2-1 第二章 导热基本定律及稳态导热

合集下载

传热学-第二章 导热基本定律及稳态导热第一讲-动力工程

传热学-第二章 导热基本定律及稳态导热第一讲-动力工程
大多数液体(分子量M不变): T
液体的热导率随压力p的升高而增大 p
2-3 导热微分方程式及单值性条件
理论解析的基本思路
简化
物理问题
数学模型
求解
热流量
温度场
导热定律
控制方程 定解条件
q -grad T [W m2 ]
建立导热体内的温度分布计算模型是导热理论 的首要任务
理论基础:傅里叶定律 + 热力学第一定律
导入与导出微元体净热量:
qx dxdydz d
x
[J]
d 时间内、沿 y 轴方向
导入与导出微元体净热量:
qy dxdydz d
y
[J]
d 时间内、沿 z 轴方向导
入与导出微元体净热量:
qz dxdydz d
z
[J]
D. 导入与导出净热量:
[] ( qx qy qz )dxdydzd
[J]
dQx qx dydz d [J]
B. d 时间内、沿 x 轴方向、
经 x+dx 表面处dydz导出的热量:
dQxdx qxdx dydz d [J]
qxdx
qx
qx x
dx
C. d 时间内、沿 x 轴方向导入与导出微元体净热量:
dQx
dQxdx
qx x
dxdydz d
[J]
d 时间内、沿 x 轴方向
2、推导过程 在导热体中取一微元体,能量平衡分析 热力学第一定律:
Q U W
W 0, Q U
d 时间内微元体中:
[导入与导出净热量] + [内热源发热量] = [热力学能的增加]
数学模型建立基本思路 能量平衡分析
(1)导入与导出微元体的净热量

第2章-导热理论基础以及稳态导热

第2章-导热理论基础以及稳态导热

第二章 导热基本定律及稳态导热1、重点内容:① 傅立叶定律及其应用;② 导热系数及其影响因素; ③ 导热问题的数学模型。

2、掌握内容:一维稳态导热问题的分析解法3、了解内容:多维导热问题第一章介绍传热学中热量传递的三种基本方式:导热、对流、热辐射。

根据这三个基本方式,以后各章节深入讨论其热量传递的规律,理解研究其物理过程机理,从而达到以下工程应用上目的:基本概念、基本定律:傅立叶定律,牛顿冷却定律,斯忒藩—玻耳兹曼定律。

① 能准确的计算研究传热问题中传递的热流量 ② 能准确的预测研究系统中的温度分布导热是一种比较简单的热量传递方式,对传热学的深入学习必须从导热开始,着重讨论稳态导热。

首先,引出导热的基本定律,导热问题的数学模型,导热微分方程;其次,介绍工程中常见的三种典型(所有导热物体温度变化均满足)几何形状物体的热流量及物体内温度分布的计算方法。

最后,对多维导热及有内热源的导热进行讨论。

§2—1 导热基本定律一 、温度场1、概念温度场是指在各个时刻物体内各点温度分布的总称。

由傅立叶定律知:物体导热热流量与温度变化率有关,所以研究物体导热必涉及到物体的温度分布。

一般地,物体的温度分布是坐标和时间的函数。

即:),,,(τz y x f t =其中z y x ,,为空间坐标,τ为时间坐标。

2、温度场分类1)稳态温度场(定常温度场):是指在稳态条件下物体各点的温度分布不随时间的改变而变化的温度场称稳态温度场,其表达式),,,(z y x f t =。

2)稳态温度场(非定常温度场):是指在变动工作条件下,物体中各点的温度分布随时间而变化的温度场称非稳态温度场,其表达式),,,(τz y x f t =。

若物体温度仅一个方向有变化,这种情况下的温度场称一维温度场。

3、等温面及等温线1)等温面:对于三维温度场中同一瞬间同温度各点连成的面称为等温面。

2)等温线(1)定义:在任何一个二维的截面上等温面表现为等温线。

第二章导热基本定律及稳态导热

第二章导热基本定律及稳态导热
d 边界条件:第一类
o x
控制
根据上面的条件可得:
方程
c t x( x t)Φ ddx2
t
2
0
第一类边条:
边界 条件
t
x
t1
x 0,
x
,
t t1 t t2
t2
o
直接积分,得:
ddxtc1 tc1xc2
带入边界条件:
c1
t2
t1
c2 t1
线性
t
t2t1
xt1
分布
dt
t2t1
带入Fourier 定律
4 、保温材料热量转移机理 ( 高效保温材料 ) 高温时:
( 1 )蜂窝固体结构的导热 ( 2 )穿过微小气孔的导热
更高温度时: ( 1 )蜂窝固体结构的导热 ( 2 )穿过微小气孔的导热和辐射
5 、超级保温材料
采取的方法: ( 1 )夹层中抽真空(减少通过导热而造成
热损失) ( 2 )采用多层间隔结构( 1cm 达十几层)
由此可见ɑ物理意义: ① ɑ越大,表示物体受热时,其内部各点温 度扯平的能力越大。 ② ɑ越大,表示物体中温度变化传播的越快。 所以,ɑ也是材料传播温度变化能力大小的指 标,亦称导温系数。
2 、导热微分方程的适用范围 1 )适用于 q 不很高,而作用时间长。同时 傅立叶定律也适用该条件。 2 )若时间极短,而且热流密度极大时,则 不适用。 3 )若属极底温度( -273 ℃ )时的导热不 适用。
§2-3 通过平壁,圆筒壁,球壳和 其它变截面物体的导热
本节将针对一维、稳态、常物性、无内热源 情况,考察平板和圆柱内的导热。
直角坐标系:
c t x( x t) y( y t) z( z t) Φ

《传热学》习题课(导热部分)

《传热学》习题课(导热部分)

第二章 导热基本定律及稳态导 热——思考题
• 10. 有人对二维矩形物体中的稳态、无内热源、常 物性的导热问题进行了数值计算。矩形的一个边绝 热,其余三个边均与温度为tf的流体发生对流换热。 你能预测他所得的温度场的解吗? 答:为以tf均匀分布的温度场。因一边绝热无热流 传递,其它三个边外的温度相同,无内热源,常物 性、稳态。如果不是以tf大小的均匀分布温度场, 就存在温差和外部有热流量交换,因无内热源,板 内无热量保持供给或吸收,就不能维持这个温差, 温差如有变化不符合稳态条件,只能是以tf大小均 匀分布的温度场。
第一章 绪论——习题
• 1-3 一宇宙飞船的外形示于附图中,其中外遮 光罩是凸出于飞船船体之外的一个光学窗口, 其表面的温度状态直接影响到飞船的光学遥感 器。船体表面各部分的表面温度与遮光罩的表 面温度不同。试分析,飞船在太空中飞行时与 遮光罩表面发生热交换的对象可能有哪些?换 热的方式是什么?
飞船船体
第二章 导热基本定律及稳态导 热——思考题
• 9. 在式(2-49)所给出的分析解中, 不出现导热物体的导热系数,请你提供 理论依据。 答:因稳态、无内热源、导热系数为常 数的二维导热问题的控制方程(2-46a) 与导热系数无关;四个边界条件是温度 边界条件,不包含导热系数(2-46b)。 (2-49)式是上述定解问题的解,自然 不出现导热物体的导热系数。
q
A
T T
4 1

4 2

第一章 绪论——习题
• 1-17 有一台气体冷却器,气侧表面传热 系数h1=95W/(㎡· K),壁面厚δ=2.5㎜, λ=46.5W/(m·K),水侧表面传热系数 h2=5800W/(㎡· K)。设传热壁可以看作平 壁,试计算各个环节单位面积的热阻及 从气到水的总传热系数。你能否指出, 为了强化这一传热过程,应首先从哪一 环节着手?

传热学第二章--稳态导热精选全文

传热学第二章--稳态导热精选全文

t
无内热源,λ为常数,并已知平 t1
壁的壁厚为,两个表面温度分别 维持均匀而恒定的温度t1和t2
t2
c t ( t ) Φ x x
d 2t dx2
0
o
x 0,
x ,
t t
t1 t2
x
直接积分,得:
dt dx
c1
t c1x c2
2024/11/6
35
带入边界条件:
c1
t2
t1
c t
1 r2
r 2
r
t r
1
r 2 sin
sin
t
r2
1
sin 2
t
Φ
2024/11/6
26
6 定解条件 导热微分方程式的理论基础:傅里叶定律+能 量守恒。 它描写物体的温度随时间和空间变化的关系; 没有涉及具体、特定的导热过程。通用表达式。
完整数学描述:导热微分方程 + 单值性条件
4
2 等温面与等温线
①定义
等温面:温度场中同一瞬间同温度各点连成的 面。 等温线:在二维情况下等温面为一等温曲线。
t+Δt t
t-Δt
2024/11/6
5
②特点
t+Δt t
t-Δt
a) 温度不同的等温面或等温线彼此不能相交
b)在连续的温度场中,等温面或等温线不会中
止,它们或者是物体中完全封闭的曲面(曲
它反映了物质微观粒子传递热量的特性。
不同物质的导热性能不同:
固体 液体 气体
金属 非金属
金属 12~418 W (m C) 非金属 0.025 ~ 3W/(mC)
合金 纯金属

第二章 导热的基本定律及稳态导热

第二章 导热的基本定律及稳态导热

第二章导热的基本定律及稳态导热从本章开始将深入的讨论三种热量传递方式的基本规律。

研究工作基本遵循经典力学的研究方法,即提出物理现象、建立数学模型而后分析求解的处理方法,对于复杂问题亦可在数学模型的基础上进行数值求解或试验求解。

采用这种方法,我们就能够达到预测传热系统的温度分布和计算传递的热流量的目的。

导热问题是传热学中最易于用数学方法处理的热传递方式。

因而我们能够在选定的研究系统中利用能量守恒定律和傅立叶定律建立起导热微分方程式,然后针对具体的导热问题求解其温度分布和热流量。

最后达到解决工程实际问题的目的。

2-1 导热的基本概念和定律1温度场和温度梯度1.1温度场由于热量传递是物质系统内部或其与环境之间能量分布不平衡条件下发生的无序能量的迁移过程,而这种能量不平衡特征,对于不可压缩系统而言,可以用物质系统的温度来表征。

于是就有“凡是有温差的地方就有热量传递”的通俗说法。

因此,研究系统中温度随时间和空间的变化规律对于研究传热问题是十分重要的工作。

按照物理上的提法,物质系统内各个点上温度的集合称为温度场,它是时间和空间坐标的函数,记为yxft=2-1(τz),,,式中,t—为温度; x,y,z—为空间坐标; -- 为时间坐标。

如果温度场不随时间变化,即为稳态温度场,于是有yxft=2—2(z,),稳态温度场仅在一个空间方向上变化时为一维温度场,t=2—3f)(x稳态导热过程具有稳态温度场,而非稳态导热过程具有非稳态温度场。

1.2等温面温度场中温度相同点的集合称为等温面,二维温度场中则为等温线,一维则为点.取相同温度差而绘制的等温线(对于二维温度场)如图2-1所示,其疏密程度可反映温度场在空间中的变化情况。

等温面不会与另一个等温面相交,但不排除十分地靠近,也不排除它可以消失在系统的边界上或者自行封闭。

这就是等温面的特性。

1.3温度梯度温度梯度是用以反映温度场在空间的变化特征的物理量。

按照存在温差就有热传的概念,沿着等温面方向不存在热量的传递。

传热学(第二章)

传热学(第二章)

⒉ 通过圆筒壁的导热 由导热微分方程式(2—12)
边界条件:r=r1时,t=t1;r=r2时,t=t2 对(2-25)式积分两次,得其通解: t = c1 ln r + c2 将边界条件代入通解,确定积分常数
t2 − t1 t −t c2 = t1 − ln r 2 1 ln( r2 / r ) ln( r2 / r ) 1 1 t −t t = t1 + 2 1 ln( r / r ) (2-26) 1 ln( r2 / r ) 1 dt λ t1 − t2 q = −λ = (2-27) dr r ln( r2 / r ) 1 c1 =
2 1
λ1
第二章
导热基本定律及稳态导热
2-3 通过平壁、圆筒壁、球壳和其他变截面物体的导热 通过平壁、圆筒壁、
• 1∂ ∂T 1 ∂ ∂T ∂ ∂T ∂T (λr + 2 (λ ) + (λ ) + Φ = ρcp ∂τ r ∂r ∂r) r ∂ϕ ∂ϕ ∂z ∂z d dt 简化变为 dr (r dr ) = 0 (2-25)
⒉ 通过圆筒壁的导热 根据热阻的定义,通过整个圆筒壁的导热热阻为 (2-29) 29) 与分析多层平壁—样,运用串联热阻叠加的原则,可得通过图2-9所示的多层圆筒壁的 导热热流量 2πl(t1 − t4 ) Φ= (2-30) ln( d2 / d1) / λ1 + ln( d3 / d2 ) / λ2 + ln( d4 / d3) / λ3 ⒊ 通过球壳的导热 导热系数为常数,无内热源的空心球壁。内、外半径为r1、r2,其内外表面均匀 恒定温度为t1、t2,球壁内的温度仅沿半径变化,等温面是同心球面。 由傅立叶定律得: dt 各同心球面上的热流率q不相等,而热流量Φ相等。 Φ = −4πr2λ dr dr ⇒Φ 2 = −4πλdt r

传热学第二章

传热学第二章

△n
Δn0 Δn n
温度梯度和热流密度
•温度梯度是向量,垂直于等温面, 正向朝着温度增加的方向;
•温度梯度的方向是温度变化率最大的方向。
t t n m
温度梯度的解析定义:
温度场 t f (x, y, z) 中点(x, y, z) 处的温度梯度:
gradt t i t j t k x y z
温度梯度垂直于等温面吗?
设等温面方程: t f (x, y, z) c 在点 (x, y, z)处,等温面的法线向量n n ( t , t , t ) x y z gradt 平行于 n
梯度方向垂直于等温面。
两个定义一致,解析定义便于计算
(4) 热流密度
热流密度是指单位时间经过单位面积所传递的热量,用 q 表示,单位为 W / m2。
根据上面的条件可得:
x
(
t ) x
y
(
t ) y
z
(
t z
)
qv
(cp t)
d 2t dx2
0
第一类边界条件:
x 0,t t1
x ,t t2
直接积分:
dt dx
c1
带入边界条件:
t c1x c2
c1
t2
t1
c2 t1
t
t2
t1
x
t1
dt t2 t1
dx
带入傅里叶定律得
t y
qz
t z
对于一维导热问题:
q dt
dx
3 导热系数
导热系数的定义式可由傅立叶定律的表达式得出
q t n
n
(1)物理意义:
表示了物质导热能力的大小,是在单位温度梯度作用下 的热流密度。工程计算采用的各种物质的导热系数值都是由 专门实验测定出来的。

东南大学传热学 第二章 导热基本定律及稳态导热

东南大学传热学 第二章 导热基本定律及稳态导热
第二章 导热基本定律 及稳态导热
本章重点讨论稳态导热问题。为此首先介绍 一些相关的基本知识,如温度场、温度剃度、 导热基本定律等;然后应用这些基本知识推 导出求解导热问题的微分方程;最后应用这 些微分方程求解常见的导热问题。
第一节 导热基本定律
温度场
• 定义:某一瞬间物体内的温度分布,称为温度场。 • 分类 1.按温度是否随时间而变化可分为 稳态温度场:物体内温度不随时间的变化而变化的温度场 非稳态温度场:物体内的温度随时间变化而变化的温度场 2.按温度随空间的变化可分为 一维温度场:温度只在一个方向有变化的温度场 二维温度场:温度在两个方向有变化的温度场 三维温度场:温度在三个方向有变化的温度场 • 表示:三种表示方法
n x y z
导热基本定律
• 傅立叶定律:单位时间内通过单位截面积所传 递的热量,正比例于当地垂直于截面方向上的 温度变化率,即温度剃度,其比例系数为导热 系数。
• 表示型式: A t n
n
导热系数

定义:
q
t n
n
• 物理意义:单位时间单位面积当温度变化率为1时,由导
热所传递的热量
• 影响因素:主要是物质的种类和物质所处的状态
第三节 通过平壁、圆筒壁、球壳和 其他变截面物体的导热
通过 平壁导热
通过 圆筒壁导热
通过 球壳导热
通过变导热 系数物体 的导热
单层平壁 多层平壁 单层圆筒壁 多层圆筒壁 单层球壳 多层球壳
通过单层平壁的导热
通过单层 平壁的导热
物理模型
数学描写
温度分布
热流量计算
数学描写
d 2t dx2 x
数学描写
温度分布
热流量计算
物理模型

第二章-导热理论基础-1

第二章-导热理论基础-1
一般而言:
λ固 > λ 液 > λ 气 λ 金属 > λ 非金属
一定温度范围内, ∝ f (t ) ,可写成:λ = λ0 ⋅ (1 + bt ) λ 即,导热系数是温度的线性函数。 由于热能的传输在固体中体现为自由电子的迁移和晶格振动 波,于是 λ固 = λe + λl
晶格分量 电子分量 对于金属: e λ
∂t qx = −λ ⋅ ∂x ∂t q y = −λ ⋅ 或 ∂y ∂t q z = − λ ⋅ ∂z
2-1-6 导热系数
q qx =− 定义: λ = − gradt ∂t ∂x
物理意义: 物体中单位时间、单位温降通过单位面积的导
W 热量;为表征物质导热能力的系数。 m ⋅ ℃
如果初始时刻物体各部分的温度相同,可以把初始条件改 写为: t τ =0 = t0 = const
(4)边界条件 )
①第一类边界条件 已知任何时刻物体边界的温度值 第一类边界条件—已知任何时刻物体边界的温度值 第一类边界条件
tw = const t s = tw = tw = f (τ )
dτ 时间内,微元体内部产生的能量为:
& E g = qv ⋅ dx ⋅ dy ⋅ dz ⋅ dτ
dτ 时间内,微元体贮存能的变化量为:
∂t dE = ρc p ⋅ dxdydzdτ ∂τ
根据能量守恒: 可得
Ein + E g − Eout = dE
∂t ∂q x ∂q y ∂q z = ρc p ∂x + ∂y + ∂z + qv & ∂τ
∂t −λ ∂x
= h t f − t (0 , τ )

第二章导热基本定律及稳态导热

第二章导热基本定律及稳态导热
– 固体
金属(以自由电子的迁移为主) 金属T↑, λ↓; 合金T↑, λ↑
非金属(以弹性波) T↑, λ↑
– 气体 分子间的相互碰撞 T↑, λ↑ – 液体 分子运动、弹性波 T↑, λ↓
由以上分析可看出,在一般情况下:
– ①λ固>λ液>λ气; – ②λ导>λ非导; – ③λ湿>λ干; – ④λ多孔<λ实体 – 习惯上把λ<0.15 的材料称为隔热材料
物体内各点温度更快地随界面温度的升高而升 高。
表示物体内部温度趋向一致能力的大小。
二、圆柱体坐标中的导热微分方程
三、单值性条件
1 几何条件 物体的形状、大小及相对 位置。
2 物理条件 热物性λ、ρ、Cp等 3 时间条件 (初始条件)tτ=0=f(x,y,z) 4 边界条件 表征导热体的边界与导热
第三节 一维稳态导热
一、平壁的一维稳态导热
1 单层平壁
(1)壁面等温
t
已知有一平壁,导热系数为λ , 且为常数,二壁温为t1和t2 ( t1>t2 ),壁面截面积为A, 厚为δ,无内热源。
求(1)温度分布;(2)热流 量Q(q)
t1
δ
t2 x
方法一:利用导热微分方程式
方法二:直接利用付里叶定律
隔热材料一般利用气体导热系数小的特 点,把材料做成蜂窝状多孔性。
第二节 导热微分方程
一、直角坐标系中的导热微分方程
假设:
– (1)物性参数为常数 (λ,ρ,c)
– (2)材料各相同性 – (3)物体内具有内热
源 发q出v,的单热位量时。间体积 Qx
思路:取一微元体— 平行六面体
dv=dx·dy·dz

传热学第二章 【含肋片】(1)

传热学第二章 【含肋片】(1)

[J]
x y z
傅里叶定律:
qx
t x
;
qy
t y
;
qz
t z
[1]
x
(
t x
)
y
(
t y
)
z
(
t z
)
dxdydzd
[J]
2、微元体中内热源的发热量
d 时间内微元体中内热源的发热量: [2] qv dxdydz d [J]
3、微元体热力学能的增量
d 时间内微元体中热力学能的增量:
单值性条件:确定唯一解的附加补充说明条件
完整数学描述:导热微分方程 + 单值性条件 单值性条件包括四项:几何、物理、时间、边界
4、边界条件
说明导热体边界上过程进行的特点 反映过程与周围环境相互作用的条件
边界条件一般可分为:第一类、第二类、第三类边界条件
(1)第一类边界条件
已知任一瞬间导热体边界上温度值:
❖ 热阻:
r1
1 1
, , rn
n n
t1
t2
t3
t4
三层平壁的稳态导热
多层、第三类边条
q
1 h1
tf1 tf2
n
i1
i i
1 h2
tf1 h1
t2
t3
h2
tf2
单位:
W m2
传热系数?


tf1
t1
t2
t3
t2
tf2
三层平壁的稳态导热
3 单层圆筒壁的导热
圆柱坐标系:
c t
1 r
(r t ) r r
第二章 导热基本定律及稳态导热
§2-1 导热基本定律

2-1 第二章 导热基本定律及稳态导热

2-1 第二章 导热基本定律及稳态导热

q
q
qx
t x
;
qy
t y
;
qz
t z

q q cos

§2-1 导热基本定律
长江大学机械工程学院
School of Mechanical Engineering
3. 意义: 已知物体内部的温度分布后,由该定律可求
得各点的热流密度或热流量。
例1:已知右图平板中的温度分 布可以表示成如下的形式: t = C1 x2 + C2
冷面
冷面
流体
热面 流体
§2-1 导热基本定律
2. 导热系数的相对大小和典型数据
长江大学机械工程学院
School of Mechanical Engineering
金 属 非 金 属
固 相 液 相 气 相

20℃时: 纯 铜 399 W (m C )
碳 钢 36.7 W (m C )
能准确的计算所研究问题中传递的热流。
要解决的问题:
温度分布如何描述和表示?
温度的分布和导热的热流存在什么关系? 如何得到导热体内部的温度分布?
长江大学机械工程学院
School of Mechanical Engineering
本章内容结构
§2-1 导热基本定律
§2-2 导热问题的数学描述
回答问题1和2 回答问题3 具 体 稳 态 导 热 问 题
§2-1 导热基本定律
长江大学机械工程学院
School of Mechanical Engineering
三、热导率( Thermal conductivity )
1.定义

q grad t

传热学-第二章导热基本定律及稳态传热

传热学-第二章导热基本定律及稳态传热
1、导入微元体的净热量
d 时间X方向流入与流出微元体的热流量
dQx
- dQxdx
- qx x
dxdydz d
( t ) dxdydz d
x x
d 时间Y方向流入与流出微元体的热流量
dQy
- dQydy
- q y y
dy dxdz d
y
( t ) dxdydz d
y
2.4 导热微分方程及定解条件
影响热导率的因素:物质的种类、材料成分、温度、压力及 密度等。
2.3 导热系数
2.3.1 气体导热系数
气体导热——由于分子的无规则热运动以及分子间 的相互碰撞
1 3
vlcv
v 3RT M
V 气体分子运动的均方根 m/s L 气体分子两次碰撞之间的平均自由程 m
Cv气体的定容比热 J/kg·℃
2.3 导热系数
2.4 导热微分方程及定解条件
建立数学模型的目的:
求解温度场 t f x, y, z,
步骤: 1)根据物体的形状选择坐标系, 选取物体中的 微元体作为研究对象; 2)根据能量守恒, 建立微元体的热平衡方程式; 3)根据傅里叶定律及已知条件, 对热平衡方程式 进行归纳、整理,最后得出导热微分方程式。
通过某一微元面积dA的热流:
dA q
d
q dA
t
n
dA
t
dydz
t
dxdz
t
பைடு நூலகம்
dxdy
n
x
y
z
2.2导热的基本定律
例:判断各边界面的热流方向
2.3 导热系数
由傅里叶定律可得,导热系数数学定义的具体形式为:
q t n

传热学第二章

传热学第二章

刘彦丰华北电力大学工程应用的两个基本目的:•能准确地预测所研究系统中的温度分布;•能准确地计算所研究问题中传递的热流。

要解决的问题:温度分布如何描述和表示?温度分布和导热的热流存在什么关系?如何得到导热体内部的温度分布?第二章导热基本定律及稳态导热刘彦丰华北电力大学本章内容简介2-1 导热基本定律2-2 导热微分方程式及定解条件2-3 通过平壁、圆筒壁、球壳和其它变截面物体的导热(一维稳态导热)2-4 通过肋片的导热分析2-5 具有内热源的导热及多维导热回答问题1和2回答问题3具体的稳态导热问题刘彦丰传热学Heat Transfer 华北电力大学一、温度分布的描述和表示像重力场、速度场等一样,物体中的温度分布称为温度场。

1、温度分布的文字描述和数学表示,如:在直角坐标系中非稳态温度场),,,(τz y x f t =稳态温度场),,(z y x f t =一维温度场二维温度场三维温度场)(x f t =),(τx f t =),(y x f t =),,(τy x f t =),,(z y x f t =),,,(τz y x f t =2-1 导热基本定律刘彦丰传热学Heat Transfer华北电力大学2、温度分布的图示法传热学Heat Transfer 2、温度分布的图示法等温线传热学Heat Transfer二、导热基本定律(傅立叶定律)1822年,法国数学家傅里叶(Fourier )在实验研究基础上,发现导热基本规律——傅里叶定律.法国数学家Fourier: 法国拿破仑时代的高级官员。

曾于1798-1801追随拿破仑去埃及。

后期致力于传热理论,1807年提交了234页的论文,但直到1822年才出版。

刘彦丰华北电力大学在导热现象中,单位时间内通过给定截面的热量,正比于垂直于该截面方向上的温度梯度和截面面积,方向与温度梯度相反。

1、导热基本定律的文字表达:nntgradt q ∂∂−=−=λλ2、导热基本定律的数学表达:t+Δt tt-Δt刘彦丰华北电力大学3、意义已知物体内部的温度分布后,则由该定律求得各点的热流密度或热流量。

传热学-2 导热基本定律和稳态导热

传热学-2 导热基本定律和稳态导热
(3) a 表征物体被加热或冷却时,物体内各部分温度 趋向于均匀一致的能力,所以a反应导热过程动态特 性,是研究不稳态导热重要物理量。
2-2 导热微分方程和定解条件
2 圆柱坐标系中的导热微分方程:
c t
1 r
(r
r
t ) r
1 r2
(
t ) ( z
t ) & z
3 球坐标系中的导热微分方程:
2-2 导热微分方程和定解条件
1 笛卡尔坐标系中微元平行六面体
热力学第一定律(能量守恒定律):
W 0
d V U W U z
单位时间内微元体中: [导入+导出净热量] + [内热源发热量] = [热力学能的增加]
y
zdz
x
dz
dx
y
z
ydy xdx
dy x
2-2 导热微分方程和定解条件
tw1
Φ
tw2
R 1 ln d2 2l d1
2-3 一维稳态导热
第一次积分
r
dt dr
c1
t c1㏑r c2
tw1 c1㏑r1 c2;
tw2 c1㏑r2 c2
第二次积分 应用边界条件
c1
tw2 tw1
㏑r2 / r1
;
c2
tw1
tw2
tw1
㏑r1
㏑r2 / r1
获得两 个系数
t
t1
注意:①上式对稳态和非稳n态均使用; ②导热现象依 gradt 的存在而存在, 若 gradt=0,则 q=0; ③“-”不能少,“-”表示 q与 gradt 方向相
反, 若无,则违反热二定律。
2-1 导热基本定律和热导率

第二章 稳态导热小结及习题课

第二章 稳态导热小结及习题课
K B 1.53W m.k
o 得 T1 525 c

q
Ts ,i T1 600 T1 5000 LA 0.015 KA
T2 Ts ,o T 20 5000 2 LC 0.003 KC
q

T2 35 oc
传热学
Heat Transfer
11、 具有均匀内热源强度qv的无限大平壁处于稳态导热, 其厚度为2δ ,导热系数 λ 为常数,两侧壁温各自均布,分 别为 tw1和tw2。 试求该平壁内的温度分布表达式。 解: 根据题意,导热系数为常数,有均匀内热源,一维, 稳态,导热,x坐标的原点取平壁的中心线。 数学描写: tw1 tw2 2 d t qv 0 2 dx 边界条件: x= -δ: t=tw1 x= δ: t=tw2 x -δ 0 δ qv tw2 tw1 t w2 t w1 2 2 (2 x ) x 得到壁内的温度表达式 t 2 2 2
传热学
Heat Transfer
9、如图所示的墙壁,其导热系数为50W/(m•K),厚度为50mm, 在稳态情况下的墙壁内的一维温度分布为:t=200-2000x2, 式中t的单位为0C,x单位为m。试求: (1)墙壁两侧表面的热流密度; (2)墙壁内单位体积的内热源生成的热量。 解:(1)由傅立叶定律:
传热学 Heat Transfer
§2-4 通过肋片的导热
数学描写
G . Eq : d 2t Φ 0 2 dx λ
BC :
dt x 0, t t 0 ; x H , 0 dx
导热微分方程与边界条件转化为:
d 2 2 m 0 2 dx
t t ch[ m ( H x )] 0 t0 t ch( mH )
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

§2-1 导热基本定律
状态、成分和结构
气体

长江大学机械工程学院
School of Mechanical Engineering
固 相 液 相 气 相

气 体 0.006~ 0.6 W (m C )

T

0 C : 空 气 0.0244 W (m C ) 20 C : 空 气 0.0259 W (m C )
2

1 2330
8 5 9 0 0W / m
q
(t 1 h1
f1
t
f 2
) 1



h2
长江大学机械工程学院
School of Mechanical Engineering
热流密度又与火焰对纸的放热量相等。
q 93 . 0 (1100 t ) 85900
t 176 ℃
长江大学机械工程学院
School of Mechanical Engineering
1100℃
100℃
长江大学机械工程学院
School of Mechanical Engineering
解法1:设暴露在火焰之上的纸的表面温度为t[℃], 此时火焰传递给纸与纸传递给水的热流密度q相等, 故:
q 1100 100 1 9 3 .1 0 .0 0 0 2 0 .9 3
§2-1 导热基本定律
液体
液 体 0 .0 7 ~ 0 .7 W (m C )
长江大学机械工程学院
School of Mechanical Engineering
温度场(Temperature field):某时刻空间所有各 点温度分布的总称,是时间和空间的函数。 1. 分类
按 时 间
t f ( x , y , z , )
稳态温度场(定常温度场) t f ( x , y , z ) (Steady-state conduction)
q,λ,δ, △t=(t1-t2) 只要任意知道三个就可以求出第四 个。由此可设计稳态法测量导热系数实验。
长江大学机械工程学院
School of Mechanical Engineering
例4:分析冷、热表面间热量交换方式有何不同?如 果要通过实验来测定夹层中流体的导热系数,应采 用哪种布置? 热面
§2-1 导热基本定律
长江大学机械工程学院
School of Mechanical Engineering
等温面上没有温差,故沿等温线无热源,不会有热量 传递。不同的等温面之间,有温差,有热量传递。
§2-1 导热基本定律
二、导热基本定律(Fourier’s law)
长江大学机械工程学院
School of Mechanical Engineering
§2-1 导热基本定律
特点:
长江大学机械工程学院
School of Mechanical Engineering
(a) 温度不同的等温面或等温线彼此不相交;
(b) 在连续的温度场中,等温面或等温线不会中断, 它们或者是物体中完全封闭的曲面(曲线),或者 就终止与物体的边界上。
(c) 每条等温线间的温度间隔相等时,等温线的疏密 可反映出不同区域导热热流密度的大小。 物体的温度场通常用等温面或等温线表示。
q
q
qx
t x
;
qy
t y
;
qz
t z

q q cos

§2-1 导热基本定律
长江大学机械工程学院
School of Mechanical Engineering
3. 意义: 已知物体内部的温度分布后,由该定律可求
得各点的热流密度或热流量。
例1:已知右图平板中的温度分 布可以表示成如下的形式: t = C1 x2 + C2
长江大学机械工程学院
School of Mechanical Engineering
t f ( x, y, z )
t f (x, y)
t f ( x)
t const
t f ( )
§2-1 导热基本定律
二、温度分布的图示法
长江大学机械工程学院
School of Mechanical Engineering
1822年,法国数学家傅里叶在实验基础上,发现导 热基本定律——傅里叶定律。 法国数学家、物理学家Fourier: 法国拿破仑时代的高级官员。曾 于1798—1801追随拿破仑去埃及。 后致力于传热理论,1807年提交 了234页的论文,但直到1822年 才出版。
§2-1 导热基本定律
长江大学机械工程学院
§2-3 典型一维稳态导热问题的分析解 §2-4 通过肋片的导热 §2-5 具有内热源的一维导热问题
§2-6 多维稳态导热的求解
长江大学机械工程学院
School of Mechanical Engineering
§2-1 导热基本定律
一、基本概念
二、导热基本定律
三、热导率
§2-1 导热基本定律
一、温度分布的描述和表示
§2-1 导热基本定律
2. 数学表学机械工程学院
School of Mechanical Engineering
t

n t

A
q

dt dx
dt dx
n
直角坐标系中:q q i q j q k x y z
§2-1 导热基本定律
长江大学机械工程学院
School of Mechanical Engineering
根据一维稳态平壁导热模型,可以采用平板法 测量物质的导热系数。对大平板一维稳态导热,流 过平板的热流量与平板两侧温度和平板厚度之间的 关系为:
q
t1 t 2


q t1 t 2
/ 0 .9 3
0.8556 10 W / m
5
2
0.48m m
所用纸的最大厚度可达0.48mm。
P23 讨论题
长江大学机械工程学院
School of Mechanical Engineering
第二章 导热基本定律及稳态导热
工程应用的两个基本目的:
能准确的预测所研究系统中的温度分布;
冷面
冷面
流体
热面 流体
§2-1 导热基本定律
2. 导热系数的相对大小和典型数据
长江大学机械工程学院
School of Mechanical Engineering
金 属 非 金 属
固 相 液 相 气 相

20℃时: 纯 铜 399 W (m C )
碳 钢 36.7 W (m C )
t t t t t g r a d t n lim n i j k n 0 n n x y z
§2-1 导热基本定律
长江大学机械工程学院
School of Mechanical Engineering
t n

t s
温度变化率在等温面法线方 向上最大。 温度梯度是向量;正向朝着 温度增加的方向。
t
非稳态温度场(非定常温度场) (Transient conduction)
0
t f ( x , y , z , )
t

0
§2-1 导热基本定律
按空间: 三维温度场: t f ( x , y , z , ) 二维温度场: t f ( x , y , ) 一维温度场: t f ( x , ) 零维场:
1 k 1 h1
A k (t f 1 t f 2 ) 1 h1
4
A(t f 1 t f 2 )



1 h2

1 h2
长江大学机械工程学院
School of Mechanical Engineering
纸制容器煮开水 设用来做容器的纸的耐热温 度 为 180℃ , 导 热 系 数 为 0.93W/m· K。容器中装有水,在 容器底下用1100℃的火焰加热, 使水在大气压下沸腾。火焰侧的 放热系数为93W/m2· K,水侧放 热系数为2330W/m2· K,纸的厚 度为0.2mm。
§2-1 导热基本定律
长江大学机械工程学院
School of Mechanical Engineering
三、热导率( Thermal conductivity )
1.定义

q grad t
——物质的重要热物性参数
数值上等于单位温度梯度时的热流密度的模(大小)。 W/(m•K),表征物质导热能力大小,由实验测定。导 热系数是物性参数,它与物质结构和状态密切相关, 例如物质的 种类、材料成分、温度、湿度、压力、 密度等,与物质几何形状无关。
5 2
设纸的水侧温度为tw,则
q 2330( t w 100 ) 0.8556 10 W / m
5
2
tw=136℃。
长江大学机械工程学院
School of Mechanical Engineering
设纸的厚度为δm,于是有:
q
t w1 t w 2
/
=
180 136
School of Mechanical Engineering
1. 文字描述: 单位时间内通过给定面积所传导的 热量,正比于垂直于该截面方向上的温度梯度和 截面面积,方向与温度梯度相反。 温度梯度(Temperature gradient) 沿等温面法线方向上的温度 增量与法向距离比值的极限, grad t。
相关文档
最新文档