平面向量教案一
平面向量的概念教案

平面向量的概念教案一、教学目标:1. 知识与技能:学生能够理解平面向量的概念,掌握平面向量的基本运算法则,并能够熟练进行向量的相加、相减、数量乘法等运算。
2. 过程与方法:通过例题演练,培养学生独立思考、分析问题、解决问题的能力;通过实际应用,加深学生对平面向量概念的理解和运用。
3. 情感态度与价值观:激发学生对数学的兴趣,形成积极的学习态度,提高解决实际问题的能力。
二、教学重点和难点:重点:平面向量的概念及基本运算法则。
难点:向量的数量乘法及在平面向量应用中的解决问题。
三、教学步骤:1. 导入新课:通过提问和引导学生联想等方式,引出向量的概念。
例如:什么是向量?向量有哪些性质?向量在生活中的应用等。
2. 确定学习目标:向学生解释接下来我们要学习平面向量,所以我们需要了解什么是平面向量及其基本性质,以及平面向量的加法、减法和数量乘法等基本运算,掌握这些内容。
3. 学习新知识:向学生详细讲解平面向量的定义、表示方法、平行向量、零向量、共线向量等基本概念和性质。
并讲解平面向量的基本运算法则,如向量的加法、减法、数量乘法等。
4. 练习与巩固:布置练习题,让学生积极参与,巩固学习内容。
5. 拓展应用:引导学生通过实际问题,运用平面向量的概念进行解决问题,提高学生的综合运用能力。
6. 总结归纳:通过本节课学习,对平面向量的概念和基本运算法则进行归纳总结,巩固所学知识。
四、教学手段:1. 教师讲解2. 学生讨论3. 课堂练习4. 实例演练五、教学资源:1. 教科书2. 多媒体课件3. 平面向量的实际应用例题材料六、教学反馈:1. 教师在学习过程中及时纠正学生的错误认识和解题方法。
2. 布置练习题,检验学生学习效果,及时发现学生的问题。
七、教学设计理念:通过让学生参与讨论和思考,培养其分析问题、解决问题的思维能力;通过实例演练,加深学生对平面向量概念的理解和运用;通过应用实际问题,引导学生运用所学知识解决实际问题的能力。
平面向量基本定理(教案)

平面向量基本定理(教案)教案章节一:向量的概念回顾1.1 向量的定义向量是有大小和方向的量,通常用箭头表示。
向量可以用坐标形式表示,例如在二维空间中,向量可以表示为(a, b)。
1.2 向量的加法向量的加法是指在同一平面内,将两个向量首尾相接,形成的第三个向量。
向量的加法满足交换律和结合律,即a + b = b + a,(a + b) + c = a + (b + c)。
教案章节二:平面向量的基本定理2.1 定理的定义平面向量的基本定理是指在平面内,任何两个不共线的向量可以作为平面的基底。
基底是线性无关的向量组,可以通过线性组合表示平面内的任意向量。
2.2 基底的性质基底是线性无关的,即不存在非零的线性组合使得向量组的和为零。
基底可以任意选择,但选择不同的基底会导致向量的坐标不同。
教案章节三:向量的线性组合3.1 线性组合的定义向量的线性组合是指将向量与实数相乘后相加的结果。
例如,a u + b v 表示将向量u 乘以实数a,向量v 乘以实数b,将两个结果相加。
3.2 线性组合的性质线性组合满足分配律,即(a u + b v) + c w = a (u + c w) + b v。
线性组合的系数可以是任意实数,包括正数、负数和零。
教案章节四:向量的坐标表示4.1 坐标系的建立坐标系是由两个或多个轴组成的,用于表示向量的位置和方向。
在二维空间中,通常使用x 轴和y 轴作为坐标轴。
4.2 向量的坐标表示向量可以用坐标形式表示,即(x, y),其中x 表示向量在x 轴上的投影,y 表示向量在y 轴上的投影。
向量的长度可以用勾股定理计算,即|u| = √(x^2 + y^2)。
教案章节五:向量的线性相关性5.1 线性相关的定义向量组线性相关是指存在一组不全为零的实数,使得向量组的和为零。
例如,向量组(u, v, w) 线性相关,当存在不全为零的实数a, b, c,使得a u +b v +c w = 0。
5.2 线性相关性的性质如果向量组线性相关,其中任意一个向量都可以表示为其他向量的线性组合。
高一平面向量复习教案

没有最好,只有更好。
我要做到更好。
——————-————————— 21班陈 诗 平面向量一 知识框架:二 重要知识点梳理:1.数量积 已知向量a 和b ,它们的夹角为θ,把θcos b a 叫做a 与b的数量积。
向量的数量积是一个数量,而不是向量。
⑴几何意义 a 与b 的数量积等于a的长度a 与b 在a 方向上的射影θcos b 的乘积,或b 的长度b 与a 在b方向上的射影θcos a 的乘积;⑵坐标表示 若),(),,(2211y x b y x a == ,则2121y y x x b a +=•;2.重要定理和结论⑴向量共线: 若a o≠,则b a a b 与⇔=λ共线(或a //b );若),(),,(2211y x b y x a == 则b a x y y x 与⇔=-02121共线(或a //b)⑵向量垂直: 若),(),,(2211y x b y x a == 则002121=•⇔⊥⇔=+b a b a y y x x; ⑶模 : ))((,2,2222222b a b a b a b a b a b a a a-+=-++=+=;⑷三角形重心: 若G 为三角形的重心,则0=++C G B G A G ,若)3,3(),(),(),(32132132211y y y x x x G y x C y x B y x A ++++则;⑸三点共线条件 : 若 A 、B 、C 三点共线 则C A B Aλ=;也即在同一平面内有一点P 使A P C P B P)1(λλ-+=;没有最好,只有更好。
我要做到更好。
——————-————————— 21班陈 诗三.典型例题:例1 已知向量,a b 夹角为45︒,且1,210a a b =-=;则_____b =23;例 2.若为a 非零向量,e 为单位向量,θ为a 与e夹角,那么是否存在θ,使e a e a-=+3成立?若存在,请求出取值范围;若不存在,请说明理由。
平面向量基本定理教案(精选10篇)

平面向量基本定理教案(精选10篇)(实用版)编制人:______审核人:______审批人:______编制单位:______编制时间:__年__月__日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如工作文档、教学教案、企业文案、求职面试、实习范文、法律文书、演讲发言、范文模板、作文大全、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!And, our store provides various types of practical materials for everyone, such as work summaries, work plans, experiences, job reports, work reports, resignation reports, contract templates, speeches, lesson plans, other materials, etc. If you want to learn about different data formats and writing methods, please pay attention!平面向量基本定理教案(精选10篇)平面向量基本定理教案(精选10篇)作为一名为他人授业解惑的教育工作者,时常需要编写教案,教案是教学活动的依据,有着重要的地位。
平面向量复习课教案

平面向量复习课教案第一章:向量的概念与运算1.1 向量的定义与表示介绍向量的概念,解释向量的定义展示向量的表示方法,包括箭头表示和坐标表示强调向量的方向和模长的意义1.2 向量的运算复习向量的加法、减法和数乘运算解释向量加法和减法的几何意义探讨数乘向量的性质和运算规则第二章:向量的数量积2.1 数量积的定义与性质引入数量积的概念,解释数量积的定义展示数量积的计算公式和性质强调数量积的交换律、分配律和消去律2.2 数量积的应用探讨数量积在向量投影中的应用解释夹角和向量垂直的概念展示数量积在向量长度和方向判断中的应用第三章:向量的坐标运算3.1 坐标系的建立介绍坐标系的定义和建立方法解释直角坐标系和笛卡尔坐标系的区别和联系强调坐标系中点的表示方法3.2 向量的坐标运算复习向量在坐标系中的表示方法介绍向量的坐标运算规则,包括加法、减法和数乘强调坐标运算与几何意义的联系第四章:向量的线性相关与基底4.1 向量的线性相关性引入线性相关的概念,解释线性相关的定义探讨线性相关性的性质和判定方法强调线性相关性与向量组的关系4.2 向量的基底介绍基底的概念,解释基底的定义和作用探讨基底的选择方法和基底的性质强调基底与向量表示和线性相关的联系第五章:向量的线性空间5.1 线性空间的概念引入线性空间的概念,解释线性空间的定义探讨线性空间的性质和运算规则强调线性空间与向量组的关系5.2 向量组的线性表示介绍线性表示的概念,解释线性表示的定义探讨线性表示的方法和性质强调线性表示与基底和线性空间的关系第六章:向量的叉积与外积6.1 叉积的定义与性质引入叉积的概念,解释叉积的定义和几何意义展示叉积的计算公式和性质强调叉积的交换律、分配律和消去律6.2 叉积的应用探讨叉积在面积计算和力矩中的应用解释向量垂直和向量积的关系展示叉积在几何图形判断中的应用第七章:向量场的概念与运算7.1 向量场的定义与表示介绍向量场的概念,解释向量场的定义和表示方法展示向量场的图形表示和箭头表示强调向量场的物理意义和应用领域7.2 向量场的运算复习向量场的加法和乘法运算解释向量场的叠加原理和运算规则强调向量场的运算与物理意义的联系第八章:向量函数的概念与性质8.1 向量函数的定义与表示引入向量函数的概念,解释向量函数的定义和表示方法展示向量函数的图像和性质强调向量函数的应用领域和数学意义8.2 向量函数的性质与应用探讨向量函数的连续性、可导性和可微性解释向量函数在物理和工程中的应用展示向量函数的图像和性质第九章:向量微积分的基本定理9.1 向量微积分的定义与性质介绍向量微积分的基本概念,解释向量微积分的定义和性质展示向量微积分的运算规则和公式强调向量微积分在物理和工程中的应用9.2 向量微积分的基本定理复习格林定理、高斯定理和斯托克斯定理解释向量微积分基本定理的意义和应用强调向量微积分基本定理在几何和物理中的重要性第十章:向量的进一步应用10.1 向量在几何中的应用探讨向量在几何图形判断和证明中的应用解释向量积和向量场的几何意义展示向量在几何问题解决中的应用10.2 向量在物理中的应用解释向量在物理学中的重要性,包括力学和电磁学探讨向量在力学中速度、加速度和力矩的应用展示向量在电磁学中电场和磁场的应用10.3 向量在工程中的应用介绍向量在工程领域中的应用,如土木工程和航空工程解释向量在结构分析和流体动力学中的应用展示向量在工程问题解决中的作用重点和难点解析1. 向量的概念与表示:向量的定义和表示方法是理解向量运算和应用的基础。
平面向量的应用(教案)(教师版)

平面向量的应用(教案)【第一课时】教学重难点教学目标核心素养向量在平面几何中的应用会用向量方法解决平面几何中的平行、 垂直、长度、夹角等问题数学建模、逻辑推理向量在物理中的应用 会用向量方法解决物理中的速度、力学问题数学建模、数学运算一、问题导入预习教材内容,思考以下问题:1.利用向量可以解决哪些常见的几何问题? 2.如何用向量方法解决物理问题? 二、新知探究 探究点1:向量在几何中的应用角度一:平面几何中的垂直问题例1:如图所示,在正方形ABCD 中,E ,F 分别是AB ,BC 的中点,求证:AF ⊥DE . 证明:法一:设AD →=a ,AB →=b , 则|a |=|b |,a·b =0,又DE →=DA →+AE →=-a +12b ,AF →=AB →+BF →=b +12a ,所以AF →·DE →=⎝⎛⎭⎫b +12a ·⎝⎛⎭⎫-a +12b =-12a 2-34a ·b +12b 2=-12|a |2+12|b |2=0. 故AF →⊥DE →,即AF ⊥DE .法二:如图,建立平面直角坐标系,设正方形的边长为2,则A (0,0),D (0,2),E (1,0),F (2,1),AF →=(2,1),DE →=(1,-2).因为AF →·DE →=(2,1)·(1,-2)=2-2=0, 所以AF →⊥DE →,即AF ⊥DE .角度二:平面几何中的平行(或共线)问题:如图,点O 是平行四边形ABCD 的中心,E ,F 分别在边CD ,AB 上,且CE ED =AF FB =12.求证:点E ,O ,F在同一直线上.证明:设AB →=m ,AD →=n , 由CE ED =AF FB =12,知E ,F 分别是CD ,AB 的三等分点,所以FO →=F A →+AO →=13BA →+12AC →=-13m +12(m +n )=16m +12n ,OE →=OC →+CE →=12AC →+13CD →=12(m +n )-13m =16m +12n . 所以FO →=OE →.又O 为FO →和OE →的公共点,故点E ,O ,F 在同一直线上. 角度三:平面几何中的长度问题:如图,平行四边形ABCD 中,已知AD =1,AB =2,对角线BD =2,求对角线AC 的长. 解:设AD →=a ,AB →=b ,则BD →=a -b ,AC →=a +b ,而|BD →|=|a -b |=a 2-2a ·b +b 2=1+4-2a ·b =5-2a ·b =2,所以5-2a ·b =4,所以a ·b =12,又|AC →|2=|a +b |2=a 2+2a ·b +b 2=1+4+2a ·b =6,所以|AC →|=6,即AC =6.用向量方法解决平面几何问题的步骤向量在物理中的应用:(1)在长江南岸某渡口处,江水以12.5 km/h 的速度向东流,渡船的速度为25 km/h .渡船要垂直地渡过长江,其航向应如何确定?(2)已知两恒力F 1=(3,4),F 2=(6,-5)作用于同一质点,使之由点A (20,15)移动到点B (7,0),求F 1,F 2分别对质点所做的功.解:(1)如图,设AB →表示水流的速度,AD →表示渡船的速度,AC →表示渡船实际垂直过江的速度. 因为AB →+AD →=AC →,所以四边形ABCD 为平行四边形. 在Rt △ACD 中,∠ACD =90°,|DC →|=|AB →|=12.5.|AD →|=25,所以∠CAD =30°,即渡船要垂直地渡过长江,其航向应为北偏西30°. (2)设物体在力F 作用下的位移为s ,则所做的功为W =F ·s . 因为AB →=(7,0)-(20,15)=(-13,-15).所以W 1=F 1·AB →=(3,4)·(-13,-15) =3×(-13)+4×(-15)=-99(焦), W 2=F 2·AB →=(6,-5)·(-13,-15) =6×(-13)+(-5)×(-15)=-3(焦).用向量方法解决物理问题的“三步曲”三、课堂总结1.用向量方法解决平面几何问题的“三个步骤”2.向量在物理学中的应用(1)由于物理学中的力、速度、位移都是矢量,它们的分解与合成与向量的减法和加法相似,可以用向量的知识来解决.(2)物理学中的功是一个标量,即为力F 与位移s 的数量积,即W =F·s =|F ||s |cos θ(θ为F 与s 的夹角). 四、课堂检测1.河水的流速为2 m/s ,一艘小船以垂直于河岸方向10 m/s 的速度驶向对岸,则小船在静水中的速度大小为( ) A .10 m/s B .226 m/s C .4 6 m/sD .12 m/s解析:选B .由题意知|v 水|=2 m/s ,|v 船|=10 m/s ,作出示意图如图. 所以小船在静水中的速度大小 |v |=102+22=226(m/s ).2.已知三个力f 1=(-2,-1),f 2=(-3,2),f 3=(4,-3)同时作用于某物体上一点,为使物体保持平衡,再加上一个力f 4,则f 4=( ) A .(-1,-2) B .(1,-2) C .(-1,2)D .(1,2)解析:选D .由物理知识知f 1+f 2+f 3+f 4=0,故f 4=-(f 1+f 2+f 3)=(1,2).3.设P ,Q 分别是梯形ABCD 的对角线AC 与BD 的中点,AB ∥DC ,试用向量证明:PQ ∥AB . 证明:设DC →=λAB →(λ>0且λ≠1),因为PQ →=AQ →-AP →=AB →+BQ →-AP →=AB →+12(BD →-AC →)=AB →+12[(AD →-AB →)-(AD →+DC →)]=AB →+12(CD →-AB →)=12(CD →+AB →)=12(-λ+1)AB →, 所以PQ →∥AB →,又P ,Q ,A ,B 四点不共线,所以PQ ∥AB .【第二课时】一、问题导入预习教材内容,思考以下问题: 1.余弦定理的内容是什么? 2.余弦定理有哪些推论? 二、新知探究已知两边及一角解三角形:(1)(2018·高考全国卷Ⅱ)在△ABC 中,cos C 2=55,BC =1,AC =5,则AB =( )A .42B .30C .29D .25(2)已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,a =5,c =2,cos A =23,则b =( )A .2B .3C .2D .3解析:(1)因为cos C =2cos 2 C 2-1=2×15-1=-35,所以由余弦定理,得AB 2=AC 2+BC 2-2AC ·BC cos C =25+1-2×5×1×⎝⎛⎭⎫-35=32,所以AB =42,故选A . (2)由余弦定理得5=22+b 2-2×2b cos A ,因为cos A =23,所以3b 2-8b -3=0,所以b =3⎝⎛⎭⎫b =-13舍去.故选D . 答案:(1)A (2)D 互动探究:变条件:将本例(2)中的条件“a =5,c =2,cos A =23”改为“a =2,c =23,cos A =32”,求b 为何值?解:由余弦定理得: a 2=b 2+c 2-2bc cos A ,所以22=b 2+(23)2-2×b ×23×32, 即b 2-6b +8=0,解得b =2或b =4. 规律方法:解决“已知两边及一角”解三角问题的步骤(1)用余弦定理列出关于第三边的等量关系建立方程,运用解方程的方法求出此边长. (2)再用余弦定理和三角形内角和定理求出其他两角. 探究点2:已知三边(三边关系)解三角形:(1)在△ABC 中,已知a =3,b =5,c =19,则最大角与最小角的和为( ) A .90° B .120° C .135°D .150°(2)在△ABC 中,若(a +c )(a -c )=b (b -c ),则A 等于( ) A .90° B .60° C .120°D .150°解析:(1)在△ABC 中,因为a =3,b =5,c =19, 所以最大角为B ,最小角为A ,所以cos C =a 2+b 2-c 22ab =9+25-192×3×5=12,所以C =60°,所以A +B =120°,所以△ABC 中的最大角与最小角的和为120°.故选B .(2)因为(a +c )(a -c )=b (b -c ),所以b 2+c 2-a 2=bc ,所以cos A =b 2+c 2-a 22bc =12.因为A ∈(0°,180°),所以A =60°. 答案:(1)B (2)B已知三角形的三边解三角形的方法先利用余弦定理的推论求出一个角的余弦,从而求出第一个角;再利用余弦定理的推论求出第二个角;最后利用三角形的内角和定理求出第三个角.注意:若已知三角形三边的比例关系,常根据比例的性质引入k ,从而转化为已知三边求解. 探究点3: 判断三角形的形状:在△ABC 中,若b 2sin 2C +c 2sin 2B =2bc cos B cos C ,试判断△ABC 的形状. 解:将已知等式变形为b 2(1-cos 2C )+c 2(1-cos 2B )=2bc cos B cos C . 由余弦定理并整理,得 b 2+c 2-b 2⎝⎛⎭⎫a 2+b 2-c 22ab 2-c 2⎝⎛⎭⎫a 2+c 2-b 22ac 2=2bc ×a 2+c 2-b 22ac ×a 2+b 2-c 22ab ,所以b 2+c 2=[(a 2+b 2-c 2)+(a 2+c 2-b 2)]24a 2=4a 44a2=a 2.所以A =90°.所以△ABC 是直角三角形. 规律方法:(1)利用余弦定理判断三角形形状的两种途径①化边的关系:将条件中的角的关系,利用余弦定理化为边的关系,再变形条件判断. ②化角的关系:将条件转化为角与角之间的关系,通过三角变换得出关系进行判断. (2)判断三角形时经常用到以下结论①△ABC 为直角三角形⇔a 2=b 2+c 2或c 2=a 2+b 2或b 2=a 2+c 2. ②△ABC 为锐角三角形⇔a 2+b 2>c 2,且b 2+c 2>a 2,且c 2+a 2>b 2. ③△ABC 为钝角三角形⇔a 2+b 2<c 2或b 2+c 2<a 2或c 2+a 2<b 2. ④若sin 2A =sin 2B ,则A =B 或A +B =π2.三、课堂总结 1.余弦定理cos A =b 2+c 2-a 22bc ;cos B =a 2+c 2-b 22ac;cos C =a 2+b 2-c 22ab .3.三角形的元素与解三角形 (1)三角形的元素三角形的三个角A ,B ,C 和它们的对边a ,b ,c 叫做三角形的元素. (2)解三角形已知三角形的几个元素求其他元素的过程叫做解三角形. 四、课堂检测1.在△ABC 中,已知a =5,b =7,c =8,则A +C =( ) A .90° B .120° C .135°D .150°解析:选B .cos B =a 2+c 2-b 22ac =25+64-492×5×8=12.所以B =60°,所以A +C =120°.2.在△ABC 中,已知(a +b +c )(b +c -a )=3bc ,则角A 等于( ) A .30° B .60° C .120°D .150°解析:选B .因为(b +c )2-a 2=b 2+c 2+2bc -a 2=3bc , 所以b 2+c 2-a 2=bc ,所以cos A =b 2+c 2-a 22bc =12,所以A =60°.3.若△ABC 的内角A ,B ,C 所对的边a ,b ,c 满足(a +b )2-c 2=4,且C =60°,则ab =________. 解析:因为C =60°,所以c 2=a 2+b 2-2ab cos 60°, 即c 2=a 2+b 2-ab .① 又因为(a +b )2-c 2=4, 所以c 2=a 2+b 2+2ab -4.②由①②知-ab =2ab -4,所以ab =43.答案:434.在△ABC 中,a cos A +b cos B =c cos C ,试判断△ABC 的形状.解:由余弦定理知cos A =b 2+c 2-a 22bc ,cos B =c 2+a 2-b 22ca ,cos C =a 2+b 2-c 22ab ,代入已知条件得a ·b 2+c 2-a 22bc +b ·c 2+a 2-b 22ca +c ·c 2-a 2-b 22ab=0,通分得a 2(b 2+c 2-a 2)+b 2(a 2+c 2-b 2)+c 2(c 2-a 2-b 2)=0, 展开整理得(a 2-b 2)2=c 4.所以a 2-b 2=±c 2,即a 2=b 2+c 2或b 2=a 2+c 2.根据勾股定理知△ABC 是直角三角形.【第三课时】一、问题导入预习教材内容,思考以下问题:1.在直角三角形中,边与角之间的关系是什么? 2.正弦定理的内容是什么? 二、新知探究已知两角及一边解三角形:在△ABC 中,已知c =10,A =45°,C =30°,解这个三角形. 【解】因为A =45°,C =30°,所以B =180°-(A +C )=105°. 由a sin A =c sin C 得a =c sin A sin C =10×sin 45°sin 30°=102. 因为sin 75°=sin (30°+45°)=sin 30°cos 45°+cos 30°sin 45°=2+64,所以b =c sin B sin C =10×sin (A +C )sin 30°=20×2+64=52+56.已知三角形的两角和任一边解三角形的思路(1)若所给边是已知角的对边时,可由正弦定理求另一角所对的边,再由三角形内角和定理求出第三个角. (2)若所给边不是已知角的对边时,先由三角形内角和定理求出第三个角,再由正弦定理求另外两边.已知两边及其中一边的对角解三角形已知△ABC 中的下列条件,解三角形: (1)a =10,b =20,A =60°; (2)a =2,c=6,C =π3.解:(1)因为b sin B =asin A,所以sin B =b sin A a =20sin 60°10=3>1,所以三角形无解.(2)因为a sin A =c sin C ,所以sin A =a sin C c =22.因为c >a ,所以C >A .所以A =π4.所以B =5π12,b = c sin Bsin C =6·sin 5π12sin π3=3+1.互动探究:变条件:若本例(2)中C =π3改为A =π4,其他条件不变,求C ,B, b .解:因为a sin A =c sin C ,所以sin C =c sin A a =32.所以C =π3或2π3.当C =π3时,B =5π12,b =a sin B sin A =3+1.当C =2π3时,B =π12,b =a sin B sin A=3-1.(1)已知两边及其中一边的对角解三角形的思路 ①首先由正弦定理求出另一边对角的正弦值;②如果已知的角为大边所对的角时,由三角形中大边对大角,大角对大边的法则能判断另一边所对的角为锐角,由正弦值可求锐角;③如果已知的角为小边所对的角时,则不能判断另一边所对的角为锐角,这时由正弦值可求两个角,要分类讨论.(2)已知两边及其中一边的对角判断三角形解的个数的方法①应用三角形中大边对大角的性质以及正弦函数的值域判断解的个数;②在△ABC 中,已知a ,b 和A ,以点C 为圆心,以边长a 为半径画弧,此弧与除去顶点A 的射线AB 的公共点的个数即为三角形解的个数,解的个数见下表:判断三角形的形状:已知在△ABC 中,角A ,B 所对的边分别是a 和b ,若a cos B =b cos A ,则△ABC 一定是( )A.等腰三角形B.等边三角形C.直角三角形D.等腰直角三角形解析:由正弦定理得:a cos B=b cos A⇒sin A cos B=sin B cos A⇒sin(A-B)=0,由于-π<A-B<π,故必有A-B=0,A=B,即△ABC为等腰三角形.答案:A互动探究:变条件:若把本例条件变为“b sin B=c sin C”,试判断△ABC的形状.解:由b sin B=c sin C可得sin2B=sin2C,因为三角形内角和为180°,所以sin B=sin C.所以B=C.故△ABC为等腰三角形.判断三角形形状的两种途径注意:在两种解法的等式变形中,一般两边不要约去公因式,应移项提取公因式,以免漏解.三、课堂总结1.正弦定理对正弦定理的理解(1)适用范围:正弦定理对任意的三角形都成立.(2)结构形式:分子为三角形的边长,分母为相应边所对角的正弦的连等式.(3)揭示规律:正弦定理指出的是三角形中三条边与其对应角的正弦之间的一个关系式,它描述了三角形中边与角的一种数量关系.2.正弦定理的变形若R为△ABC外接圆的半径,则(1)a=2R sin A,b=2R sin B,c=2R sin C;(2)sin A=a2R,sin B=b2R,sin C=c2R;(3)sin A∶sin B∶sin C=a∶b∶c;(4)a+b+csin A+sin B+sin C=2R.四、课堂检测1.(2019·辽宁沈阳铁路实验中学期中考试)在△ABC中,AB=2,AC=3,B=60°,则cos C=()A.33B.63C.32D.62解析:选B.由正弦定理,得ABsin C=ACsin B,即2sin C=3sin 60°,解得sin C=33.因为AB<AC,所以C<B,所以cos C=1-sin2C=6 3.2.在△ABC中,角A,B,C的对边分别为a,b,c,且A∶B∶C=1∶2∶3,则a∶b∶c=()A.1∶2∶3B.3∶2∶1C.2∶3∶1D.1∶3∶2解析:选D.在△ABC中,因为A∶B∶C=1∶2∶3,所以B=2A,C=3A,又A+B+C=180°,所以A=30°,B =60°,C=90°,所以a∶b∶c=sin A∶sin B∶sin C=sin 30°∶sin 60°∶sin 90°=1∶3∶2.3.在△ABC中,角A,B,C的对边分别是a,b,c,若c-a cos B=(2a-b)cos A,则△ABC的形状是()A.等腰三角形B.直角三角形C.等腰直角三角形D.等腰三角形或直角三角形解析:选D.已知c-a cos B=(2a-b)cos A,由正弦定理得sin C-sin A cos B=2sin A cos A-sin B cos A,所以sin(A+B)-sin A cos B=2sin A cos A-sin B cos A,化简得cos A(sin B-sin A)=0,所以cos A=0或sin B-sin A=0,则A=90°或A=B,故△ABC为等腰三角形或直角三角形.【第四课时】一、问题导入预习教材内容,思考以下问题:1.什么是基线?2.基线的长度与测量的精确度有什么关系?3.利用正、余弦定理可解决哪些实际问题?二、新知探究测量距离问题:海上A ,B 两个小岛相距10海里,从A 岛望C 岛和B 岛成60°的视角,从B 岛望C 岛和A 岛成75°的视角,则B 岛与C 岛间的距离是________.解析:如图,在△ABC 中,∠C =180°-(∠B +∠A )=45°, 由正弦定理,可得BC sin 60°=ABsin 45°,所以BC =32×10=56(海里). 答案:56海里变条件:在本例中,若“从B 岛望C 岛和A 岛成75°的视角”改为“A ,C 两岛相距20海里”,其他条件不变,又如何求B 岛与C 岛间的距离呢?解:由已知在△ABC 中,AB =10,AC =20,∠BAC =60°,即已知两边和两边的夹角,利用余弦定理求解即可. BC 2=AB 2+AC 2-2AB ·AC ·cos 60°=102+202-2×10×20×12=300.故BC =103.即B ,C 间的距离为103海里.测量距离问题的解题思路求解测量距离问题的方法是:选择合适的辅助测量点,构造三角形,将问题转化为求某个三角形的边长问题,从而利用正、余弦定理求解.构造数学模型时,尽量把已知元素放在同一个三角形中.测量高度问题:如图,一辆汽车在一条水平的公路上向正西行驶,到A 处时测得公路北侧一山顶D 在西偏北30°的方向上,行驶600 m 后到达B 处,测得此山顶在西偏北75°的方向上,仰角为30°,则此山的高度CD =________m . 解析:由题意,在△ABC 中,∠BAC =30°,∠ABC =180°-75°=105°,故∠ACB =45°. 又AB =600 m ,故由正弦定理得600sin 45°=BCsin 30°,解得BC =300 2 m .在Rt △BCD 中,CD =BC ·tan 30°=3002×33=1006(m ). 答案:1006 互动探究:变问法:在本例条件下,汽车在沿直线AB 方向行驶的过程中,若测得观察山顶D 点的最大仰角为α,求tan α的值.解:如图,过点C ,作CE ⊥AB ,垂足为E ,则∠DEC =α,由例题可知, ∠CBE =75°,BC =3002, 所以CE =BC ·sin ∠CBE=3002sin 75° =3002×2+64=150+1503.所以tan α=DC CE =1006150+1503=32-63.测量高度问题的解题思路高度的测量主要是一些底部不能到达或者无法直接测量的物体的高度问题.常用正弦定理或余弦定理计算出物体的顶部或底部到一个可到达的点之间的距离,然后转化为解直角三角形的问题.这类物体高度的测量是在与地面垂直的竖直平面内构造三角形或者在空间构造三棱锥,再依据条件利用正、余弦定理解其中的一个或者几个三角形,从而求出所需测量物体的高度.测量角度问题:岛A 观察站发现在其东南方向有一艘可疑船只,正以每小时10海里的速度向东南方向航行(如图所示),观察站即刻通知在岛A 正南方向B 处巡航的海监船前往检查.接到通知后,海监船测得可疑船只在其北偏东75°方向且相距10海里的C 处,随即以每小时103海里的速度前往拦截. (1)问:海监船接到通知时,在距离岛A 多少海里处?(2)假设海监船在D 处恰好追上可疑船只,求它的航行方向及其航行的时间. 解:(1)根据题意得∠BAC =45°,∠ABC =75°,BC =10, 所以∠ACB =180°-75°-45°=60°, 在△ABC 中,由AB sin ∠ACB =BCsin ∠BAC ,得AB =BC sin ∠ACB sin ∠BAC=10sin 60°sin 45°=10×3222=56. 所以海监船接到通知时,在距离岛A 5 6 海里处.(2)设海监船航行时间为t 小时,则BD =103t ,CD =10t , 又因为∠BCD =180°-∠ACB =180°-60°=120°, 所以BD 2=BC 2+CD 2-2BC ·CD cos 120°, 所以300t 2=100+100t 2-2×10×10t ·⎝⎛⎭⎫-12, 所以2t 2-t -1=0,解得t =1或t =-12(舍去).所以CD =10,所以BC =CD ,所以∠CBD =12(180°-120°)=30°,所以∠ABD =75°+30°=105°.所以海监船沿方位角105°航行,航行时间为1个小时. (或海监船沿南偏东75°方向航行,航行时间为1个小时)测量角度问题的基本思路(1)测量角度问题的关键是在弄清题意的基础上,画出表示实际问题的图形,在图形中标出相关的角和距离. (2)根据实际选择正弦定理或余弦定理解三角形,然后将解得的结果转化为实际问题的解. 三、课堂总结 1.基线在测量过程中,我们把根据测量的需要而确定的线段叫做基线 实际测量中的有关名称、术语南偏西60°(指以正南方向为始边,转向目标方向线形成的角)1.若P 在Q 的北偏东44°50′方向上,则Q 在P 的( ) A .东偏北45°10′方向上 B .东偏北45°50′方向上 C .南偏西44°50′方向上 D .西偏南45°50′方向上解析:选C .如图所示.2.如图,D ,C ,B 三点在地面同一直线上,从地面上C ,D 两点望山顶A ,测得它们的仰角分别为45°和30°,已知CD =200米,点C 位于BD 上,则山高AB 等于( )A .1002米B .50(3+1)米C .100(3+1)米D .200米解析:选C .设AB =x 米,在Rt △ACB 中,∠ACB =45°, 所以BC =AB =x .在Rt △ABD 中,∠D =30°,则BD =3AB =3x . 因为BD -BC =CD ,所以3x -x =200, 解得x =100(3+1).故选C .3.已知台风中心位于城市A 东偏北α(α为锐角)度的150公里处,以v 公里/小时沿正西方向快速移动,2.5小时后到达距城市A 西偏北β(β为锐角)度的200公里处,若cos α=34cos β,则v =( )A .60B .80C .100D .125解析:选C .画出图象如图所示,由余弦定理得(2.5v )2=2002+1502+2×200×150cos (α+β)①,由正弦定理得150sin β=200sin α,所以sin α=43sin β.又cos α=34 cos β,sin 2 α+cos 2 α=1,解得sin β=35,故cos β=45,sin α=45,cos α=35,故cos (α+β)=1225-1225=0,代入①解得v =100.4.某巡逻艇在A 处发现在北偏东45°距A 处8海里处有一走私船,正沿南偏东75°的方向以12海里/小时的速度向我岸行驶,巡逻艇立即以123海里/小时的速度沿直线追击,问巡逻艇最少需要多长时间才能追到走私船,并指出巡逻艇的航行方向.解:设经过t 小时在点C 处刚好追上走私船,依题意:AC =123t ,BC =12t ,∠ABC =120°, 在△ABC 中,由正弦定理得123t sin 120°=12tsin ∠BAC,所以sin ∠BAC =12,所以∠BAC =30°,所以AB =BC =8=12t ,解得t =23,航行的方向为北偏东75°.即巡逻艇最少经过23小时可追到走私船,沿北偏东75°的方向航行.坚持希望一天,一个瞎子和一个瘸子结伴去寻找那种仙果,他们一直走呀走,途中他们翻山越岭。
平面向量教案3篇

平面向量教案3篇平面向量教案1一、教学目标:1. 理解平面向量的定义及相关术语;2. 掌握平面向量的基础运算和性质,如向量的加、减、数乘、模长等;3. 能够利用向量解决几何、三角学以及力学等问题。
二、教学重难点:教学重点:向量的基础运算和性质;教学难点:向量问题的解答。
三、教学方法:讲述法、举例法、实验法。
四、教学过程:1. 前置知识概括为了有利于学生对本次课程的学习,首先需要对平面向量有一定的了解。
向量是运用在三角学以及计算机科学中的一个概念,它表示一个方向和一个大小。
在二维空间中,向量通常用一个有序数对(x, y)表示,其中x和y分别表示向量在x轴和y轴上的分量。
然而,在本课程中,我们将会介绍另一种同样重要的表现向量的方式:平面向量。
2. 讲解平面向量的定义及相关术语平面向量即为有向线段,表示为 $\vec{a}$,具有大小和方向。
平面向量有以下几个重要的术语:(1)起点:向量 $\vec{a}$ 的起点是线段的始点,表示为 $A$。
(2)终点:向量 $\vec{a}$ 的终点是线段的末点,表示为 $B$。
(3)长度:向量 $\vec{a}$ 的长度等于线段 $AB$ 的长度,可以用$|\vec{a}|$表示。
(4)方向角:向量 $\vec{a}$ 的方向角是向量与$x$轴正方向的夹角,通常用 $\theta$表示。
(5)方向余弦:向量 $\vec{a}$ 的方向余弦分别是向量在$x$和$y$轴上的投影与向量长度的比值,分别用 $\cos\alpha$ 和$\cos\beta$表示。
(6)坐标表示:用有序数对 $(a_x, a_y)$ 表示向量 $\vec{a}$,其中 $a_x$ 和 $a_y$ 分别表示向量在$x$轴和$y$轴上的分量。
3. 讲解向量的基本运算及性质(1)向量的加法:设 $\vec{a}$ 和 $\vec{b}$ 为两个向量,它们的和记为 $\vec{a}+\vec{b}$,可通过作一平行四边形得到。
平面向量概念教案

平面向量概念教案
一.课题:平面向量概念
二、教学目标
、使学生了解向量的物理实际背景,理解平面向量的一些基本概念,能正确进行平面向量的几何表示。
、让学生经历类比方法学习向量及其几何表示的过程,体验对比理解向量基本概念的简易性,从而养成科学的学习方法。
、通过本节的学习,让学生感受向量的概念方法源于现实世界,从而激发学生学习数学的热情,培养学生学习数学的兴趣
三.教学类型:新知课
四、教学重点、难点
、重点:向量及其几何表示,相等向量、平行向量的概念。
、难点:向量的概念及对平行向量的理解。
五、教学过程
(一)、问题引入
、在物理中,位移与距离是同一个概念吗?为什么?
、在物理中,我们学到位移是既有大小、又有方向的量,你还能举出一些这
样的量吗?
、在物理中,像这种既有大小、又有方向的量叫做矢量。
在数学中,我们把这种既有大小、又有方向的量叫做向量。
而把那些只有大小,没有方向的量叫数量。
(二)讲授新课
、向量的概念
练习对于下列各量:
①质量②速度③位移④力⑤加速度⑥路程⑦密度⑧功⑨体积⑩温度
其中,是向量的有:②③④⑤
、向量的几何表示
请表示一个竖直向下、大小为的力,和一个水平向左、大小为的力(厘米表示)。
思考一下物理学科中是如何表示力这一向量的?
()有向线段及有向线段的三要素
()向量的模
()零向量,记作____;
()单位向量
练习边长为的等边△中,=__,与相等的还有哪些?。
平面向量的应用教案

平面向量的应用教案一、教学目标1. 了解平面向量的概念和性质;2. 掌握平面向量的加法、减法和乘法运算法则;3. 能够应用平面向量解决简单的几何和物理问题。
二、教学内容1. 平面向量的定义和表示;2. 平面向量的加法和减法;3. 平面向量的数量积和向量积;4. 平面向量在几何和物理问题中的应用。
三、教学过程步骤一:引入1. 通过展示一些与平面向量相关的真实生活例子,引起学生对平面向量的兴趣和好奇心。
2. 引导学生思考并讨论平面向量的定义和表示方法。
步骤二:知识讲解1. 介绍平面向量的定义:一个平面向量是由大小和方向确定的有向线段。
2. 解释平面向量的表示方法:以坐标表示和以向量符号表示。
3. 讲解平面向量的加法和减法运算法则。
步骤三:运算实践1. 给出一些平面向量的具体数值,让学生进行加法和减法运算练。
2. 提供一些几何图形,让学生将其分解为平面向量并进行计算。
步骤四:引入向量积和数量积1. 介绍向量积和数量积的概念和定义。
2. 解释向量积和数量积在几何和物理问题中的应用。
步骤五:应用实例1. 给出一些具体的几何和物理问题,让学生运用平面向量的知识进行求解。
2. 引导学生讨论解题思路,进行实际操作。
四、教学评价1. 在课堂上进行小组讨论和问题解答,检验学生是否理解和掌握了平面向量的相关知识。
2. 布置一些练题和作业,评估学生对平面向量运算的应用能力。
五、教学资源1. 平面向量的教学课件;2. 练题和作业。
六、教学反思以学生为中心,注重综合实践和问题解决能力的培养,通过生动的例子和实际运用让学生更好地理解和应用平面向量的知识。
同时,及时反馈学生的学习情况,帮助他们及时纠正错误和理清思路。
向量的教案5篇

向量的教案5篇向量的教案篇1一、教学内容分析1、教学主要内容(1)平面向量数量积及其几何意义(2)用平面向量处理有关长度、角度、直垂问题2、教材编写特点本节是必修4第二章第3节的内容,在教材中起到层上启下的作用。
3、教学内容的核心教学思想用数量积求夹角,距离及平面向量数量积的坐标运算,渗透化归思想以及数形结合思想。
4、我的思考本节数学的目标为让学生掌握平面向量数量积的定义,及应用平面向量数量积的定义处理相关夹角距离及垂直的问题。
因此,让学生们学会把数学问题转化到图形中,及能在图形中把图形转化成相关的数学问题尤其重要。
二、学生分析1、在学平面向量的数量积之前,学习已经认识并会找向量的夹角,及用坐标表示向量的知识。
因此,对于a·b=∣b∣︳a︴cosθ(θ=),容易进行相应的简单计算,但对于理解这个式子上存在一定的问题,因此,需把a·b=∣a∣∣b∣ cosθ转化到图形a·b=∣om∣·∣ob∣=∣b∣cosθ∣a∣即a·b=∣a∣∣b∣cosθ理解并记忆。
对于cosθ= ,等的变形应用,同学们甚感兴趣。
2、我的思考对于基础薄弱的学生而言,学习本节知识,在处理例题成练习上,计算量不易过大。
三、学习目标1、知识与技能(1)掌握平面向量数量积及其几何意义。
(2)平面向量数量积的应用。
2、过程与方法通过学生小组探究学习,讨论并得出结论。
3、情感态度与价值观培养学生运算推理的能力。
四、教学活动内容师生互动设计意图时间1、课题引入师:请同学请回忆我们所学过的相关同里的运算。
生:加法、减法,数乘师:这些运算所得的结果是数还是向量。
生:向量。
师:今天我们来学习一种有关向量的新的运输,数里积(板书课题) 由旧知引出新知,让学生知道我们学习是层层深入,知识永不止境,从而把学生引入到新的课程学习中来。
3min 2、平面向里的数量积定义师:平面向星数量积(内积或点积)的定义:已知两个非零向星a·b,它们的夹角是θ,则数量∣a∣·∣b∣cosθ叫a与b的数量积,记作a·b,即a·b=∣a∣∣b∣cosθ,注:①a·b≠a×b≠ab②o与任何向量的数里积为o。
中职数学平面向量教案

中职数学平面向量教案第一章:向量的概念1.1 向量的定义介绍向量的概念,向量的表示方法(字母表示和箭头表示)通过实际例子解释向量的方向和大小1.2 向量的几何表示介绍向量的几何表示方法,箭头表示向量的方向和长度绘制向量图,让学生理解向量的直观表示1.3 向量的坐标表示介绍向量的坐标表示方法,二维和三维空间中的向量坐标表示解释坐标轴上的向量表示,以及坐标系中的向量表示第二章:向量的运算2.1 向量的加法介绍向量的加法运算,同一直线上的向量加法,不同直线上的向量加法利用图形和坐标表示向量的加法运算2.2 向量的减法介绍向量的减法运算,通过加上相反向量实现向量的减法利用图形和坐标表示向量的减法运算2.3 向量的数乘介绍向量的数乘运算,即向量与实数的乘积解释数乘运算的性质和运算规律,利用图形和坐标表示向量的数乘运算第三章:向量的数量积3.1 向量的数量积定义介绍向量的数量积概念,即向量的点积解释数量积的性质和运算规律3.2 数量积的计算公式介绍数量积的计算公式,即两个向量的数量积等于它们的模长的乘积与夹角的余弦值的乘积利用图形和坐标表示数量积的计算3.3 数量积的应用介绍数量积的应用,如判断两个向量的垂直关系,计算向量的模长和夹角利用实际例子展示数量积的应用第四章:向量的叉积4.1 向量的叉积定义介绍向量的叉积概念,即向量的叉积结果为一个向量,其方向垂直于原来的两个向量解释叉积的性质和运算规律4.2 叉积的计算公式介绍叉积的计算公式,即两个向量的叉积结果的模长等于它们的模长的乘积与夹角的正弦值的乘积,方向垂直于原来的两个向量利用图形和坐标表示叉积的计算4.3 叉积的应用介绍叉积的应用,如计算平行四边形的面积,求解两个向量的夹角利用实际例子展示叉积的应用第五章:向量的线性相关性5.1 向量的线性相关性定义介绍向量的线性相关性概念,即一组向量中存在至少一个向量可以由其他向量通过线性组合表示解释线性相关性的性质和判定条件5.2 向量的线性组合介绍向量的线性组合,即一组向量的加权和利用图形和坐标表示向量的线性组合5.3 向量的线性无关性介绍向量的线性无关性,即一组向量中没有任何一个向量可以由其他向量通过线性组合表示利用判定条件判断一组向量是否线性无关第六章:向量的应用6.1 物理中的应用介绍向量在物理学中的应用,如速度、加速度、力等物理量的向量表示通过实际例子解释向量在物理学中的作用6.2 几何中的应用介绍向量在几何中的应用,如计算线段的长度、夹角的大小、平行四边形的面积等通过实际例子解释向量在几何中的作用第七章:向量的分解7.1 向量的分解概念介绍向量的分解概念,即将一个向量分解为两个或多个向量的和解释向量分解的意义和作用7.2 向量的正交分解介绍向量的正交分解,即将一个向量分解为两个垂直向量的和利用正交基底进行向量分解,解释正交分解的性质和运算规律7.3 向量的坐标分解介绍向量的坐标分解,即将一个向量分解为坐标轴上的分量之和利用坐标表示向量的分解,解释坐标分解的性质和运算规律第八章:向量的方程8.1 向量的方程概念介绍向量的方程概念,即用向量的运算表达式描述向量之间的关系解释向量方程的意义和作用8.2 向量的线性方程组介绍向量的线性方程组,即由多个线性方程组成的方程组解向量的线性方程组,解释解的性质和判定条件8.3 向量的非线性方程介绍向量的非线性方程,即方程中包含向量的非线性运算通过实际例子解释向量非线性方程的解法和应用第九章:向量的空间9.1 向量的空间概念介绍向量的空间概念,即由向量组成的几何空间解释向量空间的意义和性质9.2 向量空间的基本性质介绍向量空间的基本性质,如向量加法、数乘运算的封闭性,线性组合的性质等解释向量空间的公理体系和判定条件9.3 向量空间的子空间介绍向量空间的子空间,即由原向量空间中的一部分向量组成的子集解释子空间的性质和运算规律,以及子空间之间的关系第十章:向量的进一步应用10.1 向量在工程中的应用介绍向量在工程技术中的应用,如力学、电路、控制等领域的向量表示和方法通过实际例子解释向量在工程中的应用和作用10.2 向量在计算机科学中的应用介绍向量在计算机科学中的应用,如图形学、计算机图形处理、机器学习等领域的向量表示和方法通过实际例子解释向量在计算机科学中的应用和作用10.3 向量在其他领域的应用介绍向量在其他领域中的应用,如经济学、生物学、环境科学等领域的向量表示和方法通过实际例子解释向量在其他领域的应用和作用重点和难点解析1. 向量的概念与几何表示:重点关注向量的定义和几何表示方法,理解向量的方向和大小。
平面向量的运算教案

平面向量的运算【第一课时】向量的加法运算【教学重难点】【教学目标】【核心素养】平面向量加法的几何意义理解向量加法的概念以及向量加法的几何意义数学抽象、直观想象平行四边形法则和三角形法则掌握向量加法的平行四边形法则和三角形法则,会用它们解决实际问题数学抽象、直观想象平面向量加法的运算律掌握向量加法的交换律和结合律,会用它们进行计算数学抽象、数学运算【教学过程】一、问题导入预习教材内容,思考以下问题:1.在求两向量和的运算时,通常使用哪两个法则?2.向量加法的运算律有哪两个?二、新知探究探究点1:平面向量的加法及其几何意义例1:如图,已知向量a ,b ,c ,求作和向量a +b +c .解:法一:可先作a +c ,再作(a +c )+b ,即a +b +c .如图,首先在平面内任取一点O ,作向量OA →=a ,接着作向量AB →=c ,则得向量OB →=a +c ,然后作向量BC →=b ,则向量OC→=a +b +c 为所求.法二:三个向量不共线,用平行四边形法则来作.如图,(1)在平面内任取一点O ,作OA→=a ,OB →=b ;(2)作平行四边形AOBC ,则OC→=a +b ;(3)再作向量OD →=c ;(4)作平行四边形CODE ,则OE→=OC →+c =a +b +c .OE →即为所求.规律方法:(1)应用三角形法则求向量和的基本步骤①平移向量使之“首尾相接”,即第一个向量的终点与第二个向量的起点重合;②以第一个向量的起点为起点,并以第二个向量的终点为终点的向量,即为两个向量的和.(2)应用平行四边形法则求向量和的基本步骤①平移两个不共线的向量使之共起点;②以这两个已知向量为邻边作平行四边形;③平行四边形中,与两向量共起点的对角线表示的向量为两个向量的和.探究点2:平面向量的加法运算例2:化简:(1)BC→+AB →;(2)DB →+CD →+BC →;(3)AB →+DF →+CD →+BC →+FA →.解:(1)BC →+AB →=AB →+BC →=AC →.(2)DB →+CD →+BC →=BC →+CD →+DB→=(BC→+CD →)+DB →=BD →+DB →=0.(3)AB →+DF →+CD →+BC →+FA →=AB→+BC →+CD →+DF →+FA →=AC →+CD →+DF →+FA →=AD →+DF →+FA →=AF →+FA →=0.规律方法:向量加法运算中化简的两种方法(1)代数法:借助向量加法的交换律和结合律,将向量转化为“首尾相接”,向量的和即为第一个向量的起点指向最后一个向量终点的向量.(2)几何法:通过作图,根据三角形法则或平行四边形法则化简.探究点3:向量加法的实际应用例3:某人在静水中游泳,速度为43千米/小时,他在水流速度为4千米/小时的河中游泳.若他垂直游向河对岸,则他实际沿什么方向前进?实际前进的速度大小为多少?解:如图,设此人游泳的速度为OB →,水流的速度为OA →,以OA →,OB →为邻边作▱OACB ,则此人的实际速度为OA→+OB →=OC →.由勾股定理知|OC →|=8,且在Rt △ACO 中,∠COA =60°,故此人沿与河岸成60°的夹角顺着水流的方向前进,速度大小为8千米/小时.规律方法:应用向量解决平面几何和物理学问题的基本步骤(1)表示:用向量表示有关量,将所要解答的问题转化为向量问题.(2)运算:应用向量加法的平行四边形法则和三角形法则,将相关向量进行运算,解答向量问题.(3)还原:根据向量的运算结果,结合向量共线、相等等概念回答原问题.三、课堂总结1.向量加法的定义及运算法则定义求两个向量和的运算,叫做向量的加法法则三角形法则前提已知非零向量a ,b作法在平面内任取一点A ,作AB →=a ,BC →=b ,再作向量AC→结论向量AC →叫做a 与b 的和,记作a +b ,即a +b =AB →+BC →=AC→图形法则平行四边形法则前提已知不共线的两个向量a ,b作法在平面内任取一点O ,以同一点O 为起点的两个已知向量a ,b 为邻边作▱OACB结论对角线OC →就是a 与b 的和图形规定对于零向量与任一向量a ,我们规定a +0=0+a =a2.|a +b |,|a |,|b |之间的关系一般地,|a +b |≤|a |+|b |,当且仅当a ,b 方向相同时等号成立.3.向量加法的运算律交换律a +b =b +a结合律(a +b )+c =a +(b +c )四、课堂检测1.化简OP→+PQ →+PS →+SP →的结果等于()A .QP →B .OQ→C .SP→D .SQ→解析:选B .OP →+PQ →+PS →+SP →=OQ →+0=OQ →.2.在四边形ABCD 中,AC →=AB →+AD →,则一定有()A .四边形ABCD 是矩形B .四边形ABCD 是菱形C .四边形ABCD 是正方形D .四边形ABCD 是平行四边形解析:选D .由AC→=AB →+AD →得AD →=BC →,即AD =BC ,且AD ∥BC ,所以四边形ABCD 的一组对边平行且相等,故为平行四边形.3.已知非零向量a ,b ,|a |=8,|b |=5,则|a +b |的最大值为______.解析:|a +b |≤|a |+|b |,所以|a +b |的最大值为13.答案:134.已知▱ABCD ,O 是两条对角线的交点,E 是CD 的一个三等分点(靠近D 点),求作:(1)AO →+AC →;(2)DE→+BA →.解:(1)延长AC ,在延长线上截取CF =AO ,则向量AF →为所求.(2)在AB 上取点G ,使AG =13AB ,则向量BG →为所求.【第二课时】向量的减法运算【教学重难点】【教学目标】【核心素养】相反向量理解相反向量的概念数学抽象向量的减法掌握向量减法的运算法则及其几何意义数学抽象、直观想象【教学过程】一、问题导入预习教材内容,思考以下问题:1.a 的相反向量是什么?2.向量减法的几何意义是什么?二、新知探究探究点1:向量的减法运算例1:化简下列各式:(1)(AB →+MB →)+(-OB →-MO →);(2)AB →-AD →-DC →.解:(1)法一:原式=AB →+MB →+BO →+OM →=(AB →+BO →)+(OM →+MB →)=AO →+OB →=AB →.法二:原式=AB →+MB →+BO →+OM →=AB →+(MB →+BO →)+OM →=AB →+MO →+OM →=AB →+0=AB →.(2)法一:原式=DB →-DC →=CB →.法二:原式=AB →-(AD →+DC →)=AB →-AC →=CB →.规律方法:向量减法运算的常用方法探究点2:向量的减法及其几何意义例2:如图,已知向量a ,b ,c 不共线,求作向量a +b -c .解:法一:如图①,在平面内任取一点O ,作OA →=a ,OB →=b ,OC →=c ,连接BC ,则CB →=b -c .过点A 作AD 綊BC ,连接OD ,则AD →=b -c ,所以OD →=OA →+AD →=a +b -c .法二:如图②,在平面内任取一点O ,作OA →=a ,AB →=b ,连接OB ,则OB →=a +b ,再作OC →=c ,连接CB ,则CB →=a +b -c .法三:如图③,在平面内任取一点O ,作OA →=a ,AB →=b ,连接OB ,则OB →=a +b ,再作CB →=c ,连接OC ,则OC →=a +b -c .规律方法:求作两个向量的差向量的两种思路(1)可以转化为向量的加法来进行,如a -b ,可以先作-b ,然后作a +(-b )即可.(2)可以直接用向量减法的三角形法则,即把两向量的起点重合,则差向量为连接两个向量的终点,指向被减向量的终点的向量.探究点3:用已知向量表示其他向量例3:如图所示,四边形ACDE 是平行四边形,点B 是该平行四边形外一点,且AB→=a ,AC →=b ,AE →=c ,试用向量a ,b ,c 表示向量CD →,BC →,BD →.解:因为四边形ACDE 是平行四边形,所以CD→=AE →=c ,BC →=AC →-AB →=b -a ,故BD →=BC →+CD →=b -a +c .规律方法:用已知向量表示其他向量的三个关注点(1)搞清楚图形中的相等向量、相反向量、共线向量以及构成三角形的三个向量之间的关系,确定已知向量与被表示向量的转化渠道.(2)注意综合应用向量加法、减法的几何意义以及向量加法的结合律、交换律来分析解决问题.(3)注意在封闭图形中利用向量加法的多边形法则.例如,在四边形ABCD 中,AB →+BC →+CD →+DA →=0.三、课堂总结1.相反向量(1)定义:与a 长度相等,方向相反的向量,叫做a 的相反向差,记作-a ,并且规定,零向量的相反向量仍是零向量.(2)结论①-(-a )=a ,a +(-a )=(-a )+a =0;②如果a 与b 互为相反向量,那么a =-b ,b =-a ,a +b =0.2.向量的减法(1)向量a 加上b 的相反向量,叫做a 与b 的差,即a -b =a +(-b ).求两个向量差的运算叫做向量的减法.(2)作法:在平面内任取一点O ,作OA →=a ,OB →=b ,则向量BA →=a -b ,如图所示.(3)几何意义:a -b 可以表示为从向量b 的终点指向向量a 的终点的向量.四、课堂检测1.在△ABC 中,D 是BC 边上的一点,则AD→-AC →等于()A .CB →B .BC →C .CD →D .DC→解析:选C .在△ABC 中,D 是BC 边上一点,则由两个向量的减法的几何意义可得AD →-AC →=CD →.2.化简:AB →-AC →+BD →-CD →+AD →=________.解析:原式=CB→+BD →+DC →+AD →=CD →+DC →+AD →=0+AD →=AD →.答案:AD→3.已知错误!=10,|AC →|=7,则|CB →|的取值范围为______.解析:因为CB →=AB →-AC →,所以|CB→|=|AB →-AC →|.又||AC →||≤|AB →-AC →|≤|AB →|+|AC →|,3≤|AB →-AC →|≤17,所以3≤|CB →|≤17.答案:[3,17]4.若O 是△ABC 所在平面内一点,且满足|OB →-OC →|=|OB →-OA →+OC →-OA →|,试判断△ABC 的形状.解:因为OB →-OA →+OC →-OA →=AB →+AC →,OB →-OC →=CB →=AB →-AC →.又|OB →-OC →|=|OB →-OA →+OC →-OA →|,所以|AB →+AC →|=|AB →-AC →|,所以以AB ,AC 为邻边的平行四边形的两条对角线的长度相等,所以该平行四边形为矩形,所以AB ⊥AC ,所以△ABC 是直角三角形.【第三课时】向量的数乘运算【教学重难点】【教学目标】【核心素养】向量数乘运算的定义及运算律理解向量数乘的定义及几何意义,掌握向量数乘的运算律数学抽象、直观想象向量共线定理掌握向量共线定理,会判断或证明两个向量共线逻辑推理【教学过程】一、问题导入预习教材内容,思考以下问题:1.向量数乘的定义及其几何意义是什么?2.向量数乘运算满足哪三条运算律?3.向量共线定理是怎样表述的?4.向量的线性运算是指的哪三种运算?二、新知探究探究点1:向量的线性运算例1:(1)计算:①4(a+b)-3(a-b)-8a;②(5a-4b+c)-2(3a-2b+c);③23(4a-3b)+13b-14(6a-7b).(2)设向量a=3i+2j,b=2i-j--23b2b-a).解:(1)①原式=4a+4b-3a+3b-8a =-7a+7b.②原式=5a-4b+c-6a+4b-2c=-a-c.a-3b+13b-32a +74b-11 12b=53a-1118b.(2)原式=13a-b-a+23b+2b-a1-1+23+=-53a+5b=-5(3i+2j)+53(2i -j)5-103-=-53i-5j.规律方法:向量线性运算的基本方法(1)类比方法:向量的数乘运算可类似于代数多项式的运算.例如,实数运算中的去括号、移项、合并同类项、提取公因式等变形手段在数与向量的乘积中同样适用,但是在这里的“同类项”“公因式”指向量,实数看作是向量的系数.(2)方程方法:向量也可以通过列方程来解,把所求向量当作未知数,利用代数方程的方法求解,同时在运算过程中要多注意观察,恰当运用运算律,简化运算.探究点2:向量共线定理及其应用例2:已知非零向量e 1,e 2不共线.(1)如果AB →=e 1+e 2,BC →=2e 1+8e 2,CD →=3(e 1-e 2),求证:A 、B 、D 三点共线;(2)欲使k e 1+e 2和e 1+k e 2共线,试确定实数k 的值.解:(1)证明:因为AB →=e 1+e 2,BD →=BC →+CD →=2e 1+8e 2+3e 1-3e 2=5(e 1+e 2)=5AB →.所以AB →,BD →共线,且有公共点B ,所以A 、B 、D 三点共线.(2)因为k e 1+e 2与e 1+k e 2共线,所以存在实数λ,使k e 1+e 2=λ(e 1+k e 2),则(k -λ)e 1=(λk -1)e 2由于e 1与e 2-λ=0,-1=0,所以k =±1.规律方法:向量共线定理的应用(1)若b =λa (a ≠0),且b 与a 所在的直线无公共点,则这两条直线平行.(2)若b =λa (a ≠0),且b 与a 所在的直线有公共点,则这两条直线重合.例如,若AB →=λAC →,则AB →与AC →共线,又AB →与AC →有公共点A ,从而A ,B ,C 三点共线,这是证明三点共线的重要方法.探究点3:用已知向量表示其他向量例3:如图,ABCD 是一个梯形,AB →∥CD →且|AB →|=2|CD →|,M ,N 分别是DC ,AB 的中点,已知AB →=e 1,AD →=e 2,试用e 1,e 2表示下列向量.(1)AC →=________;(2)MN →=________.解析:因为AB →∥CD →,|AB →|=2|CD →|,所以AB→=2DC →,DC →=12AB →.(1)AC →=AD →+DC →=e 2+12e 1.(2)MN →=MD →+DA →+AN→=-12DC →-AD →+12AB→=-14e 1-e 2+12e 1=14e 1-e 2.答案:(1)e 2+12e 1(2)14e 1-e 2互动探究变条件:在本例中,若条件改为BC →=e 1,AD →=e 2,试用e 1,e 2表示向量MN →.解:因为MN →=MD →+DA →+AN →,MN→=MC →+CB →+BN →,所以2MN →=(MD →+MC →)+DA →+CB →+(AN →+BN →).又因为M ,N 分别是DC ,AB 的中点,所以MD→+MC →=0,AN →+BN →=0.所以2MN →=DA →+CB →,所以MN →=12(-AD →-BC →)=-12e 2-12e 1.规律方法:用已知向量表示其他向量的两种方法(1)直接法(2)方程法当直接表示比较困难时,可以首先利用三角形法则和平行四边形法则建立关于所求向量和已知向量的等量关系,然后解关于所求向量的方程.三、课堂总结1.向量的数乘的定义一般地,规定实数λ与向量a 的积是一个向量,这种运算叫做向量的数乘,记作λa ,它的长度与方向规定如下:(1)|λa |=|λ||a |.(2)当λ>0时,λa 的方向与a 的方向相同;当λ<0时,λa 的方向与a 的方向相反;当λ=0时,λa =0.2.向量数乘的运算律设λ,μ为实数,那么:(1)λ(μa )=(λμ)a .(2)(λ+μ)a =λa +μa .(3)λ(a +b )=λa +λb .3.向量的线性运算及向量共线定理(1)向量的加、减、数乘运算统称为向量的线性运算.对于任意向量a ,b ,以及任意实数λ,μ1,μ2,恒有λ(μ1a ±μ2b )=λμ1a ±λμ2b .(2)向量a (a ≠0)与b 共线的充要条件是:存在唯一一个实数λ,使b =λa .四、课堂检测1.1312(2a +8b )-(4a -2b )等于()A .2a -bB .2b -aC .b -aD .a -b解析:选B .原式=16(2a +8b )-13(4a -2b )=13a +43b -43a +23b =-a +2b .2.若点O 为平行四边形ABCD 的中心,AB →=2e 1,BC →=3e 2,则32e 2-e 1=()A .BO →B .AO→C .CO →D .DO→解析:选A .BD →=AD →-AB →=BC →-AB →=3e 2-2e 1,BO →=12BD →=32e 2-e 1.3.已知e 1,e 2是两个不共线的向量,若AB →=2e 1-8e 2,CB →=e 1+3e 2,CD →=2e 1-e 2,求证A ,B ,D 三点共线.证明:因为CB →=e 1+3e 2,CD →=2e 1-e 2,所以BD →=CD →-CB →=e 1-4e 2.又AB →=2e 1-8e 2=2(e 1-4e 2),所以AB →=2BD →,所以AB →与BD →共线.因为AB 与BD 有交点B ,所以A ,B ,D 三点共线.【第四课时】向量的数量积【教学重难点】【教学目标】【核心素养】向量的夹角理解平面向量夹角的定义,并会求已知两个非零向量的夹角直观想象、数学运算向量数量积的含义理解平面向量数量积的含义并会计算数学抽象、数学运算投影向量理解a 在b 上的投影向量的概念数学抽象向量数量积的性质和运算律掌握平面向量数量积的性质及其运算律,并会应用数学运算、逻辑推理【教学过程】一、问题导入预习教材内容,思考以下问题:1.什么是向量的夹角?2.数量积的定义是什么?3.投影向量的定义是什么?4.向量数量积有哪些性质?5.向量数量积的运算有哪些运算律?二、新知探究探究点1:平面向量的数量积运算例1:(1)已知|a |=6,|b |=4,a 与b 的夹角为60°,求(a +2b )·(a +3b ).(2)如图,在▱ABCD 中,|AB →|=4,|AD →|=3,∠DAB =60°,求:①AD →·BC →;②AB →·DA →.解:(1)(a +2b )·(a +3b )=a·a +5a·b +6b·b =|a |2+5a·b +6|b |2=|a |2+5|a ||b |cos60°+6|b |2=62+5×6×4×cos60°+6×42=192.(2)①因为AD →∥BC →,且方向相同,所以AD →与BC →的夹角是0°,所以AD →·BC →=|AD →||BC →|·cos0°=3×3×1=9.②因为AB →与AD →的夹角为60°,所以AB→与DA →的夹角为120°,所以AB →→=|AB →||DA →|·cos120°=6.互动探究:变问法:若本例(2)的条件不变,求AC→·BD →.解:因为AC →=AB →+AD →,BD →=AD →-AB →,所以AC →·BD →=(AB →+AD →)·(AD →-AB →)=AD →2-AB →2=9-16=-7.规律方法:向量数量积的求法(1)求两个向量的数量积,首先确定两个向量的模及向量的夹角,其中准确求出两向量的夹角是求数量积的关键.(2)根据数量积的运算律,向量的加、减与数量积的混合运算类似于多项式的乘法运算.探究点2:向量模的有关计算例2:(1)已知平面向量a 与b 的夹角为60°,|a |=2,|b |=1,则|a +2b |=()A .3B .23C .4D .12(2)向量a ,b 满足|a |=1,|a -b |=32,a 与b 的夹角为60°,则|b |=()A .13B .12C .15D .14解析:(1)|a +2b |=(a +2b )2=a 2+4a·b +4b 2=|a |2+4|a ||b |cos 60°+4|b |2=4+4×2×1×12+4=23.(2)由题意得|a -b |2=|a |2+|b |2-2|a ||b |·cos60°=34,即1+|b |2-|b |=34,解得|b |=12.答案:(1)B (2)B 规律方法:求向量的模的常见思路及方法(1)求模问题一般转化为求模的平方,与向量数量积联系,并灵活应用a2=|a|2,勿忘记开方.(2)a·a=a2=|a|2或|a|=a2,可以实现实数运算与向量运算的相互转化.探究点3:向量的夹角与垂直命题角度一:求两向量的夹角例3:(1)已知|a|=6,|b|=4,(a+2b)·(a-3b)=-72,则a与b的夹角为________;(2)(2019·高考全国卷Ⅰ改编)已知非零向量a,b满足|a|=2|b|,且(a-b)⊥b,则a 与b的夹角为______.解析:(1)设a与b的夹角为θ,(a+2b)·(a-3b)=a·a-3a·b+2b·a-6b·b=|a|2-a·b-6|b|2=|a|2-|a||b|cosθ-6|b|2=62-6×4×cosθ-6×42=-72,所以24cosθ=36+72-96=12,所以cosθ=1 2.又因为θ∈[0,π],所以θ=π3.(2)设a与b的夹角为θ,由(a-b)⊥b,得(a-b)·b=0,所以a·b=b2,所以cosθ=b2|a||b|.又因为|a|=2|b|,所以cosθ=|b|22|b|2=12.又因为θ∈[0,π],所以θ=π3.答案:(1)π3(2)π3命题角度二:证明两向量垂直例4:已知a,b是非零向量,当a+t b(t∈R)的模取最小值时,求证:b⊥(a+t b).证明:因为|a+t b|=(a+t b)2=a2+t2b2+2t a·b=|b|2t2+2a·b t+|a|2,所以当t=-2a·b2|b|2=-a·b|b|2时,|a+t b|有最小值.此时b·(a+t b)=b·a+t b2=a·b b|2=a·b -a·b =0.所以b ⊥(a +t b ).命题角度三:利用夹角和垂直求参数例5:(1)已知a ⊥b ,|a |=2,|b |=3且向量3a +2b 与k a -b 互相垂直,则k 的值为()A .-32B .32C .±32D .1(2)已知a ,b ,c 为单位向量,且满足3a +λb +7c =0,a 与b 的夹角为π3,则实数λ=________.解析:(1)因为3a +2b 与k a -b 互相垂直,所以(3a +2b )·(k a -b )=0,所以3k a 2+(2k -3)a·b -2b 2=0.因为a ⊥b ,所以a ·b =0,又|a |=2,|b |=3,所以12k -18=0,k =32.(2)由3a +λb +7c =0,可得7c =-(3a +λb ),即49c 2=9a 2+λ2b 2+6λa ·b ,而a ,b ,c 为单位向量,则a 2=b 2=c 2=1,则49=9+λ2+6λcos π3,即λ2+3λ-40=0,解得λ=-8或λ=5.答案:(1)B (2)-8或5规律方法:求向量a 与b 夹角的思路(1)求向量a 与b 夹角的关键是计算a·b 及|a ||b |,在此基础上结合数量积的定义或性质计算cos θ=a·b|a ||b |,最后借助θ∈[0,π],求出θ的值.(2)在个别含有|a |,|b |与a·b 的等量关系中,常利用消元思想计算cos θ的值.三、课堂总结1.两向量的夹角(1)定义:已知两个非零向量a ,b ,O 是平面上的任意一点,作OA →=a ,OB →=b ,则∠AOB =θ(0≤θ≤π)叫做向量a 与b 的夹角.(2)特例:①当θ=0时,向量a 与b 同向;②当θ=π2时,向量a 与b 垂直,记作a ⊥b ;③当θ=π时,向量a 与b 反向.2.向量的数量积已知两个非零向量a 与b ,它们的夹角为θ,把数量|a ||b |cos__θ叫做向量a 与b 的数量积(或内积),记作a ·b ,即a ·b =|a ||b |cos__θ.规定零向量与任一向量的数量积为0.3.投影向量如图(1),设a ,b 是两个非零向量,AB →=a ,CD →=b ,我们考虑如下变换:过AB →的起点A和终点B ,分别作CD →所在直线的垂线,垂足分别为A 1,B 1,得到A 1B 1→,我们称上述变换为向量a 向向量b 投影(project ),A 1B 1→叫做向量a 在向量b 上的投影向量.如图(2),在平面内任取一点O ,作OM →=a ,ON →=b ,过点M 作直线ON 的垂线,垂足为M 1,则OM1→就是向量a 在向量b 上的投影向量.(2)若与b 方向相同的单位向量为e ,a 与b 的夹角为θ,则OM 1→=|a |cos θe .4.向量数量积的性质设a ,b 是非零向量,它们的夹角是θ,e 是与b 方向相同的单位向量,则(1)a ·e =e ·a =|a |cos θ.(2)a ⊥b ⇔a·b =0.(3)当a 与b 同向时,a·b =|a ||b |;当a 与b 反向时,a·b =-|a ||b |.特别地,a·a =|a |2或|a |=a·a .(4)|a·b |≤|a ||b |.5.向量数量积的运算律(1)a·b =b·a (交换律).(2)(λa )·b =λ(a·b )=a ·(λb )(结合律).(3)(a+b)·c=a·c+b·c(分配律).四、课堂检测1.已知向量a,b满足|a|=1,|b|=4,且a·b=2,则a与b的夹角θ为()A.π6B.π4C.π3D.π2解析:选C.由题意,知a·b=|a||b|cosθ=4cosθ=2,所以cosθ=12.又0≤θ≤π,所以θ=π3.2.已知|a|=|b|=1,a与b的夹角是90°,c=2a+3b,d=k a-4b,c与d垂直,则k的值为()A.-6B.6C.3D.-3解析:选B.因为c·d=0,所以(2a+3b)·(k a-4b)=0,所以2k a2-8a·b+3k a·b-12b2=0,所以2k=12,所以k=6.3.已知|a|=3,|b|=5,a·b=-12,且e是与b方向相同的单位向量,则a在b上的投影向量为______.解析:设a与b的夹角θ,则cosθ=a·b|a||b|=-123×5=-45,所以a在b上的投影向量为|a|cosθ·e==-125 e.答案:-12 5 e4.已知|a|=1,|b|=2.(1)若a∥b,求a·b;(2)若a,b的夹角为60°,求|a+b|;(3)若a-b与a垂直,求a与b的夹角.解:设向量a与b的夹角为θ.(1)当a,b同向,即θ=0°时,a·b=2;当a,b反向,即θ=180°时,a·b=-2.(2)|a+b|2=|a|2+2a·b+|b|2=3+2,|a+b|=3+2.(3)由(a-b)·a=0,得a2=a·b,cosθ=a·b|a||b|=22,又θ∈[0,180°],故θ=45°.。
高一数学平面向量概念教案3篇

高一数学平面向量概念教案3篇高一数学平面向量概念教案篇1一、教材分析1、教材的地位和作用:函数是数学中最主要的概念之一,而函数概念贯穿在中学数学的始终,概念是数学的基础,概念性强是函数理论的一个显著特点,只有对概念作到深刻理解,才能正确灵活地加以应用。
本课中对函数概念理解的程度会直接影响其它知识的学习,所以函数的第一课时非常的重要。
2、教学目标及确立的依据:教学目标:(1) 教学知识目标:了解对应和映射概念、理解函数的近代定义、函数三要素,以及对函数抽象符号的理解。
(2) 能力训练目标:通过教学培养的抽象概括能力、逻辑思维能力。
(3) 德育渗透目标:使懂得一切事物都是在不断变化、相互联系和相互制约的辩证唯物主义观点。
教学目标确立的依据:函数是数学中最主要的概念之一,而函数概念贯穿整个中学数学,如:数、式、方程、函数、排列组合、数列极限等都是以函数为中心的代数。
加强函数教学可帮助学好其他的内容。
而掌握好函数的概念是学好函数的基石。
3、教学重点难点及确立的依据:教学重点:映射的概念,函数的近代概念、函数的三要素及函数符号的理解。
教学难点:映射的概念,函数近代概念,及函数符号的理解。
重点难点确立的依据:映射的概念和函数的近代定义抽象性都比较强,要求学生的理性认识的能力也比较高,对于刚刚升入高中不久的来说不易理解。
而且由于函数在高考中可以以低、中、高挡题出现,所以近年来有一种“函数热”的趋势,所以本节的重点难点必然落在映射的概念和函数的近代定义及函数符号的理解与运用上。
二、教材的处理:将映射的定义及类比手法的运用作为本课突破难点的关键。
函数的定义,是以集合、映射的观点给出,这与初中教材变量值与对应观点给出不一样了,从而给本身就很抽象的函数概念的理解带来更大的困难。
为解决这难点,主要是从实际出发调动学生的学习热情与参与意识,运用引导对比的手法,启发引导学生进行有目的的反复比较几个概念的异同,使真正对函数的概念有很准确的认识。
高中数学平面向量教案5篇

高中数学平面向量教案5篇作为一位优秀的人民教师,常常要根据教学需要编写教案,教案有利于教学水平的提高,有助于教研活动的开展。
那么优秀的教案是什么样的呢?这里给大家分享一些关于高中数学平面向量教案,方便大家学习。
高中数学平面向量教案篇1目的:要求学生掌握向量的意义、表示方法以及有关概念,并能作一个向量与已知向量相等,根据图形判定向量是否平行、共线、相等。
过程:一、开场白:本P93(略)实例:老鼠由A向西北逃窜,猫在B处向东追去,问:猫能否追到老鼠?(画图)结论:猫的速度再快也没用,因为方向错了。
二、提出题:平面向量1.意义:既有大小又有方向的量叫向量。
例:力、速度、加速度、冲量等注意:1数量与向量的区别:数量只有大小,是一个代数量,可以进行代数运算、比较大小;向量有方向,大小,双重性,不能比较大小。
2从19世纪末到20世纪初,向量就成为一套优良通性的数学体系,用以研究空间性质。
2.向量的表示方法:1几何表示法:点—射线有向线段——具有一定方向的线段有向线段的三要素:起点、方向、长度记作(注意起讫)2字母表示法:可表示为 (印刷时用黑体字)P95 例用1cm表示5n mail(海里)3.模的概念:向量的大小——长度称为向量的模。
记作:模是可以比较大小的4.两个特殊的向量:1零向量——长度(模)为0的向量,记作。
的方向是任意的。
注意与0的区别2单位向量——长度(模)为1个单位长度的向量叫做单位向量。
例:温度有零上零下之分,“温度”是否向量?答:不是。
因为零上零下也只是大小之分。
例:与是否同一向量?答:不是同一向量。
例:有几个单位向量?单位向量的大小是否相等?单位向量是否都相等?答:有无数个单位向量,单位向量大小相等,单位向量不一定相等。
三、向量间的关系:1.平行向量:方向相同或相反的非零向量叫做平行向量。
记作:∥ ∥规定:与任一向量平行2.相等向量:长度相等且方向相同的向量叫做相等向量。
记作: =规定: =任两相等的非零向量都可用一有向线段表示,与起点无关。
高三数学《平面向量的概念及线性运算》教案

课题第1讲平面向量的概念及线性运算(一)教学目标知识与技能1.了解向量的实际背景.理解平面向量的概念,理解两个向量相等的含义.2. 理解向量的几何表示.3.掌握向量加法、减法的运算,并理解其几何意义.4.掌握向量数乘的运算及其几何意义,理解两个向量共线的含义.5.了解向量线性运算的性质及其几何意义.过程与方法情感态度价值观教学重点与难点教学过程集体备课个性设计(手写补充)一、考纲要求:1.了解向量的实际背景.理解平面向量的概念,理解两个向量相等的含义.2.理解向量的几何表示.3.掌握向量加法、减法的运算,并理解其几何意义.4.掌握向量数乘的运算及其几何意义,理解两个向量共线的含义.5.了解向量线性运算的性质及其几何意义.二、知识梳理:1.向量的有关概念(1)向量:既有大小又有方向的量叫做向量,向量的大小叫做向量的模.(2)零向量:长度为0的向量,其方向是任意的.(3)单位向量:长度等于1个单位的向量.(4)平行向量:方向相同或相反的非零向量,又叫共线向量,规定:0与任一向量共线.(5)相等向量:长度相等且方向相同的向量.(6)相反向量:长度相等且方向相反的向量.2.向量的线性运算向量运算定义法则(或几何意义)运算律加法求两个向量和的运算交换律:a+b=b+a;结合律:(a+b)+c=a+(b+c)减法求a与b的相反向量-b的和的运算a-b=a+(-b)数乘求实数λ与向量a 的积的运算|λ a |=|λ||a |,当λ>0时,λa 与a 的方向相同; 当λ<0时,λa 与 a 的方向相反;当λ=0时,λ a =0λ(μ a )=(λμ)a ; (λ+μ)a =λa +μ_a ; λ(a +b )=λa +λb3.向量共线定理向量b 与非零向量a 共线的充要条件是有且只有一个实数λ,使得b =λa . 三、双基练习:1.教材习题改编 下列结论正确的是( )A .若|a |=0,则a =0B .若a ,b 是两个单位向量,则a =bC .若a =b ,b =c ,则a =cD .若AB =AC ,则AB →=AC →2.如图所示,D 是△ABC 的边AB 的中点,则向量CD →=( )A .-BC →+12BA →B .-BC →+12AB →C .BC →-12BA →D ..BC →+12BA →3.(2017·东北三省四市联考)在四边形ABCD 中,若AC →=AB →+AD →,则四边形ABCD 一定是( )A .矩形B .菱形C .正方形D .平行四边形4.已知平面内四点A ,B ,C ,D ,若AD →=2DB →,CD →=13CA →+λCB →,则λ的值为________.5. 已知▱ABCD 的对角线AC 和BD 相交于O ,且OA →=a ,OB →=b ,则DC →=________,BC →=________(用a ,b 表示). 四、[典例]考点一 平面向量的有关概念 例1给出下列命题:①有向线段就是向量,向量就是有向线段;②向量a 与向量b 平行,则a 与b 的方向相同或相反;③向量AB →与向量CD →共线,则A 、B 、C 、D 四点共线; ④如果a ∥b ,b ∥c ,那么a ∥c . 其中正确命题的个数为( ) A .1 B .2 C .3 D .0 变式训练1给出下列命题:①两个具有公共终点的向量一定是共线向量;②两个向量不能比较大小,但它们的模能比较大小; ③若λa =0(λ为实数),则λ必为零;④若λa =μb (λ,μ为实数),则a 与b 共线. 其中错误命题的个数为( )A .1B .2C .3D .4 考点二 平面向量的线性运算例1.(1)(2015·高考全国卷Ⅰ)设D 为△ABC 所在平面内一点,BC →=3CD →,则( )A.AD →=-13AB →+43AC →B.AD →=13AB →-43AC →C.AD →=43AB →+13AC →D.AD →=43AB →-13AC →。
平面向量基本定理教案

平面向量基本定理教案教案标题:平面向量基本定理教案教学目标:1. 理解平面向量的概念和基本性质;2. 掌握平面向量的加法、减法和数量乘法运算;3. 理解平面向量的基本定理,包括平行四边形定理和三角形定理;4. 能够应用平面向量的基本定理解决几何问题。
教学准备:1. 教师准备:黑板、彩色粉笔、投影仪、教学PPT;2. 学生准备:学生课本、笔记本、作业本。
教学过程:一、导入(5分钟)1. 引入平面向量的概念,通过实例让学生了解向量的定义和表示方法;2. 引发学生对平面向量的兴趣,提出一个与向量相关的问题,引导学生思考。
二、讲解(15分钟)1. 通过教学PPT,向学生讲解平面向量的加法、减法和数量乘法运算规则,并给出实例进行演示;2. 介绍平面向量的基本定理,包括平行四边形定理和三角形定理,给出相关的几何解释和证明过程。
三、练习(20分钟)1. 学生个人练习:在黑板上出示一些平面向量的练习题,让学生个人完成,并互相交流讨论;2. 学生小组练习:将学生分成小组,给每个小组分发一套练习题,让他们共同合作解决问题;3. 教师巡回指导,解答学生疑惑。
四、展示与总结(10分钟)1. 随机选择几位学生上台展示解题过程,让其他学生评价和提出改进意见;2. 教师进行总结,强调平面向量基本定理的重要性和应用范围;3. 布置作业:要求学生完成课后习题,巩固所学知识。
五、拓展与应用(5分钟)1. 引导学生思考平面向量在实际生活中的应用,如力的合成、速度的合成等;2. 提供一些相关的拓展问题,让学生进行探究和解决。
教学反思:通过本节课的教学,学生能够理解平面向量的概念和基本性质,掌握平面向量的运算规则,并能够应用平面向量的基本定理解决几何问题。
在教学过程中,通过多种练习形式,激发了学生的学习兴趣和合作意识。
同时,通过展示和总结环节,提高了学生的表达能力和思维能力。
在今后的教学中,可以加强与实际生活的联系,提供更多的应用案例,增加学生的实践操作。
平面向量教案

平面向量的复习教学目标:1.理解向量的有关概念,掌握向量的加法与减法、实数与向量的积、向量的数量积及其运算法则, 理解向量共线的充要条件.2. 会用向量的代数运算法则、三角形法则、平行四边形法则解决有关问题.不断培养并深化用数形结合的思想方法解题的自觉意识.3.了解平面向量基本定理,理解平面向量的坐标概念,会用坐标形式进行向量的加法、减法、数乘的运算,掌握向量坐标形式的平行的条件;4.掌握平面向量的数量积及其性质和运算率,掌握两向量夹角及两向量垂直的充要条件和向量数量积的简单运用.5.学会使用分类讨论、函数与方程思想解决有关问题。
教学重点:1. 向量的运算及其运算法则;2. 平面向量数量积的性质:22||a a =、cos ,||||a ba b a b ⋅<>=;3. 向量平行、垂直的充要条件。
教学过程: 一、主要知识:1.向量的概念及向量的表示;2.向量的加法、减法与实数乘向量、数量积等运算以及运算法则; 3.两向量共线、垂直的充要条件;. 二、主要方法:1.充分理解向量的概念和向量的表示; 2.数形结合的方法的应用;3.用基底向量表示任一向量唯一性;4.向量的特例0和单位向量,要考虑周全. 三、基础训练:1.下列个命题中,真命题的个数为 ( ) ①若||||a b =,则a b =或a b =- ②若AB CD =,则,,,A B C D 是一个平行四边形的四个顶点 ③若,a b b c ==,则a c = ④若//,//a b b c ,则//a c()A 4 ()B 3 ()C 2 ()D 12.在ABC ∆中,已知3BC BD =,则AD = ( )()A 1(2)3AC AB + ()B 1(2)3A B AC + ()C 1(3)4A C A B + ()D 1(2)4AC AB +3.若向量)2,1(),1,1(),1,1(-=-==,则= ( )()A b a 2321+- ()B b a 2321- ()C b a 2123- ()D b a 2123+-4.已知向量(3,4),(2,1)a b ==-,如果向量a xb +与b 垂直,则x 的值为 ( )()A 323()B 233 ()C 2 ()D 25- 5.设向量,a b 满足||||1,|32|3a b a b ==-=,则|3|a b += 。
6.1 平面向量的概念 教案

高中数学“平面向量的概念”的教案一、教学目标1. 知识与技能:了解向量的实际背景,理解平面向量的概念,掌握向量的几何表示,理解零向量、单位向量、平行向量、相等向量、共线向量的含义。
2. 过程与方法:通过对向量概念的引入和分析,培养学生观察、抽象、概括的能力,体会从特殊到一般的数学思想方法。
3. 情感态度价值观:经历向量概念的形成过程,体会向量在实际生活中的广泛应用,感受数学的价值。
二、教学重难点1. 教学重点:平面向量的概念、几何表示、相等向量与共线向量。
2. 教学难点:向量的概念,向量与数量的区别。
三、教学方法问题驱动法、启发引导法、讲练结合法。
四、教学过程1. 情景引入:通过播放“旅行者在沙漠中迷失方向”的视频,提出问题“在这个情境下,我们可以用什么来描述旅行者的位移?”引发学生思考。
2. 探索新知:通过分析视频中的位移和方向,引出向量的概念,让学生理解向量的实际背景和意义。
讲解向量的几何表示,包括向量的长度、零向量、单位向量、平行向量、共线向量、相等向量等基本概念。
(1)向量:既有大小又有方向的量叫做向量.注意点:①向量是自由向量,即只有大小和方向,而无特定的位置,这样的向量可以作任意平移;②看一个量是否为向量,就要看它是否具备了大小和方向两个要素;③向量与数量的区别:数量与数量之间可以比较大小,而向量与向量之间不能比较大小.(2)向量的表示法①有向线段:具有方向的线段叫做有向线段,有向线段包含三个要素:起点、方向、长度.②向量的表示方法:Ⅰ字母表示法:如,,,a b c等.Ⅱ几何表示法:以A为始点,B为终点作有向线段AB(注意始点一定要写在终点的前面).如果用一条有向线段AB表示向量,通常我们就说向量AB.注意点:用有向线段来表示向量注意的是有向线段是向量的表示,不是说向量就是有向线段。
(3)向量的模:向量AB的大小,也就是向量AB的长度,叫做向量的模,记作||AB.(4)零向量:长度为0的向量,记作0;其方向是任意的.(5)单位向量:长度等于1个单位的向量.(6)平行向量:方向相同或相反的非零向量.平行向量又叫共线向量.规定:0与任一向量平行.(7)相等向量:长度相等且方向相同的向量. (8)相反向量:长度相等且方向相反的向量.3. 达标检测:通过练习题检测学生对向量概念的理解和掌握程度,巩固所学知识。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
平面向量应用(一)导学案
授课人:高三文科备课组
一、 学习目标:
二、 要点知识整合
1.向量地概念
(1)零向量模地大小为0,方向是任意地,它与任意非零向量都共线,记为0.
(2)长度等于1个单位长度地向量叫单位向量,a 地单位向量为a |a|
. (3)方向相同或相反地向量叫共线向量(平行向量).
(4)如果直线l 地斜率为k ,则a =(1,k)是直线l 地一个方向向量.
(5)向量地投影:|b |cos 〈a ,b 〉叫做向量b 在向量a 方向上地投影.
2.向量地运算
(1)向量地加法、减法、数乘向量是向量运算地基础,应熟练掌握其运算规律.
(2)平面向量数量积地结果是实数,而不是向量.要注意数量积运算与实数运算在运算律方面地差异,平面向量地数量积不满足结合律与消去律.a·b 地运算结果不仅与a ,b 地长度有关,而且也与a ,b 地夹角有关,即a·b =|a||b|·cos 〈a ,b 〉.3.两非零向量平行、垂直地充要条件
若a =(11,x y ),b =(22,x y ),
则a ∥b ⇔a =λb ⇔1221x y x y -=0.
a ⊥
b ⇔a·b =0⇔12120x x y y +=.
重点:平面地数量积运算
难点:平面向量与几何综合
三、 基础训练
四、 热点突破探究
题型一 平面向量地数量积
例1已知|a|=4,|b|=3,(2a -3b)·(2a +b)=61.
(1)求a 与b 地夹角;
(2)求|a +b|;
(3)若AB →=a ,AC →=b ,求△ABC 地面积.自主解答:
【解】 (1)由(2a -3b)·(2a +b)=61,
得4|a|2-4a·b -3|b|2=61,∵|a|=4,|b|=3,代入上式得a·b =-6,
∴cosθ=a·b |a||b|=-64×3=-12
.又0°≤θ≤180°,∴θ=120°.(2)|a +b|2=(a +b)2=|a|2+2a·b +|b|2
=42+2×(-6)+32=13,∴|a +b|=13.
(3)由(1)知∠BAC =θ=120°,
AB →|=|a|=4,|AC →|=|b|=3,∴S △ABC =12
|AC →||AB →|sin ∠BAC =12
×3×4×sin120°=3 3.
探究提高:
准确利用两向量地夹角公式cos 〈a ,b 〉=a ·b |a||b|
及向量模地公式|a|=a ·a.(2)在涉及数量积时,向量运算应注意:
①a ·b =0,未必有a =0,或b =0;
②|a ·b|≤|a||b|;
③a ·(b ·c)≠(a ·b)·c.
变式训练1:已知平面内三个向量:a =(3,12),b =(-1,2),c =(4,1).
(1)求满足a =m b +n c 地实数m ,n ;
(2)若(a +kc)∥(2b -a),求实数k.
解:(1)∵a =m b +n c ,m ,n ∈R ,
∴(3,12)=m(-1,2)+n(4,1)=(-m +4n,2m +n),
∴⎩⎪⎨⎪⎧ -m +4n =3,2m +n =12,解得⎩⎪⎨⎪⎧ m =5,n =2.所以实数m ,n 地值分别为5,2.
(2)∵a +k c =(3,12)+k(4,1)=(4k +3,k +12),
2b -a =(-2,4)-(3,12)=(-5,-8),
又(a +k c)∥(2b -a),
∴-8(4k +3)+5(k +12)=0,∴k =43
.
题型二 平面向量与三角函数
例2已知向量a =(cosα,sinα),b =(cosβ,sinβ),c =(-1,0).
(1)求向量b +c 地长度地最大值;
(2)设α=π4
且a ⊥(b +c),求cosβ地值. 【解】 (1)法一:b +c =(cos β-1,sin β),则
|b +c|2=(cos β-1)2+sin2β=2(1-cos β).
∵-1≤cos β≤1.∴0≤|b +c|2≤4,即0≤|b +c|≤2.
当cos β=-1时,有|b +c|=2,所以向量b +c 地长度地最大值为2.
法二:∵|b|=1,|c|=1,|b +c|≤|b|+|c|=2.
当cos β=-1,sin β=0时,有b +c =(-2,0),即|b +c |=2,
所以向量b +c 地长度地最大值为2.
(2)法一:由已知可得b +c =(cos β-1,sin β).
a·(b +c)=cos αcos β+sin αsin β-cos α=cos(α-β)-cos α
∵a ⊥(b +c),∴a·(b +c)=0,即cos(α-β)=cos α.
由α=π4,得cos(π4-β)=cos π4,即β-π4=2kπ±π4
(k ∈Z),∴β=2kπ+π2
或β=2kπ,k ∈Z ,于是cosβ=0或cosβ=1. 法二:若α=π4,则a =(22,22
).又由b =(cos β,sin β),c =(-1,0)得a ·(b +c)=(
22,22)·(cos β-1,sin β)=22cos β+22sin β-22
.∵a ⊥(b +c),∴a·(b +c)=0,即cosβ+sinβ=1. ∴sinβ=1-cosβ,平方后化简得cosβ(cosβ-1)=0.
解得cosβ=0或cosβ=1,经检验,cosβ=0或cosβ=1即为所求.
探究提高: 向量与三角函数地综合,实质上是借助向量地工具性.(1)解这类问题地基本思路方法是将向量转化为代数运算;(2)常用到向量地数乘、向量地代数运算,以及数形结合地思想.
变式训练2:(2009年高考江苏卷)设向量a =(4cos α,sin α),b =(sin β,4cos β),c =(cos β,-4sin β).(1)若a 与b -2c 垂直,求tan(α+β)地值;
(2)求|b +c |地最大值;
(3)若tan αtan β=16,求证:a ∥b .
解:(1)由已知得b -2c =(sin β-2cos β,4cos β+8sin β),
因为a 与b -2c 垂直,所以a ·(b -2c )
=4cos αsin β-8cos αcos β+4sin αcos β+8sin αsin β
=4sin(α+β)-8cos(α+β)=0,
因此tan(α+β)=2.
(2)由b +c =(sin β+cos β,4cos β-4sin β),
sinβ+cosβ2+4cosβ-4sinβ 2
=17-15sin2β ≤4 2.又当β=kπ-π4
(k ∈Z)时,等号成立,所以|b +c |地最大值为4 2.(3)证明:由tanαtanβ=16,得4cosαsinβ=sinα4cosβ
,
即4cosα·4cosβ-sinα·sinβ=0,所以a ∥b .
五.高考聚焦
选择题(一)
(1)( 2007广东文)若向量,a b 满足||||1a b ==,a 与b 地夹角为60︒,则a a a b ⋅+⋅=( B )
A .12
B .32 C.
312+ D .2 (2).(2007山东文)已知向量(1
)(1)n n ==-,,,a b ,若2-a b 与b 垂直,则=
a ( C )
A .1
B .2
C .2
D .4 (3)(2008海南、宁夏文)已知平面向量a =(1,-3),b =(4,-2),a b λ+与a 垂
直,则λ是( A )
A. -1
B. 1
C. -2
D. 2
(4)(2009广东理)一质点受到平面上地三个力
123,,F F F (单位:牛顿)地作用而处于平衡状态.已知12,F F 成060角,且12,F F 地大小分别为2和4,则3F 地大小为( D)A.6 B.2 C.25 D.27
(5)(2010广东文)若向量()()()1,1,2,5,3,a b c x ===,满足条件()
830a b c -⋅=,则x =( C )
A.6 B.5 C.4 D.3
(二)解答题
(6)(2009广东中山)已知向量)sin ,(cos αα=a , )sin ,(cos ββ=b , 5
52||=-b a . (Ⅰ)求cos()αβ-地值;
(Ⅱ)若02πα<<, 02πβ-<<, 且5sin 13
β=-, 求sin α. (7)(2009广东六校)设)sin ,(cos ),2cos ,2(sin ϕϕ==b x x a )0(πϕ<<,函数
b )(⋅=a x f 且0)8
3(=πf . (Ⅰ)求ϕ;(Ⅱ)在给出地直角坐标系中画出函数)(x f y =在区间],0[π上地图像; (Ⅲ)根据画出地图象写出函数)(x f y =在],0[π上地单调区间和最值.
六.完成作业平面向量应用(二)导学案。