张量分析课件第三章3 二阶张量特征值与特征方向
张量分析
eijk有27个量,其中 个不为零。其标号中,每相 个量, 个不为零。 个量 其中6个不为零 其标号中, 邻两个互换一次位置,改变一次正负号。 邻两个互换一次位置,改变一次正负号。位置变 换偶次,不改变它的正负号;标号位置变换奇次, 换偶次,不改变它的正负号;标号位置变换奇次, 它将改变正负号。 它将改变正负号。如
AB BA [C ij ] = [C ij ]T
r r 则有(板书演示 板书演示) 因为 eiA ⋅ e jA = δ ij ,则有 板书演示
AB BA C ik C kj = δ ij
或
AB BA [C ij ][C ij ] = [ I ]
BA 根据 [C ijAB ] = [C ij ]T ,可见
r r r ei × e j = eijk ek
12:17
16
r r r r r A × B = Ai ei × B j e j = Ai B j eijk ek
eijk = −ejik r r r r A× B = −B × A
易证
r r r ei ⋅ (e j × ek ) = eijk
上式亦可作为e 的定义。 上式亦可作为 ijk的定义。
aij b j = aik bk
ϕ ,i dxi = ϕ ,k dxk
12:17
7
如果标号不是字母,而是数字, 如果标号不是字母,而是数字,则不适用求和约 定,如
σ ii = σ 11 + σ 22 + σ 33 = σ x + σ y + σ z(求和约定 求和约定) 求和约定
不求和) 其中 σ 11 = σ x , σ 22 = σ y , σ 33 = σ z (不求和 不求和 另外 (σ x + σ y + σ z )(σ x + σ y + σ z ) 应写成 σ iiσ jj ,不 因为后者的标号重复了4次 能写作σ iiσ ii,因为后者的标号重复了 次。 两矢量的点乘积应写成 r r r r A ⋅ B = Ai ei ⋅ B j e j
张量分析TensorAnalysisppt课件
的切线方向。矢量 r 可以取作曲线坐标系的基矢量(协变基矢量):
xi
gi
r xi
zj xi
ij
注意:对于在曲线坐标系中的每一点,都有三个基 矢量。
ቤተ መጻሕፍቲ ባይዱ
基矢量一般不是单位矢量,彼此也不正交;
基矢量可以有量纲,但一点的三个基矢量的量纲可以不同;
基矢量不是常矢量,它们的大小和方向依赖于它们所在点的坐标。
利用克罗内克符号,上式可写成:
ds2 ijdxidxj
克罗内克符号的一些常用性质:
ijxi xj
x j xi
j i
ijki kj
D) 置换符号
置换符号eijk=eijk定义为:
1
e ijk
e ijk
1
0
当i,j,k是1,2,3的偶置换(123,231,312) 当i,j,k是1,2,3的奇置换(213,132,321) 当i,j,k的任意二个指标相同
i,j,k的这些排列分别叫做循环排列、逆循环排列和非循环排列。
D) 置换符号(续)
置换符号主要可用来展开三阶行列式:
a11 a1 2 a3 1 aa12 a22 a32 a11a22a33a12a23a3 1a13a1 2a32
a13 a23 a33 a11a23a32 a12a1 2a33 a13a1 2a32
量 Ai ,在坐标系yi中有三个分量 Âi ,它们由以下的变换法则相联系;
AˆiyAjxxyij
逆变矢量用上标表示;因此上标也称为逆变指标。
(3) 协变矢量(一阶协变张量)
一个量被称为协变矢量或一阶协变张量,若它在坐标系 xi 中有三个分 量 Ai ,在坐标系yi中有三个分量 Âi ,其变换法则相为;
张量基础知识
张量基础知识
一、坐标变换 如图所示,设有直角坐标
系OX1X2X3,其三个方向的单
张量基础知识
此处σ不再是一个数,而是9个数构成一个方阵,称为电导率
张量,这是一个二阶张量。于是,各向异性晶体中的欧姆定
律可表示为
JE
11 12 13
21
22
23
31 32 33
张量的定义:一般来说,在物理学中,有一些量需要用9个分 量来描述,这种物理量就是二阶张量。
张量基础知识
2.2 张量的数学定义
张量基础知识
2.3 张量的运算
一、张量的加法
若 Ai,jBi(ji,j1,2,3)皆为二阶张量,则
C i j A i jB ij(i,j 1 ,2 ,3 )也为二阶张量,于是我们定义 Cij
为 Aij, Bij 之和。这就是二阶张量的加法,并表为C=A+B。
以此类推,若A,B为两个同阶张量,则A,B相应分量之和构成 新的同阶张量C,记作C=A+B。
同 样 x x1 2 : 1 2''1 1 1 2''2 2 x x1 2'' i'jT x x1 2''
由( )式得
xx12i'
j1xx12''
比较 : i'jTi'j1
[ i ' j ] 为张量正基础交知识矩阵
引用指标符号:
张量分析课件-3.1 张量函数各向同性张量函数的定义和例
H f T c0G c1T c2T 2 ckT k
或
H
i
j
c0
i j
c1T
i
j
c2T
ilT
l
j
ckT
T i
l1
l1 l2
T
lk 1 j
若一个张量H(标量、矢量、张量)依赖于n 个张量 T1,T2,…,Tn(矢量、张量)而变化,即当T1,T2,…, Tn 给定时, H 可以对应地确定(或者说,在任一坐标系中, H 的分量都是T1,T2,…,Tn 的一切分量的函数),则称H 是张量T1,T2,…,Tn 的张量函数。记作
H F T1,T2,,Tn
3.1.2 张量函数举例
例3.1 矢量u 的标量函数 例3.2 矢量v 的标量函数
f u u1 u2
f v 1 v 2
2
例3.3 矢量F,u的标量函数
f F, u F u
例3.4 矢量v 的矢量函数u
u Fv kv k为给定常数
例3.5 矢量v 的矢量函数u
u Fv K v K为给定对称二阶常张量
例3.6 二阶张量T 的标量函数 例3.7 对称二阶张量 的标量函数
f
T
T
1 1
f
i i
例3.8 二阶张量T 的标量函数
f
为其旋转量 ~,即
f X1, X2,, Xn ~ f X~1, X~2,, X~n
对于任意的Q,则称此函数为各向同性函数。
,
J
T 3
张量分解学习PPT课件
.
26
CP分解
张量的低秩近似
◦ 然而在低秩近似方面,高阶张量的性质比矩阵SVD差
Kolda给出了一个例子,一个立方张量的最佳秩-1近似并不 包括在其最佳秩-2近似中,这说明张量的秩-k近似无法渐进 地得到
下面的例子说明,张量的“最佳”秩-k近似甚至不一定存在
X a1ob 1oc2a1ob2oc1a2ob 1oc1
纤维:x i j :
.
6
基本概念及记号
切片(slice)
水平切片:X i : :
侧面切片:X : j :
正面切片:X ::k ( X k )
.
7
基本概念及记号
内积和范数
◦ 设 X,Y¡I1× I2× L× IN
内积:
I1 I2
IN
X,Y
L x y i1i2LiN i1i2LiN
i11i21 iN1
R
X§A,B,C¨arobrocr r1
X
c1 b 1
c2 b2
L
cR b R
a1
a2
aR
三阶张量的CP分解
.
20
CP分解
CP分解的矩阵形式
◦ 因子矩阵:秩一张量中对应的向量组成的矩阵,如
A a 1 a2 LaR
◦ 利用因子矩阵,一个三阶张量的CP分解可以写成展开形式
X (1) A C e B T X (2) B C e A T X (3) C B e A T
◦ 对于高阶张量,有
X ┈ λ ;A (1 ),A (2 ),L ,A (N ) Rra ( r 1 )o a ( r 2 )o L o a ( r N ) r 1
其展开形式为
X ( n ) A ( n ) d i a g ( λ ) A ( N ) e L e A ( n 1 ) e A ( n 1 ) e L e A ( 1 )T
【张量分析ppt课件】张量分析课件第三章 张量代数
按§2.5节三中(g)式面积矢量记法有:
dH 0 r u(r ) (r )dV
试证明物体 Ω 对o点的动量矩为:
H0 J ω
Ω
式中 称为物体 Ω 对o点的二阶惯性矩张量(注:J 不是四阶单位张量。但 J表达式中的 I是二阶单位张量)。 u (r ) ω r 证: H (r u) dV r (ω r ) dV (r r )ω (r ω)r ) dV
I u (ii ii ) (u j i j ) u j iiij ui ii u
设存在另一二阶张量 I ,且满足 u I I u 。则: u I u I o ; uo ∵ I I O ; I I (唯一性) ∴ 3.
A : J ( Amn imin ) : (ii i j ii i j ) Amnmi jn ii i j Amn imin A
二阶张量与二阶张量的(一)点乘:
A B (Aij ii i j) ( Bmn imin) (Aij Bmn )ii (i j im )in Aij Bjn ii in
二阶张量与二阶张量的(双)点乘:
A : B ( Aij ii i j ) : ( Bmn imin ) ( Aij Bmn )(ii im )(i j in ) Aij Bij
A P2 A P2
A0 P2 Φ0 P4
Φ0 P4
(3.1-11)
A : Φ0 A
0 0
的 n ; A ; A ; ; 分别称为一阶单位张量、二阶单位张量和四 阶单位张量。 上式定义的一阶、二阶和四阶单位张量具有性质: u u V n 1. u A0 A0 ii ii ij ii i j (3.1-12) 2. I 为单位二阶张量。 ii i j 且记 A ; A 为 I 。即 I ii ii ij。并称
数学张量分析PPT课件
第6页/共92页
右散度表示为: diva a
diva a
ei i a je j
ij
a j xi
ai xi
iai
a1 a2 a3 x1 x2 x3
显然 diva diva
今后对于矢量场的左散度和右散度不加区别
第7页/共92页
张量的散度
关于二阶张量场 T T的P左散度定义为:
间点的位置。两者由下列坐标变换联系起来:
xi xi xi' i, i ' 1,2,3
第23页/共92页
若 xi'是的线性函数,则 x i' 也是一个斜角坐标,而且坐标变换为:
xi
Ai i'
x i'
x i
x i'
xi'
这里
Ai i'
为变换系数,它是常数。
若 x i不是 xi' 的线性函数,则 xi' 称为曲线坐标。
标量的梯度:
标量函数:
f f (r)
则梯度为:
f gradf eii f
展开后有:
原式 1 f e1 2 f e2 3 f e3
f i f j f k x y z
第1页/共92页
矢量的梯度: 左梯度
grad a a (i ei )(a j ej ) (eii )(a j e j )
a ai gi ai gi
由 eijk 的定义可知,下列混合积等式成立:
gig jgk gi g j gk gig jgk eijk gig jgk gi g j gk gig jgk eijk
这两个量定义为爱丁顿(Eddington)张量并分别记为 和ijk 。ijk 由此定义可知
张量分析课件
P = ∑αij Ej (i=1,2,3) i
j =1
3
Pi′ = ∑ α i′j′ E j′ (i'=1,2,3)
j ′ =1
3
代 入
将一阶张量Ej和Pi的变换规律
Pi′ = ∑ Ai′i Pi
3
代 入
E j′ = ∑ Aj ′j E j
j =1
i =1 3
∑A
i =1
3
i ′i i
P = ∑∑ α i′j′ Aj′j E j
证: 刚体定轴转动:
ω
(Z轴)转轴
刚 体
(
)
v τi A ni O′ ri
v
刚体定轴转动
r2 r r I 质点:ij = m(rij δ ij − ( r )i ( r ) j ) O
v Ri
= m(δ ij xk xk − xi x j ) (i, j, k=1, 2, 3)
例3. 设质量为m的质点位于点(x1, x2, x3), 证明在 正交变换下,由九个分量构成的一个物理量Iij是一个 二阶张量, 其中: I ij = m(δ ij xk xk − xi x j ) (i, j=1, 2, 3) —称Iij为质点的惯性积,有Iij定义的物理量叫惯性矩. 证: 质点:I ij = m(δ ij xk xk − xi x j ) (i, j, k=1, 2, 3) 九个分量:
δij在坐标变换后,其各个分量的值不变. 即在任意坐 标系中按上式定义的二价对称δ符号是一个二阶张量.
例3. 设质量为m的质点位于点(x1, x2, x3), 证明在 正交变换下,由九个分量构成的一个物理量Iij是一个 二阶张量, 其中: I ij = m(δ ij xk xk − xi x j ) (i, j=1, 2, 3) —称Iij为质点的惯性积,有Iij定义的物理量叫惯性矩.
张量分析课件-2.3 二阶张量的不变量
J2
T 11 T 12 T
2 1
T
2 2
2 T2 T 2 3
T
3 2
T
3 3
3 T3 T 3 1
T 13 T 11
T 11 T 12 T 13 2 2 J3 T 2 T T 1 2 3 3 3 3 T 1 T 2 T 3
张量分析 及连续介质力学
2.3 二阶张量的不变量
2.3.1 张量的标量不变量
对随坐标转换而变化的张量分量进行一定的运算,可 以得到一些不随坐标转换而变化的标量,这种标量称为张 量T 的标量不变量,简称为张量的不变量。
2.3.2
二阶张量的三个主不变量
J1 G : T liT li T ii
若u,v,w为任意线性无关的矢量,则
T u
T u
v w u T v w u v T w J1T u v w
T u v w T v w u T v T w T u v T w J 2
T u
T u v w T v T w J3
若T为正则二阶张量,则有Nanson 公式
T u T v J
T 3
T u v
T 1
2.3.3
二阶张量的矩
J 二阶张量T 的n 阶矩 n ,其中来自J trT T 1
i i
j J2 trT T T i jT i
j k J3 trT T T T i jT T k i
1 ij l m 1 i l i l J 2 lmT iT j T iT l T lT i 2 2
张量分析基础
二阶张量的表示
P1 T11 P = T 2 21 P3 T31 T12 T22 T32 T13 Q1 T23 Q 2 T33 Q 3
傀标表示必须成对出现
爱因斯坦求和规则:傀标表示法
Pi =
∑T Q
j =1 ij
3
j
( i = 1, 2 ,3) ( i , j = 1, 2 ,3)
x1* a11 * x 2 = a 21 * x 3 a 31
a12 a 22 a 32
a13 x1 a 23 x 2 a 33 x 3
Neuman原理
物质张量、场张量
— 物质张量是建立晶体在外场作用下的响应与外场之间关系的物理性 能,物质张量受到晶体对称性的制约,如弹性系数 — 场张量:外场张量及晶体对外场响应后所产生的新的物理量,不受 晶体对称性的制约,如应力、电场 — 晶体响应,受外场、物理性能和晶体对称性的共同影响,如应变
—二次曲面方程系数与张量分量 具有相同的变换规律; —二次曲面方程称为张量S的示 性二次曲面; —示性二次曲面可描述具有二阶 对称张量性质的物理特性;
示性二次曲面的主轴
二次曲面的主轴方程
S x + S x + S x =1
2 1 1 2 2 2 2 3 3
x2 a
2
+
y2 b
2
+
z2 c
2
=1
P Q
Neuman原理
— 一个晶体的任何物理性能的对称性必须包括晶体点群的对称性, 即 G物性G点群; — 例1:属于立方晶系的晶体的介电系数可以是各向同性的; — 例2:属于立方晶系的晶体的介电系数不可以只有一个四次对称轴。
晶体对称性对二阶对称张量的制约
张量基础知识分解
此处σ不再是一个数,而是9个数构成一个方阵,称为电导率 张量,这是一个二阶张量。于是,各向异性晶体中的欧姆定 律可表示为
J E
11 12 13 21 22 23 31 32 33
张量的定义:一般来说,在物理学中,有一些量需要用9个分
量来描述,这种物理量就是二阶张量。
2.2 张量的数学定义
描述物理量的矢量和张量应与坐标轴的选择无关。就是 说,当坐标轴变换时,矢量和张量的所有分量都随之变换, 但作为描述物理量的矢量和张量本身是不变的。因此,分量
的变换必有一定的规律。接下来我们就来讨论一下坐标变换
时分量变换的规律。
一、坐标变换 如图所示,设有直角坐标
称9的a的分量组成的方阵称为坐标变换矩阵或方向余弦矩阵, 它简明的表示出了新老坐标之间变换的规律。
二、矢量分量的变换 设有一矢量p,其在旧坐标系中的分量为p1,p2,p3, 在新坐标系中的分量为p1*,p2*,p3*,由于是同一个 矢量p,故有
p p1e1 p 2e2 p 3e3 p * 1e * 1 p * 2e * 2 p * 3e * 3
点操作时发生改变,这称为赝标量。
二、矢量
有一些物理量,它既有大小,又有方向,如力、速度、
电场强度等,这些物理量需要指明其大小和方向才能完全描 述,称为矢量。取直角坐标系OX1X2X3,设有矢量 f ,在三 个坐标轴方向上的投影分别为 f 1, f 为: f ( f 1, f 2, f 3) 。
或表示成分量形式
Ji ijEj (i 1, 2 , 3 )
j 1
3
矩阵形式
J 1 11 12 13 J 2 21 22 23 J 3 31 32 33
张量分析各章要点
各章要点第一章:矢量和张量指标记法:哑指标求和约定 :同一项中出现一对相同的协、逆变指标则对该指标求和 自由指标规则:同一项中只能出现一次,不同项中保持在同一水平线上 协变基底和逆变基底:ki k i i x ∂∂==∂ξ∂ξr g e j j i i ⋅=δg giik k x∂ξ=∂g e123 ===g g g 张量概念i i'i'i =βg g i'i'ii =βg g i k i k j j''''ββ=δ i'i'i i v v =β ii 'i 'iv v =β i 'j'i 'j'k l ij ..k 'l'i j k 'l'..kl T T =ββββ i i i i v v ==v g g ..kl ij ijk l T =⊗⊗⊗T g g g g 度量张量ij i i i j i i g =⊗=⊗=⊗G g g g g g g⋅=⋅=⋅=⋅=v G G v v T G G T T.j kj i ik T T g =张量的商法则lm ijk T(i,j,k,l,m)S U = ijk...lmT(i,j,k,l,m)T = 置换符号312n 1n123n i i i i i 123n 1n i i i ...i A a a a ......a a e -- i j k Lmnijk .L.m .n a a a e e A = i j k .L .m .n ijk Lmn a a a e e A =置换张量i j k ijk ijk i j k =ε⊗⊗=ε⊗⊗εg g g g g gijk i j k ()e ε=⋅⨯=g g gijk ijk i j k ()ε=⋅⨯=g g gi j k ijk ijk i j k a b a b ()::()⨯=ε=ε=⊗=⊗a b g g a b εεa b广义δ符号i ii r s tj j j ijk ijk ijk r s t rst rst rst k k k r s te e δδδδδδ==εε=δδδδijk j k j k jk ist s t t s st δ=δδ-δδδijk k ijt t 2δ=δijk ijk 6δ=性质:是张量重要矢量等式:()()()⨯⨯=⋅-⋅a b c a c b a b c第二章: 二阶张量重要性质:T =T.u u.T 主不变量i 1.i Tr()T ζ==T i j l m2l m .i .j 1T T 2ζ=δ 3det()ζ=T1()()(())(())()⋅⋅⨯⋅⋅⨯⋅⨯⋅=ζ⋅⨯T u v w +u T v w +u v T w u v w2)[)][()(]()[()]()⋅⋅⋅⨯⋅⋅⨯⋅⋅⋅⨯⋅=ξ⋅⨯T u (T v w +u T v T w)+T u (v T w u v w ( ()[()()]det()()⋅⋅⋅⨯⋅=⋅⨯T u T v T w T u v w 标准形1. 特征值、特征向量⋅=λT v v ()-λ⋅=T G v 0 321230λ-ζλ+ζλ-ζ= 2. 实对称二阶张量标准形i 123i 112233=⋅⊗=λ⊗+λ⊗+λ⊗N N g g g g g gg g 3. 正交张量(了解方法)12112233(cos()sin())(sin()cos())=ϕ+ϕ⊗+-ϕ+ϕ⊗+⊗R e e e e e e e e4. 反对称二阶张量的标准形21123=μ⊗-μ⊗=μ⨯Ωe e e e e G⋅=⨯Ωu ωu31:2=-=μ⨯ωεΩe u=-⋅Ωεω5. 正则张量极分解=⋅=⋅T R U V R第三章 张量函数概念:各项同性张量函数、解析函数 计算 e T , sin()T 重要定理:1. Hamilton-Cayley 定理:32321231230λ-ζλ+ζλ-ζ=⇒-ζ+ζ-ζ=T T T G 0 2.对称各向同性张量函数表示定理:2012f ()k k k ==++H N G N N ;其中T T ;==H H N N ;而系数i k 是N 的主不变量的函数。
第3章张量分析(清华大学张量分析你值得拥有)精品PPT课件
(T
)
T
3
J1T T
2
J
T 2
T
J
T 3
G
O
由于
T3
J1TT 2
J
T 2
T
J
T 3
G
,T
n
均可用
T 2 来表达。
也就是说,H f (T ) f (T 2 ,T ,G) k0G k1T k2T 2
ki ki
J1T
,
J
T 2
,
J3T
H-C等式的意义:只需研究低次项,而无需高次项。
二阶张量的二阶张量函数
➢ 经典《解析几何》中,解析地描述一个几何图形 的运动,有两种不同的思想。一种思想:图形不 动,移动坐标。但运动是相对的,于是另一种思 想:坐标不动,图形移动。
➢ 注意:运动学思想之重要!
张量函数、各向同性张量函数的定义和例
考察一个最简单的图形,一个矢量 u 。研究两种相
对的旋转运动下,矢量的表达,以及矢量的标量
通过正交变换,使 X i X i
从而使 f ( Xi ), (i 1, 2, , n)
张量函数、各向同性张量函数的定义和例
各向同性张量函数 例子请见《张量分析》的92 ~ 93页。
矢量的标量函数
• Cauchy基本表示定理: 矢量 vi (i 1, 2, , m) 的标量函数 f (vi ) 为各向同性 f 可表示为内积 vi v j (i 1, 2, , m) 的函数。
H f (N ) H k0G k1N k2 N 2
ki
ki
(
J1N
,
J
N 2
,
J
N 3
)
例:应力应变关系
张量ppt
示多重求和。
例如:
33
aij xi xj
aij xi x j
i1 j1
★ 若要对在同项内出现两次以上的指标进行遍历求和,
一般应加求和号。如:
3
a 1b1c1 a 2b2c2 a 3b3c3 aibici i 1
24
张量基本概念
★ 一般说不能由等式
aibi aici
bi ci
两边消去ai导得
3. 换标符号,具有换标作用。例如:
d s2 ij d xi d xj d xi d xi d xj d xj
即:如果符号 的两个指标中,有一个和同项中其它
因子的指标相重,则可以把该因子的那个重指标换成
的另一个指标,而 自动消失。
29
符号ij 与erst
类似地有
ij a jk aik ; ij aik a jk ij akj aki ; ij aki akj ij jk ik ; ij jk kl il
符号ij 与erst
➢ 常用实例
1. 三个相互正交的单位基矢量构成正交标准化基。 它具有如下重要性质:
✓ 每个基矢量的模为1,即 ei e j 1 (当i=j时) ✓ 不同基矢量互相正交,即 ei e j 0 (当i≠j时)
上述两个性质可以用ij 表示统一形式:
2. 两个矢量 a 和 b 的分量的点积(或称数量积)为:
3
a b= a1b1 a2b2 a3b3 aibi i1
Appendix A.1
张量基本概念
➢求和约定
如果在表达式的某项中,某指标重复地出现两次, 则表示要把该项在该指标的取值范围内遍历求和。 该重复的指标称为哑指标,简称哑标。
3
0下载券文档一键搜索 VIP用户可在搜索时使用专有高级功能:一键搜索0下载券文档,下载券不够用不再有压力!
张量分解
内积:
I1 I2
IN
X,Y
L
x y i1i2L iN i1i2L iN
i1 1 i2 1 iN 1
(Frobenius)范数:
X
I1 I2
IN
X , X
L
x2 i1i2L iN
i1 1 i2 1 iN 1
8
秩一张量/可合张量
◦ N阶张量 X ¡ I1×I2×L ×IN 是一个秩一张量,如果它能被写
张量的(超)对角线
10
展开(matricization/unfolding/flattening)
◦ 将N阶张量 X 沿mode-n展开成一个矩阵X(n) X(1)
三阶张量的mode-1展开
11
n-mode(矩阵)乘积
◦ 一个张量X ¡ I1×I2×L ×IN 和一个矩阵 U ¡ J×In 的n-mode
◦ 以一个三阶张量 X 为例,假定成分个数 R 已知,目标为
R
§ ¨ min X Xˆ Xˆ
s.t. Xˆ rar obr ocr λ; A, B,C
r 1
◦ 作为ALS的一个子问题,固定 B 和 C ,求解
min A
X(1) Adiag(λ) C e
BT
F
得 Adiag(λ) X(1) Ce
1
i
B
1 1 2 i
1 i
C
1 i
1 i
25
张量的低秩近似
◦ 相对于矩阵的SVD来说,高阶张量的秩分解唯一性不需要 正交性条件保证,只需满足:
N
kA(n) 2R N 1
n1
这里 kA 表示矩阵 A 的k-秩:任意k列都线性无关的最大
的k
张量及应用
x 1 a 1x 1 1 a 1x 2 2 a 1x 3 3 x 2 a 2x 1 1 a 2x 2 2 a 2x 3 3 x 3 a 3x 1 a 3x 2 2 a 3x 3 3
ei Aijej i 为自由指标,j 为哑标
表示
e 1 A 1e 1 A 1e 2 2 A 1e 3 3 e 2 A 2e 1 A 2e 2 2 A 2e 3 3 e 3A 3e 1 A 3e 2 2 A 3e 3 3
或
Ux Uy Uz 0 x y z
1.4 指标记法的运算
1.4.5 例题 ——熟悉指标记法和普通记法的转换 不可压缩牛顿流体的Navier-Stokes方程:
( U tiU j U xji)b i x p ix U jx i j
写出其普通记法
在坐标变换时其值保持不变,即满足
(x 1 ,x 2 ,x 3 )(x 1 ,x 2 ,x 3 )
如数学中的纯数,物理中的质量、密度、温度等。 时间是否标量?
1.5.3 矢量(Vector)
满足以下变换
关系的三个量 定义一个矢量
{a
i
}
设 a 为任意矢量,其在新、旧坐标系下的分量分别为
1.5.3 矢量(Vector)
ai ii ai
ai ii ai
ai ii ikak
哑标换成 k
ikak ii ikak
A31 A32
A13 A23 A33
指标任意排列,经过行列调 整总可用右边表示,两个置 换符号分别反映行、列调换 及指标重复时的正、负及零
令 Ai j i j
即得( i ),将( i )作相应的指标替换, 展开化简,将得其余三式。
二维置换符号 e (,1,2)
张量分析课件-3.4 二阶张量的二阶张量函数
上式存在极限的条件是: (1)当T 的特征根= 时, H 的特征根= 。 1 2 (2)极限 lim 存在,因而k0,k1,k2 也接近于相应 2 1 1 2 极限。 III. T 的特征方程具有三重根 1=2=3 具有三重根的能化为对角型标准形的张量只能是球形张量, 故T 为球形张量,考虑→,2→ 的极限过程,H=f (T )表
于三个特征值的集合,与特征值得排序无关。特征值的集合取
T T T , J2 , J3 决于特征方程的系数 J1 ),因此 k0,k1,k2是主不变
T T T , J2 , J3 量 J1 函数,从而H 是 T 的各向同性函数。
II. T 的特征方程具有二重根 1=2≠3
2 1
lim
T 3G 1 2 f T lim T 2G T 1G
3.4.3 同时化为对角型标准形的函数
设二阶张量T 的二阶张量函数 H=f (T ),当T 在某一组基
矢量中化为对角型标准形时,H 在同一组基矢量中也化为对 角型标准形,并设 H 的特征根 i(i=1,2,3)为T 的特征根 i(i=1,2,3)的函数,而与T 的其他性质无关,即
i i j i 1 , 2 , 3
H f T 1 2 1 1 2 2 3 3 1 3 1 2 T 2 1 3 3 1 2 1 3 2
2 2 G 1 2 2 T 3 2 1 3 2
T
i j
3 2 1 J11 J 21 J 3 T 0 0 O
3 2J J J J J
2 2 1 3
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
右特征矢量:
u1 0u2 u3 0
∵
u1
0u2
ቤተ መጻሕፍቲ ባይዱ0u3
0
u1 0u2 u3 0
;∴
是方程组(1)的非零解。
u1 0
u
2
a
u 3 0
(a是任意实数)
uai2
A u ( i 1 i 3 i 2 i 1 i 2 i 2 i 3 i 1 ) ( a i 2 ) a i 2 1 u
(3.4-4)
(3.3-3)和(3.3-4)是关于 u1, u2, u3的齐次线性代数方程 。方程有非零解的充要条件是方程组的系数行列式为零。
或者说A有非零的右特征矢量和左特征矢量的充要条件是:
d e t( A I) 0
( a )
d e t( A * I) 0
( b )
∵
d e t ( A I ) * d e t ( A * I ) d e t ( A I )
ω
1 2
e
:
A
1 2
(eijk
iii
j
ik
)
:
(
Amnimin
)
1 2
eijk
Ajk
ii
1 2
( A23i1
A31i2
A12i3
A32i1
A21i3
A13i2
)
1 2
(2A23i1
在。但特征方程(3.4-6)至少有一个实特征值。因此可以 肯定二阶张量至少有一个右特征矢量和一个左特征矢量。
以下对(实)正交二阶张量、(实)对称二阶张量和(实)反对称 二阶张量的特征值问题进行分析。
一、正交二阶张量特征值问题
由特征方程(3.4-6)可知,实A的三个特征值至少有一个 是实数,另外两个或是实数或是一对共轭复数。对正交二
( A a)[( A b) ( A c)] ( A a) [( A b) c b ( A c)]
2 ( A a) (b c) a [( A b) ( A c)]
2a [( A b) c b ( A c)] 3a (b c)
,使得:
A u u ; F u A u ; F
(3.4-1) (3.4-2)
若(3.4-1)的u存在,则称u是 A的右特征矢量; λ 是 A的
右特征值;若(3.4-2)的u存在,则称u是 A的左特征矢量 ; λ 是 A的左特征值。
设V中标准正交坐标系为 {i1, i2, i3} 。则二阶张量 A和矢量 u可表示为:
01 1
0
11
1 0
uu12
0 0
1 0 01u3 0
(2)
(1)式和(2)式关于u1, u2, u3的系数行列式的值分别均
为0。因此 u1, u2, u3 有非零解。也就是说与特征值 λ1 = 1对
应的左、右特征矢量都存在。
(d Q )d eQ te I t) ( dQ e I t)(
∴
2deQ t (I)0
因此得出结论: 正交二阶张量 Q,当det Q =1时存在右特征矢量 r。其对应 的特征值λ = 1。且:
Q r r ; ( d e tQ 1 )
若det Q = -1 ,则:
(3.4-7)
AA ijiiij ; uuiii Auu ; (AI)uo
uAu ; u(AI)o
可分别写成:
( A i j i i i j i j i i i j ) ( u m i m ) o ; ( u m i m ) ( A i j i i i j i j i i i j ) o
特征值λ2 = i , λ3 = -i 对应的右和左实特征矢量。与λ1 =
1对应的右和左特征矢量如果存在,则应当满足(3.4-3)
和(3.4-4)式。即:
01 0
1
11
1 0
uu12
0 0
1 0 01u3 0
(1)
和
3.4 二阶张量特征值、特征方向
二阶张量A实现 V到V的线性变换(这种变换通过二阶张量
与矢量的点乘实现)。对给定的二阶张量A , V中是否存在 这样的矢量u使得A点乘u所得到的矢量 A·u方向与 u相同,
而大小发生变化。这类问题称为二阶张量的特征值问题。
设A为给定的二阶张量。那么A的特征值问题归结为u ∈V
A13 A23 0
该式表明反对称二阶张量或有一个零特征值和二个复特征 值;或三个特征值为零。即反对称二阶张量至少有一个零 特征值( λ = 0),那么:
Arro
即存在一个单位矢量 r 使得:
r A r r ( r ) ( rr ) 0
由于反对称二阶张量 A无非零实特征值。因此 A是退化二 阶张量( det A = 0 ) 。退化二阶张量本质上已不是二阶张量 。对反对称(退化)二阶张量可与一矢量对应。按矢量空
或
A11 A12
A21
A22
A13 A23
uu1200
A31
A32 A33u3 0
(3.4-3)
A11 A21
A12
A22
A31 A32
uu1200
A13
A23 A33u3 0
dQ e*t(Q [ ( 1 )I) ]de Q t( [1 )I ()*] dQ e ( t 1 [ )I ] ( dQ e ( t 1 [ )I ) (]
∴
2deQ t[( (1 )I) ]0
因此得结论:
正交二阶张量Q,当det Q = -1时存在右特征矢量 r 。其对
3a (b c) 2 ( A a) (b c) a [( A b) c] a [b ( A c)]
( A a) [( A b) c] ( A a) [b ( A c)] a [( A b) ( A c)]
I3 (A) 唯一确定。对特征值问题,由特征方程确定了特征
特征值后,将特征值 λ1, λ2, λ3代入特征问题的(3.4-3) 、(3.4-4)式中可确定是否存在特征矢量。
例15: 试求二阶张量 A i1 i3 i2 i1 i2 i2 i3 i1的特征值。并确定A是否
存在右和左特征矢量。如果存在试求出特征矢量。
∵
[( A I ) a][( A I ) b][( A I ) c]
[( A I ) a][( A b b) ( A c c)]
( A a a) [( A b) ( A c) ( A b) c b ( A c) 2b c]
)表达式中的矢量a、b、c的取值只要满足 a(bc)0 ,则
a、b、 c 的取值不改变行列式 det ( A- λ I ) 的值。因此 A
的三个不变量I1(A) , I2(A) , I3(A)与a、b、c的选取无关。 由(3.4-6)可知,对给定的二阶张量A 。特征方程的系数
是不变的,且特征值λ1, λ2, λ3由不变量 I1(A) , I2(A) , I3(
( A a) [( A b) ( A c)]
令 : I 1 (A ) a ( b 1 c ) (A a )( b c ) a [A ( b ) c ] a [ b (A c )]
I 2 ( A ) a ( b 1 c ) ( A a ) [ ( A b ) c ] ( A a ) [ b ( A c ) ] a [ ( A b ) ( A c ) ]
阶张量这里只讨论存在的实特征值和其对应的特征矢量。
设Q是正交二阶张量;r、 λ是Q的右特征矢量和实特征值。
∵
Q * ( Q I ) Q * Q Q * I ( Q I ) *
若det Q =1,则:
(d Q * e )d tQ e tI( ) ( 1 )dQ e tI( )*
解:
由det (A- λI )得:
0 0 1
1 1 0 0
2(1)(1)0
1 0 0
解之得:
1 1; 2 i ; 3 i
显然λ2, λ3代入(3.4-3)和(3.4-4)式中所确定的u1, u2,
u3是复数。即 u = ui ii是复矢量。因此二阶张量A不存在与
u12a(i12i2 i3)
因此:
u A12a(i1 2i2 i3)(i1i3 i2i1 i2i2 i3i1)
1 2a(i1
2i2
i3)
1u
u12a(i12i2 i3)
是 A的λ1 = 1特征值对应的右特征矢量。
由该例可以看出二阶张量 A 的同一特征值对应的右和左特 征矢量是不相同的。且与复特征值对应的实特征矢量不存
∴ (a)、(b)两式是关于λ的三次相同的代数方程。也就是说
A的右特征值和左特征值相同。由 (a)式或 (b)式得:
dA e I t ) ( [A ( I ) a ] [A ( I ) b ]A [ ( I ) c ] 0 a ( b c )
将该式代入(c)式得:
3 I1 (A )2 I2 (A ) I3 (A ) 0
(3.4-6)
该式称为二阶张量 A 的特征方程。且由特征方程可确定特
征值λ1, λ2, λ3。式中 I1(A) , I2(A) , I3(A)称 A的第一、第 二、第三不变量。由(c)式及行列式的定义可知det(A- λ I