初中数学中考必考知识点汇总
初三数学中考知识点总结【优秀10篇】
初三数学中考知识点总结【优秀10篇】(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作总结、计划大全、策划方案、报告大全、心得体会、演讲致辞、条据文书、作文大全、教案资料、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, this store provides various types of classic sample essays for everyone, such as work summaries, plan summaries, planning plans, report summaries, insights, speeches, written documents, essay summaries, lesson plan materials, and other sample essays. If you want to learn about different formats and writing methods of sample essays, please stay tuned!初三数学中考知识点总结【优秀10篇】面对着中考,对于数学要想拿高分离不开平时的刻苦,以及大量的试题训练,当然也少不了一些备考的技巧。
中考数学必背知识点(精简必背)
中考数学必背知识点(精简必背)中考数学必背知识点一、不为零的量1.分式 $\frac{A}{B}$,分母 $B\neq 0$;2.二次方程 $ax^2+bx+c=0$($a\neq 0$);3.一次函数 $y=kx+b$($k\neq 0$);4.反比例函数 $y=\frac{k}{x}$($k\neq 0$);5.二次函数 $y=ax^2+bx+c=0$($a\neq 0$)。
二、非负数1.$|a|\geq 0$;2.$a\geq 0$($a\geq 0$);3.$a^{2n}\geq 0$($n$ 为自然数)。
三、绝对值:$|a|=\begin{cases}a。
& a\geq 0\\-a。
& a<0\end{cases}$四、重要概念1.平方根与算术平方根:如果 $x^2=a$($a\geq 0$),则称 $x$ 为 $a$ 的平方根,记作:$x=\pm\sqrt{a}$,其中$x=\sqrt{a}$ 称为 $x$ 的算术平方根;2.负指数:$a^{-p}=\frac{1}{a^p}$;3.零指数:$a=1$($a\neq 0$);4.科学计数法:$a\times 10^n$($n$ 为整数,$1\leqa<10$)。
五、重要公式一)幂的运算性质1.同底数幂的乘法法则:$a^m\timesa^n=a^{m+n}$($a\neq 0$,$m$,$n$ 都是正数);2.幂的乘方法则:$(a^m)^n=a^{mn}$($m$,$n$ 都是正数);3.积的乘方法则:$(ab)^n=a^n\times b^n$($n$ 为正整数);4.同底数幂的除法法则:$\frac{a^m}{a^n}=a^{m-n}$($a\neq 0$,$m$,$n$ 都是正数,且 $m>n$)。
二)整式的运算1.平方差公式:$(a+b)(a-b)=a^2-b^2$;2.完全平方公式:$(a\pm b)^2=a^2\pm 2ab+b^2$。
中考数学必考知识点归纳
中考数学必考知识点归纳一、数与代数。
1. 有理数。
- 有理数的概念:整数和分数统称为有理数。
整数包括正整数、0、负整数;分数包括有限小数和无限循环小数。
- 数轴:规定了原点、正方向和单位长度的直线叫做数轴。
数轴上的点与有理数一一对应。
- 相反数:只有符号不同的两个数叫做互为相反数,0的相反数是0。
若a与b互为相反数,则a + b=0。
- 绝对值:正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0。
即| a|=a(a≥0) -a(a<0)。
- 有理数的运算:- 加法法则:同号两数相加,取相同的符号,并把绝对值相加;异号两数相加,绝对值相等时和为0,绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值;一个数同0相加,仍得这个数。
- 减法法则:减去一个数等于加上这个数的相反数。
- 乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘;任何数与0相乘都得0。
- 除法法则:除以一个不等于0的数,等于乘这个数的倒数;两数相除,同号得正,异号得负,并把绝对值相除;0除以任何一个不等于0的数都得0。
- 乘方:求n个相同因数的积的运算叫做乘方,乘方的结果叫做幂。
a^n 中,a叫做底数,n叫做指数。
2. 实数。
- 无理数:无限不循环小数叫做无理数,如√(2)、π等。
- 实数的概念:有理数和无理数统称为实数。
实数与数轴上的点一一对应。
- 实数的运算:实数的运算顺序为先算乘方、开方,再算乘除,最后算加减;有括号的先算括号里面的。
3. 代数式。
- 代数式的概念:用运算符号(加、减、乘、除、乘方、开方)把数或表示数的字母连接而成的式子叫做代数式,单独的一个数或者一个字母也是代数式。
- 整式:单项式和多项式统称为整式。
单项式是数与字母的乘积,单独的一个数或一个字母也是单项式;多项式是几个单项式的和。
- 整式的加减:实质是合并同类项,同类项是指所含字母相同,并且相同字母的指数也相同的项。
数学中考复习必背知识点
数学中考复习必背知识点数学中考复习必背知识点1实数的知识点1、数轴------规定了原点、正方向、单位长度的直线,叫做数轴。
实数和数轴上的点是一一对应的。
2、相反数-----只有符号不同的两个数叫做互为相反数。
(1)几何意义:在数轴上,表示相反的两个点位于原点的两侧,且到原点的距离相等,关于原点对称;(2)实数a的相反数为-a;(3)a和b互为相反数则,a+b=0;(4)相反数是它本身的数是0。
3、倒数----乘积是1的两个数互为倒数。
(1)实数a的倒数是1/a,其中a≠0;(2)a和b互为倒数则,a__b=1;(3)倒数是它本身的数有-1和1。
4、绝对值----一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值,记作|a|。
绝对值的性质:即,(1)、a0时,|a|=±a;(2)|a|=|b|,则a=b或a+b=0;(2)|a|=|b|,则a=b或a+b=0;(3)任意实数的绝对值具有非负性,即|a|≥0;(4)含有绝对值代数式的化简、运算,首先考虑代数式的性质,即正负性,再根据绝对值的性质去掉绝对值符号进行化简、运算。
5、实数的分类:有理数和无理数。
常见无理数种类:(1)具有特殊意义的常数,例如:π、π-1、π+4、9π等;(2)特殊结构类型,例如:0.101001000100001.(每两个1之间0的个数依次增加1)等无限不循环小数;(3)根号类型,例如:、等不能开的尽方的二次根式;当然具有根号,但是能开方就是有理数;2二次根式1、一般地,形如√a的代数式叫做二次根式,其中,a叫做被开方数。
当a≥0时,√a表示a的算术平方根;当a小于0时,√a的值为纯虚数。
2、最简二次根式:若二次根式满足:被开方数的因数是整数,因式是整式;被开方数中不含能开得尽方的因数或因式,这样的二次根式叫做最简二次根式。
3、化二次根式为最简二次根式的方法和步骤:(1)如果被开方数是分数(包括小数)或分式,先利用商的算数平方根的性质把它写成分式的形式,然后利用分母有理化进行化简。
初中中考数学必考知识点
初中中考数学必考知识点
一、整数与有理数
1. 整数的概念及性质
2. 整数的加减乘除运算法则
3. 整数的混合运算
4. 有理数的概念及性质
5. 有理数的加减乘除运算法则
6. 有理数的比较大小
7. 有理数的混合运算
二、代数与方程
1. 代数式的概念及运算法则
2. 一元一次方程的概念及解法
3. 一元一次方程组的概念及解法
4. 二元一次方程组的概念及解法
5. 带有绝对值符号的方程及不等式
三、几何与图形
1. 角的概念及种类
2. 一次构图问题
3. 二次构图问题
4. 三角形的性质及分类
5. 直角三角形与勾股定理
6. 平面镶嵌问题
四、数据与统计
1. 平均数、中位数和众数的概念及计算方法
2. 折线图的绘制与解读
3. 条形统计图、饼图和表格的制作与分析
五、函数与图像
1. 函数的概念及表示方法
2. 一次函数与二次函数的性质
3. 函数图象的绘制及分析
六、概率与统计
1. 概率的基本概念及计算方法
2. 抽样调查与统计的基本方法
3. 事件的概念及概率的运算规则
七、空间与变换
1. 空间图形的展开与剖视图的绘制
2. 刚体变换的概念及性质
以上是初中中考数学中的必考知识点,掌握了这些知识,就能对数学考试有一个较为全面的准备。
希望同学们能够认真学习,掌握这些知识,并在考试中取得优异的成绩!。
中考数学复习知识点归纳总结6篇
中考数学复习知识点归纳总结6篇篇1一、数与代数1. 数的基本概念:整数、分数、小数、百分数、比例、方程等。
2. 数的运算:加减乘除四则运算,乘方、开方运算,分数运算,小数运算等。
3. 代数表达式:用字母表示数,表达数量关系和变化规律。
4. 方程与不等式:解一元一次方程,解一元一次不等式,理解函数的概念。
二、几何与图形1. 几何概念:点、线、面、体,角、度数,平行、垂直等基本几何概念。
2. 图形与变换:平移、旋转、对称等图形变换,相似图形,全等图形。
3. 面积与体积:计算平面图形的面积,计算立体图形的体积。
4. 解析几何:理解直线的方程,理解圆及其方程。
三、函数与图像1. 函数的概念:理解变量间的关系,用解析式表示函数关系。
2. 函数的运算:函数的加减法,函数的乘法,复合函数。
3. 函数的图像:理解函数的图像及其变换,根据图像理解函数的性质。
4. 反函数与对称函数:理解反函数的概念,理解对称函数的概念。
四、数据与概率1. 数据收集与整理:理解数据收集的方法,会用统计图表表示数据。
2. 数据的计算:平均数、中位数、众数等统计量的计算,方差和标准差的计算。
3. 概率的概念:理解概率的基本概念,会计算事件的概率。
4. 概率的应用:理解概率在生活中的应用,会解决与概率相关的问题。
五、综合与实践1. 图形的变换与对称:运用几何知识解决实际问题,理解图形的变换和对称。
2. 函数的实际应用:理解函数在实际问题中的应用,如利润、成本等问题。
3. 数据的分析与决策:运用统计知识解决实际问题,理解数据的分析与决策。
4. 课题学习与研究性学习:理解课题学习与研究性学习的意义和方法。
在中考数学复习过程中,我们需要对以上知识点进行全面的梳理和总结,形成系统的知识框架。
同时,我们需要关注考试动态和命题趋势,结合历年真题进行有针对性的练习和巩固。
此外,我们还要注重解题技巧和策略的学习和应用,提高解题效率和准确性。
希望同学们能够认真复习备考,取得优异的成绩!篇2一、数与代数(一)数的认识复习要点:整数、小数、分数、百分数的认识及其关系,数的运算规则和运算性质。
初中数学中考必考知识点之难点归纳
初中数学中考必考知识点之难点归纳一.整数运算和代数1.整数运算:包括整数的加减乘除运算,要求掌握运算法则,特别是二元一次方程的解法。
2.代数式与等式:包括代数式化简和等式解法,要求学生能够进行因式分解、提公因式、合并同类项等操作。
二.分数与比例1.分数的加减乘除:要求学生能够进行分数的加减乘除运算,尤其需要掌握分数的约分和通分。
2.比例与比例关系:要求学生能够理解比例与比例关系,能够应用比例关系解决实际问题。
三.平面图形与空间几何1.平面图形的认识和性质:包括对各种平面图形的名称、性质和特征的认识,要求学生能够理解和应用平行四边形、正方形、等腰三角形、等边三角形等形状的性质。
2.空间几何的认识和性质:包括对立体的认识,要求学生能够理解和应用箱体、球体、圆柱体等几何体的计算和性质。
四.数据与统计1.数据的收集和整理:包括对数据的收集、整理和处理,要求学生掌握数据的分类、整理和统计的方法。
2.统计图表的应用:要求学生能够读懂和应用各种统计图表,包括直方图、折线图、饼图等。
五.方程与不等式1.一元一次方程:要求学生能够解一元一次方程的应用题,特别是应用题中的词语和符号的转化。
2.一元一次不等式:要求学生能够解一元一次不等式的应用题,特别是应用题中的词语和符号的转化。
六.函数1.函数的概念与性质:要求学生能够理解函数的概念和性质,包括定义域、值域、图像、导数等。
2.函数的应用:要求学生能够应用函数解决实际问题,包括函数的最大值、最小值、零点等求解方法。
总结起来,初中数学中考必考的难点主要集中在整数运算和代数、分数与比例、平面图形与空间几何、数据与统计、方程与不等式、函数等方面。
学生在备考中应重点掌握和理解这些知识点,并能够熟练运用解决各种实际问题。
中考初中数学知识点大全(详细、全面)
中考初中数学知识点大全(详细、全面)第一章 实数考点一、实数的概念及分类 (3分)1、实数的分类正有理数有理数 零 有限小数和无限循环小数 实数 负有理数 正无理数无理数 无限不循环小数 负无理数 2、无理数在理解无理数时,要抓住“无限不循环”这一实质,归纳起来有四类: (1)开方开不尽的数,如32,7等;(2)有特定意义的数,如圆周率π,或化简后含有π的数,如3π+8等; (3)有特定结构的数,如0.1010010001…等; (4)某些三角函数,如sin60o等考点二、实数的倒数、相反数和绝对值 (3分)1、相反数实数与它的相反数时一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a 与b 互为相反数,则有a+b=0,a=—b ,反之亦成立。
2、绝对值一个数的绝对值就是表示这个数的点与原点的距离,|a|≥0。
零的绝对值时它本身,也可看成它的相反数,若|a|=a ,则a ≥0;若|a|=-a ,则a ≤0。
正数大于零,负数小于零,正数大于一切负数,两个负数,绝对值大的反而小。
3、倒数如果a 与b 互为倒数,则有ab=1,反之亦成立。
倒数等于本身的数是1和-1。
零没有倒数。
考点三、平方根、算数平方根和立方根 (3—10分)1、平方根如果一个数的平方等于a ,那么这个数就叫做a 的平方根(或二次方跟)。
一个数有两个平方根,他们互为相反数;零的平方根是零;负数没有平方根。
正数a 的平方根记做“a ±”。
2、算术平方根正数a 的正的平方根叫做a 的算术平方根,记作“a ”。
正数和零的算术平方根都只有一个,零的算术平方根是零。
a (a ≥0) 0≥a==a a 2 ;注意a 的双重非负性:-a (a <0) a ≥03、立方根如果一个数的立方等于a ,那么这个数就叫做a 的立方根(或a 的三次方根)。
一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零。
初中中考常考数学知识点归纳总结(8篇)
初中中考常考数学知识点归纳总结(8篇)掌握中考常考数学知识点是我们提高成绩的关键!在平时的学习中,不管我们学什么,都需要掌握一些知识点,知识点就是“让别人看完能理解”或者“通过练习我能掌握”的内容。
下面是小编给大家整理的初中中考常考数学知识点归纳总结,仅供参考希望能帮助到大家。
初中中考常考数学知识点归纳总结篇11.代数式与有理式用运算符号把数或表示数的字母连结而成的式子,叫做代数式。
单独的一个数或字母也是代数式。
整式和分式统称为有理式。
2.整式和分式含有加、减、乘、除、乘方运算的代数式叫做有理式。
没有除法运算或虽有除法运算但除式中不含有字母的有理式叫做整式。
有除法运算并且除式中含有字母的有理式叫做分式。
3.单项式与多项式没有加减运算的整式叫做单项式(数字与字母的积—包括单独的一个数或字母)。
几个单项式的和,叫做多项式。
说明:①根据除式中有否字母,将整式和分式区别开;根据整式中有否加减运算,把单项式、多项式区分开。
②进行代数式分类时,是以所给的代数式为对象,而非以变形后的代数式为对象。
划分代数式类别时,是从外形来看。
如=x,=│x│等。
4.系数与指数区别与联系:①从位置上看;②从表示的意义上看;5.同类项及其合并条件:①字母相同;②相同字母的指数相同合并依据:乘法分配律6.根式表示方根的代数式叫做根式。
含有关于字母开方运算的代数式叫做无理式。
注意:①从外形上判断;②区别:是根式,但不是无理式(是无理数)。
7.算术平方根⑴正数a的正的'平方根([a≥0—与“平方根”的区别]);⑵算术平方根与绝对值①联系:都是非负数,=│a│②区别:│a│中,a为一切实数;中,a为非负数。
8.同类二次根式、最简二次根式、分母有理化化为最简二次根式以后,被开方数相同的二次根式叫做同类二次根式。
满足条件:①被开方数的因数是整数,因式是整式;②被开方数中不含有开得尽方的因数或因式。
把分母中的根号划去叫做分母有理化。
初中数学中考必考知识点汇总盘点
初中数学中考必考知识点汇总盘点一、代数部分1 .科学记数法:设N>0,则N=aX10"(比中lWa<10, n 为整数)。
2、有效数字:,个近似数,从左边第•个不是0的数.到精确到的数位为止,所仃的数字.叫做这个数的仃效数 字。
格确度的形式1两种:⑴精确到那字:(2)保印几个有效数字,3、代数式的分类:无理式4、整式的乘除:系的运算法则:其中m 、n 都是正整数 同底数州相乘:代数式有理式整代分式单项式多项式 席的乘方: ST =L 积的乘力:5、乘法公式: 平方差公式:(a + b)(a -b) = a 2 -b 2:完全平方公式:(a + b)2=a 2+2ab+b\ (a-b)2 =a 2-2ab + b 26,因式分解的股步骤:(1)如果多项式的各项有公因式,那么先提公因式:(2)提出公因式或无公因式可提,再号虑可否运用公式或卜字相乘法:7、分式定义:形呜的式门叫分式,其中A 、B 是脍式,II.R 中含勺字明<1)分式无意义:B=”时,分式无意义:BWO 时,分式仃意义. (2)分式的值为0: A=0, BWO 时,分式的值等「00 X 、分式的基本性质:<1)人=土也也是W (购整式):(2)B B • M从二次根式的性质:13(M 是关。
的箱式)(1) (4a)2 =a(a>0);(3) 7ab = & , b ya2O, b 》O); 10、二次根式的运算:(1) .次根式的加减:将各二次根式化为最简二次根式后,合并同类二次根(2)二次根式的乘法:yjTi - \ib = 4ab (a^O, b>0)o(3):次根式的除法:二产= 4h二次根式运算的最终结果如果是根式,要化成坡简二次根式”11、一元一次方程(1)•儿,次方程的标准形式:ax+b=O (其中x)未知数,a、b是已知数,aWO)(2)•元•次方程的最简形式:ax=b (其中x是未知数,a、b是已知数,,壬0)12、一元二次方程(3)•几二次方程的般形式:ax2 + bx + c = 0 ( 11:中x是未知数,a、b、c是已知数,a^O)(4)•元.次力程的解法:■按开平方法、配方法、公式法、因式分解法(5)一元(次方界解法的选择顺序是:先特殊后一般,如没有要求.一般不用配方法。
中考数学必考知识点归纳整理
中考数学必考知识点归纳整理一、整数与有理数1.整数的概念及性质:整数的定义、相反数、绝对值、大小比较等。
2.有理数的概念及性质:有理数的定义、分数与小数的关系等。
3.整数与有理数的四则运算:加法、减法、乘法、除法的运算法则和性质。
4.整数与有理数的混合运算:根据题目要求进行整数与有理数的混合运算。
二、代数式与方程式1.代数式的概念及性质:代数式的定义、项、系数、次数等。
2.代数式的运算:加法、减法、乘法、除法、乘方等运算法则。
3.一元一次方程及其应用:方程的定义、基本性质、解方程的方法及应用。
4.一元一次不等式及其应用:不等式的定义、基本性质、解不等式的方法及应用。
三、平面图形与尺规作图1.平面图形的基本概念与性质:点、线、面的定义及性质。
2.四边形的性质:平行四边形、矩形、正方形、菱形、长方形的性质与判定等。
3.三角形的性质:等边三角形、等腰三角形、直角三角形的性质与判定等。
4.尺规作图:已知条件作图、已知作图求解等。
四、数据与统计1.数据的收集与整理:问卷调查、实验等方式收集数据,并对数据进行整理与分类。
2.数据的表示与分析:数据的图表表示,如条形图、折线图等,以及对数据的分析与解读。
3.统计相关性与预测:根据数据的相关性进行预测与判断。
五、几何变换1.平移、旋转、翻转的概念与性质:几何图形进行平移、旋转、翻转时的性质与规律。
2.平移、旋转、翻转的判定与作图:根据题目要求判断是否满足平移、旋转、翻转的条件,并进行作图。
六、函数与图像1.函数的概念与性质:函数的定义、自变量、因变量、函数值等。
2.函数的表示与性质:函数的图像、函数的单调性、函数的奇偶性等。
3.函数的运算:函数的加减乘除、函数的复合等运算法则。
4.函数的应用:函数的实际问题应用,如函数的最值、函数的变化规律等。
七、比例与相似1.比例的概念与性质:比例的定义、比例的性质、比例的性质与判定等。
2.比例的运算:比例的加减乘除、比例的复合等运算法则。
初三数学的必背知识点
初三数学的必背知识点
在初三数学研究中,有一些重要的知识点需要牢记。
这些知识
点是构建数学基础的核心概念,对于进一步研究高中数学非常重要。
以下是初三数学的必背知识点:
1. 代数表达式
- 代数字母和常数:字母表示未知数,常数表示已知数;
- 一元一次方程:形如ax + b = 0的方程,解方程可以使用平衡法、倒数法等方法;
- 二元一次方程组:形如ax + by = c和dx + ey = f的方程组,
可使用消元法、代入法、加减法等方法求解。
2. 几何
- 图形的基本概念:点、线、面等;
- 基本图形的性质:如正方形、矩形、平行四边形等的性质;
- 三角形的性质:如直角三角形、等腰三角形等的性质;
- 圆的性质:如圆心角、弧长、面积等的计算方法。
3. 概率与统计
- 实验、随机事件与样本空间:实验是指进行一次观察或测量的过程,随机事件是实验结果的某种性质,样本空间是实验所有可能结果的集合;
- 概率:表示某个随机事件发生的可能性大小,计算概率可以使用频率法、几何法等方法;
- 统计:收集和整理数据,分析数据的规律和特征。
4. 数据与函数
- 数据的整理和分析:整理数据可以使用频数表、频率表等方法,分析数据可以使用平均数、中位数、众数等方法;
- 函数与函数关系:函数是两个集合之间的对应关系,函数的图像可以通过函数式子、函数关系等来表示,并可以使用图像判断函数性质等。
这些是初三数学的必背知识点。
掌握了这些知识点,能够更好
地理解和应用数学,为进一步学习提供坚实的基础。
在学习过程中,要注重理论与实践的结合,多做题、多思考,不断巩固和提高数学
能力。
初中数学中考知识点总结归纳完整版
初中数学中考知识点总结归纳完整版一、数的基本运算1.整数的加减乘除运算及应用2.分数的加减乘除运算及应用3.小数的加减乘除运算及应用二、数的性质与计算1.数的整除关系与最大公约数、最小公倍数2.约分与通分3.数的相反数、绝对值及其性质三、代数式与方程式1.字母代数式与值的计算2.解方程与方程的应用3.利用代数式解决实际问题的能力四、平面图形的认识与计算1.平面图形的名称与性质2.几何体的名称与性质3.平移、旋转、对称变换的认识与应用五、分析与统计1.折线图与旋转对称图形2.数据的收集与整理3.数据的分析与应用六、空间与三维图形1.几何体与其中特殊点的认识2.几何体间的位置关系及刻画3.解决空间问题的应用能力七、比例、百分数与利率1.比例与比例的应用2.百分数与百分数的应用3.利率与利率的应用总结:初中数学中考要求学生掌握数的基本运算、数的性质与计算、代数式与方程式、平面图形的认识与计算、分析与统计、空间与三维图形、比例、百分数与利率等知识点。
在数的基本运算方面,要熟练掌握整数、分数和小数的四则运算及其应用;在数的性质与计算方面,要理解数的整除关系,掌握最大公约数和最小公倍数的求解方法;在代数式与方程式方面,要能够理解字母代数式的含义,掌握解方程和利用代数式解决实际问题的能力;在平面图形的认识与计算方面,要了解各种平面图形的名称和性质,掌握平移、旋转和对称变换的应用;在分析与统计方面,要能够收集和整理数据,分析并应用数据解决问题;在空间与三维图形方面,要熟悉几何体的名称和性质,掌握解决空间问题的应用能力;在比例、百分数与利率方面,要理解比例和百分数的概念,能够应用比例和百分数解决问题。
中考数学所有知识点
中考数学所有知识点一、代数与函数1. 实数- 实数的性质与分类- 实数的运算法则2. 代数式与方程式- 代数式的加减乘除运算- 一元一次方程与一元一次不等式- 二元一次方程组的解法- 一元二次方程的解法- 绝对值不等式3. 函数- 函数与自变量的关系- 函数的图像、定义域与值域- 线性函数- 平方函数- 反比例函数- 根据函数和实际问题求解二、图形和空间几何1. 图形的性质- 点、线、线段、角的性质与分类- 平行线与垂直线的判定- 三角形的性质与分类- 四边形的性质与分类2. 平面图形- 直角坐标系与平面直角坐标- 各种平面图形的性质和特点- 三角形的面积计算- 相似三角形与三角形的比例关系3. 空间几何- 空间几何中的点、线、面等基本概念- 空间几何中的距离计算- 空间几何中的立体图形的性质和计算- 空间几何中的投影计算三、数据和概率统计1. 数据的处理- 数据的收集、整理和呈现- 数据的中心趋势与离散程度- 数据的分组与频率分布- 数据的统计图表绘制2. 概率与统计- 随机事件与概率的概念- 事件的排列与组合- 事件的概率计算- 实际问题中的统计与概率计算四、函数与图像的应用1. 函数的最值与极值- 函数的最大值与最小值- 函数图像的顶点与最值的关系2. 函数与图像的画法- 函数的图像和特点- 函数与实际问题的关系3. 函数的增减性与导数- 函数增减性的判定与应用- 函数导数的概念与计算- 函数与导数的应用五、几何证明题1. 平面几何证明- 几何命题的证明- 平行线的性质与证明- 三角形的性质与证明- 四边形的性质与证明2. 空间几何证明- 空间几何命题的证明- 空间几何图形的投影证明- 空间几何图形的平行关系的证明- 空间几何图形的垂直关系的证明综上所述,中考数学涵盖了代数与函数、图形和空间几何、数据和概率统计、函数与图像的应用以及几何证明题等各个知识点。
掌握了这些知识点,就能够在中考中熟练运用数学的方法进行解题,取得良好的成绩。
初三数学必考知识点汇总
初三数学必考知识点汇总一、一元二次方程。
1. 定义。
- 只含有一个未知数(一元),并且未知数的最高次数是2(二次)的整式方程,叫做一元二次方程。
一般形式为ax^2+bx + c=0(a≠0),其中ax^2是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项。
2. 解法。
- 直接开平方法:对于方程x^2=k(k≥0),解得x=±√(k)。
例如方程(x - 3)^2=4,则x - 3=±2,解得x = 1或x = 5。
- 配方法:将一元二次方程通过配方转化为(x + m)^2=n(n≥0)的形式再求解。
例如对于方程x^2+6x - 1 = 0,配方得(x + 3)^2=10,解得x=-3±√(10)。
- 公式法:对于一元二次方程ax^2+bx + c = 0(a≠0),其求根公式为x=frac{-b±√(b^2)-4ac}{2a}。
例如方程2x^2-3x - 1 = 0,其中a = 2,b=-3,c=-1,代入公式可得x=(3±√(9 + 8))/(4)=(3±√(17))/(4)。
- 因式分解法:将方程化为两个一次因式乘积等于0的形式,即(mx +n)(px+q)=0,则mx + n = 0或px + q = 0。
例如方程x^2-3x + 2 = 0,因式分解为(x - 1)(x - 2)=0,解得x = 1或x = 2。
3. 根的判别式。
- 对于一元二次方程ax^2+bx + c = 0(a≠0),其判别式Δ=b^2-4ac。
- 当Δ>0时,方程有两个不相等的实数根;当Δ = 0时,方程有两个相等的实数根;当Δ<0时,方程没有实数根。
例如方程x^2-2x + 1 = 0,Δ=(-2)^2-4×1×1 = 0,方程有两个相等的实数根x = 1。
4. 根与系数的关系(韦达定理)- 对于一元二次方程ax^2+bx + c = 0(a≠0),设其两根为x_1,x_2,则x_1+x_2=-(b)/(a),x_1x_2=(c)/(a)。
初中数学中考部编版必备核心知识点
初中数学中考部编版必备核心知识点1. 数的性质与运算
- 自然数、整数、有理数和实数的概念及其性质
- 四则运算的基本规则和性质
- 有理数的加减乘除运算法则
- 分数的加减乘除运算法则
- 百分数的基本概念和运算
2. 代数基础
- 代数式的概念及其基本性质
- 一元一次方程的概念和解法
- 一元一次方程组的概念和解法
- 平方根的概念和计算
- 整式的基本运算法则
3. 几何基础
- 平面图形的基本概念和性质
- 点、线、面的基本概念
- 角的概念、性质和计算
- 直线和平面的相交关系
- 三角形的基本性质和分类
4. 数据的收集、整理与描述
- 调查数据的收集和整理方法
- 数据的图表表示和分析
- 平均数、中位数和众数的概念和计算- 简单概率的实际问题解决
5. 数的应用
- 百分数在实际问题中的应用
- 比例的基本概念和计算
- 比例与百分数的应用
- 商业运算问题的解决
6. 统计与概率
- 统计调查的方法和过程
- 频数统计和频率分布表
- 统计图表的制作和分析
- 概率的概念和计算
- 事件与概率的关系
以上是初中数学中考部编版必备的核心知识点。
通过学习和掌握这些知识点,学生们能够更好地应对数学中考,并取得好成绩。
中考数学知识点复习总复习资料大全(精华版)
中考数学总复习资料大全第一章实数★重点★实数的有关概念及性质,实数的运算☆内容提要☆一、重要概念1.数的分类及概念数系表:整数正整数0有理数实数(有限或无限循环性数)分数正无理数负整数正分数负分数无理数(无限不循环小数)说明:“分类”的原则:1)相称(不重、不漏)2)有标准负无理数正数实数0负数整数有理数分数无理数整数有理数分数无理数2.非负数:正实数与零的统称。
(表为:x≥0)常见的非负数有:a 2│a│(a 为一切实数)a (a≥0)性质:若干个非负数的和为0,则每个非负担数均为0。
3.倒数:①定义及表示法②性质: A.a ≠1/a (a≠±1);B.1/a 中,a≠0;C.0 <a<1 时1/a >1;a >1 时,1/a <1;D. 积为1。
4.相反数:①定义及表示法②性质: A.a ≠0 时,a≠-a;B.a 与-a 在数轴上的位置;C. 和为0, 商为-1 。
5.数轴:①定义(“三要素”)②作用: A. 直观地比较实数的大小;B. 明确体现绝对值意义;C. 建立点与实数的一一对应关系。
6.奇数、偶数、质数、合数(正整数—自然数)定义及表示:奇数:2n-1偶数:2n(n 为自然数)7.绝对值:①定义(两种):代数定义:│a│= a(a ≥0) -a(a<0)几何定义:数 a 的绝对值顶的几何意义是实数 a 在数轴上所对应的点到原点的距离。
②│a│≥0, 符号“││”是“非负数”的标志; ③数 a 的绝对值只有一个; ④处理任何类型的题目,只要其中有“││”出现,其关键一步是去掉“││”符号。
二、实数的运算1.运算法则(加、减、乘、除、乘方、开方)2.运算定律(五个—加法[ 乘法] 交换律、结合律;[ 乘法对加法的] 分配律)3.运算顺序: A. 高级运算到低级运算;B. (同级运算)从“左”到“右”(如5÷1 ×55);C.( 有括号时) 由“小”到“中”到“大”。
初三数学常考知识点
初三数学常考知识点一、实数与代数1.有理数:整数、分数、相反数、绝对值、有理数的乘方、平方根、算术平方根等。
2.实数:实数的定义、实数的分类、实数的性质、实数的运算等。
3.代数式:代数式的定义、代数式的分类、代数式的运算等。
4.一元一次方程:一元一次方程的定义、一元一次方程的解法、一元一次方程的应用等。
5.不等式:不等式的定义、不等式的性质、不等式的解法、不等式的应用等。
6.二元一次方程组:二元一次方程组的定义、二元一次方程组的解法、二元一次方程组的应用等。
7.点、线、面:点的定义、线的定义、面的定义、点、线、面的关系等。
8.平面几何基本概念:邻补角、对顶角、同位角、内错角、同旁内角、平行线、相交线、垂直、平行的性质等。
9.三角形:三角形的定义、三角形的分类、三角形的性质、三角形的判定、三角形的计算等。
10.四边形:四边形的定义、四边形的分类、四边形的性质、四边形的判定、四边形的计算等。
11.圆:圆的定义、圆的性质、圆的方程、圆的计算、扇形、弧、弦等。
12.空间几何:长方体、正方体、球、棱柱、棱锥等空间几何图形的性质、计算和应用。
13.一次函数:一次函数的定义、一次函数的图像、一次函数的性质、一次函数的应用等。
14.二次函数:二次函数的定义、二次函数的图像、二次函数的性质、二次函数的应用等。
15.反比例函数:反比例函数的定义、反比例函数的图像、反比例函数的性质、反比例函数的应用等。
16.函数图像:函数图像的性质、函数图像的变换、函数图像的分析等。
四、统计与概率1.统计:统计的基本概念、统计的运算、数据的收集与处理、图表的制作等。
2.概率:概率的基本概念、概率的计算、概率的应用等。
五、解决问题的方法1.方程思想:列方程、求解方程、检验解等。
2.函数思想:建立函数关系、求解函数问题等。
3.几何思想:利用几何性质、定理解决问题等。
4.数形结合思想:利用数形结合的方法解决问题等。
以上是初三数学常考的知识点,希望对你有所帮助。
中考数学必背知识点(完整版)
中考数学总复习资料代数部分第一章:实数基础知识点:一、实数的,分类:⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⎭⎬⎫⎩⎨⎧⎪⎪⎪⎭⎪⎪⎪⎬⎫⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧无限不循环小数负无理数正无理数无理数数有限小数或无限循环小负分数正分数分数负整数零正整数整数有理数实数 1、有理数:任何一个有理数总可以写成q p 的,形式,其中p 、q 是互质的,整数,这是有理数的,重要特征。
2、无理数:初中遇到的,无理数有三种:开不尽的,方根,如2、34;特定结构的,不限环无限小数,如1.101001000100001……;特定意义的,数,如π、45sin °等。
3、判断一个实数的,数性不能仅凭表面上的,感觉,往往要经过整理化简后才下结论。
二、实数中的,几个概念1、相反数:只有符号不同的,两个数叫做互为相反数。
(1)实数a 的,相反数是 -a ; (2)a 和b 互为相反数⇔a+b=02、倒数:(1)实数a (a ≠0)的,倒数是a1;(2)a 和b 互为倒数⇔1=ab ;(3)注意0没有倒数 3、绝对值:(1)一个数a 的,绝对值有以下三种情况:⎪⎩⎪⎨⎧-==0,0,00, a a a a a a(2)实数的,绝对值是一个非负数,从数轴上看,一个实数的,绝对值,就是数轴上表示这个数的,点到原点的,距离。
(3)去掉绝对值符号(化简)必须要对绝对值符号里面的,实数进行数性(正、负)确认,再去掉绝对值符号。
4、n 次方根(1)平方根,算术平方根:设a ≥0,称a ±叫a 的,平方根,a 叫a 的,算术平方根。
(2)正数的,平方根有两个,它们互为相反数;0的,平方根是0;负数没有平方根。
(3)立方根:3a 叫实数a 的,立方根。
(4)一个正数有一个正的,立方根;0的,立方根是0;一个负数有一个负的,立方根。
三、实数与数轴1、数轴:规定了原点、正方向、单位长度的,直线称为数轴。
原点、正方向、单位长度是数轴的,三要素。