铸造工艺标准设计基础学习知识

合集下载

铸造工艺基础知识及理论

铸造工艺基础知识及理论

铸造工艺基础知识及理论目录一、基础概念 (2)1.1 铸造的定义与意义 (3)1.2 铸造工艺的种类与应用 (4)二、铸造材料 (6)三、铸造设备 (7)3.1 熔炼设备 (9)3.2 锻造设备 (10)3.3 后处理设备 (11)四、铸造工艺过程 (12)五、铸造工艺设计 (13)5.1 工艺方案的确定 (15)5.2 工艺参数的选择 (16)5.3 工艺文件的编制 (18)六、铸造质量与控制 (20)6.1 铸造缺陷的产生原因及防止措施 (22)6.2 铸造质量检测方法与标准 (23)七、铸造生产与环境 (24)7.1 铸造生产的环保要求 (26)7.2 环保设备的应用与管理 (27)八、现代铸造技术的发展趋势 (28)8.1 快速凝固与近净形铸造技术 (30)8.2 数字化与智能化铸造技术 (31)8.3 生物铸造与绿色铸造技术 (33)一、基础概念铸造工艺是指将熔炼好的液态金属浇入铸型,待其凝固后获得所需形状和性能的金属制品的过程。

它是制造业中非常重要的工艺之一,广泛应用于汽车、航空、建筑、电子等领域。

铸造工艺的基础知识主要包括液态金属的性质、铸型(即模具)的设计与制造、浇注系统、凝固过程以及后处理等。

这些知识是理解和掌握铸造工艺的基本前提。

液态金属的性质:液态金属在铸造过程中的流动性、填充能力、冷却速度等对其最终的产品质量有着决定性的影响。

了解液态金属的成分、温度、粘度等基本性质对于铸造工艺的设计和实践都是非常重要的。

铸型的设计与制造:铸型是形成金属制品形状和内部结构的重要工具。

铸型的设计需要考虑到金属液的流动性和凝固特性,以及制品的精度和表面质量要求。

铸型的制造也需要选用合适的材料,并经过精密加工才能达到设计要求。

浇注系统:浇注系统是连接铸型和液态金属的通道,包括浇口杯、直浇道、横浇道和内浇道等部分。

合理的浇注系统设计可以确保金属液均匀地注入铸型,并有利于热量和气体的排出,从而提高制品的质量和生产效率。

第五章铸造工艺基础

第五章铸造工艺基础

第五章铸造第二篇铸造工艺基础教学内容合金的铸造性能、流动性、收缩性、偏析性;铸件的常见缺陷分析及防止;常见合金铸件的生产;砂型铸造工艺基础;几种典型的特种铸造工艺方法;铸件结构与铸造工艺及合金铸造性能的关系。

目的与要求要求了解合金流动性和收缩的概念、影响因素及其对铸件质量的影响,为铸件设计,选材和制订铸造工艺提供理论基础。

常用合金铸件的生产,要求了解灰铸铁、球墨铸铁、可锻铸铁、铸钢、铜、铝及其合金铸件的生产特点。

砂型铸造要求掌握制定铸造工艺图的基本原则,主要工艺参数的选择原则,分析典型铸件图例,并为今后解决实际问题打好基础。

掌握铸造工艺和合金铸造性能对铸件结构的要求。

特种铸造重点了解金属型铸造、熔模铸造、压力铸造和离心铸造基本知识。

‘第一节液态合金的充型充型:液态合金填充铸型的过程。

充型能力:液态金充满铸型型腔,获得形状完整、轮廓清晰健全的铸件的能力。

影响充型能力的主要因素是合金的流动性、浇注条件、铸型填充条件和铸件结构。

一、合金的流动性1.流动性的概念流动性:液态态合金本身的流动能力。

流动性好,易于浇出轮廓清晰,薄而复杂的铸件。

流动性好,有利于液态金属中的非金属夹杂物和气体上浮,排除。

流动性好,易于对液态金属在凝固中产生的收缩进行补缩。

2.流动性的测定方法以螺旋形试件的长度来测定:如图5-1影响合金流动性的因素:合金成分结金温度范围浇注温度充型压力图5—3所示为铁碳合金的流动性与含碳量的关系。

由图可见,亚共晶铸铁随含碳量增加,结晶间隔减小,流动性提高。

愈接近共晶成分,愈容易铸造。

二、浇注条件浇注温度浇注温度对合金的充型能力有着决定性影响。

浇注温度愈高,液态金属所含的热量较多,粘度下降,在相同的冷却条件下,合金在铸型中保持流动的时间长。

但是,浇注温度过高会使金属液体的吸气量和总收缩量增大,铸件容易生产气孔、缩孔、缩松、粘砂、粗晶等缺陷,故在保证充型能力足够的前提下,浇注温度不易过高。

对于形状复杂的薄壁铸件,为避免产生冷隔和浇不足等缺陷,浇注温度以略高些为宜。

铸造工艺基础教学培训PPT

铸造工艺基础教学培训PPT
铸造合金的结晶温度范围越大,树枝状晶体越容易将液态金属分割,铸件越容易产生缩松;
二、铸造成形基础
逐层凝固:液固金属间轮廓线清 晰。4.3%的铁碳合金,结晶在恒 温下进行,结晶过程有表及里,逐 层推进,凝固层的内表面比较光滑, 对尚未凝固合金流动阻力小,有利 于合金的充型,所以流动性好。 糊状凝固:先结晶的固态金属广泛 分布在没有结晶的液态金属中,液 固金属间没有明显的轮廓线。
二、铸造成形基础
• 2.合金的收缩
(4)铸造内应力、变形和裂纹
◆ 消除或减小铸造内应力的方法: ① 采用同时凝固的原则,通过设置冷铁、布置浇 冒口位置等工艺措施,使铸件各部分在凝固过程中 温差尽可能小;(不管壁厚如何,同时一起收缩, 可避免热应力的产生) ② 提高铸型温度,使整个铸件缓冷,以减小铸型 各部分温差; ③ 改善铸型与铸芯的退让性; ④ 进行去应力退火,这是消除铸造应力最彻底的 方法。
二、铸造成形基础
• 2.合金的收缩
(4)铸造内应力、变形和裂纹
◆ 变形: 当铸件中的内应力若超过合金的屈服强度,将使铸件产生变形。为防止变形,在铸件设计
时,应力求壁厚均匀、形状简单而对称。 ◆ 变形:
当铸件的内应力超过合金的抗拉强度时,铸件便会产生裂纹。裂纹是铸件严重的缺陷。 防止裂纹的主要措施: 合理的设计铸件结构;合理选用型砂和芯砂的粘结剂与添加剂,以改善其退让性;大的型 芯可制成中空的或内部填以焦炭;严格限制钢与铸铁中的硫含量;选用收缩量小的合金。
二、铸造成形基础
• 2.合金的收缩
• (2)缩松:液态合金在凝固过程中,若凝固时的收缩得不到及时补充,就会形成缩
孔,若缩孔是分散的,即为缩松。
又称分散缩孔) 形状:宏观缩松—肉眼可见的微小孔洞;

《铸造基础知识培训》课件

《铸造基础知识培训》课件

特种铸造
特种铸造是一种特殊的铸造方法,它 使用非传统的方法和材料来生产铸件 。
特种铸造的缺点是成本较高,技术要 求较高,需要专业的技术和设备支持 。
特种铸造的优点是可以生产出传统铸 造方法难以制造的复杂、高性能的铸 件,同时还可以提高铸件的质量和性 能。
铸造工艺流程
铸造工艺流程包括熔炼、 浇注、冷却、落砂、清理
等步骤。
浇注是将熔化的金属液注 入模具中,形成铸件。
落砂是将凝固后的铸件从 模具中取出,并进行清理
和加工。
熔炼是将金属加热至熔化 成液态,然后进行精炼和
除渣。
冷却是指铸件在模具中冷 却凝固的过程。
清理是去除铸件表面上的 残渣和毛刺,保证铸件的
质量和外观。
PART 04
铸造缺陷与质量控制
REPORTING
脱模剂
用于使铸件易于从铸型中 脱出,如石墨粉、滑石粉 等。
PART 03
铸造工艺
REPORTING
砂型铸造
砂型铸造是最常见的铸造方法 之一,它使用砂型作为模具来 生产铸件。
砂型铸造的优点是成本低、工 艺成熟、适用范围广,可以生 产各种形状和尺寸的铸件。
砂型铸造的缺点是生产周期较 长,需要经过多个步骤才能完 成一个铸件,且生产效率相对 较低。
THANKS
感谢观看
REPORTING
铸造技术的未来展望与挑战
智能化铸造
将人工智能、大数据等技术与铸 造工艺相结合,实现铸造过程的 智能决策和自动化控制,提高生
产效率和产品质量。
绿色铸造
发展环保、节能、低碳的铸造技 术,降低铸造过程的环境污染和
资源消耗,实现可持续发展。
高性能材料铸造
研究和发展高性能、高强度的新 型铸造材料,满足高端装备和新

铸造培训-铸造基本知识

铸造培训-铸造基本知识

前一页
后一页
回主页
三、铸型充填条件
(1)铸型的材料
(2)铸型温度 铸型温度越高,液态金属与铸型的
温差越小,充型能力越强。 (3)铸型中的气体
前一页
后一页
回主页
§1-2 铸件的凝固与收缩
一、铸件的凝固方式
温度
1. 逐层凝固
2. 糊状凝固 3. 中间凝固 影响铸件凝固方 式的主要因素:
温度
a b c
前一页 后一页 回主页
金属型铸造
金属型铸造是在重力作用下将金属液体浇入金属铸型以 获得铸件的方法。铸型用金属制成,可反复使用,故又称永久 型铸造。
前一页
后一页
回主页
金属型铸造
特点: •节省造型材料, “一型多铸” •精度高,IT12~IT16,Ra<12.5μm •生产率高 •周期长,成本高,工艺参数严格 •无透气性,浇不到、裂纹等缺陷。
这些有别于砂型铸造的其他铸造方法通称为特种铸造。 金属型铸造
挤压铸造 离心铸造 七 种 常 见 的 特 种 铸 造 方 法
回主页
压力铸造
特种铸造 陶瓷型铸造 低压铸造
前一页 后一页
熔模铸造
熔模铸造
在易熔模样表面包覆若干层耐火材料,待其硬化干燥后, 将模样熔去制成中空型壳,经浇注而获得铸件的一种 成形工艺方法。模样材料多位蜡质,又称为失蜡铸造。
前一页
后一页
回主页
低压铸造
1、低压铸造的工艺过程 :
1)准备合金液和铸型 2)升液,浇注。
3)增压凝固。 4)减压、降液。 5)开型取出铸件。
前一页
后一页
回主页
低压铸造
特点:
•充型压力和速度便于控制,适用于各种铸型;

铸造知识(全)汇总

铸造知识(全)汇总

第一章铸造工艺基础§1 液态合金的充型充型: 液态合金填充铸型的过程.充型能力: 液态合金充满铸型型腔,获得形状完整,轮廓清晰的铸件的能力充型能力不足:易产生: 浇不足: 不能得到完整的零件.冷隔:没完整融合缝隙或凹坑, 机械性能下降.一合金的流动性液态金属本身的流动性----合金流动性1 流动性对铸件质量影响1) 流动性好,易于浇出轮廓清晰,薄而复杂的铸件.2) 流动性好,有利于液态金属中的非金属夹杂物和气体上浮,排除.3) 流动性好,易于对液态金属在凝固中产生的收缩进行补缩.2 测定流动性的方法:以螺旋形试件的长度来测定: 如灰口铁:浇铸温度1300℃试件长1800mm.铸钢: 1600℃100mm3 影响流动性的因素主要是化学成分:1) 纯金属流动性好:一定温度下结晶,凝固层表面平滑,对液流阻力小2) 共晶成分流动性好:恒温凝固,固体层表面光滑,且熔点低,过热度大.3) 非共晶成分流动性差: 结晶在一定温度范围内进行,初生数枝状晶阻碍液流二浇注条件1 浇注温度: t↑合金粘度下降,过热度高. 合金在铸件中保持流动的时间长,∴t↑提高充型能力. 但过高,易产生缩孔,粘砂,气孔等,故不宜过高2 充型压力: 液态合金在流动方向上所受的压力↑充型能力↑如砂形铸造---直浇道,静压力. 压力铸造,离心铸造等充型压力高.三铸型条件1 铸型结构: 若不合理,如壁厚小, 直浇口低, 浇口小等充↓2 铸型导热能力: 导热↑金属降温快,充↓如金属型3 铸型温度: t↑充↑如金属型预热4 铸型中气体: 排气能力↑充↑减少气体来源,提高透气性, 少量气体在铸型与金属液之间形成一层气膜,减少流动阻力,有利于充型.§2 铸件的凝固和收缩铸件的凝固过程如果没有合理的控制,铸件易产生缩孔,缩松一铸件的凝固1 凝固方式:铸件凝固过程中,其断面上一般分为三个区: 1—固相区2—凝固区3—液相区对凝固区影响较大的是凝固区的宽窄,依此划分凝固方式.1) 逐层凝固:纯金属,共晶成分合金在凝固过程中没有凝固区,断面液,固两相由一条界限清楚分开,随温度下降,固相层不断增加,液相层不断减少,直达中心.2) 糊状凝固合金结晶温度范围很宽,在凝固某段时间内,铸件表面不存在固体层,凝固区贯穿整个断面,先糊状,后固化.3) 中间凝固大多数合金的凝固介于逐层凝固和糊状凝固之间.2 影响铸件凝固方式的因素1) 合金的结晶温度范围范围小: 凝固区窄,愈倾向于逐层凝固如: 砂型铸造, 低碳钢逐层凝固, 高碳钢糊状凝固2) 铸件的温度梯度合金结晶温度范围一定时,凝固区宽度取决于铸件内外层的温度梯度.温度梯度愈小,凝固区愈宽.(内外温差大,冷却快,凝固区窄)二合金的收缩液态合金从浇注温度至凝固冷却到室温的过程中,体积和尺寸减少的现象---.是铸件许多缺陷(缩孔,缩松,裂纹,变形,残余应力)产生的基本原因.1 收缩的几个阶段1) 液态收缩: 从金属液浇入铸型到开始凝固之前. 液态收缩减少的体积与浇注温度质开始凝固的温度的温差成正比.2) 凝固收缩: 从凝固开始到凝固完毕. 同一类合金,凝固温度范围大者,凝固体积收缩率大.如: 35钢,体积收缩率3.0%, 45钢 4.3%3) 固态收缩: 凝固以后到常温. 固态收缩影响铸件尺寸,故用线收缩表示.2 影响收缩的因素1) 化学成分: 铸铁中促进石墨形成的元素增加,收缩减少. 如: 灰口铁C, Si↑,收↓,S↑收↑.因石墨比容大,体积膨胀,抵销部分凝固收缩.2) 浇注温度: 温度↑液态收缩↑3) 铸件结构与铸型条件铸件在铸型中收缩会受铸型和型芯的阻碍.实际收缩小于自由收缩.∴铸型要有好的退让性.3 缩孔形成在铸件最后凝固的地方出现一些空洞,集中—缩孔. 纯金属,共晶成分易产生缩孔*产生缩孔的基本原因: 铸件在凝固冷却期间,金属的液态及凝固受缩之和远远大于固态收缩.4 影响缩孔容积的因素(补充)1) 液态收缩,凝固收缩↑缩孔容积↑2) 凝固期间,固态收缩↑,缩孔容积↓3) 浇注速度↓缩孔容积↓4) 浇注速度↑液态收缩↑易产生缩孔5 缩松的形成由于铸件最后凝固区域的收缩未能得到补足,或者,因合金呈糊状凝固,被树枝状晶体分隔开的小液体区难以得到补缩所至.1) 宏观缩松肉眼可见,往往出现在缩孔附近,或铸件截面的中心.非共晶成分,结晶范围愈宽,愈易形成缩松.2) 微观缩松凝固过程中,晶粒之间形成微小孔洞---凝固区,先形成的枝晶把金属液分割成许多微小孤立部分,冷凝时收缩,形成晶间微小孔洞. 凝固区愈宽,愈易形成微观缩松,对铸件危害不大,故不列为缺陷,但对气密性,机械性能等要求较高的铸件,则必须设法减少.(先凝固的收缩比后凝固的小,因后凝固的有液,凝,固三个收缩,先凝固的有凝,固二个收缩区----这也是形成微观缩松的基本原因.与缩孔形成基本原因类似)6 缩孔,缩松的防止办法基本原则: 制定合理工艺—补缩, 缩松转化成缩孔.顺序凝固: 冒口—补缩同时凝固: 冷铁—厚处. 减小热应力,但心部缩松,故用于收缩小的合金.l 安置冒口,实行顺序凝固,可有效的防止缩孔,但冒口浪费金属,浪费工时,是铸件成本增加.而且,铸件内应力加大,易于产生变形和裂纹.∴主要用于凝固收缩大,结晶间隔小的合金.l 非共晶成分合金,先结晶树枝晶,阻碍金属流动,冒口作用甚小.l 对于结晶温度范围甚宽的合金,由于倾向于糊状凝固,结晶开始之后,发达的树枝状骨状布满整个截面,使冒口补缩道路受阻,因而难避免显微缩松的产生.显然,选用近共晶成分和结晶范围较窄的合金生产铸件是适宜的.§3 铸造内应力,变形和裂纹凝固之后的继续冷却过程中,其固态收缩若受到阻碍,铸件内部就发生内应力,内应力是铸件产生变形和裂纹的基本原因.(有时相变膨胀受阻,负收缩)一内应力形成1 热应力: 铸件厚度不均,冷速不同,收缩不一致产生.塑性状态: 金属在高于再结晶温度以上的固态冷却阶段,受力变形,产生加工硬化,同时发生的再结晶降硬化抵消,内应力自行消失.(简单说,处于屈服状态,受力—变形无应力)弹性状态: 低于再结晶温度,外力作用下,金属发生弹性变形,变形后应力继续存在.举例: a) 凝固开始,粗细处都为塑性状态,无内应力∵两杆冷速不同,细杆快,收缩大,∵受粗杆限制,不能自由收缩,相对被拉长,粗杆相对被压缩,结果两杆等量收缩.b) 细杆冷速大,先进如弹性阶段,而粗杆仍为塑性阶段,随细杆收缩发生塑性收缩,无应力.c) 细杆收缩先停止,粗杆继续收缩,压迫细杆,而细杆又阻止粗杆的收缩,至室温, 粗杆受拉应力(+),(-) 由此可见,各部分的温差越大,热应力也越大,冷却较慢的部分形成拉应力,冷却较快的部分形成压应力.预防方法: 1 壁厚均匀2 同时凝固—薄处设浇口,厚处放冷铁优点: 省冒口,省工,省料缺点: 心部易出现缩孔或缩松,应用于灰铁锡青铜,因灰铁缩孔、缩松倾向小,锡青铜糊状凝固,用顺序凝固也难以有效地消除其显微缩松。

铸造基础知识培训

铸造基础知识培训

05
铸造安全与环保
Chapter
铸造生产安全规范
操作规程
安全警示标识
确保员工熟悉铸造设备的操作规程, 遵循安全操作步骤,避免因误操作导 致的安全事故。
在铸造车间设置明显的安全警示标识 ,提醒员工注意潜在的危险源和安全 风险。
防护装备
提供并要求员工正确佩戴个人防护装 备,如防护眼镜、手套、工作服等, 以减少工伤风险。
01
02
过滤网
03
用于过滤金属液中的杂质,提高 铸件质量。
04
浇口杯
浇注时承接金属液的容器,有开 放式和封闭式两种。
流槽
连接浇注机和浇口杯的通道,控 制金属液的流动方向和速度。
清理设备
抛丸机
利用高速弹丸清
通过喷砂方式清理铸件 表面,具有高效、环保
等优点。
刷抛机
铸造工艺流程
根据零件图纸制作模 具。
使金属液在模具中冷 却凝固成固态零件。
熔炼
模具制作
浇注
冷却与凝固
脱模与清理
将金属材料熔化为液 态,并加入所需合金 元素。
将熔化的金属液倒入 模具中。
从模具中取出零件, 进行必要的清理和加 工。
铸造的应用领域
01
02
03
机械制造业
铸造广泛应用于各种机械 零件的制造,如发动机缸 体、变速器箱体等。
合金的选用原则
根据铸件的使用条件、工艺要求和 经济性等因素综合考虑,选择合适 的铸造合金。
铸造用辅助材料
型砂和芯砂
用于制作铸型的耐火材料,对防 止金属渗漏、提高铸件表面质量
等有重要作用。
涂料
用于铸型表面,可防止金属与铸 型粘结,改善铸件表面质量。

铸造工艺学讲义一(基础知识)

铸造工艺学讲义一(基础知识)
第四节 特殊铸造
一.熔模铸造 二.金属型铸造 三.压力铸造
第五节 零件结构的铸造工艺性
一.铸件结构的合理性 二.铸件结构的工艺性 三.铸造方法对铸件结构的特殊要求
2
前言
商代司母戊鼎
中国商代晚期的青铜器。1939年于河南安阳殷墟商代晚期墓 出土。因腹内壁铸有“司母戊”三字而得名。该鼎造型庄严雄伟。 长方形腹,每面四边及足上部饰兽面纹。双耳,外侧饰双虎噬人 首纹。四足中空。高133厘米、口长110厘米、口宽79厘米、重 832.84千克。该鼎的化学成分为:铜84.77%,锡11.64%,铅2.79%, 其他0.8%。是中国目前已发现的最大、最重的古代青铜器。
b) 进行去应力退火 铸件机加工之前应先采用时效或去应力退
液态收缩与凝固收缩 主要表现为体积的缩减,
产生缩孔、缩松 固态收缩
导致尺寸减小,产生内 应力和出现裂纹。
18
(三) 影响合金收缩的因素
1. 化学成分 不同成分的合金其收缩率一般也不相同。在常用铸造 合金中铸刚的收缩最大,灰铸铁最小。 2. 浇注温度 合金浇注温度越高,过热度越大,液体收缩越大。 3. 铸件结构与铸型条件 铸件冷却收缩时,因其形状、尺寸的不同, 各部分的冷却速度不同,导致收缩不一致,且互相阻碍,又加之 铸型和型芯对铸件收缩的阻力,故铸件的实际收缩率总是小于其 自由收缩率。这种阻力越大,铸件的实际收缩率就越小。
图1-7 缩松形成过程示意图
21
比较缩孔和缩松的特征
缩孔:集中性,位于上部,呈倒锥形,内表面粗糙。
缩松: 分散性,为细小缩孔,位于铸件壁的轴线区域。
22
2.缩孔、缩松的防止措施 1).定向凝固与同时凝固
按铸件壁厚分布均匀程度不同(即冷却快慢不同),分为: 定向凝固(或称顺序凝固)-薄部先凝固,厚部后凝固,冒口最后 凝固。 同时凝固(厚薄不同部位趋近同时凝固,金属液从薄部引入)。

铸造必备基础知识

铸造必备基础知识

铸造必备基础知识在进行铸造工艺之前,了解铸造必备的基础知识是非常重要的。

本文将介绍铸造工艺的基本概念、材料选择、铸造方法、设计和工艺控制等方面的知识。

一、铸造的基本概念铸造是指将熔化的金属或非金属材料,通过浇筑或其他注入方式,借助于一定形状的模具,在其冷却过程中制成所需的零件或产品的工艺过程。

铸造是制造业中最常用的成型方法之一,具有形状复杂、尺寸精确、材料多样化等优点。

二、材料选择在铸造中,常用的金属材料包括铁、铜、铝、锌等。

选择合适的材料取决于产品的需求,如机械性能、耐腐蚀性、导电性等。

此外,还要考虑材料的可铸造性,如熔点、流动性等特性。

三、铸造方法铸造方法主要分为砂型铸造、金属型铸造和持续铸造等几种。

砂型铸造是最常见的一种,通过在模具中填充湿砂,形成铸型,然后在铸型中浇注熔化的金属。

金属型铸造主要用于高温合金和特殊材料的铸造。

持续铸造适用于大量生产和连续铸造的情况。

四、设计和工艺控制在进行铸造产品的设计时,需要考虑模具的结构、冷却方式、缩孔和气孔等缺陷的预防。

同时,还需要进行合理的工艺控制,如控制熔化温度、浇注速度、冷却时间等,来保证产品的质量。

五、常见问题和解决方法在铸造过程中,常见的问题包括缺陷、变形和裂纹等。

要解决这些问题,可以采用改进模具设计、增加冷却措施、调整工艺参数等方法。

六、铸造在工业中的应用铸造广泛应用于机械制造、汽车、航空航天、建筑等领域。

铸造的发展还推动了材料科学和工艺技术的进步。

七、总结铸造是一种常见且重要的制造方法,它具有成本低、生产效率高等特点。

在进行铸造前,了解铸造的基本概念、材料选择、铸造方法、设计和工艺控制等方面的知识是必不可少的,有助于提高产品的质量和生产效率。

随着科技的不断进步,铸造技术也在不断革新,为各行各业的发展做出了重要贡献。

铸造练习题

铸造练习题

一、铸造工艺基础知识1. 铸造的基本原理是什么?2. 铸造工艺包括哪些基本步骤?3. 铸造过程中,如何控制铸件的尺寸精度?4. 铸造过程中,如何防止铸件产生缩孔?5. 铸造过程中,如何防止铸件产生冷隔?6. 铸造过程中,如何防止铸件产生气孔?7. 铸造过程中,如何提高铸件的机械性能?8. 铸造过程中,如何提高铸件的耐腐蚀性能?9. 铸造过程中,如何提高铸件的耐磨性能?10. 铸造过程中,如何提高铸件的耐热性能?二、铸造材料1. 铸造材料有哪些分类?2. 铸造材料的主要性能指标有哪些?3. 常用的铸造金属材料有哪些?4. 常用的铸造非金属材料有哪些?5. 铸造材料的选择原则是什么?6. 铸造材料的热处理工艺有哪些?7. 铸造材料的熔炼方法有哪些?8. 铸造材料的浇注方法有哪些?9. 铸造材料的凝固过程有哪些特点?10. 铸造材料的冷却速度对铸件质量有何影响?三、铸造设备1. 铸造设备有哪些分类?2. 常用的铸造设备有哪些?3. 铸造设备的选用原则是什么?4. 铸造设备的维护保养方法有哪些?5. 铸造设备的故障诊断与排除方法有哪些?6. 铸造设备的自动化程度对生产效率有何影响?7. 铸造设备的节能措施有哪些?8. 铸造设备的环保措施有哪些?9. 铸造设备的创新与发展趋势有哪些?10. 铸造设备的操作与安全注意事项有哪些?四、铸造工艺设计1. 铸造工艺设计的基本原则是什么?2. 铸造工艺设计的主要任务有哪些?3. 铸造工艺设计的基本步骤有哪些?4. 铸造工艺设计中的技术经济分析有哪些?5. 铸造工艺设计中的质量控制有哪些?6. 铸造工艺设计中的安全与环保措施有哪些?7. 铸造工艺设计中的创新与改进有哪些?8. 铸造工艺设计中的计算机辅助设计(CAD)有哪些?9. 铸造工艺设计中的有限元分析(FEA)有哪些?10. 铸造工艺设计中的实验研究有哪些?五、铸造生产管理1. 铸造生产管理的任务有哪些?2. 铸造生产管理的基本原则有哪些?3. 铸造生产管理中的组织机构有哪些?4. 铸造生产管理中的生产计划与调度有哪些?5. 铸造生产管理中的质量控制与检验有哪些?6. 铸造生产管理中的成本控制有哪些?7. 铸造生产管理中的安全与环保管理有哪些?8. 铸造生产管理中的员工培训与激励有哪些?9. 铸造生产管理中的技术创新与改进有哪些?10. 铸造生产管理中的信息化建设有哪些?六、铸造缺陷分析1. 铸造缺陷的分类有哪些?2. 如何识别和描述铸件缺陷?3. 缩孔、冷隔、气孔等缺陷的形成原因是什么?4. 如何预防铸件表面缺陷?5. 铸件内部缺陷的检测方法有哪些?6. 铸造缺陷对铸件性能的影响有哪些?7. 如何评估铸件缺陷的严重程度?8. 铸造缺陷的修复方法有哪些?9. 铸造缺陷预防措施的效果如何评价?10. 铸造缺陷分析在工艺改进中的应用。

《铸造基础知识教程》课件

《铸造基础知识教程》课件

《铸造基础知识教程》PPT课 件
通过本课程,你将学习到铸造的定义和历史,材料和工艺分类,生产流程, 模具设计和制造,熔炼设备和工艺,铸造缺陷及其预防,以及铸造技术的未 来趋势。
铸造的定义和历史
铸造是一种使用熔融金属、合金或其他熔融物质,将其注入预先制定的模具 中并让其在模具中冷却凝固的过程。
铸造的历史可以追溯到公元前4000年左右,当时人们将铜熔化后铸造成各种 工具和装饰品。
2
模具制造工艺
冷模和热模是当前最常见的两种模具制造工艺。
3
模具试制
模具制造完成后,需要根据制作完整性和检测结果进行性能试制。
熔炼设备和工艺
铸造工艺中的熔炼过程也称为熔化,主要过程包括将所需材料放入熔炉中、升温、熔化并控制温度,选用不同 熔炉时需要有不同的技术和工艺。
熔炼炉
常见熔炼炉有电阻炉和电弧炉。
表面缺陷
原因:液态金属在注入模腔前 未过滤干净以及铸造前模具未 处理完毕。 解决方法:使用新颖的模具设 计工艺来达到更干净的铸造材 料。
铸造技术的未来趋势
随着科技的发展,数字模拟成型、虚拟现实实验等新技术不断涌现。 在3D打印铸造技术的发展进程中,不仅减小了热核装配步骤的不确定性,还 开创了铸造领域的想象空间,特别是在金属粉末增材制造方面具有巨大潜力。
光谱分析
通过光谱分析可以检测出熔炼后 材料成分。
熔金ቤተ መጻሕፍቲ ባይዱ
熔金可以匀质铸造实体,增加材 料的韧性。
铸造缺陷及其预防
缩孔和气孔
原因:铸造过程中熔液未充填 完全或有气体无法排除或排除 不彻底。 解决方法:合理的设计出口和 填充,增加压力等。
缺陷裂纹
原因:矿物夹杂,结构紧密、 强度低、易破裂、冷热空气交 替等。 解决方法:避免铸造温度过高。

铸造工艺知识及对产品设计的要求

铸造工艺知识及对产品设计的要求
优质铸件的生产需要有合理的铸造工艺和
1、铸造工艺流程
2、铸造工艺方案
铸造合金的种类、零件的结构与技术要求、生 产批量的大小和生产条件是确定铸造工艺方案的 依据。
确定铸造工艺方案主要是选择合理的浇注位置 和分型面。
分型面的选择应尽量与浇注位置一致,以避免 合型后翻转砂型。但平做立浇的铸件除外,如压 力机导套。
❖ 使用上表时的几点规定: ❖ ①当铸件尺寸公差等级和铸件机械加工余量等级确定后,其
加工余量数值应按有加工要求的表面上最大基本尺寸和该表 面距它的加工基准间尺寸两者中较大的尺寸所在范围,从表 2中选取加工余量数值。 ❖ ②确定旋转体加工余量时,铸件基本尺寸取其直径或高度 (长度)中较大的尺寸。 ❖ ③当砂型铸件底、侧面所采用的加工余量等级选定后,其顶 面的加工余量等级原则上采用降一级所对应的数值。 ❖ ④砂型铸造孔的加工余量等级由铸造工艺的保证性确定,可 适当加大。原则上降一级。 ❖ ⑤一般情况下一种铸件只能选取一个尺寸公差等级,当有特 殊要求时,可由供需双方商定采用非标准的加工余量。 ❖ 检验与评定时,当铸件实际测量尺寸位于铸件基本尺寸的公
用途是:制造模样、模板、芯盒等,并作为生 产准备和模样验收依据;是用于生产的指导性技 术文件及铸件尺寸验收依据。
铸造工艺卡片
三、铸铁件的热时效处理
对于不进行特殊热处理的重要铸铁件,特别是 机床铸件都要进行低温退火以降低或去除残余应 力,从而保持零件的尺寸精度,这种热处理又称 为热时效。
热时效是将铸件加热至弹塑性温度范围,为使 铸件各部分温度均匀和残余应力在此区间得到松 弛和稳定化而予以保温,然后缓慢冷却至弹性变 形的温度范围内,出炉空冷。
②有色金属铸件:主要生产铜合金铸件和 铝合金铸件。铜合金铸件以压力机铜套为主, 采用电炉熔炼、离心铸造工艺。铝合金铸件 采用砂型(红砂)、电炉熔炼工艺。

《铸造基础知识》课件

《铸造基础知识》课件

铸造工艺能够生产出形状复杂 的零件,且具有节约金属材料 、生产成本较低等优点。
02 铸造材料
铸造用金属材料
01
02
03
铸钢
用于生产承受较大载荷和 要求高强度、高耐磨性的 机械零件,如齿轮、曲轴 等。
铸铁
具有良好的铸造性能、减 震性能和耐磨性能,广泛 应用于制造各种铸件,如 汽缸体、底座等。
铝合金
流程
主要包括造型、制芯、熔炼、浇注 、冷却和落砂等步骤。
特种铸造
定义
特种铸造是一种采用特殊工艺和 材料的铸造方法,如消失模铸造
、金属型铸造、压力铸造等。
特点
特种铸造能够提高铸件质量、减 少废品率、提高生产效率,适用 于生产复杂、高精度和高质量的
铸件。
流程
各种特种铸造工艺的流程略有不 同,但通常包括模具设计、材料
质量轻、耐腐蚀、导热性 好,常用于制造轻量化要 求的零件,如汽车发动机 缸体、缸盖等。
铸造用非金属材料
树脂砂
以树脂为粘结剂的型砂,具有较高的强度和耐热 性,主要用于生产复杂形状的铸件。
陶瓷砂
具有高强度、高硬度和耐高温特性,适用于生产 耐磨、耐腐蚀的铸件,如轴承、密封件等。
石墨
具有良好的耐高温、耐腐蚀和润滑性能,常用于 生产高温、高压环境下工作的铸件。
《铸造基础知识》ppt课件
目录
• 铸造简介 • 铸造材料 • 铸造工艺 • 铸造缺陷与质量控制 • 铸造技术的发展趋势与展望
01 铸造简介
铸造的定义
01
铸造是一种通过将液态金属倒入 模具中,待其冷却凝固后形成固 态零件的工艺。
02
铸造工艺广泛应用于机械、汽车 、航空、船舶、轻工等工业领域 。

铸造工艺基础知识及理论

铸造工艺基础知识及理论
金属液态成形(铸造)工艺
4
铸造材料
1
工艺基础 工艺性能
2
铸件生产
铸造工艺
3 工艺方法
1. 金属液态成形(铸造)工艺基础
什么是金属的液态成形:
将熔炼好的液态金属浇入与零件形 状相适应的铸型空腔中,待其冷却凝固, 以获得毛坯或零件的工艺方法,亦称铸造.
金属的液态成形的方法:
金属的液态成形是制造毛坯、零件的重要方法之一。按铸型材 料的不同,金属液态成形可分为砂型铸造和特种铸造(包括压力铸 造、金属型铸造等).其中砂型铸造是最基本的液态成形方法,所生 产的铸件要占铸件总量的80%以上.特种铸造较适用于大批量生产, 应用范围逐渐增加。

的 方
方法
合理布置内浇道及确定浇铸工艺。

合理应用冒口、冷铁和补贴等工艺措施。
3. 铸件的生产工艺
整模造型
分模造型
手工造型
砂型铸造
活块造型 三箱造型

挖砂造型

机器造型
刮板造型

铸造工艺图的绘制

砂型铸造的工艺设计
分型面的选择

工艺参数的确定 浇注位置的确定

金属型铸造
熔模铸造
压力铸造
特种铸造
低压铸造 陶瓷型铸造
内是由表及里的逐层凝固。在凝固过程中,如得不到合金液的 补充,在铸件最后凝固的地方就会产生缩孔.
2. 铸件的生产—缩松的形成 缩松的形成原因:
铸件最后凝固的收缩未能得到补充,或者结晶温度范围宽的 合金呈糊状凝固,凝固区域较宽,液、固两相共存,树枝晶发 达,枝晶骨架将合金液分割开的小液体区难以得到补缩所致。
合金的收缩的过程:
合金从液态冷却至室温的过程中,其体积或尺寸缩减的 现象。合金的收缩给液态成形工艺带来许多困难,会造成许 多铸造缺陷。(如:缩孔、缩松、裂纹、变形等)。

机械制造2-1 铸造工艺基础知识

机械制造2-1 铸造工艺基础知识

10
2.1
铸造的工艺基础知识
• 2.1.1 液态合金的充型 合金流动性的定义
流动性是指液态(熔融)金属的流动能力。 它是影响液态金属充型能力的主要因素之一, 也是合金的主要铸造性能之一。
11
2.1
铸造的工艺基础知识
• 2.1.1 液态合金的充型 合金流动性的测量方法
常用浇注标准螺旋形试样的方法进行测定。 螺旋形试样的长度越长,则液态合金的流动性越好。 常用合金的螺旋形试样的长度数值见P11表2-1。
22
充型能力的影响因素
主要影响因素:铸型条件和浇注条件 2.浇注条件:
浇注条件又与浇注系统结构、浇注温度和充型压力有关。 (2)浇注温度: 浇注温度越高,合金保持液态的时 间越长,金属液粘度降低,杂质容 易上浮或溶解,故合金流动性好, 充型能力强。但浇注温度过高,液 态合金收缩增大,吸收气体多,氧 化严重,流动性反而会下降。因此 在保证流动性的前提下,浇注温度 应尽可能低一些。
25
砂型铸造的充型压力由 直浇道的静压力产生。
2.1
铸造的工艺基础知识
• 2.1.2 铸件的凝固与收缩
浇入铸型型腔的液态金属在冷凝过程中,如果其 液态收缩和凝固收缩得不到补充,铸件将产生缩孔 或缩松等铸造缺陷。因此,必须合理地控制铸件的 凝固过程。 1. 铸件的凝固方式 铸件的凝固: 液态合金转变为固态铸件的过程称为铸件的凝固。
阶段的收缩。用体收缩率表示。合金的结晶温度范围越大, 体收缩率也越大。液态收缩和凝固收缩时金属液体积缩小, 是形成缩孔和缩松的基本原因。
a)
a) 合金状态图
b)
c)
b) 一定温度范围合金 c) 共晶合金
图2-6 铸造合金收缩过程示意图

铸造基础知识总结

铸造基础知识总结

铸造——将液体金属浇注到具有与零件形状相应的铸型型腔中,待其冷却凝固后获得铸件的方法。

作为一种成型工艺,熔铸的基本优点在于液态金属的抗剪应力很小,易于成型。

优点:1、原材料来源广,价格低廉,如废钢、废件、切屑等;生产成本低,与其它成形工艺相比,铸造具有明显的优势。

2、铸造是金属液态成形,因此可生产形状十分复杂,尤其是具有复杂内腔的各种尺寸规格的毛坯或零件。

3、铸件的形状尺寸与零件非常接近,减少了切削量,属于无切削加工;4、铸件的大小、重量及生产批量不受限制,可生产多种金属或合金的产品,比较灵活。

5、应用广泛,农业机械中40%~70%、机床中70%~80%的重量都是铸件。

缺点:1、铸件的力学性能不如相同化学成分的锻件好2、铸件质量不够稳定,工序多,影响因素复杂,工艺过程较难控制。

3、制品中有各种缺陷与不足。

微观组织随位置变化,化学成分随位置变化。

如铸件内部常存在气孔、缩孔、缩松、夹杂、砂眼和裂纹等缺陷。

4、尺寸精度较低。

5、铸造生产的劳动条件较差。

砂型铸造中,单件、小批量生产,工人劳动强度大砂型铸造——是以砂为主要造型材料制备铸型的一种铸造方法。

主要工序为:制作模样及型芯盒,配制型砂、芯砂,造型、造芯及合箱,熔化与浇注,铸件的清理与检查等。

简述砂型铸造的基本工艺过程。

(1)造型:用型砂及模样等工艺设备制造铸型。

通常分为手工造型和机器造型。

造芯、涂料、开设浇注系统、合型。

(2)熔炼与浇注熔炼:使金属由固态转变为熔融状态。

浇注:将熔融金属从浇包注入铸型。

(3)落砂与清理落砂:用手工或机械使铸件与型砂、砂箱分开。

清理:落砂后在铸件上清理表面粘砂、型砂、表面金属等。

金属型铸造——将液态金属浇入金属材料制成的铸型中以获得铸件的方法。

优点:1、尺寸精度高,表面质量好,机械加工余量小;2、金属型导热性好,冷却速度快,铸件晶粒细小,力学性能好;3、一型多铸,生产效率高,易于机械化或自动化;4、节省造型材料,环境污染小,劳动条件好。

铸造知识点大全

铸造知识点大全

铸造知识点大全铸造是一种将熔化的金属或合金倒入模具中,然后冷却凝固使其成型的制造工艺。

它是制造业中最古老、最常用的工艺之一。

本文将介绍铸造的主要知识点,帮助读者对铸造工艺有更深入的了解。

1. 铸造基础知识铸造的基础知识包括铸造工艺分类、铸造材料、模具制造等内容。

1.1 铸造工艺分类铸造工艺一般可以分为压力铸造、重力铸造、连续铸造和特殊铸造等。

每种工艺都有其特点和适用范围。

•压力铸造:通过施加压力使熔化金属充满模腔,并提高铸件的致密性。

常见的压力铸造方法包括压铸和挤压铸造。

•重力铸造:利用重力作用使熔化金属流入模腔。

重力铸造包括砂型铸造、金属型铸造和熔模铸造等。

•连续铸造:连续铸造是指连续地制造相同形状和尺寸的铸件,例如连铸和直接浇铸等。

•特殊铸造:特殊铸造是指一些特殊的铸造工艺,例如真空铸造、气体压铸和低压铸造等。

1.2 铸造材料铸造材料主要包括金属和非金属材料。

•金属材料:常见的金属铸造材料有铁、铝、铜、镁等。

不同的金属材料具有不同的特性和应用领域。

•非金属材料:非金属铸造材料包括陶瓷、塑料、橡胶等。

这些材料在一些特殊的铸造工艺中被广泛应用。

1.3 模具制造模具是铸造过程中的关键设备,它决定了铸件的形状和尺寸精度。

模具制造包括模具设计、材料选择和加工工艺等环节。

•模具设计:模具设计依据铸件的形状和尺寸要求,确定模具的结构和尺寸。

•材料选择:模具材料应具有高温强度、耐磨性和导热性等特性。

•加工工艺:模具加工工艺包括铣削、车削、磨削等工艺,以保证模具精度和表面质量。

2. 铸造工艺流程铸造工艺流程是指从原料准备到铸件成型的整个过程。

它包括模具制备、熔炼、浇注和冷却等阶段。

2.1 模具制备模具制备是铸造工艺流程的第一步,主要包括模具设计、材料选择和加工制造等。

2.2 熔炼熔炼是将金属原料加热至熔点并使其熔化的过程。

熔炼设备常用的有电炉、煤气炉和电阻炉等。

2.3 浇注浇注是指将熔化的金属倒入模具中,填充模腔。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

铸造工艺设计基础铸造生产周期较长,工艺复杂繁多。

为了保证铸件质量,铸造工作者应根据铸件特点,技术条件和生产批量等制订正确的工艺方案,编制合理的铸造工艺流程,在确保铸件质量的前提下,尽可能地降低生产成本和改善生产劳动条件。

本章主要介绍铸造工艺设计的基础知识,使学生掌握设计方法,学会查阅资料,培养分析问题和解决问题的能力。

§1-1 零件结构的铸造工艺性分析铸造工艺性,是指零件结构既有利于铸造工艺过程的顺利进行,又有利于保证铸件质量。

还可定义为:铸造零件的结构除了应符合机器设备本身的使用性能和机械加工的要求外,还应符合铸造工艺的要求。

这种对铸造工艺过程来说的铸件结构的合理性称为铸件的铸造工艺性。

另定义:铸造工艺性是指零件的结构应符合铸造生产的要求,易于保证铸件品质,简化铸造工艺过程和降低成本。

铸造工艺性不好,不仅给铸造生产带来麻烦,不便于操作,还会造成铸件缺陷。

因此,为了简化铸造工艺,确保铸件质量,要求铸件必须具有合理的结构。

一、铸件质量对铸件结构的要求1.铸件应有合理的壁厚某些铸件缺陷的产生,往往是由于铸件结构设计不合理而造成的。

采用合理的铸件结构,可防止许多缺陷。

每一种铸造合金,都有一个合适的壁厚范围,选择得当,既可保证铸件性能(机械性能)要求,又便于铸造生产。

在确定铸件壁厚时一般应综合考虑以下三个方面:保证铸件达到所需要的强度和刚度;尽可能节约金属;铸造时没有多大困难。

(1)壁厚应不小于最小壁厚在一定的铸造条件下,铸造合金能充满铸型的最小壁厚称为该铸造合金的最小壁厚。

为了避免铸件的浇不足和冷隔等缺陷,应使铸件的设计壁厚不小于最小壁厚。

各种铸造工艺条件下,铸件最小允许壁厚见表7-1~表7-5表1-2 熔模铸件的最小壁厚(单位:㎜)表1-3 金属型铸件的最小壁厚(单位:㎜)(2)铸件的临界壁厚在铸件结构设计时,为了充分发挥金属的潜力,节约金属,必须考虑铸造合金的力学性能对铸件壁厚的敏感性。

厚壁铸件容易产生缩孔、缩松、晶粒粗大、偏析和松软等缺陷,从而使铸件的力学性能下降。

从这个方面考虑,各种铸造合金都存在一个临界壁厚。

铸件的壁厚超过临界壁厚后,铸件的力学性能并不按比例地随着铸件壁厚的增加而增加,而是显著下降。

因此,铸件的结构设计应科学地选择壁厚,以节约金属和减轻铸件重量。

在砂型铸造工艺条件下,各种合金铸件的临界壁厚可按最小壁厚的3倍来考虑。

铸件壁厚应随铸件尺寸增大而相应增大,在适宜壁厚的条件下,既方便铸造又能充分发挥材料的力学性能。

表7-5,表7-6给出砂型铸造各种铸造合金的临界壁厚。

(3)铸件的内壁厚度砂型铸造时,铸件内壁散热条件差,即使内壁厚度与外壁厚度相等,但由于它比外壁的凝固速度慢,力学性能往往要比外壁低,同时在铸造过程中易在内、外壁交接处产生热应力致使铸件产生裂纹。

对于凝固收缩大的铸造合金还易产生缩孔和缩松,因此铸件的内壁厚度应比外壁厚度薄一些。

图1-1 铸件内壁的合理结构a,b)不合理c)合理合金类别铸铁铸钢铸铝铸铜铸件内壁比外壁厚度应减少的相对值%10~2020~3010~215~20注:铸件内腔尺寸大的取下限对于锻钢制造的轴类零件来说,增大直径便可提高承载能力。

但对铸件来说,随着壁厚的增加,中心部分晶粒粗大,承载能力并不随壁厚增加而成比例地增加。

因此,在设计较厚铸件时,不能把增加壁厚当作提高承载能力的唯一办法。

为了节约金属,减轻铸件重量,可以选择合理的截面形状,如承受弯曲载荷的铸件,可选用“T”型或“工”型截面。

采用加强筋也可减小铸件壁厚。

一般筋厚﹤内壁厚﹤外壁厚。

2 . 铸件壁应合理连接铸件壁厚不均,厚薄相差悬殊,会造成热量集中,冷却不均,不仅易产生缩孔、缩松,而且易产生应力、变形和裂纹。

所以要求铸件壁厚尽量均匀,如图1-2(a)所示结构中壁厚不均,在厚的部分易形成缩孔,在厚薄连接处易形成裂纹。

改为1-2(b)结构后,由于壁厚均匀,即可防止上述缺陷产生。

也可用薄壁加加强筋结构。

加强筋的布置应尽量避免或减少交叉,防止习惯年成热节。

例如钳工划线平台,其筋条布置如图1-3所示。

铸件各部分壁厚不均现象有时不可避免,此时应采用逐渐过渡的方式,避免截面突然变化。

接头断面的类型大致可分为L、V、K、T 和十字型五种。

在接头处,凝固速度慢,容易产生应力集中、裂纹、变形、缩孔、缩松等缺陷。

在接头形式的选用中,应优选L型接头,以减小与分散热节点及避免交叉连接。

逐渐过渡的形式与尺寸如表7-8所示。

由表可知,壁厚差别不很大时,采用圆弧过渡();壁厚差别很大时,采用L型过渡,在同等情况下,铸钢件的过渡尺寸比铸铁件要大。

两壁相交,其相交和拐弯处要作成圆角。

图1-2 均匀壁厚避免形成热节举例3.结构斜度进行铸件设计时,凡顺着拔模方向的不加工表面尽可能带有一定斜度以便于起模,便于操作,简化工艺。

铸件垂直度越小,斜度越大。

综合以上所述,为了保证铸件质量,铸件的合理结构为:1)壁厚力求均匀,减小厚大断面,防止形成热节。

办法是将厚大部位挖去一部分;图7-52)内壁厚度应小于外壁。

因为内壁冷却慢,适当减薄(图7-6)。

3)应有利于补缩和实现顺序凝固。

有些铸件铸锭厚度较大或厚度不均。

如果该件所用合金的体积收缩较大,则很容易形成缩孔、缩松。

此时应仔细审查零件结构,尽可能采取顺序凝固方式,让薄壁处先凝,厚壁处后凝,使在厚壁处易于安放冒口补缩,以防止缩孔、缩松。

图7-74)注意防止发生翘曲变形。

细长杆状铸件,大平板铸件,增加加强筋及改变截面形状床身一类的铸件,其截面形状不允许变化,为防止其变形可采用反挠度,即在模样上采取反变形量。

如果既不能设加强筋,又不能该变截面形状,只好采用人工失效方法消除应力减少变形。

5)应避免水平方向出现较大平面。

大平面铸件的上部型砂时间受金属液体烘烤,容易造成夹砂。

解决的办法是倾斜浇注或设计成倾斜壁。

应避免铸件收缩时受到阻碍,否则会造成裂纹,对于收缩大的合金铸件尤其要注意这一点。

4 . 铸件结构设计原则(1)设计铸件壁厚时应考虑到合金的流动性;流动性越好的合金,充型能力越强,铸造时就不容易产生浇不足、冷隔等缺陷,因此,能铸出的铸件最小壁厚尺寸也就越小。

(2)铸型型腔的形状与尺寸大小是根据铸件的形状与尺寸决定的。

不同的型腔形状和尺寸对液态金属的流动的阻力,散热情况是不同的,从而会导致液态金属在型腔内的流动与填充情况不同。

因此,铸件结构上应尽量避免突变性的转变、壁厚急剧的变化、细长结构、大的水平面、高度较大的凸台等。

(3)一个铸件在生产过程中是否出现缩孔、缩松、变形、热裂、冷裂等收缩类铸造缺陷,出现在哪个部位、严重程度如何,都与铸件结构密切相关。

由此可以得出指导铸件结构设计的原则:1)对凝固收缩大,容易产生集中缩孔的合金,如铸钢、球墨铸铁、可锻铸铁、黄铜、无锡青铜、铝硅共晶合金等,倾向于采用顺序凝固方式铸造。

这时在进行铸件结构设计时,应使铸件结构形式有利于顺序凝固。

2)对溶液产生缩松的合金,如锡青铜、磷青铜等采用冒口补缩效果不大,常采用同时凝固方式来使缩松更分散些;对收缩较小的合金,如铸铁更倾向于采用同时凝固方式铸造。

这时铸件的结构应是壁厚均匀,尽量减少金属的聚集与消除热节。

对于一些结构形状复杂的大铸件,也可将其各部分按顺序或同时凝固方式设计。

3)尽量使铸件结构有利于自由收缩,如尽量减少铸件的轮廓尺寸,减少突出部分,必要时可将一个铸件分成几个小铸件,然后用焊接或螺栓连接起来。

4)尽量避免产生应力集中的形状,如不应有尖角、不同壁厚之间的连接要平缓。

5)应考虑到各种铸造方法的工艺过程、凝固特点、铸型和型芯的特点。

尤其市使用金属铸型和型芯的铸造方法。

如金属型铸造、压力铸造,应便于铸件的抽芯和出芯。

二、从生产工艺考虑—简化工艺便于操作—角度对铸件结构提出的要求铸件结构不仅应有利于保证铸件质量,防止和减少铸造缺陷,而且应保证造型、制芯、清理等操作的方便,以利于提高生产率和降低成本。

因此要求铸件要:1 便于起模。

改进妨碍起模的凸台、凸缘,筋板和外表面侧凹。

2 减少和简化分型面减少分型面的数目,既可减少砂箱数目,又能提高铸件尺寸精度。

曲面分型,工艺复杂,操作不便(制造模样和造型不方便),应尽量做成平直分型面。

3 改进铸件内腔结构,尽量减少砂芯数量4 简化清理操作5 增加结构斜度铸件最好有结构斜度。

这样不仅起模方便,也提高铸件尺寸精度,甚至减少砂芯数量。

对那些不允许有结构斜度的铸件,在制造模样时,应做出角度很小的拔模斜度。

三、组合铸件有些大而复杂的铸件,受工厂条件限制,无法生产或虽能生产但质量难以保证,可用“一分为二”或“化整为零”。

即分成两个或两个以上的简单铸件,使复杂铸件分成简单件,大件变成小件,铸造完后再用螺栓或焊接方法连接起来。

这样做,不仅简化铸造过程,加工和运输也方便,并使原来无法生产的铸件得以生产。

§1-2 铸造工艺方案的确定铸造工艺方案包括造型、制芯、铸型种类、浇注位置和分型面等内容。

铸造工艺方案是否先进合理,对获得优质铸件、简化工艺过程、提高生产率、降低成本和改善劳动条件等起着决定作用。

一、造型方法的选择1.按铸型种类分:2 按砂型紧实方式造型方法分:1)手工造型:砂箱造型,脱箱造型,刮板造型,组芯地坑造型2)机器造型:震击,震压,射压,抛砂,气流紧实等3 按模样材料分:金属模造型,塑料模造型,木模造型一般中小型铸件应尽可能选用湿型,不用干型(大批量、机械化);大中型结构复杂、质量要求高的铸件用表面干型或干型;中大的铸型和砂芯可考虑用自硬性铸型,特别是对于大件铸型和砂芯更为合适。

二、浇注位置的确定1.浇注位置:浇注位置指浇注时铸件在铸型内所处的位置。

分型面:指两半个铸型互相接触的表面。

一般先从保证铸件的质量出发来确定浇注位置,然后从工艺操作出发确定分型面。

2.选择浇注位置的主要原则浇注位置的选择,决定于合金的种类、铸件结构及轮廓尺寸、铸件表面质量要求以及现有的生产条件。

选择浇注位置时,主要以保证铸件质量为前提,同时尽量做到简化造型工艺和浇注工艺。

选择浇注位置的主要原则有:1)铸件的重要加工面、主要工作面和受力面,应尽量放在低部或侧面,以防止这些表面上产生砂眼、气孔、夹渣等铸造缺陷。

因为同一铸件,下边质量好,上边质量较差:气孔、夹渣等铸造缺陷上边多,下边少,且下边补缩良好,组织细密。

如图图示车床床身导轨面是关键部位,不允许有任何缺陷,浇注时应把导轨面朝下。

齿轮的轮齿是重要加工面,应将其朝下以保持组织致密,防止铸造缺陷,如图1-22。

卷筒、缸筒等圆筒形铸件,关键部位是内外表面。

因不可能都朝下。

所以应采取立浇,即重要加工面都在侧面。

图1-23。

有时,加工面很多,无法都照顾到,势必使某一加工面朝上,此时,要将重要的加工面朝下,朝上的加工面应加大加工余来量。

相关文档
最新文档