与单调性,求最小正周期T. 【考点】二次函数的图象与周期性 三、解答题 15.【答案】(1)14(2)37BD AC ==,【解析】(1)在ADC △中,因为1cos 7ADC ∠=,所以sin ADC ∠=. 所以sin sin()BAD ADC B ∠=∠-∠sin cos cos sin ADC B ADC B =∠-∠1127=-=(2)在ABD △中,由正弦定理得sin 3sin AB BAD BD ADB ∠===∠,在ABC △中,由余弦定理得2222cos AC AB BC AB BC B =+-22185285492=+-⨯⨯⨯=,所以7AC =.【提示】根据三角形边角之间的关系,结合正弦定理和余弦定理即可得到结论.【考点】三角函数的基本关系式,正弦定理,余弦定理 16.【答案】(1)0.5 (2)1325(3)EX x =【解析】(1)根据投篮统计数据,在10场比赛中,李明投篮命中率超过0.6的有5场,分别是主场2,主场3,主场5,客场2,客场4.所以在随机选择的一场比赛中,李明的投篮命中率超过0.6的概率是0.5.(2)设事件A 为“在随机选择的一场主场比赛中李明的投篮命中率超过0.6”,事件B 为“在随机选择的一场客场比赛中李明的投篮命中率超过0.6”,事件C 为“在随机选择的一个主场和一个客场中,李明的投篮命中率一场超过0.6,一场不超过0.6”.则C ABAB =,A B ,独立根据投篮统计数据,32()()55P A P B ==,.()()()P C P AB P AB =+33225555=⨯+⨯1325=所以在随机选择的一个主场和一个客场中,李明的投篮命中率一场超过0.6,一场不超过0.6的概率为1325. (3)EX x =.【提示】由互斥事件与独立事件的概率,设出基本事件,并求出概率. 【考点】离散型随机变量的期望与方差,相互独立事件的概率乘法公式 17.【答案】(1)在正方形中,因为B 是AM 的中点,所以AB DE ∥.又因为AB ⊄平面PDE ,所以AB PDE ∥平面,因为AB ⊂平面ABF ,且平面ABF平面PDE FG =,所以AB FG ∥.(2)因为PA ⊥底面ABCDE ,所以PA AB ⊥,PA AE ⊥.如图建立空间直角坐标系Axyz ,则(0,0,0)A ,(1,0,0)B ,(2,1,0)C ,(0,0,2)P ,(0,1,1)F ,(1,1,0)BC =.设平面ABF 的法向量为(,,)n x y z =,则0n AB n AF ⎧=⎪⎨=⎪⎩,即00x y z =⎧⎨+=⎩. 令1,z =,则1y =-.所以(0,1,1)n =-,设直线BC 与平面ABF 所成角为α, 则1sin |cos ,|2|||n BC n BC n BC α===|.设点H 的坐标为(,,).u v w因为点H 在棱PC 上,所以可设(01)PH PC λλ=<<,即(,,2)(2,1,2)u v w λ-=-, 所以2,,22u v w λλλ===-.因为n 是平面ABF 的法向量,所以0n AH =,即(0,1,1)(2,,22)0λλλ--=.解得23λ=,所以点H 的坐标为422,,333⎛⎫⎪⎝⎭所以2PH =.【提示】由线面平行推出线线平行,利用线面垂直、线线垂直这个条件,作出有关辅助线,建立空间直角坐标系求解. 【考点】直线与平面所成的角18.【答案】(1)由()cos sin f x x x x =-得()cos sin cos sin f x x x x x x x '=--=-.因为在区间π0,2⎛⎫ ⎪⎝⎭上()sin 0f x x x '=-<,所以()f x 在区间π0,2⎡⎤⎢⎥⎣⎦上单调递减,从而()(0)0f x f ≤=.(2)当0x >时,“sin xa x>”等价于“sin 0x ax ->”,“sin x b x <”等价于“sin 0x bx -<”. 令()g x sin x cx =-,则()cos g x x c '=-.当0c ≤时,()0g x >对任意π0,2x ⎛⎫∈ ⎪⎝⎭恒成立.当1c ≥时,因为对任意π0,2x ⎛⎫∈ ⎪⎝⎭,()cos 0g x x c '=-<,所以()g x 在区间π0,2⎡⎤⎢⎥⎣⎦上单调递减.从而()(0)0g x g <=对任意π0,2x ⎛⎫∈ ⎪⎝⎭恒成立.当01c <<时,存在唯一的0π0,2x ⎛⎫∈ ⎪⎝⎭,使得00()cos 0g x x c '=-=.()g x 与()g x '在区间π0,⎛⎫⎪上的情况如下:因为()g x 在区间[]00,x 上是增函数,所以0()(0)0g x g >=.进一步,“()0g x >对任意π0,2x ⎛⎫∈ ⎪⎝⎭恒成立”当且仅当ππ1022g ⎛⎫=-≥ ⎪⎝⎭,即20πc <≤.综上所述,当且仅当2πc ≤时,()0g x >对任意π0,2x ⎛⎫∈ ⎪⎝⎭恒成立;当且仅当1c≥时,()<0g x 对任意π0,2x ⎛⎫∈⎪⎝⎭恒成立.所以,若sin x a b x <<对任意π0,2x ⎛⎫∈ ⎪⎝⎭恒成立,则a 最大值为2π,b 的最小值为1 【提示】直接利用导数的几何意义,证明函数.第(2)问是求解未知参量的最值,函数求导,由函数值变化判断单调区间,进而求解最值. 【考点】导数的几何意义,利用导数判断参数的范围19.【答案】(1)由题意,椭圆C 的标准方程为22142x y +=.所以224,2a b ==,从而2222c a b =-=.因此2,a c ==故椭圆C 的离心率2c e a ==(2)直线AB 与圆222x y +=相切.证明如下:设点A ,B 的坐标分别为00(,)x y ,(,2)t ,其中00x ≠. 因为OA OB ⊥,所以0OA OB =,即0020tx y +=,解得02y t x =-. 当0x t =时,202t y =,代入椭圆C 的方程,得t =AB 的方程为x =.圆心O 到直线AB 的距离d .此时直线AB 与圆222x y +=相切.当0x t ≠时,直线AB 的方程为0022()y y x t x t--=--,即0000(2)()20y x x ty x t y ---+-=,圆心O 到直线AB的距离d =.又220024x y +=,02y t x =-,故d ===此时直线AB 与圆222x y +=相切.【提示】根据给出的椭圆方程找出离心率,然后利用椭圆方程与直线的关系及两线垂直,求出直线与圆的位置关系.【考点】圆与圆锥曲线的综合,椭圆的简单性质 20.【答案】(1)12()7()8T P T P ==, (2)22()()T P T P '≤(3)1()10T P =,2()26T P =,3()42T P =,4()50T P =,5()52T P =【解析】(1)1()257T P =+=,21()1max{(),24}T P T P =++1max{7,6}=+=8. (2)2()T P {}max ,a b d a c d =++++,2()T P '={}max ,c d b c a b ++++. 当m =a 时,2()T P '={}max ,c d b c a b ++++=c d b ++,因为c d b c b d ++≤++,且a c d c b d ++≤++,所以2()T P ≤2()T P '. 当m =d 时,2()T P '{}max ,c d b c a b =++++c a b =++,因为a b d ++≤c a b ++,且a c d c a b ++≤++所以2()T P ≤2()T P '. 所以无论m a =还是m d =,22()()T P T P '≤都成立.(3)数对序列P :(4,6),(11,11),(16,11),(11,8),(5,2)的5()T P 值最小, 1()10T P =,2()26T P =,3()42T P =,4()50T P =,5()52T P =【提示】给出数学概念的新定义,根据新定义,求值比较大小. 【考点】分析法和综合法。

2014年高考新课标 I 数学(理)真题试题及答案

2014年高考新课标 I 数学(理)真题试题及答案

2014年普通高等学校招生全国统一考试(新课标Ⅰ卷)数学试题卷(理工类)注意事项: 1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.答题前,考生务必将自己的姓名、准考证号填写在答题卡上. 2.回答第Ⅰ卷时,选出每个小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮搽干净后,再选涂其他答案标号,写在本试卷上无效. 3.回答第Ⅱ卷时,将答案写在答题卡上,答在本试题上无效. 4.考试结束,将本试题和答题卡一并交回.第Ⅰ卷一、选择题:共12小题,每小题5分,共60分.在每个小题给出的四个选项中,只有一项是符合题目要求的一项.1.已知集合A={x |2230x x --≥},B={x |-2≤x <2﹜,则A B ⋂=A .[2,1]--B .[1,2)-C .[1,1]-D .[1,2)2.32(1)(1)i i +-= A .1i + B .1i - C .1i -+ D .1i --3.设函数()f x ,()g x 的定义域都为R ,且()f x 是奇函数,()g x 是偶函数,则下列结论正确的是A .()f x ()g x 是偶函数B .|()f x |()g x 是奇函数C .()f x |()g x |是奇函数D .|()f x ()g x |是奇函数4.已知F 是双曲线C :223(0)x my m m -=>的一个焦点,则点F 到C 的一条渐近线的距离为A .3B .3C .3mD .3m5.4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率为A .18B .38C .58D .786.如图,圆O 的半径为1,A 是圆上的定点,P 是圆上的动点, 角x 的始边为射线OA ,终边为射线OP ,过点P 作直线OA 的垂线,垂足为M .将点M 到直线OP 的距离表示为x 的函数()f x ,则y =()f x 在[0,π]上的图像大致为M OPA7.执行下图的程序框图,若输入的,,a b k 分别为1,2,3,则输出的M=A .203 B .165 C .72 D .1588.设(0,)2πα∈,(0,)2πβ∈,且1sin tan cos βαβ+=,则 A .32παβ-=B .32παβ+= C .22παβ-=D .22παβ+=9.不等式组⎩⎨⎧≤-≥+42,1y x y x 的解集记为D ,有下面四个命题:1p :(,),22x y D x y ∀∈+≥-;2p :(,),22x y D x y ∃∈+≥;3p :(,),23x y D x y ∀∈+≤;4p :(,),21x y D x y ∃∈+≤-.其中的真命题是A .2p ,3pB .1p ,2pC .1p ,4pD .1p ,3p10.已知抛物线C :28y x =的焦点为F ,准线为l ,P 是l 上一点,Q 是直线PF 与C 的一个交点,若4FP FQ =,则||QF =A .72 B .3 C .52D .2 11.已知函数()f x =3231ax x -+,若()f x 存在唯一的零点0x ,且0x >0,则a 的取值范围为A .(2,+∞)B .(1,+∞)C .(,2)-∞-D .(,1)-∞-12.如图,网格纸上小正方形的边长为1,粗实线画出的是某多 面体的三视图,则该多面体的六条棱中,最长的棱的长度为A .62B .42C .6D .4开始 结束ba M 1+← n←n+1是n ≤k输出M 否n ←1 输入a ,b,k a ←b b ←M OAx y 1 π OBx y1π OCx y1π ODxy1π第Ⅱ卷本卷包括必考题和选考题两个部分.第13题-第21题为必考题,每个考生都必须作答.第22题-第24题为选考题,考生根据要求作答.二、填空题:本大题共4小题,每小题5分.13.8()()x y x y -+的展开式中72y x 的系数为 .(用数字填写答案) 14.甲、乙、丙三位同学被问到是否去过A ,B ,C 三个城市时, 甲说:我去过的城市比乙多,但没去过B 城市; 乙说:我没去过C 城市; 丙说:我们三人去过同一个城市. 由此可判断乙去过的城市为 . 15.已知A ,B ,C 是圆O 上的三点,若1()2AO AB AC =+,则AB 与AC 的夹角为 . 16.已知a ,b ,c 分别为ABC ∆的三个内角A ,B ,C 的对边,a =2,且(2)(s i n s i n )(b A B c b C +-=-,则ABC ∆面积的最大值为 .三、解答题:解答应写出文字说明、证明过程或演算步骤.17.(本小题满分12分)已知数列{n a }的前n 项和为n S ,1a =1,0n a ≠,11n n n a a S λ+=-,其中λ为常数.(Ⅰ)证明:2n n a a λ+-=;(Ⅱ)是否存在λ,使得{n a }为等差数列?并说明理由.18.(本小题满分12分)从某企业的某种产品中抽取500件,测量这些产品的一项质量指标值,由测量结果得如下频率分布直方图:(Ⅰ)求这500件产品质量指标值的样本平均数x 和样本方差2s (同一组数据用该区间的中点值作代表);(Ⅱ)由直方图可以认为,这种产品的质量指标值Z 服从正态分布2(,)N μδ,其中μ近似为样本平均数x ,2δ近似为样本方差2s .(i )利用该正态分布,求(187.8212.2)P Z <<;(ii )某用户从该企业购买了100件这种产品,记X 表示这100件产品中质量指标值位于区间)2.212,8.187(的产品件数,利用(i )的结果,求EX .附:150≈12.2.若Z ~2(,)N μδ,则()P Z μδμδ-<<+=0.6826,(22)P Z μδμδ-<<+=0.9544.19.(本小题满分12分)如图,三棱柱111ABC A B C -中,侧面11BB C C 为菱形,1AB B C ⊥. (Ⅰ)证明:1AC AB =;(Ⅱ)若1AC AB ⊥,o160CBB ∠=,AB =BC ,求二面角111A A B C --的余弦值.AA 1C 1B 1CB0.008 165 175 185 195 205 215 225 235 0.009 0.0220.024 0.033 质量指标值频率组距0.00220.(本小题满分12分)已知点(0,2)A -,椭圆E :22221(0)x y a b a b +=>>的离心率为32,F 是椭圆E 的右焦点,直线AF 的斜率为233,O 为坐标原点. (Ⅰ)求E 的方程;(Ⅱ)设过点A 的直线l 与E 相交于P ,Q 两点,当OPQ ∆的面积最大时,求l 的方程.21.(本小题满分12分)设函数()xbe x ae x f x x1ln -+=,曲线()y f x =在点(1,(1)f )处的切线方程为(1)2y e x =-+. (Ⅰ)求a ,b ; (Ⅱ)证明:()1f x >.请考生从第22、23、24题中任选一题作答,如果多做,则按所做的第一个题计分.作答时请写清题号. 22.(本小题满分10分)选修4-1:几何证明选讲如图,四边形ABCD 是⊙O 的内接四边形,AB 的延长线与DC 的延长线交于点E ,且CB =CE . (Ⅰ)证明:∠D =∠E ;(Ⅱ)设AD 不是⊙O 的直径,AD 的中点为M ,且MB =MC ,证明:△ADE 为等边三角形.23.(本小题满分10分)选修4-4:坐标系与参数方程已知曲线C :22149x y +=,直线l :⎩⎨⎧-=+=ty t x 22,2(t 为参数). (Ⅰ)写出曲线C 的参数方程,直线l 的普通方程;(Ⅱ)过曲线C 上任一点P 作与l 夹角为o30的直线,交l 于点A ,求||PA 的最大值与最小值.24.(本小题满分10分)选修4-5:不等式选讲 若0,0a b >>,且11ab a b+=. (Ⅰ)求33b a +的最小值;(Ⅱ)是否存在a ,b ,使得632=+b a ?并说明理由.AB EC DMO2014年普通高等学校招生全国统一考试(课标卷Ⅰ卷)数学(理科)参考答案一、选择题1.A 解析:{}{}223013A x x x x x x =--≥=≤-≥或,又{}22B x x =-≤<,AB =[]2,1--,故选A .2.D 解析:()()()()()()3222111211211i i i i i i i i i ⋅===---++++--,故选D . 3.C 解析:()f x 是奇函数,()g x 是偶函数,则()()f x g x 是奇函数,排除A .()f x 是奇函数,()f x 是偶函数,()g x 是偶函数,则()()f x g x 是偶函数,排除B . ()f x 是奇函数,()g x 是偶函数,则()()f x g x 是奇函数,C 正确.()f x 是奇函数,()g x 是偶函数,()()f x g x 是奇函数,则()()f x g x 是偶函数,排除D .4.A 解析:双曲线的焦点到渐近线的距离为虚半轴长b ,故距离为3,选A .5.D 解析:周六没有同学的方法数为1,周日没有同学的方法数为1,所以周六、周日都有同学参加公益活动的概率为4422728P -==,故选D . 6.C 解析:由已知1,sin ,cos OP PM x OM x ===.又()1122f x OP OM MP ⋅=, 所以()1sin cos sin 22f x x x x ==,故选C . 7.D 解析:当1n =时,1331,2,222M a b =+===;当2n =时,28382,,3323M a b =+===;当3n =时,3315815,,28838M a b =+===;当4n =时,结束,故158M =,选D . 8.C 解析:由1sin tan cos βαβ+=得sin 1sin ,sin cos cos cos sin ,cos cos αβαβααβαβ+=∴=+ 即()sin cos αβα-=,所以()sin sin 2παβα⎛⎫-=-⎪⎝⎭. 由已知0,,0,,22ππαβ⎛⎫⎛⎫∈∈ ⎪ ⎪⎝⎭⎝⎭所以,02222ππππαβα-<-<<-<, sin y x =在,22ππ⎡⎤-⎢⎥⎣⎦上单调递增,所以,222ππαβααβ-=--=,故选C .9.B 解析:令()()()()222x y m x y n x y m n x m n y +=++-=++-,所以1,22,m n m n +=⎧⎨-=⎩解得4,31,3m n ⎧=⎪⎪⎨⎪=-⎪⎩所以()()4122033x y x y x y +=+--≥,因而可以判断12,p p 为真,故选B .10.B 解析:由已知2,2,P F x x =-=又4FP FQ =,则()442Q x -=-,1Q x ∴=. 过Q 作QD 垂直于l ,垂足为D ,所以3QF QD ==,故选B .11.C 解析:'()3(2)f x x ax =-.当0a =时,2()13f x x =-,不合题意; 当0a >时,()f x 在(,0)-∞上是增函数,且(0)1f =,不合题意;当0a <时,()f x 在2(,)a -∞上是减函数,2(,0)a上是增函数,(0,)+∞是减函数,且(0)1f =,故只需2()0f a>,24a >,2a <-.选C .12.B 解析:几何体为如图所示的一个三棱锥P ABC -,底面ABC 为等腰三角形,,4,AB BC AC ==顶点B 到AC 的距离为4,面PAC ABC ⊥面,且三角形PAC 为以A 为直角的等腰直角三角形,所以棱PB 最长,长度为6,故选B .ACPB二、填空题13.20- 解析:888()()()()x y x y x x y y x y -+=+-+,故展开式中72y x 的系数为128882820C C -=-=-.14.A 解析:乙没去过C 城市,甲没去过B 城市,但去过的城市比乙多,所以甲去过A ,C ,三人都去过同一个城市,一定是A ,所以填A . 15.2π 解析:1()2AO AB AC =+,O 为BC 中点,即BC 为直径,所以AB 与AC 的夹角为2π.16.3 解析:222(2)(sin sin )()sin (2)()()b A B c b C b a b c b c a b c bc +-=-⇒+-=-⇒-=-,所以2222221cos 223b c a b c a bc A A bc π+-+-=⇒==⇒=. 又2244b c bc bc +-=⇒≤.所以13sin 324S bc A bc ==≤. 三、解答题17.解:(Ⅰ)由题设,a n a n +1=λS n -1,a n +1a n +2=λS n +1-1, 两式相减得a n +1(a n +2-a n )=λa n +1.因为a n +1≠0,所以a n +2-a n =λ. (Ⅱ)由题设,a 1=1,a 1a 2=λS 1-1,可得a 2=λ-1.由(Ⅰ)知,a 3=λ+1. 若{a n }为等差数列,则2a 2=a 1+a 3,解得λ=4,故a n +2-a n =4. 由此可得{a 2n -1}是首项为1,公差为4的等差数列,a 2n -1=4n -3; {a 2n }是首项为3,公差为4的等差数列,a 2n =4n -1. 所以a n =2n -1,a n +1-a n =2.因此存在λ=4,使得数列{a n }为等差数列.18.解:(Ⅰ)0.021700.091800.221900.332000.242100.082200.02230200x =⨯+⨯+⨯+⨯+⨯+⨯+⨯=,()()()()()()()222222220.021702000.091802000.221902000.332002000.242102000.082202000.022********.s =⨯-+⨯-+⨯-+⨯-++⨯-+⨯-+⨯-=(Ⅱ)(i )由(Ⅰ)知,2δ=2s =150,所以15012.2δ=≈,(187.8212.2)(20012.220012.2)0.6826P Z P Z <<=-<<+=.(ii )100件产品中质量指标值位于区间(187.8,212.2)的产品件数X 服从二项分布()100,0.6826B ,所以1000.682668.26EX =⨯=.19.解:(Ⅰ)连结1BC ,交1B C 于点O ,连结AO . 侧面11BB C C 为菱形,∴11BC B C ⊥. 又1AB B C ⊥,1ABBC B =,11.B C ABC ∴⊥面1AO ABC ⊂面,1AO B C ∴⊥,又O 为1B C 中点,所以1AC AB =.(Ⅱ)1AC AB ⊥,且O 是B 1C 中点,所以AO =CO .又因为AB =BC ,所以BOA ∆BOC ≅∆,故OA OB ⊥,从而OA ,OB ,OB 1两两垂直. 以O 为坐标原点,OB 的方向为x 轴正方向,|OB |为单位长, 建立如图所示空间直角坐标系O xyz -.因为o 160CBB ∠=,所以1CBB ∆为等边三角形,又AB =BC , 则()13330,0,,1,0,0,0,,0,0,,0333A B B C ⎛⎫⎛⎫⎛⎫- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 1330,,33AB ⎛⎫∴=- ⎪ ⎪⎝⎭,1131,0,3A B AB ⎛⎫==- ⎪ ⎪⎝⎭,1131,,03B C BC ⎛⎫==-- ⎪ ⎪⎝⎭.设(),,n x y z =为平面11AA B 的一个法向量,则()111330,0,331,3,30,30,3y z n AB n n A B x z ⎧-=⎪⎧⋅=⎪⎪=⎨⎨⋅=⎪⎪⎩-=⎪⎩即所以可取.设(),,m a b c =为平面111A B C 的一个法向量,则()11110,1,3,30.m B C m m A B ⎧⋅=⎪=-⎨⋅=⎪⎩同理可取. 则1cos ,7n m n m n m⋅<>==,所以二面角111A ABC --的余弦值为17. 20.解:(Ⅰ)由已知得223,2,2143,223,3c a x a E y c c⎧=⎪=⎧⎪⎪∴+=⎨⎨=⎪⎩⎪=⎪⎩解得椭圆的方程.(Ⅱ)当l x ⊥轴时不合题意,故设l :2y kx =-,()()1122,,,.P x y Q x y将2y kx =-代入2214x y +=得()224116120k x kx +-+=, 当()()222164411264480k k k ∆=--⨯+⨯=->,即234k >时, 21,22824341k k x k ±-=+,从而2121||PQ k x x =+-222414341k k k +-=+. AA 1C 1B 1CBOyx z又点O 到直线l 的距离221d k =+,所以OPQ ∆的面积()221443241k S k PQ d k -==+. 设()2430k t t -=>,()244712,424t S k t k t t t ⎛⎫==≤==± ⎪ ⎪+⎝⎭+当且仅当即时取到, 所以,当OPQ ∆的面积最大时,l 的方程为722y x =-或722y x =--. 21.解:(Ⅰ)函数()f x 的定义域为(0,+∞),f ′(x )=a e x ln x +a x e x -b x 2e x -1+b xe x -1. 由题意可得f (1)=2,f ′(1)=e ,故a =1,b =2.(Ⅱ)由(Ⅰ)知,f (x )=e x ln x +2x e x -1,从而f (x )>1等价于x ln x >x e -x -2e. 设函数g (x )=x ln x ,则g ′(x )=1+ln x ,所以当x ∈⎝⎛⎭⎫0,1e 时,g ′(x )<0;当x ∈⎝⎛⎭⎫1e ,+∞时,g ′(x )>0. 故g (x )在⎝⎛⎭⎫0,1e 上单调递减,在⎝⎛⎭⎫1e ,+∞上单调递增. 从而g (x )在(0,+∞)上的最小值为g ⎝⎛⎭⎫1e =-1e. 设函数h (x )=x e -x -2e,则h ′(x )=e -x (1-x ), 所以当x ∈(0,1)时,h ′(x )>0;当x ∈(1,+∞)时,h ′(x )<0.故h (x )在(0,1)上单调递增,在(1,+∞)上单调递减.从而h (x )在(0,+∞)上的最大值为h (1)=-1e. 综上,当x >0时,()()g x h x >,即()1f x >.22.解:(Ⅰ)由题设知A ,B ,C ,D 四点共圆,所以D CBE ∠=∠,由已知得CBE E ∠=∠,故.D E ∠=∠(Ⅱ)设BC 的中点为N ,连接MN ,则由MB =MC 知MN BC ⊥,故O 在直线MN 上.又AD 不是⊙O 的直径,M 为AD 的中点,故OM AD ⊥,即.MN AD ⊥所以//AD BC ,故.A CBE ∠=∠又CBE E ∠=∠,故.A E ∠=∠由(Ⅰ)知,D E ∠=∠,所以ADE ∆为等边三角形. A B EC D M O N23.解:(Ⅰ)曲线C 的参数方程为2cos ,3sin .x y θθ=⎧⎨=⎩直线l 的普通方程为260x y +-=; (Ⅱ)令点P 坐标为()2cos ,3sin θθ,点P 到直线l 的距离为d . ()55sin 64cos 3sin 64tan 535d θφθθφ+-+-⎛⎫=== ⎪⎝⎭,||2sin 30d PA d ==︒, 所以()max max max 225||225PA d d ===;()min min min 25||225PA d d ===. 24.解析:(Ⅰ)由112ab a b ab=+≥得2ab ≥,且当2a b ==时等号成立. 故3333242a b a b +≥≥,且当2a b ==时等号成立.所以33a b +的最小值为42.(Ⅱ)由(Ⅰ)知,23264 3.a b ab +≥≥ 由于436>,从而不存在a ,b ,使得236a b +=.。

2014年全国统一高考真题数学试卷(理科)(新课标ⅰ)(含答案及解析)

2014年全国统一高考真题数学试卷(理科)(新课标ⅰ)(含答案及解析)

2014年全国统一高考数学试卷(理科)(新课标Ⅰ)一、选择题(共12小题,每小题5分)1.(5分)已知集合A={x|x2﹣2x﹣3≥0},B={x|﹣2≤x<2},则A∩B=()A.[1,2)B.[﹣1,1]C.[﹣1,2)D.[﹣2,﹣1] 2.(5分)=()A.1+i B.1﹣i C.﹣1+i D.﹣1﹣i3.(5分)设函数f(x),g(x)的定义域都为R,且f(x)是奇函数,g(x)是偶函数,则下列结论正确的是()A.f(x)•g(x)是偶函数B.|f(x)|•g(x)是奇函数C.f(x)•|g(x)|是奇函数D.|f(x)•g(x)|是奇函数4.(5分)已知F为双曲线C:x2﹣my2=3m(m>0)的一个焦点,则点F到C的一条渐近线的距离为()A.B.3C.m D.3m5.(5分)4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率为()A.B.C.D.6.(5分)如图,圆O的半径为1,A是圆上的定点,P是圆上的动点,角x的始边为射线OA,终边为射线OP,过点P作直线OA的垂线,垂足为M,将点M到直线OP的距离表示为x的函数f(x),则y=f(x)在[0,π]的图象大致为()A.B.C.D.7.(5分)执行如图的程序框图,若输入的a,b,k分别为1,2,3,则输出的M=()A.B.C.D.8.(5分)设α∈(0,),β∈(0,),且tanα=,则()A.3α﹣β=B.3α+β=C.2α﹣β=D.2α+β= 9.(5分)不等式组的解集记为D,有下列四个命题:p1:∀(x,y)∈D,x+2y≥﹣2 p2:∃(x,y)∈D,x+2y≥2p3:∀(x,y)∈D,x+2y≤3p4:∃(x,y)∈D,x+2y≤﹣1其中真命题是()A.p2,p3B.p1,p4C.p1,p2D.p1,p3 10.(5分)已知抛物线C:y2=8x的焦点为F,准线为l,P是l上一点,Q是直线PF与C的一个交点,若=4,则|QF|=()A.B.3C.D.211.(5分)已知函数f(x)=ax3﹣3x2+1,若f(x)存在唯一的零点x0,且x0>0,则实数a的取值范围是()A.(1,+∞)B.(2,+∞)C.(﹣∞,﹣1)D.(﹣∞,﹣2)12.(5分)如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的各条棱中,最长的棱的长度为()A.6B.6C.4D.4二、填空题(共4小题,每小题5分)13.(5分)(x﹣y)(x+y)8的展开式中x2y7的系数为.(用数字填写答案)14.(5分)甲、乙、丙三位同学被问到是否去过A,B,C三个城市时,甲说:我去过的城市比乙多,但没去过B城市;乙说:我没去过C城市;丙说:我们三人去过同一城市;由此可判断乙去过的城市为.15.(5分)已知A,B,C为圆O上的三点,若=(+),则与的夹角为.16.(5分)已知a,b,c分别为△ABC的三个内角A,B,C的对边,a=2且(2+b)(sinA﹣sinB)=(c﹣b)sinC,则△ABC面积的最大值为.三、解答题17.(12分)已知数列{a n}的前n项和为S n,a1=1,a n≠0,a n a n+1=λS n﹣1,其中λ为常数.﹣a n=λ(Ⅰ)证明:a n+2(Ⅱ)是否存在λ,使得{a n}为等差数列?并说明理由.18.(12分)从某企业生产的某种产品中抽取500件,测量这些产品的一项质量指标值,由测量结果得如下频率分布直方图:(Ⅰ)求这500件产品质量指标值的样本平均数和样本方差s2(同一组中数据用该组区间的中点值作代表);(Ⅱ)由直方图可以认为,这种产品的质量指标值Z服从正态分布N(μ,σ2),其中μ近似为样本平均数,σ2近似为样本方差s2.(i)利用该正态分布,求P(187.8<Z<212.2);(ii)某用户从该企业购买了100件这种产品,记X表示这100件产品中质量指标值位于区间(187.8,212.2)的产品件数,利用(i)的结果,求EX.附:≈12.2.若Z~N(μ,σ2)则P(μ﹣σ<Z<μ+σ)=0.6826,P(μ﹣2σ<Z<μ+2σ)=0.9544.19.(12分)如图,三棱柱ABC﹣A1B1C1中,侧面BB1C1C为菱形,AB⊥B1C.(Ⅰ)证明:AC=AB1;(Ⅱ)若AC⊥AB1,∠CBB1=60°,AB=BC,求二面角A﹣A1B1﹣C1的余弦值.20.(12分)已知点A(0,﹣2),椭圆E:+=1(a>b>0)的离心率为,F是椭圆的右焦点,直线AF的斜率为,O为坐标原点.(Ⅰ)求E的方程;(Ⅱ)设过点A的直线l与E相交于P,Q两点,当△OPQ的面积最大时,求l 的方程.21.(12分)设函数f(x)=ae x lnx+,曲线y=f(x)在点(1,f(1))处得切线方程为y=e(x﹣1)+2.(Ⅰ)求a、b;(Ⅱ)证明:f(x)>1.选修4-1:几何证明选讲22.(10分)如图,四边形ABCD是⊙O的内接四边形,AB的延长线与DC的延长线交于点E,且CB=CE.(Ⅰ)证明:∠D=∠E;(Ⅱ)设AD不是⊙O的直径,AD的中点为M,且MB=MC,证明:△ADE为等边三角形.选修4-4:坐标系与参数方程23.已知曲线C:+=1,直线l:(t为参数)(Ⅰ)写出曲线C的参数方程,直线l的普通方程.(Ⅱ)过曲线C上任意一点P作与l夹角为30°的直线,交l于点A,求|PA|的最大值与最小值.选修4-5:不等式选讲24.若a>0,b>0,且+=.(Ⅰ)求a3+b3的最小值;(Ⅱ)是否存在a,b,使得2a+3b=6?并说明理由.2014年全国统一高考数学试卷(理科)(新课标Ⅰ)参考答案与试题解析一、选择题(共12小题,每小题5分)1.(5分)已知集合A={x|x2﹣2x﹣3≥0},B={x|﹣2≤x<2},则A∩B=()A.[1,2)B.[﹣1,1]C.[﹣1,2)D.[﹣2,﹣1]【考点】1E:交集及其运算.【专题】5J:集合.【分析】求出A中不等式的解集确定出A,找出A与B的交集即可.【解答】解:由A中不等式变形得:(x﹣3)(x+1)≥0,解得:x≥3或x≤﹣1,即A=(﹣∞,﹣1]∪[3,+∞),∵B=[﹣2,2),∴A∩B=[﹣2,﹣1].故选:D.【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.2.(5分)=()A.1+i B.1﹣i C.﹣1+i D.﹣1﹣i【考点】A5:复数的运算.【专题】5N:数系的扩充和复数.【分析】由条件利用两个复数代数形式的乘除法,虚数单位i的幂运算性质,计算求得结果.【解答】解:==﹣(1+i)=﹣1﹣i,故选:D.【点评】本题主要考查两个复数代数形式的乘除法,虚数单位i的幂运算性质,属于基础题.3.(5分)设函数f(x),g(x)的定义域都为R,且f(x)是奇函数,g(x)是偶函数,则下列结论正确的是()A.f(x)•g(x)是偶函数B.|f(x)|•g(x)是奇函数C.f(x)•|g(x)|是奇函数D.|f(x)•g(x)|是奇函数【考点】3K:函数奇偶性的性质与判断.【专题】51:函数的性质及应用.【分析】根据函数奇偶性的性质即可得到结论.【解答】解:∵f(x)是奇函数,g(x)是偶函数,∴f(﹣x)=﹣f(x),g(﹣x)=g(x),f(﹣x)•g(﹣x)=﹣f(x)•g(x),故函数是奇函数,故A错误,|f(﹣x)|•g(﹣x)=|f(x)|•g(x)为偶函数,故B错误,f(﹣x)•|g(﹣x)|=﹣f(x)•|g(x)|是奇函数,故C正确.|f(﹣x)•g(﹣x)|=|f(x)•g(x)|为偶函数,故D错误,故选:C.【点评】本题主要考查函数奇偶性的判断,根据函数奇偶性的定义是解决本题的关键.4.(5分)已知F为双曲线C:x2﹣my2=3m(m>0)的一个焦点,则点F到C的一条渐近线的距离为()A.B.3C.m D.3m【考点】KC:双曲线的性质.【专题】11:计算题;5D:圆锥曲线的定义、性质与方程.【分析】双曲线方程化为标准方程,求出焦点坐标,一条渐近线方程,利用点到直线的距离公式,可得结论.【解答】解:双曲线C:x2﹣my2=3m(m>0)可化为,∴一个焦点为(,0),一条渐近线方程为=0,∴点F到C的一条渐近线的距离为=.故选:A.【点评】本题考查双曲线的方程与性质,考查点到直线的距离公式,属于基础题.5.(5分)4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率为()A.B.C.D.【考点】C6:等可能事件和等可能事件的概率.【专题】11:计算题;5I:概率与统计.【分析】求得4位同学各自在周六、周日两天中任选一天参加公益活动、周六、周日都有同学参加公益活动的情况,利用古典概型概率公式求解即可.【解答】解:4位同学各自在周六、周日两天中任选一天参加公益活动,共有24=16种情况,周六、周日都有同学参加公益活动,共有24﹣2=16﹣2=14种情况,∴所求概率为=.故选:D.【点评】本题考查古典概型,是一个古典概型与排列组合结合的问题,解题时先要判断该概率模型是不是古典概型,再要找出随机事件A包含的基本事件的个数和试验中基本事件的总数.6.(5分)如图,圆O的半径为1,A是圆上的定点,P是圆上的动点,角x的始边为射线OA,终边为射线OP,过点P作直线OA的垂线,垂足为M,将点M到直线OP的距离表示为x的函数f(x),则y=f(x)在[0,π]的图象大致为()A.B.C.D.【考点】3P:抽象函数及其应用.【专题】57:三角函数的图像与性质.【分析】在直角三角形OMP中,求出OM,注意长度、距离为正,再根据直角三角形的锐角三角函数的定义即可得到f(x)的表达式,然后化简,分析周期和最值,结合图象正确选择.【解答】解:在直角三角形OMP中,OP=1,∠POM=x,则OM=|cosx|,∴点M到直线OP的距离表示为x的函数f(x)=OM|sinx|=|cosx|•|sinx|=|sin2x|,其周期为T=,最大值为,最小值为0,故选:C.【点评】本题主要考查三角函数的图象与性质,正确表示函数的表达式是解题的关键,同时考查二倍角公式的运用.7.(5分)执行如图的程序框图,若输入的a,b,k分别为1,2,3,则输出的M=()A.B.C.D.【考点】EF:程序框图.【专题】5I:概率与统计.【分析】根据框图的流程模拟运行程序,直到不满足条件,计算输出M的值.【解答】解:由程序框图知:第一次循环M=1+=,a=2,b=,n=2;第二次循环M=2+=,a=,b=,n=3;第三次循环M=+=,a=,b=,n=4.不满足条件n≤3,跳出循环体,输出M=.故选:D.【点评】本题考查了当型循环结构的程序框图,根据框图的流程模拟运行程序是解答此类问题的常用方法.8.(5分)设α∈(0,),β∈(0,),且tanα=,则()A.3α﹣β=B.3α+β=C.2α﹣β=D.2α+β=【考点】GF:三角函数的恒等变换及化简求值.【专题】56:三角函数的求值.【分析】化切为弦,整理后得到sin(α﹣β)=cosα,由该等式左右两边角的关系可排除选项A,B,然后验证C满足等式sin(α﹣β)=cosα,则答案可求.【解答】解:由tanα=,得:,即sinαcosβ=cosαsinβ+cosα,sin(α﹣β)=cosα=sin(),∵α∈(0,),β∈(0,),∴当时,sin(α﹣β)=sin()=cosα成立.故选:C.【点评】本题考查三角函数的化简求值,训练了利用排除法及验证法求解选择题,是基础题.9.(5分)不等式组的解集记为D,有下列四个命题:p1:∀(x,y)∈D,x+2y≥﹣2 p2:∃(x,y)∈D,x+2y≥2p3:∀(x,y)∈D,x+2y≤3p4:∃(x,y)∈D,x+2y≤﹣1其中真命题是()A.p2,p3B.p1,p4C.p1,p2D.p1,p3【考点】2K:命题的真假判断与应用;7A:二元一次不等式的几何意义.【专题】59:不等式的解法及应用;5L:简易逻辑.【分析】作出不等式组的表示的区域D,对四个选项逐一分析即可.【解答】解:作出图形如下:由图知,区域D为直线x+y=1与x﹣2y=4相交的上部角型区域,p1:区域D在x+2y≥﹣2 区域的上方,故:∀(x,y)∈D,x+2y≥﹣2成立;p2:在直线x+2y=2的右上方和区域D重叠的区域内,∃(x,y)∈D,x+2y≥2,故p2:∃(x,y)∈D,x+2y≥2正确;p3:由图知,区域D有部分在直线x+2y=3的上方,因此p3:∀(x,y)∈D,x+2y ≤3错误;p4:x+2y≤﹣1的区域(左下方的虚线区域)恒在区域D下方,故p4:∃(x,y)∈D,x+2y≤﹣1错误;综上所述,p1、p2正确;故选:C.【点评】本题考查命题的真假判断与应用,着重考查作图能力,熟练作图,正确分析是关键,属于难题.10.(5分)已知抛物线C:y2=8x的焦点为F,准线为l,P是l上一点,Q是直线PF与C的一个交点,若=4,则|QF|=()A.B.3C.D.2【考点】K8:抛物线的性质.【专题】11:计算题;5D:圆锥曲线的定义、性质与方程.【分析】求得直线PF的方程,与y2=8x联立可得x=1,利用|QF|=d可求.【解答】解:设Q到l的距离为d,则|QF|=d,∵=4,∴|PQ|=3d,∴不妨设直线PF的斜率为﹣=﹣2,∵F(2,0),∴直线PF的方程为y=﹣2(x﹣2),与y2=8x联立可得x=1,∴|QF|=d=1+2=3,故选:B.【点评】本题考查抛物线的简单性质,考查直线与抛物线的位置关系,属于基础题.11.(5分)已知函数f(x)=ax3﹣3x2+1,若f(x)存在唯一的零点x0,且x0>0,则实数a的取值范围是()A.(1,+∞)B.(2,+∞)C.(﹣∞,﹣1)D.(﹣∞,﹣2)【考点】53:函数的零点与方程根的关系.【专题】11:计算题;51:函数的性质及应用;53:导数的综合应用.【分析】由题意可得f′(x)=3ax2﹣6x=3x(ax﹣2),f(0)=1;分类讨论确定函数的零点的个数及位置即可.【解答】解:∵f(x)=ax3﹣3x2+1,∴f′(x)=3ax2﹣6x=3x(ax﹣2),f(0)=1;①当a=0时,f(x)=﹣3x2+1有两个零点,不成立;②当a>0时,f(x)=ax3﹣3x2+1在(﹣∞,0)上有零点,故不成立;③当a<0时,f(x)=ax3﹣3x2+1在(0,+∞)上有且只有一个零点;故f(x)=ax3﹣3x2+1在(﹣∞,0)上没有零点;而当x=时,f(x)=ax3﹣3x2+1在(﹣∞,0)上取得最小值;故f()=﹣3•+1>0;故a<﹣2;综上所述,实数a的取值范围是(﹣∞,﹣2);故选:D.【点评】本题考查了导数的综合应用及分类讨论的思想应用,同时考查了函数的零点的判定的应用,属于基础题.12.(5分)如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的各条棱中,最长的棱的长度为()A.6B.6C.4D.4【考点】L!:由三视图求面积、体积.【专题】5F:空间位置关系与距离.【分析】画出图形,结合三视图的数据求出棱长,推出结果即可.【解答】解:几何体的直观图如图:AB=4,BD=4,C到BD的中点的距离为:4,∴.AC==6,AD=4,显然AC最长.长为6.故选:B.【点评】本题考查三视图求解几何体的棱长,考查计算能力.二、填空题(共4小题,每小题5分)13.(5分)(x﹣y)(x+y)8的展开式中x2y7的系数为﹣20.(用数字填写答案)【考点】DA:二项式定理.【专题】11:计算题;5P:二项式定理.【分析】由题意依次求出(x+y)8中xy7,x2y6,项的系数,求和即可.【解答】解:(x+y)8的展开式中,含xy7的系数是:8.含x2y6的系数是28,∴(x﹣y)(x+y)8的展开式中x2y7的系数为:8﹣28=﹣20.故答案为:﹣20【点评】本题考查二项式定理系数的性质,二项式定理的应用,考查计算能力.14.(5分)甲、乙、丙三位同学被问到是否去过A,B,C三个城市时,甲说:我去过的城市比乙多,但没去过B城市;乙说:我没去过C城市;丙说:我们三人去过同一城市;由此可判断乙去过的城市为A.【考点】F4:进行简单的合情推理.【专题】5M:推理和证明.【分析】可先由乙推出,可能去过A城市或B城市,再由甲推出只能是A,B中的一个,再由丙即可推出结论.【解答】解:由乙说:我没去过C城市,则乙可能去过A城市或B城市,但甲说:我去过的城市比乙多,但没去过B城市,则乙只能是去过A,B中的任一个,再由丙说:我们三人去过同一城市,则由此可判断乙去过的城市为A.故答案为:A.【点评】本题主要考查简单的合情推理,要抓住关键,逐步推断,是一道基础题.15.(5分)已知A,B,C为圆O上的三点,若=(+),则与的夹角为90°.【考点】9S:数量积表示两个向量的夹角.【专题】5A:平面向量及应用.【分析】根据向量之间的关系,利用圆直径的性质,即可得到结论.【解答】解:在圆中若=(+),即2=+,即+的和向量是过A,O的直径,则以AB,AC为邻边的四边形是矩形,则⊥,即与的夹角为90°,故答案为:90°【点评】本题主要考查平面向量的夹角的计算,利用圆直径的性质是解决本题的关键,比较基础.16.(5分)已知a,b,c分别为△ABC的三个内角A,B,C的对边,a=2且(2+b)(sinA﹣sinB)=(c﹣b)sinC,则△ABC面积的最大值为.【考点】HP:正弦定理;HR:余弦定理.【专题】11:计算题;35:转化思想;48:分析法;58:解三角形.【分析】由正弦定理化简已知可得2a﹣b2=c2﹣bc,结合余弦定理可求A的值,由基本不等式可求bc≤4,再利用三角形面积公式即可计算得解.【解答】解:因为:(2+b)(sinA﹣sinB)=(c﹣b)sinC⇒(2+b)(a﹣b)=(c﹣b)c⇒2a﹣2b+ab﹣b2=c2﹣bc,又因为:a=2,所以:,△ABC面积,而b2+c2﹣a2=bc⇒b2+c2﹣bc=a2⇒b2+c2﹣bc=4⇒bc≤4所以:,即△ABC面积的最大值为.故答案为:.【点评】本题主要考查了正弦定理,余弦定理,基本不等式,三角形面积公式在解三角形中的应用,考查了计算能力和转化思想,属于中档题.三、解答题17.(12分)已知数列{a n}的前n项和为S n,a1=1,a n≠0,a n a n+1=λS n﹣1,其中λ为常数.(Ⅰ)证明:a n﹣a n=λ+2(Ⅱ)是否存在λ,使得{a n}为等差数列?并说明理由.【考点】83:等差数列的性质;8H:数列递推式.【专题】54:等差数列与等比数列.【分析】(Ⅰ)利用a n a n+1=λS n﹣1,a n+1a n+2=λS n+1﹣1,相减即可得出;(Ⅱ)假设存在λ,使得{a n}为等差数列,设公差为d.可得λ=a n+2﹣a n=(a n+2﹣a n+1)+(a n+1﹣a n)=2d,.得到λS n=,根据{a n}为等差数列的充要条件是,解得λ即可.【解答】(Ⅰ)证明:∵a n a n+1=λS n﹣1,a n+1a n+2=λS n+1﹣1,∴a n(a n+2﹣a n)=λa n+1+1≠0,∵a n+1∴a n﹣a n=λ.+2(Ⅱ)解:假设存在λ,使得{a n}为等差数列,设公差为d.﹣a n=(a n+2﹣a n+1)+(a n+1﹣a n)=2d,则λ=a n+2∴.∴,,∴λS n=1+=,根据{a n}为等差数列的充要条件是,解得λ=4.此时可得,a n=2n﹣1.因此存在λ=4,使得{a n}为等差数列.【点评】本题考查了递推式的意义、等差数列的通项公式及其前n项和公式、等差数列的充要条件等基础知识与基本技能方法,考查了推理能力和计算能力、分类讨论的思想方法,属于难题.18.(12分)从某企业生产的某种产品中抽取500件,测量这些产品的一项质量指标值,由测量结果得如下频率分布直方图:(Ⅰ)求这500件产品质量指标值的样本平均数和样本方差s2(同一组中数据用该组区间的中点值作代表);(Ⅱ)由直方图可以认为,这种产品的质量指标值Z服从正态分布N(μ,σ2),其中μ近似为样本平均数,σ2近似为样本方差s2.(i)利用该正态分布,求P(187.8<Z<212.2);(ii)某用户从该企业购买了100件这种产品,记X表示这100件产品中质量指标值位于区间(187.8,212.2)的产品件数,利用(i)的结果,求EX.附:≈12.2.若Z~N(μ,σ2)则P(μ﹣σ<Z<μ+σ)=0.6826,P(μ﹣2σ<Z<μ+2σ)=0.9544.【考点】CH:离散型随机变量的期望与方差;CP:正态分布曲线的特点及曲线所表示的意义.【专题】11:计算题;5I:概率与统计.【分析】(Ⅰ)运用离散型随机变量的期望和方差公式,即可求出;(Ⅱ)(i)由(Ⅰ)知Z~N(200,150),从而求出P(187.8<Z<212.2),注意运用所给数据;(ii)由(i)知X~B(100,0.6826),运用EX=np即可求得.【解答】解:(Ⅰ)抽取产品的质量指标值的样本平均数和样本方差s2分别为:=170×0.02+180×0.09+190×0.22+200×0.33+210×0.24+220×0.08+230×0.02=200,s2=(﹣30)2×0.02+(﹣20)2×0.09+(﹣10)2×0.22+0×0.33+102×0.24+202×0.08+302×0.02=150.(Ⅱ)(i)由(Ⅰ)知Z~N(200,150),从而P(187.8<Z<212.2)=P(200﹣12.2<Z<200+12.2)=0.6826;(ii)由(i)知一件产品的质量指标值位于区间(187.8,212.2)的概率为0.6826,依题意知X~B(100,0.6826),所以EX=100×0.6826=68.26.【点评】本题主要考查离散型随机变量的期望和方差,以及正态分布的特点及概率求解,考查运算能力.19.(12分)如图,三棱柱ABC﹣A1B1C1中,侧面BB1C1C为菱形,AB⊥B1C.(Ⅰ)证明:AC=AB1;(Ⅱ)若AC⊥AB1,∠CBB1=60°,AB=BC,求二面角A﹣A1B1﹣C1的余弦值.【考点】M7:空间向量的夹角与距离求解公式;MJ:二面角的平面角及求法.【专题】5H:空间向量及应用.【分析】(1)连结BC1,交B1C于点O,连结AO,可证B1C⊥平面ABO,可得B1C ⊥AO,B10=CO,进而可得AC=AB1;(2)以O为坐标原点,的方向为x轴的正方向,||为单位长度,的方向为y轴的正方向,的方向为z轴的正方向建立空间直角坐标系,分别可得两平面的法向量,可得所求余弦值.【解答】解:(1)连结BC1,交B1C于点O,连结AO,∵侧面BB1C1C为菱形,∴BC1⊥B1C,且O为BC1和B1C的中点,又∵AB⊥B1C,∴B1C⊥平面ABO,∵AO⊂平面ABO,∴B1C⊥AO,又B10=CO,∴AC=AB1,(2)∵AC⊥AB1,且O为B1C的中点,∴AO=CO,又∵AB=BC,∴△BOA≌△BOC,∴OA⊥OB,∴OA,OB,OB1两两垂直,以O为坐标原点,的方向为x轴的正方向,||为单位长度,的方向为y轴的正方向,的方向为z轴的正方向建立空间直角坐标系,∵∠CBB1=60°,∴△CBB1为正三角形,又AB=BC,∴A(0,0,),B(1,0,0,),B1(0,,0),C(0,,0)∴=(0,,),==(1,0,),==(﹣1,,0),设向量=(x,y,z)是平面AA1B1的法向量,则,可取=(1,,),同理可得平面A1B1C1的一个法向量=(1,﹣,),∴cos<,>==,∴二面角A﹣A1B1﹣C1的余弦值为【点评】本题考查空间向量法解决立体几何问题,建立坐标系是解决问题的关键,属中档题.20.(12分)已知点A(0,﹣2),椭圆E:+=1(a>b>0)的离心率为,F是椭圆的右焦点,直线AF的斜率为,O为坐标原点.(Ⅰ)求E的方程;(Ⅱ)设过点A的直线l与E相交于P,Q两点,当△OPQ的面积最大时,求l 的方程.【考点】K4:椭圆的性质;KH:直线与圆锥曲线的综合.【专题】5D:圆锥曲线的定义、性质与方程.【分析】(Ⅰ)通过离心率得到a、c关系,通过A求出a,即可求E的方程;(Ⅱ)设直线l:y=kx﹣2,设P(x1,y1),Q(x2,y2)将y=kx﹣2代入,利用△>0,求出k的范围,利用弦长公式求出|PQ|,然后求出△OPQ的面积表达式,利用换元法以及基本不等式求出最值,然后求解直线方程.【解答】解:(Ⅰ)设F(c,0),由条件知,得又,所以a=2,b2=a2﹣c2=1,故E的方程.….(5分)(Ⅱ)依题意当l⊥x轴不合题意,故设直线l:y=kx﹣2,设P(x1,y1),Q(x2,y2)将y=kx﹣2代入,得(1+4k2)x2﹣16kx+12=0,当△=16(4k2﹣3)>0,即时,从而又点O到直线PQ的距离,所以△OPQ的面积=,设,则t>0,,当且仅当t=2,k=±等号成立,且满足△>0,所以当△OPQ的面积最大时,l的方程为:y=x﹣2或y=﹣x﹣2.…(12分)【点评】本题考查直线与椭圆的位置关系的应用,椭圆的求法,基本不等式的应用,考查转化思想以及计算能力.21.(12分)设函数f(x)=ae x lnx+,曲线y=f(x)在点(1,f(1))处得切线方程为y=e(x﹣1)+2.(Ⅰ)求a、b;(Ⅱ)证明:f(x)>1.【考点】6E:利用导数研究函数的最值;6H:利用导数研究曲线上某点切线方程.【专题】15:综合题;53:导数的综合应用.【分析】(Ⅰ)求出定义域,导数f′(x),根据题意有f(1)=2,f′(1)=e,解出即可;(Ⅱ)由(Ⅰ)知,f(x)>1等价于xlnx>xe﹣x﹣,设函数g(x)=xlnx,函数h(x)=,只需证明g(x)min>h(x)max,利用导数可分别求得g (x)min,h(x)max;【解答】解:(Ⅰ)函数f(x)的定义域为(0,+∞),f′(x)=+,由题意可得f(1)=2,f′(1)=e,故a=1,b=2;(Ⅱ)由(Ⅰ)知,f(x)=e x lnx+,∵f(x)>1,∴e x lnx+>1,∴lnx>﹣,∴f(x)>1等价于xlnx>xe﹣x﹣,设函数g(x)=xlnx,则g′(x)=1+lnx,∴当x∈(0,)时,g′(x)<0;当x∈(,+∞)时,g′(x)>0.故g(x)在(0,)上单调递减,在(,+∞)上单调递增,从而g(x)在(0,+∞)上的最小值为g()=﹣.设函数h(x)=xe﹣x﹣,则h′(x)=e﹣x(1﹣x).∴当x∈(0,1)时,h′(x)>0;当x∈(1,+∞)时,h′(x)<0,故h(x)在(0,1)上单调递增,在(1,+∞)上单调递减,从而h(x)在(0,+∞)上的最大值为h(1)=﹣.综上,当x>0时,g(x)>h(x),即f(x)>1.【点评】本题考查导数的几何意义、利用导数求函数的最值、证明不等式等,考查转化思想,考查学生分析解决问题的能力.选修4-1:几何证明选讲22.(10分)如图,四边形ABCD是⊙O的内接四边形,AB的延长线与DC的延长线交于点E,且CB=CE.(Ⅰ)证明:∠D=∠E;(Ⅱ)设AD不是⊙O的直径,AD的中点为M,且MB=MC,证明:△ADE为等边三角形.【考点】NB:弦切角;NC:与圆有关的比例线段.【专题】15:综合题;5M:推理和证明.【分析】(Ⅰ)利用四边形ABCD是⊙O的内接四边形,可得∠D=∠CBE,由CB=CE,可得∠E=∠CBE,即可证明:∠D=∠E;(Ⅱ)设BC的中点为N,连接MN,证明AD∥BC,可得∠A=∠CBE,进而可得∠A=∠E,即可证明△ADE为等边三角形.【解答】证明:(Ⅰ)∵四边形ABCD是⊙O的内接四边形,∴∠D=∠CBE,∵CB=CE,∴∠E=∠CBE,∴∠D=∠E;(Ⅱ)设BC的中点为N,连接MN,则由MB=MC知MN⊥BC,∴O在直线MN上,∵AD不是⊙O的直径,AD的中点为M,∴OM⊥AD,∴AD∥BC,∴∠A=∠CBE,∵∠CBE=∠E,∴∠A=∠E,由(Ⅰ)知,∠D=∠E,∴△ADE为等边三角形.【点评】本题考查圆的内接四边形性质,考查学生分析解决问题的能力,属于中档题.选修4-4:坐标系与参数方程23.已知曲线C:+=1,直线l:(t为参数)(Ⅰ)写出曲线C的参数方程,直线l的普通方程.(Ⅱ)过曲线C上任意一点P作与l夹角为30°的直线,交l于点A,求|PA|的最大值与最小值.【考点】KH:直线与圆锥曲线的综合;QH:参数方程化成普通方程.【专题】5S:坐标系和参数方程.【分析】(Ⅰ)联想三角函数的平方关系可取x=2cosθ、y=3sinθ得曲线C的参数方程,直接消掉参数t得直线l的普通方程;(Ⅱ)设曲线C上任意一点P(2cosθ,3sinθ).由点到直线的距离公式得到P到直线l的距离,除以sin30°进一步得到|PA|,化积后由三角函数的范围求得|PA|的最大值与最小值.【解答】解:(Ⅰ)对于曲线C:+=1,可令x=2cosθ、y=3sinθ,故曲线C的参数方程为,(θ为参数).对于直线l:,由①得:t=x﹣2,代入②并整理得:2x+y﹣6=0;(Ⅱ)设曲线C上任意一点P(2cosθ,3sinθ).P到直线l的距离为.则,其中α为锐角.当sin(θ+α)=﹣1时,|PA|取得最大值,最大值为.当sin(θ+α)=1时,|PA|取得最小值,最小值为.【点评】本题考查普通方程与参数方程的互化,训练了点到直线的距离公式,体现了数学转化思想方法,是中档题.选修4-5:不等式选讲24.若a>0,b>0,且+=.(Ⅰ)求a3+b3的最小值;(Ⅱ)是否存在a,b,使得2a+3b=6?并说明理由.【考点】RI:平均值不等式.【专题】59:不等式的解法及应用.【分析】(Ⅰ)由条件利用基本不等式求得ab≥2,再利用基本不等式求得a3+b3的最小值.(Ⅱ)根据ab≥2及基本不等式求的2a+3b>8,从而可得不存在a,b,使得2a+3b=6.【解答】解:(Ⅰ)∵a>0,b>0,且+=,∴=+≥2,∴ab≥2,当且仅当a=b=时取等号.∵a3+b3 ≥2≥2=4,当且仅当a=b=时取等号,∴a3+b3的最小值为4.(Ⅱ)∵2a+3b≥2=2,当且仅当2a=3b时,取等号.而由(1)可知,2≥2=4>6,故不存在a,b,使得2a+3b=6成立.【点评】本题主要考查基本不等式在最值中的应用,要注意检验等号成立条件是否具备,属于基础题.。

2014年高考真题——理科数学(北京卷)解析版 Word版含解析

2014年高考真题——理科数学(北京卷)解析版 Word版含解析

课标理数【2014·北京理卷】一、选择题1. [2014•北京理卷]1.已知集合2{|20},{0,1,2}A x x x B =-==,则AB =( ).{0}A .{0,1}B .{0,2}C .{0,1,2}D【答案】C【解析】∵{}2,0=A ,∴{}{}{}2,02,1,02,0== B A . 2.[2014•北京理卷]下列函数中,在区间(0,)+∞上为增函数的是( ).A y = 2.(1)B y x =- .2x C y -= 0.5.log (1)D y x =+【答案】A【解析】由初等函数的性质得选项B 在()1,0上递减,选项C 、D 在()+∞,0为减函数,所以排除B 、C 、D. 3.[2014•北京理卷] 曲线1cos 2sin x y θθ=-+⎧⎨=+⎩(θ为参数)的对称中心( ).A 在直线2y x =上 .B 在直线2y x =-上 .C 在直线1y x =-上 .D 在直线1y x =+上【答案】B【解析】曲线方程消参化为()()12122=-++y x ,其对称中心为()2,1-,验证知其满足x y 2-=.4.[2014•北京理卷]当7,3m n ==时,执行如图所示的程序框图,输出的S 值为( ).7A .42B .210C .840D【答案】C【解析】2105671=⨯⨯⨯=S . 5.[2014•北京理卷]设{}n a 是公比为q 的等比数列,则"1"q >是"{}"n a 为递增数列的( ).A 充分且不必要条件 .B 必要且不充分条件 .C 充分必要条件 .D 既不充分也不必要条件【答案】D【解析】当01<a 时,1>q 数列{}n a 递减;01<a 时,数列{}n a 递增,10<<q . 理数6.E5[2014•北京理卷]若,x y 满足20200x y kx y y +-≥⎧⎪-+≥⎨⎪≥⎩且z y x =-的最小值为-4,则k 的值为( ).2A .2B - 1.2C 1.2D -【答案】D【解析】可行域如图所示,当0>k 时,知x y z -=无最小值,当0<k 时,目标函数线过可行域内A 点时z 有最小值,联立⎩⎨⎧=+-=020y kx y ,解之得⎪⎭⎫⎝⎛-0,2k A ,420min -=+=k z ,即21-=k .7.[2014•北京理卷]在空间直角坐标系Oxyz 中,已知()2,0,0A ,()2,2,0B ,()0,2,0C,(D ,若 1S ,2S ,3S 分别表示三棱锥D ABC -在xOy ,yOz ,zOx 坐标平面上的正投影图形的 面积,则( )(A )123S S S == (B )12S S =且 31S S ≠ (C )13S S =且 32S S ≠ (D )23S S =且 13S S ≠ 【答案】D【解析】设顶点D 在三个坐标面xoy 、yoz 、zox 的正投影分为'1D 、'2D 、'3D ,则211='='BD AD ,2=AB ,∴2222211=⨯⨯⨯=S ,2222122=⨯⨯=='OCD S S ,2222133=⨯⨯=='OAD S S .8.[2014•北京理卷]有语文、数学两学科,成绩评定为“优秀”“合格”“不合格”三种.若A 同学每科成绩不低于B 同学,且至少有一科成绩比B 高,则称“A 同学比B 同学成绩好.”现有若干同学, 他们之间没有一个人比另一个成绩好,且没有任意两个人语文成绩一样,数学成绩也一样 的.问满足条件的最多有多少学生( )(A )2 (B )3 (C )4 (D )5 【答案】B【解析】假设AB 两个同学的数学成绩一样,由题意知他们语文成绩不一样,这样他们的语文成绩总有人比另一个人高,语文成绩较高的同学比另一个同学“成绩好”,与已知条件“他们之中没有一个比另一个成绩好”相矛盾.因此,没有任意两个同学数学成绩是相同的.因为数学成绩只有3种,因而同学数量最大为3.即 3位同学成绩分别为(优秀,不合格)、(合格,合格)、(不合格,优秀)时满足条件. 二、填空题9.[2014•北京理卷]2=-+y x 02=+-y kx A=-x y复数211i i +⎛⎫= ⎪-⎝⎭________.【答案】1-【解析】()()()122111112222-=⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛+-+=⎪⎭⎫ ⎝⎛-+i i i i i i . 10.[2014•北京理卷]已知向量a 、b 满足1a =,()2,1b =,且()0a b R λλ+=∈,则λ=________.【答案】5【解析】∵0=+b a λ,∴b a -=λ,∴515||||===a b λ. 11.[2014•北京理卷]设双曲线C 经过点()2,2,且与2214y x -=具有相同渐近线,则C 的方程为________; 渐近线方程为________.【答案】112322=-y x ;x y 2±= 【解析】设双曲线C 的方程为λ=-224x y ,将()2,2代入λ=-=-324222,∴双曲线方程为112322=-y x .令0422=-x y 得渐近线方程为x y 2±=. 12.[2014•北京理卷]若等差数列{}n a 满足7890a a a ++>,7100a a +<,则当n =________时{}n a 的前n 项和最大. 【答案】8【解析】∵038987>=++a a a a ,098107<+=+a a a a ,∴0,098<>a a ,∴8=n 时数列{}n a 前n 和最大. 13.[2014•北京理卷]把5件不同产品摆成一排,若产品A 与产品C 不相邻,则不同的摆法有_______种. 【答案】36【解析】36326132233=⨯⨯=A A A . 14.[2014•北京理卷]设函数)sin()(ϕω+=x x f ,0,0>>ωA ,若)(x f 在区间]2,6[ππ上具有单调性,且 ⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛=⎪⎭⎫⎝⎛6322πππf f f ,则)(x f 的最小正周期为________. 【答案】π【解析】结合图象得26223224ππππ+-+≥T ,即π≥T .15.[2014•北京理卷] 如图,在ABC ∆中,8,3==∠AB B π,点D 在BC 边上,且71cos ,2=∠=ADC CD (1)求BAD ∠sin (2)求AC BD ,的长解:(I )在ADC ∆中,因为17COS ADC ∠=,所以sin ADC ∠=. 所以sin sin()BAD ADC B ∠=∠-∠sin cos cos sin ADC B ADC B =∠-∠=1433237121734=⨯-⨯. (Ⅱ)在ABD ∆中,由正弦定理得AA-6π2π32π8sin 3sin AB BAD BD ADB ⋅∠===∠, 在ABC ∆中,由余弦定理得2222cos AC AB BC AB BC B =+-⋅⋅22185285492=+-⨯⨯⨯=, 所以7AC =.16.[2012•北京理卷]李明在10场篮球比赛中的投篮情况如下(假设各场比赛互相独立):(1)从上述比赛中随机选择一场,求李明在该场比赛中投篮命中率超过6.0的概率. (2)从上述比赛中选择一个主场和一个客场,求李明的投篮命中率一场超过6.0,一 场不超过6.0的概率.(3)记x 是表中10个命中次数的平均数,从上述比赛中随机选择一场,记X 为李明 在这比赛中的命中次数,比较)(X E 与x 的大小(只需写出结论).解:(I)根据投篮统计数据,在10场比赛中,李明投篮命中率超过0.6的场次有5场,分别是主场2,主场3,主场5,客场2,客场4.所以在随机选择的一场比赛中,李明的投篮命中率超过0.6的概率是05.(Ⅱ)设事件A 为“在随机选择的一场主场比赛中李明的投篮命中率超过0.6”,事件B 为“在随机选择的一场客场比赛中李明的投篮命中率超过0.6”,事件C 为“在随机选择的一个主场和一个客场中,李明的投篮命中率一场超过0.6,一场不超过0.6”。

(完整版)2014年北京市高考数学试卷(理科)答案与解析

(完整版)2014年北京市高考数学试卷(理科)答案与解析

2014年北京市高考数学试卷(理科)参考答案与试题解析一、选择题(共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项)1.(5分)(2014•北京)已知集合A={x|x2﹣2x=0},B={0,1,2},则A∩B=()A.{0} B.{0,1} C.{0,2} D.{0,1,2}考点:交集及其运算.专题:集合.分析:解出集合A,再由交的定义求出两集合的交集.解答:解:∵A={x|x2﹣2x=0}={0,2},B={0,1,2},∴A∩B={0,2}故选C点评:本题考查交的运算,理解好交的定义是解答的关键.2.(5分)(2014•北京)下列函数中,在区间(0,+∞)上为增函数的是()A.y=B.y=(x﹣1)2C.y=2﹣x D.y=log0.5(x+1)考点:对数函数的单调性与特殊点.专题:函数的性质及应用.分析:根据基本初等函数的单调性,判断各个选项中函数的单调性,从而得出结论.解答:解:由于函数y=在(﹣1,+∞)上是增函数,故满足条件,由于函数y=(x﹣1)2在(0,1)上是减函数,故不满足条件,由于函数y=2﹣x在(0,+∞)上是减函数,故不满足条件,由于函数y=log0.5(x+1)在(﹣1,+∞)上是减函数,故不满足条件,故选:A.点评:本题主要考查函数的单调性的定义和判断,基本初等函数的单调性,属于基础题.3.(5分)(2014•北京)曲线(θ为参数)的对称中心()A.在直线y=2x上B.在直线y=﹣2x上C.在直线y=x﹣1上D.在直线y=x+1上考点:圆的参数方程.专题:选作题;坐标系和参数方程.分析:曲线(θ为参数)表示圆,对称中心为圆心,可得结论.解答:解:曲线(θ为参数)表示圆,圆心为(﹣1,2),在直线y=﹣2x上,点评:本题考查圆的参数方程,考查圆的对称性,属于基础题.4.(5分)(2014•北京)当m=7,n=3时,执行如图所示的程序框图,输出的S的值为()A.7B.42 C.210 D.840考点:循环结构.专题:计算题;算法和程序框图.分析:算法的功能是求S=7×6×…×k的值,根据条件确定跳出循环的k值,计算输出S的值.解答:解:由程序框图知:算法的功能是求S=7×6×…×k的值,当m=7,n=3时,m﹣n+1=7﹣3+1=5,∴跳出循环的k值为4,∴输出S=7×6×5=210.故选:C.点评:本题考查了循环结构的程序框图,根据框图的流程判断算法的功能是解答本题的关键.5.(5分)(2014•北京)设{a n}是公比为q的等比数列,则“q>1”是“{a n}”为递增数列的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件考点:必要条件、充分条件与充要条件的判断;等比数列.专题:等差数列与等比数列;简易逻辑.分析:根据等比数列的性质,结合充分条件和必要条件的定义进行判断即可得到结论.解答:解:等比数列﹣1,﹣2,﹣4,…,满足公比q=2>1,但“{a n}”不是递增数列,充分性不成立.若a n=﹣1为递增数列,但q=>1不成立,即必要性不成立,故“q>1”是“{a n}”为递增数列的既不充分也不必要条件,点评:本题主要考查充分条件和必要条件的判断,利用等比数列的性质,利用特殊值法是解决本题的关键.6.(5分)(2014•北京)若x,y满足且z=y﹣x的最小值为﹣4,则k的值为()A.2B.﹣2 C.D.﹣考点:简单线性规划.专题:数形结合;不等式的解法及应用.分析:对不等式组中的kx﹣y+2≥0讨论,当k≥0时,可行域内没有使目标函数z=y﹣x取得最小值的最优解,k<0时,若直线kx﹣y+2=0与x轴的交点在x+y﹣2=0与x轴的交点的左边,z=y﹣x的最小值为﹣2,不合题意,由此结合约束条件作出可行域,化目标函数为直线方程的斜截式,由图得到最优解,联立方程组求出最优解的坐标,代入目标函数得答案.解答:解:对不等式组中的kx﹣y+2≥0讨论,可知直线kx﹣y+2=0与x轴的交点在x+y﹣2=0与x轴的交点的右边,故由约束条件作出可行域如图,由kx﹣y+2=0,得x=,∴B(﹣).由z=y﹣x得y=x+z.由图可知,当直线y=x+z过B(﹣)时直线在y轴上的截距最小,即z最小.此时,解得:k=﹣.故选:D.点评:本题考查简单的线性规划,考查了数形结合的解题思想方法,是中档题.7.(5分)(2014•北京)在空间直角坐标系Oxyz中,已知A(2,0,0),B(2,2,0),C (0,2,0),D(1,1,),若S1,S2,S3分别表示三棱锥D﹣ABC在xOy,yOz,zOx 坐标平面上的正投影图形的面积,则()A.S1=S2=S3B.S2=S1且S2≠S3C.S3=S1且S3≠S2D.S3=S2且S3≠S1考点:空间直角坐标系.专题:空间向量及应用.分析:分别求出三棱锥在各个面上的投影坐标即可得到结论.解答:解:设A(2,0,0),B(2,2,0),C(0,2,0),D(1,1,),则各个面上的射影分别为A',B',C',D',在xOy坐标平面上的正投影A'(2,0,0),B'(2,2,0),C'(0,2,0),D'(1,1,0),S1=.在yOz坐标平面上的正投影A'(0,0,0),B'(0,2,0),C'(0,2,0),D'(0,1,),S2=.在zOx坐标平面上的正投影A'(2,0,0),B'(2,0,0),C'(0,0,0),D'(1,0,),S3=,则S3=S2且S3≠S1,故选:D.点评:本题主要考查空间坐标系的应用,求出点对于的投影坐标是解决本题的关键.8.(5分)(2014•北京)学生的语文、数学成绩均被评定为三个等级,依次为“优秀”“合格”“不合格”.若学生甲的语文、数学成绩都不低于学生乙,且其中至少有一门成绩高于乙,则称“学生甲比学生乙成绩好”.如果一组学生中没有哪位学生比另一位学生成绩好,并且不存在语文成绩相同、数学成绩也相同的两位学生,则这一组学生最多有()A.2人B.3人C.4人D.5人考点:进行简单的合情推理.专题:推理和证明.分析:分别用ABC分别表示优秀、及格和不及格,根据题干中的内容推出文成绩得A,B,C的学生各最多只有1个,继而推得学生的人数.解答:解:用ABC分别表示优秀、及格和不及格,显然语文成绩得A的学生最多只有1个,语文成绩得B得也最多只有一个,得C最多只有一个,因此学生最多只有3人,显然(AC)(BB)(CA)满足条件,故学生最多有3个.故选:B.点评:本题主要考查了合情推理,关键是找到语句中的关键词,培养了推理论证的能力.二、填空题(共6小题,每小题5分,共30分)9.(5分)(2014•北京)复数()2=﹣1.考点:复数代数形式的乘除运算.专题:数系的扩充和复数.分析:由复数代数形式的除法运算化简括号内部,然后由虚数单位i的运算性质得答案.解答:解:()2=.故答案为:﹣1.点评:本题考查了复数代数形式的除法运算,考查了虚数单位i的运算性质,是基础题.10.(5分)(2014•北京)已知向量,满足||=1,=(2,1),且+=(λ∈R),则|λ|=.考点:平面向量数量积的坐标表示、模、夹角.专题:平面向量及应用.分析:设=(x,y).由于向量,满足||=1,=(2,1),且+=(λ∈R),可得,解出即可.解答:解:设=(x,y).∵向量,满足||=1,=(2,1),且+=(λ∈R),∴=λ(x,y)+(2,1)=(λx+2,λy+1),∴,化为λ2=5.解得.故答案为:.点评:本题考查了向量的坐标运算、向量的模的计算公式、零向量等基础知识与基本技能方法,属于基础题.11.(5分)(2014•北京)设双曲线C经过点(2,2),且与﹣x2=1具有相同渐近线,则C的方程为;渐近线方程为y=±2x.考点:双曲线的简单性质.专题:圆锥曲线的定义、性质与方程.分析:利用双曲线渐近线之间的关系,利用待定系数法即可得到结论.解答:解:与﹣x2=1具有相同渐近线的双曲线方程可设为﹣x2=m,(m≠0),∵双曲线C经过点(2,2),∴m=,即双曲线方程为﹣x2=﹣3,即,对应的渐近线方程为y=±2x,故答案为:,y=±2x.点评:本题主要考查双曲线的性质,利用渐近线之间的关系,利用待定系数法是解决本题的关键,比较基础.12.(5分)(2014•北京)若等差数列{a n}满足a7+a8+a9>0,a7+a10<0,则当n=8时,{a n}的前n项和最大.考点:等差数列的性质.专题:等差数列与等比数列.分析:可得等差数列{a n}的前8项为正数,从第9项开始为负数,进而可得结论.解答:解:由等差数列的性质可得a7+a8+a9=3a8>0,∴a8>0,又a7+a10=a8+a9<0,∴a9<0,∴等差数列{a n}的前8项为正数,从第9项开始为负数,∴等差数列{a n}的前8项和最大,故答案为:8.点评:本题考查等差数列的性质和单调性,属中档题.13.(5分)(2014•北京)把5件不同产品摆成一排,若产品A与产品B相邻,且产品A与产品C不相邻,则不同的摆法有36种.考点:排列、组合的实际应用;排列、组合及简单计数问题.专题:排列组合.分析:分3步进行分析:①用捆绑法分析A、B,②除去A、B相邻又满足A、C相邻的情况.解答:解:先考虑产品A与B相邻,把A、B作为一个元素有种方法,而A、B可交换位置,所以有2=48种摆法,又当A、B相邻又满足A、C相邻,有2=12种摆法,故满足条件的摆法有48﹣12=36种.故答案为:36.点评:本题考查分步计数原理的应用,要优先分析受到限制的元素,如本题的A、B、C.14.(5分)(2014•北京)设函数f(x)=Asin(ωx+φ)(A,ω,φ是常数,A>0,ω>0)若f(x)在区间[,]上具有单调性,且f()=f()=﹣f(),则f(x)的最小正周期为π.考点:由y=Asin(ωx+φ)的部分图象确定其解析式;三角函数的周期性及其求法.专题:三角函数的图像与性质.分析:由f()=f()求出函数的一条对称轴,结合f(x)在区间[,]上具有单调性,且f()=﹣f()可得函数的半周期,则周期可求.解答:解:由f()=f(),可知函数f(x)的一条对称轴为x=,则x=离最近对称轴距离为.又f()=﹣f(),则f(x)有对称中心(,0),由于f(x)在区间[,]上具有单调性,则≤T⇒T≥,从而=⇒T=π.故答案为:π.点评:本题考查f(x)=Asin(ωx+φ)型图象的形状,考查了学生灵活处理问题和解决问题的能力,是中档题.三、解答题(共6小题,共80分,解答应写出文字说明、演算步骤或证明过程)15.(13分)(2014•北京)如图,在△ABC中,∠B=,AB=8,点D在边BC上,且CD=2,cos∠ADC=.(1)求sin∠BAD;(2)求BD,AC的长.考点:余弦定理的应用.专题:解三角形.分析:根据三角形边角之间的关系,结合正弦定理和余弦定理即可得到结论.解答:解:(1)在△ABC中,∵cos∠ADC=,∴sin∠ADC====,则sin∠BAD=sin(∠ADC﹣∠B)=sin∠ADC•cosB﹣cos∠ADC•sinB=×﹣=.(2)在△ABD中,由正弦定理得BD==,在△ABC中,由余弦定理得AC2=AB2+CB2﹣2AB•BCcosB=82+52﹣2×8×=49,即AC=7.点评:本题主要考查解三角形的应用,根据正弦定理和余弦定理是解决本题本题的关键,难度不大.16.(13分)(2014•北京)李明在10场篮球比赛中的投篮情况统计如下(假设各场比赛相互独立);场次投篮次数命中次数场次投篮次数命中次数主场1 22 12 客场1 18 8主场2 15 12 客场2 13 12主场3 12 8 客场3 21 7主场4 23 8 客场4 18 15主场5 24 20 客场5 25 12(1)从上述比赛中随机选择一场,求李明在该场比赛中投篮命中率超过0.6的概率;(2)从上述比赛中随机选择一个主场和一个客场,求李明的投篮命中率一场超过0.6,一场不超过0.6的概率;(3)记是表中10个命中次数的平均数,从上述比赛中随机选择一场,记X为李明在这场比赛中的命中次数,比较EX与的大小(只需写出结论).考点:离散型随机变量的期望与方差;相互独立事件的概率乘法公式.专题:概率与统计.分析:(1)根据概率公式,找到李明在该场比赛中超过0.6的场次,计算即可,(2)根据互斥事件的概率公式,计算即可.(3)求出平均数和EX,比较即可.解答:解:(1)设李明在该场比赛中投篮命中率超过0.6的概率为事件A,由题意知,李明在该场比赛中超过0.6的场次有:主场2,主场3,主场5,客场2,客场4,共计5场所以李明在该场比赛中投篮命中率超过0.6的概率P(A)=,(2)设李明的投篮命中率一场超过0.6,一场不超过0.6的概率为事件B,同理可知,李明主场命中率超过0.6的概率,客场命中率超过0.6的概率,故P(B)=P1×(1﹣P2)+P2×(1﹣P1)=;(3)=(12+8+12+12+8+7+8+15+20+12)=11.4EX=点评:本题主要考查了概率的计算、数学期望,平均数,互斥事件的概率,属于中档题.17.(14分)(2014•北京)如图,正方形AMDE的边长为2,B,C分别为AM,MD的中点,在五棱锥P﹣ABCDE中,F为棱PE的中点,平面ABF与棱PD,PC分别交于点G,H.(1)求证:AB∥FG;(2)若PA⊥底面ABCDE,且PA=AE,求直线BC与平面ABF所成角的大小,并求线段PH的长.考点:直线与平面所成的角.专题:计算题;证明题;空间位置关系与距离;空间角.分析:(1)运用线面平行的判定定理和性质定理即可证得;(2)由于PA⊥底面ABCDE,底面AMDE为正方形,建立如图的空间直角坐标系Axyz,分别求出A,B,C,E,P,F,及向量BC的坐标,设平面ABF的法向量为n=(x,y,z),求出一个值,设直线BC与平面ABF所成的角为α,运用sinα=|cos|,求出角α;设H(u,v,w),再设,用λ表示H的坐标,再由n=0,求出λ和H的坐标,再运用空间两点的距离公式求出PH的长.解答:(1)证明:在正方形AMDE中,∵B是AM的中点,∴AB∥DE,又∵AB⊄平面PDE,∴AB∥平面PDE,∵AB⊂平面ABF,且平面ABF∩平面PDE=FG,∴AB∥FG;(2)解:∵PA⊥底面ABCDE,∴PA⊥AB,PA⊥AE,如图建立空间直角坐标系Axyz,则A(0,0,0),B(1,0,0),C(2,1,0),P(0,0,2),E(0,2,0),F(0,1,1),,设平面ABF的法向量为n=(x,y,z),则即,令z=1,则y=﹣1,∴n=(0,﹣1,1),设直线BC与平面ABF所成的角为α,则sinα=|cos|=||=,∴直线BC与平面ABF所成的角为,设H(u,v,w),∵H在棱PC上,∴可设,即(u,v,w﹣2)=λ(2,1,﹣2),∴u=2λ,v=λ,w=2﹣2λ,∵n是平面ABF的法向量,∴n=0,即(0,﹣1,1)•(2λ,λ,2﹣2λ)=0,解得λ=,∴H(),∴PH==2.点评:本题主要考查空间直线与平面的位置关系,考查直线与平面平行、垂直的判定和性质,同时考查直线与平面所成的角的求法,考查运用空间直角坐标系求角和距离,是一道综合题.18.(13分)(2014•北京)已知函数f(x)=xcosx﹣sinx,x∈[0,](1)求证:f(x)≤0;(2)若a<<b对x∈(0,)上恒成立,求a的最大值与b的最小值.考点:利用导数求闭区间上函数的最值.专题:导数的综合应用.分析:(1)求出f′(x)=cosx﹣xsinx﹣cosx=﹣xsinx,判定出在区间∈(0,)上f′(x)=﹣xsinx<0,得f(x)在区间∈[0,]上单调递减,从而f(x)≤f(0)=0.(2)当x>0时,“>a”等价于“sinx﹣ax>0”,“<b”等价于“sinx﹣bx<0”构造函数g(x)=sinx﹣cx,通过求函数的导数讨论参数c求出函数的最值,进一步求出a,b的最值.解答:解:(1)由f(x)=xcosx﹣sinx得f′(x)=cosx﹣xsinx﹣cosx=﹣xsinx,此在区间∈(0,)上f′(x)=﹣xsinx<0,所以f(x)在区间∈[0,]上单调递减,从而f(x)≤f(0)=0.(2)当x>0时,“>a”等价于“sinx﹣ax>0”,“<b”等价于“sinx﹣bx<0”令g(x)=sinx﹣cx,则g′(x)=cosx﹣c,当c≤0时,g(x)>0对x∈(0,)上恒成立,当c≥1时,因为对任意x∈(0,),g′(x)=cosx﹣c<0,所以g(x)在区间[0,]上单调递减,从而,g(x)<g(0)=0对任意x∈(0,)恒成立,当0<c<1时,存在唯一的x0∈(0,)使得g′(x0)=cosx0﹣c=0,g(x)与g′(x)在区间(0,)上的情况如下:x (0,x0)x0(x0,)g′(x)+ ﹣g(x)↑↓因为g(x)在区间(0,x0)上是增函数,所以g(x0)>g(0)=0进一步g(x)>0对任意x∈(0,)恒成立,当且仅当综上所述当且仅当时,g(x)>0对任意x∈(0,)恒成立,当且仅当c≥1时,g(x)<0对任意x∈(0,)恒成立,所以若a<<b对x∈(0,)上恒成立,则a的最大值为,b的最小值为1 点评:本题考查利用导数求函数的单调区间;利用导数求函数的最值;考查解决不等式问题常通过构造函数解决函数的最值问题,属于一道综合题.19.(14分)(2014•北京)已知椭圆C:x2+2y2=4,(1)求椭圆C的离心率(2)设O为原点,若点A在椭圆C上,点B在直线y=2上,且OA⊥OB,求直线AB与圆x2+y2=2的位置关系,并证明你的结论.考点:圆与圆锥曲线的综合;椭圆的简单性质.专题:圆锥曲线的定义、性质与方程.分析:(1)化椭圆方程为标准式,求出半长轴和短半轴,结合隐含条件求出半焦距,则椭圆的离心率可求;(2)设出点A,B的坐标分别为(x0,y0),(t,2),其中x0≠0,由OA⊥OB得到,用坐标表示后把t用含有A点的坐标表示,然后分A,B的横坐标相等和不相等写出直线AB的方程,然后由圆x2+y2=2的圆心到AB的距离和圆的半径相等说明直线AB 与圆x2+y2=2相切.解答:解:(1)由x2+2y2=4,得椭圆C的标准方程为.∴a2=4,b2=2,从而c2=a2﹣b2=2.因此a=2,c=.故椭圆C的离心率e=;(2)直线AB与圆x2+y2=2相切.证明如下:设点A,B的坐标分别为(x0,y0),(t,2),其中x0≠0.∵OA⊥OB,∴,即tx0+2y0=0,解得.当x0=t时,,代入椭圆C的方程,得.故直线AB的方程为x=,圆心O到直线AB的距离d=.此时直线AB与圆x2+y2=2相切.当x0≠t时,直线AB的方程为,即(y0﹣2)x﹣(x0﹣t)y+2x0﹣ty0=0.圆心O到直线AB的距离d=.又,t=.故=.此时直线AB与圆x2+y2=2相切.点评:本题考查椭圆的简单几何性质,考查了圆与圆锥曲线的综合,训练了由圆心到直线的距离判断直线和圆的位置关系,体现了分类讨论的数学思想方法,考查了计算能力和逻辑思维能力,是压轴题.20.(13分)(2014•北京)对于数对序列P:(a1,b1),(a2,b2),…,(a n,b n),记T1(P)=a1+b1,T k(P)=b k+max{T k﹣1(P),a1+a2+…+a k}(2≤k≤n),其中max{T k﹣1(P),a1+a2+…+a k}表示T k﹣1(P)和a1+a2+…+a k两个数中最大的数,(Ⅰ)对于数对序列P:(2,5),(4,1),求T1(P),T2(P)的值;(Ⅱ)记m为a,b,c,d四个数中最小的数,对于由两个数对(a,b),(c,d)组成的数对序列P:(a,b),(c,d)和P′:(c,d),(a,b),试分别对m=a和m=d两种情况比较T2(P)和T2(P′)的大小;(Ⅲ)在由五个数对(11,8),(5,2),(16,11),(11,11),(4,6)组成的所有数对序列中,写出一个数对序列P使T5(P)最小,并写出T5(P)的值(只需写出结论).考点:分析法和综合法.专题:新定义;分析法.分析:(Ⅰ)利用T1(P)=a1+b1,T k(P)=b k+max{T k﹣1(P),a1+a2+…+a k}(2≤k≤n),可求T1(P),T2(P)的值;(Ⅱ)T2(P)=max{a+b+d,a+c+d},T2(P′)=max{c+d+b,c+a+b},分类讨论,利用新定义,可比较T2(P)和T2(P′)的大小;(Ⅲ)根据新定义,可得结论.解答:解:(Ⅰ)T1(P)=2+5=7,T2(P)=1+max{T1(P),2+4}=1+max{7,6}=8;(Ⅱ)T2(P)=max{a+b+d,a+c+d},T2(P′)=max{c+d+b,c+a+b}.当m=a时,T2(P′)=max{c+d+b,c+a+b}=c+d+b,∵a+b+d≤c+d+b,且a+c+d≤c+b+d,∴T2(P)≤T2(P′);当m=d时,T2(P′)=max{c+d+b,c+a+b}=c+a+b,∵a+b+d≤c+a+b,且a+c+d≤c+a+d,∴T2(P)≤T2(P′);∴无论m=a和m=d,T2(P)≤T2(P′);(Ⅲ)数对(4,6),(11,11),(16,11),(11,8),(5,2),T5(P)最小;T1(P)=10,T2(P)=26;T3(P)42,T4(P)=50,T5(P)=52.点评:本题考查新定义,考查学生分析解决问题的能力,正确理解与运用新定义是解题的关键.。

2014年高考新课标1全国卷理科数学试题及答案

2014年高考新课标1全国卷理科数学试题及答案

2014年普通高等学校招生全国统一考试全国新课标1理科数学 第Ⅰ卷一、选择题:共12小题,每小题5分,共60分.在每个小题给出的四个选项中,只有一项是符合题目要求的一项.1。

已知集合2{|230}A x x x =--,{|22}B x x =-<,则A B ⋂=( ).A 。

[]2,1--B 。

[)1,2-C 。

[]1,1-D 。

[)1,22。

32(1)(1)i i +=-( ). A .1i + B .1i - C 。

1i -+ D 。

1i --3。

设函数()f x ,()g x 的定义域都为R ,且()f x 是奇函数,()g x 是偶函数,则下列结论正确的是( )。

A .()()f x g x 是偶函数B 。

()()f x g x 是奇函数C 。

()()g x f x 是奇函数D 。

()()f x g x 是奇函数4。

已知F 是双曲线C :223(0)x my m m -=>的一个焦点,则点F 到C 的一条渐近线的距离为( ).A 。

3B .3C .3mD .3m5.4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率( ).A .18B .38C 。

58D .786.如图,圆O 的半径为1,A 是圆上的定点,P 是圆上的动点,角x 的始边为射线OA ,终边为射线OP ,过点P 作直线OA 的垂线,垂足为M ,将点M 到直线OP 的距离表示为x 的函数()f x ,则()y f x =在[]0,π上的图像大致为( ).7。

执行下图的程序框图,若输入的,,a b k 分别为1,2,3,则输出的M =( )。

A .203 B . 72 C . 165 D 。

1588.设(0,)2πα∈,(0,)2πβ∈,且1sin tan cos βαβ+=,则( ). A 。

32παβ-=B . 32παβ+=C 。

22παβ-=D 。

22παβ+=9。

不等式组124x y x y +≥⎧⎨-≤⎩的解集记为D .有下面四个命题:1p :(,),22x y D x y ∀∈+≥-, 2p :(,),22x y D x y ∃∈+≥, 3P :(,),23x y D x y ∀∈+≤, 4p :(,),21x y D x y ∃∈+≤-。

2014年高考数学(北京卷)(word版)

2014年高考数学(北京卷)(word版)

2014年普通高等学校招生全国统一考试(北京卷)理科数学一、选择题(共8小题,每小题5分,共40分,在每小题列出的四个选项中,选出符合题目要求的一项)1. 已知集合 , ,则 ( )A{0} B {0,1} C{0,2} D{0,1,2}2.下列函数中在(0,+∞)上为增函数的是( )A. y=x+1B.y=(x-1)2C. y=2-xD. log 0.5(x+1)3. 曲线 (θ为参数)的对称中心(A.在直线y=2x 上B.在直线y= -2x 上C.在直线y=x-1上D.在直线y=x+1上4.当m=7,n=3时执行如图所示程序框图 输出的s 值为( )A.7B.42C.210D.8405.设{ }是公比为q 的等比数列,则“q >1”是“{ }为递增数列”的( ) A.充分且不必要条件 B.必要且不充分 C.充分必要条件 D.既不充分也不必要条件6.若x ,y 满足 且z=-y-x 的最小值为-4,则k 的值为( ) A. 2 B. -2 C. D.A=x|x 2-2x=0{}B=0,1,2{}A∩B {x=-1+cos θy=2+sin θαn αn {x+y-2≥0kx-y+2≥0y ≥012-127.在空间直角坐标系Oxyz 中,已知A (2,0,0)B(2,2,0 ) C(0,2,0) D(1,1, )若 分别表示三棱锥D-ABC 在xOy yOz zOx 坐标平面上正投影图形的面积,则( ) A. B. C. D.8.有语文数学两个学科,成绩评定为“优秀”“合格”“不合格”三种,若A 同学每科成绩不低于B 同学,且至少有一科成绩比B 高,则称“A同学比B 同学成绩好”现有若干同学,他们之中没有一个人比另一个人成绩好,且没有两个人语文成绩一样,数学成绩也一样的,问满足条件的最多有多少学生( ) A.2 B.3 C.4 D.5一、填空题(共6小题,每小题5分,共30分)9.复数 =10.11. 12. 13.14.2S 1S2S 3S 1=S 2=S 3S 1=S 3且S 3≠S 2S 1=S 2且S 3≠S 1S 2=S 3且S 1≠S 31+i 1-i ()2已知向量a 、b ,b=(2,1),且λa+b=0,(λ∈R )则λ=设函数f(x)=Asin(wx+φ)(A ,w ,φ为常数A>0φ>0)且在π6,π2[]上单调,f π2()=f 2π3()= - f π6(),则f (x )最小正周期PA=AE20(小题13分)2014年北京高考数学(理)参考答案一、 选择题 1. 【答案】C【解析】解:集合{}{}2200,2A x x =-==.故{}0,2A B ⋂=,选C .2. 【答案】A【解析】解:A.y =[)1,-+∞上为增函数,符合题意.B.()21y x =-在()0,1上为减函数,不合题意. C.2xy -=为(),-∞+∞上的减函数,不合题意.D.()0.5log 1y x =+为()1,-+∞上的减函数,不合题意. 故选A3. 【答案】B【解析】解:参数方程1cos 2+sin x y θθ=-+⎧⎨=⎩所表示的曲线为圆心在()1,2-,半径为1的圆.其对称中心为圆心()1,2-.逐个带入选项可知,()1,2-在直线2y x =-上,即选项B .4. 【答案】C【解析】解:当m 输入的7,3m n ==时,判断框内的判断条件为5k <.故能进入循环的k 依次为7,6,5,顺次执行S S k =⋅,则有765210S =⋅⋅=,故选C.5. 【答案】D【解析】解:对于等比数列{}n a ,若1q >,则当10a <时有{}n a 为递减数列.故1q >不能推出“{}n a 为递增数列”.若{}n a 为递增数列,则{}n a 有可能满足10a <且01q <<,推不出1q >.综上,“1q >”为“{}n a 为递增数列”的既不充分也不必要条件,即选D.6. 【答案】D【解析】解:若0,k z y x =-≥没有最小值,不合题意.若0k <,则不等式组所表示的平面区域如图所示. 由图可知,z y x =-在点2,0k ⎛⎫-⎪⎝⎭处取最小值. 故204k ⎛⎫--=- ⎪⎝⎭,解得12k =-,即选项D 正确7. 【答案】D【解析】解:D ABC -在平面上的投影为ABC ∆,故12S =.设D 在yOz 和zOx 平面上的投影分别为2D 和3D ,则D A B C -在yOz 和zOx 平面上的投影分别为2OCD ∆和3OAD ∆.∵(2D,(3D .故23S S =.综上,选项D 正确.8. 【答案】B【解析】解:用ABC 分别表示优秀、及格和不及格.显然语文成绩得A 的学生最多只有1个.语文成绩得B 的也最多只有一个.得C 的也最多只有一个,因此学生最多只有3个. 显然,(AC )(BB )(CA )满足条件,故学生最多3个.二、填空题9. 【答案】1-【解析】解:复数()()()21i 1i 2i i 1i 1i 1i 2++===--+,故221i i 11i +⎛⎫==- ⎪-⎝⎭.10.【解析】解:由λ+=0r r a b ,有λ=-r rb a ,于是λ=⋅u u r r b a ,由()2,1=rb ,可得=r b 1=r a ,故λ=.11. 【答案】221312x y -=;2y x =±【解析】解:双曲线2214y x -=的渐近线为2y x =±,故C 的渐近线为2y x =±;设C :224y x m -=,因为C 过()2,2,所以代入并解得3m =-,故C 的方程为221312x y -=,渐近线方程为2y x =±.12. 【答案】8【解析】解:根据等差数列的性质,78983a a a a ++=,71089a a a a +=+,于是8890,0a a a >+<,即890,0a a ><,所以8798,S S S S ><, 故8S 为{}n a 的前n 项和中最大值.13. 【答案】36【解析】解:因为A 与B 相邻,所以应用捆绑法,将A 和B 当成一个整体捆绑成一个元素,又因为A 与C 不相邻,所以分两种情况;(1)C 与A 和B 这个整体相邻,这时应采用插空法,摆法有223223A A A 24⋅⋅=种;(2)B 正好在A 与C 之间,这是将A 、B 、C 当成一个元素,摆法有2323A A 12⋅=种;故不同的摆法有122436+=种14. 【答案】π【解析】解:由()f x 在区间ππ,62⎡⎤⎢⎥⎣⎦上具有单调性,π2ππ236f f f ⎛⎫⎛⎫⎛⎫==- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭可知, ()f x 有对称中心1πππ,0,02263⎛⎫⎛⎫⎛⎫+= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,对称轴1π2π7π22312x ⎛⎫=+= ⎪⎝⎭;故()f x 的周期为7ππ4π123⎛⎫-=⎪⎝⎭. 三、解答题(共6小题,共80分)15.(共13分) 【解析】(1)sin ADC ∠==sin sin()sin cos cos sin 11727214BAD ADC B ADC B ADC B∴∠=∠-∠=∠⋅∠-∠⋅∠=-⨯=(2)在ABD ∆中,sin sin sin AB AD BD ADB B BAD ==∠∠∠==解得:3,7BD AD == 在ACD ∆中,222222cos 172272497AC AD DC AD DC ADC=+-⋅⋅∠=+-⨯⨯⨯=7AC ∴=16.(共13分)解:(1)设李明在该场比赛中投篮命中率超过0.6的概率为事件A , 由题可知,李明在该场比赛中命中率超过0.6的场次有: 主场2、主场3、主场5、客场2、客场4,共计5场 所以李明在该场比赛中投篮命中率超过0.6的概率()51102P A ==.(2)设李明一场投篮命中率超过0.6,一场命中率不超过0.6的概率为事件B ,同理可知,李明主场命中率超过0.6的概率135P =,客场命中率超过0.6的概率225P =故()()()122133221311=+=555525P B P P P P =⨯-+⨯-⨯⨯. (3)()E X x =.17.(共14分) 【解析】 (1) 证明://,,ED AM ED AM PED PED ⊄⊂面面//AM PED ∴面,AM ABF AB ABF ⊂⊂面即面ABF PED FG =面面Ç//AB FG ∴(2) 如图建立空间坐标系A x y -,各点坐标如下:(0,0,0),E (0,2,0),B (,1),P (0,0,2)A 设ABF 面的法向量为000(,,z )n x y =,(1,0,0)AB =,(0,1,1),AF =n AB n AF ⎧⋅=⎪⎨⋅=⎪⎩,即00x y z =⎧⎨+=⎩,令1y =得:(0,1,1)n =- 又(1,1,0)BC =,1sin ,2BC n ∴<>==直线BC 与平面ABF 所成角为6π 设111(,,z )H x y ,由,PH tPC =则111(,,z 2)t(2,1,2)x y -=-(21,,22)H t t t ∴--又,(21,,22)H ABF BH t t t ∈=--面0n BH ∴⋅=,2220,3t t t ∴+-=∴=,422(,,)333H ∴,424,,333PH ⎛⎫= ⎪⎝⎭|PH|=2∴18.(共13分)解:(1)证明:()()'cos sin cos sin ,f x x x x x x x =+--=-∵π0,2x ⎡⎤∈⎢⎥⎣⎦,∴()'0f x …,即()f x 在π0,2⎡⎤⎢⎥⎣⎦上单调递增,∴()f x 在π0,2⎡⎤⎢⎥⎣⎦上的最大值为()00f =,所以()0f x …. (2)一方面令()sin x g x x =,π0,2x ⎛⎫∈ ⎪⎝⎭,则()2cos sin 'x x xg x x ⋅-=,由(1)可知,()'0g x <,故()g x 在π0,2⎛⎫ ⎪⎝⎭上单调递减,从而()π22πg x g ⎛⎫>= ⎪⎝⎭,故2πa …,所以m a x 2πa =. 令()sin h x x bx =-,π0,2x ⎛⎫∈ ⎪⎝⎭,则()'cos h x x b =-,当1b …时,()'0h x <,故()h x 在π0,2x ⎛⎫∈ ⎪⎝⎭上单调递减,从而()()00h x h <=, 所以()s i n 0h x x bx =-<恒成立.当1b <时,()'cos 0h x x b =-=在π0,2⎛⎫ ⎪⎝⎭有唯一解0x ,且()00,x x ∈,()'0h x >,故()h x 在()00,x 上单调递增,从而()()00h x h >=, 即sin sin 0sin x x bx x bx b x ->⇒>⇒>与sin x b x<恒成立矛盾, 综上,1b …,故min 1b =.19.(共14分)(1)椭圆的标准方程为:22142x y +=,故2,a b ==,则c =故离心率e c a ==;(2)由题可得,直线OA 的斜率存在,设为k ,则直线OA 的方程为y k x =,OA OB ⊥,○1当0k =时,()2,0A ±,已知()0,2B ,此时直线AB 方程为20x y +-=或+2=0x y -,原点到直线AB 的距离均为故满足直线AB 与圆222x y +=相切; ○2当0k ≠时,直线OB 方程为1y x k=-, 联立22142y kxx y =⎧⎪⎨+=⎪⎩得,()221+24k x =,故,A ⎛⎫或,⎛⎫, 联立12y x k y ⎧=-⎪⎨⎪=⎩得,()2,2B k -,由A 的对称性,那么不妨去点,A ⎛⎫进行计算,于是直线AB 方程为))2222y x k x k k-+=++,((21+220k x y k -++=原点到直线AB 的距离d =,此时与圆222x y +=相切;综上所述,直线AB 与圆222x y +=相切.20.(共13分)解:(1)()1257T P =+=,()(){}{}211max ,241max 7,6178T P T P =++=+=+=;(2)当m a =时,()1T P a b =+,(){}{}2,+max +max ,a c T P d a b a d b c =++=+; ()1'+T P c d =,(){}{}2'max ,max ,T P b c d c a b c a d b c d =+++=++=++;因为a 是a b c d 、、、中最小的数,所以{}max ,a b c b c ++…,从而()()22'T P T P …;当m d =时,()1T P a b =+,(){}{}2,+max +max ,a c T P d a b a d b c =++=+; (){}{}2'max ,max ,T P b c d c a b c a d a b c =+++=++=++;因为d 是a b c d 、、、中最小的数,所以{}max ,d b c b c ++…,从而()()22'T P T P …; 综上,这两种情况下都有()()22'T P T P ….(3)52.分布为:(4,6)(16,11)(11,11)(11,8)(5,2)。

2014年高考新课标I卷数学(理科)试题及参考答案(含解答题评分标准)

2014年高考新课标I卷数学(理科)试题及参考答案(含解答题评分标准)

2014年普通高等学校招生全国统一考试全国课标I理科数学第Ⅰ卷 (选择题 共60分)一.选择题:共12小题,每小题5分,共60分。

在每个小题给出的四个选项中,只有一项是符合题目要求的一项。

1.已知集合A={x |2230x x --≥},B={x |-2≤x <2=,则A B ⋂=A .[-2,-1]B .[-1,2)C .[-1,1]D .[1,2) 2.32(1)(1)i i +-= A .1i + B .1i - C .1i -+ D .1i --3.设函数()f x ,()g x 的定义域都为R ,且()f x 时奇函数,()g x 是偶函数,则下列结论正确的是A .()f x ()g x 是偶函数B .|()f x |()g x 是奇函数C .()f x |()g x |是奇函数D .|()f x ()g x |是奇函数4.已知F 是双曲线C :223(0)x my m m -=>的一个焦点,则点F 到C 的一条渐近线的距离为A B .3 C D .3m5.4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率A .18 B .38 C .58 D .786.如图,圆O 的半径为1,A 是圆上的定点,P 是圆上的动点,角x 的始边为射线OA ,终边为射线OP ,过点P 作直线OA 的垂线,垂足为M ,将点M 到直线OP 的距离表示为x 的函数()f x ,则y =()f x 在[0,π]上的图像大致为7.执行下图的程序框图,若输入的,,a b k 分别为1,2,3,则输出的M =A .203 B .165 C .72 D .1588.设(0,)2πα∈,(0,)2πβ∈,且1sin tan cos βαβ+=,则 A .32παβ-=B .22παβ-=C .32παβ+=D .22παβ+=9.不等式组124x y x y +≥⎧⎨-≤⎩的解集记为D .有下面四个命题:1p :(,),22x y D x y ∀∈+≥-, 2p :(,),22x y D x y ∃∈+≥, 3P :(,),23x y D x y ∀∈+≤, 4p :(,),21x y D x y ∃∈+≤-.其中真命题是A .2p ,3pB .1p ,4pC .1p ,2pD .1p ,3p 10.已知抛物线C :28y x =的焦点为F ,准线为l ,P 是l 上一点,Q 是直线PF 与C 的一个焦点,若4FP FQ =,则||QF =A .72B .52C .3D .2 11.已知函数()f x =3231ax x -+,若()f x 存在唯一的零点0x ,且0x >0,则a 的取值范围为 A .(2,+∞) B .(-∞,-2) C .(1,+∞) D .(-∞,-1)12.如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的个条棱中,最长的棱的长度为A .B .C .6D .4第Ⅱ卷(非选择题 共90分)本卷包括必考题和选考题两个部分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2014年高考北京卷数学理试题及答案解析一、选择题1. [2014•北京理卷]1.已知集合2{|20},{0,1,2}A x x x B =-==,则A B =I ( ).{0}A .{0,1}B .{0,2}C .{0,1,2}D【答案】C【解析】∵{}2,0=A ,∴{}{}{}2,02,1,02,0==I I B A . 2.[2014•北京理卷]下列函数中,在区间(0,)+∞上为增函数的是( ).A y = 2.(1)B y x =- .2x C y -= 0.5.log (1)D y x =+【答案】A【解析】由初等函数的性质得选项B 在()1,0上递减,选项C 、D 在()+∞,0为减函数,所以排除B 、C 、D. 3.[2014•北京理卷]曲线1cos 2sin x y θθ=-+⎧⎨=+⎩(θ为参数)的对称中心( ).A 在直线2y x =上 .B 在直线2y x =-上 .C 在直线1y x =-上 .D 在直线1y x =+上【答案】B【解析】曲线方程消参化为()()12122=-++y x ,其对称中心为()2,1-,验证知其满足x y 2-=.4.[2014•北京理卷]当7,3m n ==时,执行如图所示的程序框图,输出的S 值为( ).7A .42B .210C .840D【答案】C【解析】2105671=⨯⨯⨯=S . 5.[2014•北京理卷]设{}n a 是公比为q 的等比数列,则"1"q >是"{}"n a 为递增数列的( ).A 充分且不必要条件 .B 必要且不充分条件 .C 充分必要条件 .D 既不充分也不必要条件【答案】D【解析】当01<a 时,1>q 数列{}n a 递减;01<a 时,数列{}n a 递增,10<<q . 理数6.E5[2014•北京理卷]若,x y 满足20200x y kx y y +-≥⎧⎪-+≥⎨⎪≥⎩且z y x =-的最小值为-4,则k 的值为( ).2A .2B - 1.2C 1.2D -【答案】D【解析】可行域如图所示,当0>k 时,知x y z -=无最小值,当0<k 时,目标函数线过可行域内A 点时z 有最小值,联立⎩⎨⎧=+-=020y kx y ,解之得⎪⎭⎫⎝⎛-0,2k A ,420min -=+=k z ,即21-=k .7.[2014•北京理卷]在空间直角坐标系Oxyz 中,已知()2,0,0A ,()2,2,0B ,()0,2,0C ,()1,1,2D ,若 1S ,2S ,3S 分别表示三棱锥D ABC -在xOy ,yOz ,zOx 坐标平面上的正投影图形的 面积,则( )(A )123S S S == (B )12S S =且 31S S ≠ (C )13S S =且 32S S ≠ (D )23S S =且 13S S ≠ 【答案】D【解析】设顶点D 在三个坐标面xoy 、yoz 、zox 的正投影分为'1D 、'2D 、'3D ,则211='='BD AD ,2=AB ,∴2222211=⨯⨯⨯=S ,2222122=⨯⨯=='OCD S S ,2222133=⨯⨯=='OAD S S .8.[2014•北京理卷]有语文、数学两学科,成绩评定为“优秀”“合格”“不合格”三种.若A 同学每科成绩不低于B 同学,且至少有一科成绩比B 高,则称“A 同学比B 同学成绩好.”现有若干同学, 他们之间没有一个人比另一个成绩好,且没有任意两个人语文成绩一样,数学成绩也一样 的.问满足条件的最多有多少学生( )(A )2 (B )3 (C )4 (D )5 【答案】B【解析】假设AB 两个同学的数学成绩一样,由题意知他们语文成绩不一样,这样他们的语文成绩总有人比另一个人高,语文成绩较高的同学比另一个同学“成绩好”,与已知条件“他们之中没有一个比另一个成绩好”相矛盾.因此,没有任意两个同学数学成绩是相同的.因为数学成绩只有3种,因而同学数量最大为3.即 3位同学成绩分别为(优秀,不合格)、(合格,合格)、(不合格,优秀)时满足条件. 二、填空题9.[2014•北京理卷]2=-+y x 02=+-y kx A=-x y复数211i i +⎛⎫= ⎪-⎝⎭________.【答案】1-【解析】()()()122111112222-=⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛+-+=⎪⎭⎫ ⎝⎛-+i i i i i i . 10.[2014•北京理卷]已知向量a r 、b r 满足1a =r,()2,1b =r ,且()0a b R λλ+=∈r r ,则λ=________.【答案】5【解析】∵0=+λ,∴-=λ,∴515||||===a b λ. 11.[2014•北京理卷]设双曲线C 经过点()2,2,且与2214y x -=具有相同渐近线,则C 的方程为________;渐近线方程为________.【答案】 112322=-y x ;x y 2±=【解析】设双曲线C 的方程为λ=-224x y ,将()2,2代入λ=-=-324222,∴双曲线方程为112322=-y x .令0422=-x y 得渐近线方程为x y 2±=. 12.[2014•北京理卷]若等差数列{}n a 满足7890a a a ++>,7100a a +<,则当n =________时{}n a 的前n 项和最大. 【答案】8【解析】∵038987>=++a a a a ,098107<+=+a a a a ,∴0,098<>a a ,∴8=n 时数列{}n a 前n 和最大. 13.[2014•北京理卷]把5件不同产品摆成一排,若产品A 与产品C 不相邻,则不同的摆法有_______种. 【答案】36【解析】36326132233=⨯⨯=A A A .14.[2014•北京理卷]设函数)sin()(ϕω+=xxf,0,0>>ωA ,若)(xf在区间]2,6[ππ上具有单调性,且⎪⎭⎫⎝⎛-=⎪⎭⎫⎝⎛=⎪⎭⎫⎝⎛6322πππfff,则)(xf的最小正周期为________.【答案】π【解析】结合图象得26223224ππππ+-+≥T,即π≥T.15.[2014•北京理卷]如图,在ABC∆中,8,3==∠ABBπ,点D在BC边上,且71cos,2=∠=ADCCD(1)求BAD∠sin(2)求ACBD,的长解:(I)在ADC∆中,因为17COS ADC∠=,所以43sin7ADC∠=.所以sin sin()BAD ADC B∠=∠-∠sin cos cos sinADC B ADC B=∠-∠=1433237121734=⨯-⨯.(Ⅱ)在ABD∆中,由正弦定理得AA-6π2π32π338sin 143sin 437AB BAD BD ADB ⨯⋅∠===∠, 在ABC ∆中,由余弦定理得2222cos AC AB BC AB BC B =+-⋅⋅22185285492=+-⨯⨯⨯=, 所以7AC =.16.[2012•北京理卷]李明在10场篮球比赛中的投篮情况如下(假设各场比赛互相独立):(1)从上述比赛中随机选择一场,求李明在该场比赛中投篮命中率超过6.0的概率. (2)从上述比赛中选择一个主场和一个客场,求李明的投篮命中率一场超过6.0,一 场不超过6.0的概率.(3)记x 是表中10个命中次数的平均数,从上述比赛中随机选择一场,记X 为李明 在这比赛中的命中次数,比较)(X E 与x 的大小(只需写出结论).解:(I)根据投篮统计数据,在10场比赛中,李明投篮命中率超过0.6的场次有5场,分别是主场2,主场3,主场5,客场2,客场4.所以在随机选择的一场比赛中,李明的投篮命中率超过0.6的概率是05.(Ⅱ)设事件A 为“在随机选择的一场主场比赛中李明的投篮命中率超过0.6”,事件B 为“在随机选择的一场客场比赛中李明的投篮命中率超过0.6”,事件C 为“在随机选择的一个主场和一个客场中,李明的投篮命中率一场超过0.6,一场不超过0.6”。

则C=AB AB U ,A,B 独立。

根据投篮统计数据,32(),()55P A P B ==. ()()()P C P AB P AB =+ 33225555=⨯+⨯1325=, 所以,在随机选择的一个主场和一个客场中,李明的投篮命中率一场超过0.6,一场不超过0.6的概率为1325. (Ⅲ)EX x =. 17.[2014•北京理卷]如图,正方形AMDE 的边长为2,C B ,分别为MD AM ,的中点,在五棱锥ABCDE P - 中,F 为棱PE 的中点,平面ABF 与棱PC PD ,分别交于点H G ,. (1)求证:FG AB //;(2)若⊥PA 底面ABCDE ,且PE AF ⊥,求直线BC 与平面ABF 所成角的大小,并 求线段PH 的长.解:(I )在正方形中,因为B 是AM 的中点,所以AB ∥DE 。

又因为AB ⊄平面PDE , 所以AB ∥平面PDE ,因为AB ⊂平面ABF ,且平面ABF I 平面PDF FG =, 所以AB ∥FG .(Ⅱ)因为PA ⊥底面ABCDE,所以PA AB ⊥,PA AE ⊥.如图建立空间直角坐标系Axyz ,则(0,0,0)A ,(1,0,0)B ,(2,1,0)C ,(0,0,2)P ,(0,1,1)F ,BC u u u r(1,1,0)=.设平面ABF 的法向量为(,,)n x y z =,则0,0,n AB n AF ⎧⋅=⎪⎨⋅=⎪⎩u u u r u u ur 即0,0.x y z =⎧⎨+=⎩ 令1,z =,则1y =-。

所以(0,1,1)n =-,设直线BC 与平面ABF 所成角为a,则1sin cos ,2n BC a n BC n BC⋅===u u u ru u u r u u u r .因此直线BC 与平面ABF 所成角的大小为6π. 设点H 的坐标为(,,).u v w因为点H 在棱PC 上,所以可设(01),PH PC λλ=u u u r u u u rp p即(,,2)(2,1,2).u v w λ-=-。

所以2,,22u v w λλλ===-.因为n 是平面ABF 的法向量,所以0n AB ⋅=u u u r,即(0,1,1)(2,,22)0λλλ-⋅-=。

解得23λ=,所以点H 的坐标为422(,,).333所以2PH ==. 18.[2014•北京理卷] 已知函数()cos sin ,[0,]2f x x x x x π=-∈,(1)求证:()0f x ≤;(2)若sin x a b x <<在(0,)2π上恒成立,求a 的最大值与b 的最小值. 解:(I )由()cos sin f x x x x =-得'()cos sin cos sin f x x x x x x x =--=-。

相关文档
最新文档