光电效应测量普朗克常量和金属逸出功
光电效应测量普朗克常量实验报告
光电效应测量普朗克常量实验报告引言:光电效应是20世纪初物理学上的一大发现,这一现象被广泛应用于工业和科学研究中。
实验的目的是通过实验测量普朗克常量(h)。
普朗克常量是量子力学中最重要的常量之一,它是描述微观物理现象的基础。
实验原理:光电效应是指当金属表面受到光的照射时,金属表面上的自由电子可以被激发出来。
这种现象可以用经典物理学和量子力学来解释。
根据经典物理学,当光照射一个金属表面时,光子(光的波动粒子性质)会“撞击”金属表面上的电子,给它们提供一定的能量,如果这些电子获得的能量大于金属的解离能,那么它们就可以脱离金属表面成为自由电子。
而从量子力学的角度看,光子具有一定的能量和波长,对于金属来说,只有能量大于它的等效电离能才能将电子脱离金属表面,且脱离电子的动能与光子的能量差相等。
根据这两种解释,在光照射下,从金属表面脱离的电子数随着入射光的强度和频率而改变。
在实验中,可以通过改变光的频率来控制金属表面上脱离的电子数,进而测量普朗克常量。
另外,测量光电子的动能也是实验的重要指标之一。
实验器材:实验器材主要包括:汞灯、透镜、绿色滤波片(546 nm)和金属片。
在实验的过程中,我们需要依次将汞灯、透镜和绿色滤波片固定在一起,形成一个光源,将金属片放在光源前方,这样当光照射在金属片上时,就可以观察到光电子的逸出现象。
并使用一个数据采集器来测量电压和电流的变化,并通过计算来推导出普朗克常量。
实验步骤:1.首先将汞灯、透镜和绿色滤波片按照实验要求固定在一起,形成一个光源,在不同的电压下调整汞灯的强度,保证光线对金属片的照射强度在合适的范围内。
2.将金属片放置在光源前方,调整金属片的位置,使得光照射在金属片的表面上。
在不同的电压下,记录金属片释放出的光电子电流的变化情况。
3.保持光源的强度和金属片的位置不变,更换不同颜色的滤波片(即不同的波长),测量在不同波长下金属片释放出的光电子电流的变化情况。
4.通过分析实验数据,计算出光子的能量和波长,并推导出普朗克常量的数值。
普朗克常量测定实验报告
普朗克常量测定实验报告普朗克常量测定实验报告引言:普朗克常量是描述微观世界的基本物理常量之一,它在量子力学中具有重要的地位。
为了精确测定普朗克常量的数值,我们进行了一系列实验。
本报告将详细介绍实验的目的、原理、实验装置、实验步骤以及实验结果的分析和讨论。
实验目的:本实验旨在通过测定光电效应中的截止电压和光频的关系,来间接测定普朗克常量的数值。
通过实验结果的分析,探索光电效应与普朗克常量之间的关系。
实验原理:光电效应是指当光照射到金属表面时,金属中的自由电子受到光的激发后从金属表面逸出的现象。
根据经典物理学的观点,光的能量应该是连续分布的,而光电效应的实验结果却表明,当光的频率小于某个临界频率时,无论光的强度如何增大,都无法使电子逸出。
这一现象无法用经典物理学解释,而需要引入量子力学的概念。
根据光电效应的基本原理,我们可以得到一个公式:E = h*f - φ其中,E为光子的能量,h为普朗克常量,f为光的频率,φ为金属的逸出功。
当光子的能量大于金属的逸出功时,电子才能逸出金属表面。
当光的频率小于临界频率时,逸出功φ大于光子能量hf,因此电子无法逸出。
实验装置:本实验所使用的装置主要包括:光源、光电管、电压源、电流表、电压表、滤光片等。
光源产生可调节频率的单色光,光电管接收光信号并将其转化为电信号,电压源提供不同的电压,电流表和电压表用于测量电流和电压的大小。
实验步骤:1. 将光电管安装在实验装置上,并将电流表和电压表连接到光电管上。
2. 打开电源,调节电压源的电压,使得光电管中的电流保持稳定。
3. 使用滤光片调节光源的频率,记录光电管中的电流和电压的数值。
4. 重复步骤3,改变滤光片的种类和数量,记录相应的电流和电压数值。
5. 根据测得的电流和电压数值,绘制光电流和光电压的曲线。
实验结果分析:根据实验测得的数据,我们可以绘制光电流和光电压的曲线。
曲线的斜率与普朗克常量呈正比关系,通过计算斜率的数值,我们可以间接测定普朗克常量的数值。
【大学物理实验】 光电效应测量普朗克常量和金属逸出功
mv
2 M
eU a ,
2
其中 Ua 成为截止电压。 结合以上最大动能的表达式可知,
U
h v
A
,
如左图做出其对应的图像,
可知直线的斜率为
a
ee
k h , 截距为U 0 A 。 图中斜线与 x 轴的交点对应的频率 v0
e
e
称为阴极材料的红限频率, 照射光小于这个频率时, 无法产生光电效应(入射光光子能量小于电
院(系) 姓名 实验时间
大连理工大学
大学物理实验报告
专业
班级
学号
实验台号
年
月 日,第 周,星期
第
节
实验名称 光电效应测量普朗克常量和金属逸出功
教师评语
成绩 教师签字
实验目的与要求: 1. 通过测量不同频率光照下光电效应的截止电压来计算普朗克常量 2. 获得阴极材料的红限频率和逸出功
主要仪器设备: 1. 光电效应实验仪(GGQ-50 高压汞灯, GDh-I 型光电管电流测量仪) 2. 滤光片组(通光中心波长分别为 365.0nm, 404.7nm, 435.8nm, 546.1nm, 577.0nm) 3. 圆孔光阑Φ =5mm, Φ ’=10mm 4. 微电流仪
-1-
服金属表面的束缚(金属的逸出功 A)外, 剩余的便是逸出光电子的动能, 显然仅仅损失了逸出
功的光电子具有最大动能:
1
mv
2 M
hv A 。
2
实验中所加的光电管电压 U 起到协助光电流 I 形成的作用, 当不加电压 U 时, 到达阳极的光电子
很少, 光电流十分微弱; 当加上正向电压时, 便有更多的光电子到达阳极, 使得 I 增大, 而
测量普朗克常数实验报告
一、实验目的1. 理解光电效应的基本原理,验证爱因斯坦光电效应方程。
2. 通过实验测量,精确测定普朗克常数。
3. 掌握光电效应实验的操作方法和数据处理技巧。
二、实验原理光电效应是指当光照射到金属表面时,金属表面会释放出电子的现象。
根据爱因斯坦的光电效应方程,光电子的动能Ek与入射光的频率ν、金属的逸出功W和普朗克常数h有关,即Ek = hν - W。
其中,Ek为光电子的最大动能,h为普朗克常数,ν为入射光的频率,W为金属的逸出功。
通过改变入射光的频率,测量对应的截止电压U0,即可得到一系列Ek和ν的数据。
根据Ek = eU0,其中e为电子电量,将Ek和ν的关系图化后,斜率即为普朗克常数h/e。
三、实验仪器与设备1. 光电效应测试仪2. 汞灯及电源3. 滤色片(五个)4. 光阑(两个)5. 光电管6. 测量显微镜7. 直尺8. 计算器四、实验步骤1. 将光电管安装到光电效应测试仪上,调整光电管的位置,使其与汞灯的出光口平行。
2. 选择合适的滤色片,调整光阑,使光束照射到光电管上。
3. 打开汞灯及电源,调节电压,使光电管工作在饱和状态。
4. 改变滤色片的颜色,分别测量不同频率的光照射到光电管上时的截止电压U0。
5. 记录实验数据,包括入射光的频率ν、截止电压U0和对应的金属材料。
五、实验数据与处理1. 根据实验数据,绘制Ek~ν的关系图。
2. 利用线性回归方法,计算Ek~ν关系的斜率k。
3. 根据公式k = h/e,计算普朗克常数h的值。
六、实验结果与分析1. 根据实验数据,绘制Ek~ν的关系图,得到斜率k的值为x。
2. 根据公式k = h/e,计算普朗克常数h的值为y。
3. 将计算得到的普朗克常数h与理论值进行比较,分析误差产生的原因。
七、实验结论通过本次实验,我们成功验证了爱因斯坦光电效应方程,并精确测量了普朗克常数。
实验结果表明,普朗克常数h的测量值与理论值较为接近,说明实验方法可靠,数据处理方法正确。
光电效应实验报告
一、 引言当光束照射到金属表面时,会有电子从金属表面逸出,这种现象被称之为“光电效应”。
对于光电效应的研究,使人们进一步认识到光的波粒二象性的本质,促进了光的量子理论的建立和近代物理学的发展。
现在观点效应以及基于其理论所制成的各种光学器件已经广泛用于我们的生产生活、科研、国防军事等领域。
所以在本实验中,我们利用光电效应测试仪对爱因斯坦的方程进行验证,并且测出普朗克常量,了解并用实验证实光电效应的各种实验规律,加深对光的粒子性的认识。
二、 实验原理1. 光电效应就是在光的照射下,某些物质内部的电子背光激发出来形成电流的现象;量子性则是源于电磁波的发射和吸收不连续而是一份一份地进行,每一份能量称之为一个能量子,等于普朗克常数乘以辐射电磁波的频率,即E=h*f (f表示光子的频率)。
2. 本实验的实验原理图如右图所示,用光强度为P 的单色光照射光电管阴极K,阴极释放出的电子在电源产生的电场的作用下加速向A 移动,在回路中形成光电流,光电效应有以下实验规律;1) 在光强P 一定时,随着U 的增大,光电流逐渐增大到饱和,饱和电流与入射光强成正比。
2) 在光电管两端加反向电压是,光电流变小,在理想状态下,光电流减小到零时说明电子无法打到A,此时eUo=1/2mv^2。
3) 改变入射光频率f 时,截止电压Uo 也随之改变,Uo 与f 成线性关系,并且存在一个截止频率fo,只有当f>fo 时,光电效应才可能发生,对应波长称之为截止波长(红限),截止频率还与fo 有关。
4) 爱因斯坦的光电效应方程:hf=1/2m(Vm)^2+W,其中W 为电子脱离金属所需要的功,即逸出功,与2)中方程联立得:Uo=hf/e – W/e 。
光电效应原理图3.光阑:光具组件中光学元件的边缘、框架或特别设置的带孔屏障称为光阑,光学系统中能够限制成像大小或成像空间范围的元件。
简单地说光阑就是控制光束通过多少的设备。
主要用于调节通过的光束的强弱和照明范围。
光电效应测普朗克常数实验报告
光电效应测普朗克常数实验报告光电效应是指当光照射到金属表面时,如果光的频率大于一定值,就会有电子从金属表面逸出的现象。
这一现象的发现和研究对于理解光的本质和量子论的建立具有重要意义。
而测量光电效应中的普朗克常数,则可以为量子力学的研究提供有力的支持。
普朗克常数是指在光电效应中,光子的能量与光的频率之间的关系。
根据普朗克常数的定义,光的能量E等于光子的能量hv,其中h为普朗克常数,v为光的频率。
测量普朗克常数的实验方法之一就是通过光电效应来实现。
在普朗克常数的测量实验中,我们首先需要准备一块金属样品,并将其放置在真空室内。
然后,我们使用一个光源来照射金属样品,并通过调节光的频率来观察光电效应的发生。
当光的频率超过一定值时,我们会观察到金属样品上出现电子的逸出现象。
接着,我们可以通过测量逸出电子的动能来确定光的频率。
根据经典物理学的理论,逸出电子的动能应该等于光的能量减去金属的逸出功。
逸出功是指克服金属表面束缚电子所需的最小能量。
通过测量逸出电子的动能和光的频率,我们可以得到光的能量,从而计算出普朗克常数。
在实验过程中,我们需要注意一些细节。
首先,金属样品应该是纯净的,以确保实验结果的准确性。
其次,光源的频率应该可以连续调节,并且能够达到一定的精度。
最后,实验过程中应该保持真空室的良好密封,以避免外界因素的干扰。
通过测量多组不同频率下的逸出电子动能,我们可以绘制出光的能量和频率之间的关系曲线。
根据这个曲线,我们可以得到普朗克常数的数值,并与理论值进行比较。
总结起来,光电效应测普朗克常数的实验是一项重要的实验,它为我们理解光的本质和量子论的建立提供了有力的支持。
通过测量光的能量和频率之间的关系,我们可以计算出普朗克常数,并与理论值进行比较。
这一实验的结果对于量子力学的研究具有重要的意义。
光电效应测量普朗克常量实验报告
竭诚为您提供优质文档/双击可除光电效应测量普朗克常量实验报告篇一:光电效应测普朗克常量实验报告三、实验原理1.光电效应当一定频率的光照射到某些金属表面上时,可以使电子从金属表面逸出,这种现象称为光电效应。
所产生的电子,称为光电子。
光电效应是光的经典电磁理论所不能解释的。
当金属中的电子吸收一个频率为v的光子时,便获得这光子的全部能量hv,如果这能量大于电子摆脱金属表面的约束所需要的脱出功w,电子就会从金属中逸出。
按照能量守恒原理有:(1)上式称为爱因斯坦方程,其中m和?m是光电子的质量和最大速度,是光电子逸出表面后所具有的最大动能。
它说明光子能量hv小于w时,电子不能逸出金属表面,因而没有光电效应产生;产生光电效应的入射光最低频率v0=w/h,称为光电效应的极限频率(又称红限)。
不同的金属材料有不同的脱出功,因而υ0也是不同的。
由(1)式可见,入射到金属表面的光频率越高,逸出的电子动能必然也越大,所以即使阴极不加电压也会有光电子落入阳极而形成光电流,甚至阳极电位比阴极电位低时也会有光电子落到阳极,直至阳极电位低于某一数值时,所有光电子都不能到达阳极,光电流才为零。
这个相对于阴极为负值的阳极电位被称为光电效应的截止电压。
显然,有代入(1)式,即有(3)由上式可知,若光电子能量,则不能产生光电子。
产生光电效应的最低频率是(2),通常称为光电效应的截止频率。
不同材料有不同的逸出功,因而也不同。
由于光的强弱决定于光量子的数量,所以光电流与入射光的强度成正比。
又因为一个电子只能吸收一个光子的能量,所以光电子获得的能量与光强无关,只与光子ν的频率成正比,,将(3)式改写为(4)上式表明,截止电压是入射光频率ν的线性函数,如图2,当入射光的频率时,截止电压,没有光电子逸出。
图中的直线的斜率是一个正的常数:(5)由此可见,只要用实验方法作出不同频率下的通过式(5)求出普朗克常数h。
其中曲线,并求出此曲线的斜率,就可以是电子的电量。
光电效应实验报告
光电效应实验报告实验目的:通过实验观察光电效应的现象,探究光电效应的产生原因和机理,验证经典物理及量子物理对光电效应的解释。
同时,通过实验手段,训练学生的实验操作能力与科学思维能力。
实验原理:光电效应是指当光子入射到金属时,金属中的自由电子会被激发出来,从而发生电流现象。
其中,光子是电磁波的微粒子化现象,具有能量和动量,而激发出自由电子的能力与入射光子的能量有关。
根据光电效应的机理,我们可以得出以下公式:Kmax=hv-φ其中,Kmax为光电子的最大动能,h为普朗克常量,v为入射光的频率,φ为金属的逸出功。
根据公式,我们可以了解到光电子的最大动能与入射光的频率有关,而与入射光的强度无关。
实验步骤:1.搭建光电效应实验仪器2.调节透镜、连续可调滤色片和光电倍增管位置,使入射光能通过透镜,经过连续可调滤色片调节光强和颜色,照在光电倍增管的光阑上;3.调节负电压源,调整阴极电位和光电倍增管的一级电压,使阴极处处于负电荷状态,光电倍增管处于正电荷状态;4.调节连续可调滤色片,找到满足当前阴极电流和电压的最小光强,记录下来;5.逐步增加入射光的频率,记录光电流的变化。
实验结果:在实验过程中,我们得出了以下数据:阴极电压为2.5V时,光强为7.0*10^-5W/cm^2时,光电流为0.38nA;光强为1.0*10^-4W/cm^2时,光电流为0.48nA;光强为1.5*10^-4W/cm^2时,光电流为0.53nA。
通过测量数据,我们得到的斜率为 4.5*10^-6A/V,截距为0.302nA。
利用公式,我们可以算出入射光的波长λ:Kmax=hv-φ,得到v=h/λ,代入得到λ=4.11*10^-7m。
实验分析:通过实验数据,我们可以了解到光电流与入射光的强度和频率有关。
随着入射光的频率增加,光电流也随之增加,但是入射光的强度对光电流的影响却不是很明显。
这符合光电效应的机理,也验证了经典物理及量子物理的解释。
光电效应测普朗克常数实验报告
光电效应测普朗克常数实验报告一、实验目的1、了解光电效应的基本规律。
2、掌握用光电效应法测量普朗克常数的方法。
3、学习测量截止电压的方法,并通过数据处理得出普朗克常数。
二、实验原理1、光电效应当一定频率的光照射在金属表面时,会有电子从金属表面逸出,这种现象称为光电效应。
逸出的电子称为光电子。
2、爱因斯坦光电方程根据爱因斯坦的理论,光电子的最大初动能$E_{k}$与入射光的频率$ν$ 和金属的逸出功$W$ 之间的关系可以表示为:\E_{k} =hν W\其中,$h$ 为普朗克常数。
3、截止电压当光电子的动能为零时,所加的反向电压称为截止电压$U_{c}$。
此时有:\eU_{c} = E_{k}\将上面两式联立,可得:\U_{c} =\frac{hν}{e} \frac{W}{e}\4、普朗克常数的测量通过测量不同频率光对应的截止电压,作$U_{c} ν$ 图像,图像的斜率即为$h / e$ ,从而可以求出普朗克常数$h$ 。
三、实验仪器光电效应实验仪、汞灯、滤光片、遮光片、微电流测量仪等。
四、实验步骤1、仪器连接与预热将光电效应实验仪的各个部分正确连接,打开电源,让仪器预热 20 分钟左右。
2、调整仪器(1)调整光源与光电管之间的距离,使光斑能够均匀照射在光电管的阴极上。
(2)调整遮光片,使得光能够准确地通过遮光孔照射到光电管上。
3、测量不同频率光的截止电压(1)依次换上不同波长的滤光片,得到不同频率的单色光。
(2)缓慢调节电压,观察微电流测量仪上的示数,当电流为零时,记录此时的电压值,即为该频率光对应的截止电压。
4、重复测量对每个频率的光,进行多次测量,取平均值以减小误差。
五、实验数据及处理1、实验数据记录|波长λ (nm) |频率ν (×10^14 Hz) |截止电压 Uc (V) |||||| 365 | 821 |-185 || 405 | 741 |-148 || 436 | 688 |-115 || 546 | 549 |-071 || 577 | 519 |-057 |2、数据处理以频率$ν$ 为横坐标,截止电压$U_{c}$为纵坐标,绘制$U_{c} ν$ 图像。
光电效应实验实验数据
光电效应实验实验数据光电效应实验实验数据一、实验目的1.了解光电效应现象及其基本规律;2.掌握光电效应实验的基本原理和实验方法;3.学会测量普朗克常量和金属电子的逸出功。
二、实验原理光电效应是指光照射在物质表面上,使得物质表面的电子吸收光能后获得足够的能量而离开物体表面,形成电流的现象。
根据爱因斯坦的光电效应理论,当光照射在金属表面上时,金属表面的电子吸收光能后获得足够的能量,克服金属的束缚力,离开金属表面,形成光电流。
光电流的大小与光的强度、频率、照射时间等因素有关。
三、实验步骤1.搭建光电效应实验装置,包括光源、光电池、可调节滤光片、电压表和电流表等;2.打开光源,将光源的光照射在光电池上,调节滤光片使得光源的光为单色光,记录光源的频率ν;3.调节光源的照射时间,使得电流表的示数稳定,记录电流表的示数I;4.在不同的滤光片位置下重复步骤2和步骤3,获得不同频率下的光电流;5.用线性拟合的方法,将不同频率下的光电流与光源的频率作图,得到一条直线,直线的斜率即为普朗克常量h;6.根据普朗克常量和测量得到的光强、频率等参数,计算金属电子的逸出功。
四、实验数据分析1.测量数据:根据上述表格中的数据,绘制光电流与光源频率的关系图。
将x轴取为光源频率,y轴取为光电流的对数,绘制散点图并添加线性拟合直线。
(请在此插入散点图和线性拟合直线)通过线性拟合直线的斜率,可以求得普朗克常量h的数值。
计算公式为:h = ( slope ) × ( e/ΔE ),其中e为电子的电荷量,ΔE为两个滤光片之间的能量差。
利用普朗克常量和测量得到的光强、频率等参数,可以计算金属电子的逸出功。
计算公式为:W = hν - I(1/e),其中W为金属电子的逸出功,h 为普朗克常量,ν为光源频率,I为光电流,e为电子的电荷量。
计算得到金属电子的逸出功W约为2.2eV。
五、结论通过光电效应实验,我们得到了普朗克常量h和金属电子的逸出功W。
光电效应和普朗克常数的测定
光电效应和普朗克常数的测定光电效应是指一定频率的光照射在金属表面时会有电子从金属表面逸出的现象。
光电效应实验对于认识光的本质及早期量子理论的发展,具有里程碑的意义。
自古以来,人们就试图解释光是什么,到17世纪,研究光的反射、折射、成像等规律的几何光学基本确立。
牛顿等人在研究几何光学现象的同时,根据光的直线传播性,认为光是一种微粒流,微粒从光源飞出来,在均匀物质内以力学规律作匀速直线运动。
微粒流学说很自然的解释了光的直线传播等性质,在17、18世纪的学术界占有主导地位,但在解释牛顿环等光的干涉现象时遇到了困难。
惠更斯等人在17世纪就提出了光的波动学说,认为光是以波的方式产生和传播的,但早期的波动理论缺乏数学基础,很不完善,没有得到重视。
19世纪初,托马斯.杨发展了惠更斯的波动理论,成功的解释了干涉现象,并提出了著名的杨氏双缝干涉实验,为波动学说提供了很好的证据。
1818年,年仅30岁的菲涅耳在法国科学院关于光的衍射问题的一次悬奖征文活动中,从光是横波的观点出发,圆满的解释了光的偏振,并以严密的数学推理,定量地计算了光通过圆孔、圆板等形状的障碍物所产生的衍射花纹,推出的结果与实验符合得很好,使评奖委员会大为叹服,荣获这一届的科学奖,波动学说逐步为人们所接受。
1856,1865 19世纪末,物理学已经有了相当的发展,在力、热、电、光等领域,都已经建立了完整的理论体系,在应用上也取得巨大的成果。
就当物理学家普通认为物理学发展已经到顶时,从实验上陆续出现了一系列重大发现,揭开了现代物理学革命的序幕,光电效应实验在其中起了重要的作用。
1887年赫兹在用两套电极做电磁波的发射与接收的实验中,发现当紫外光照射到接收电极的负极时,接收电极间更易于产生放电,赫兹的发现吸引许多人去做这方面的研究工作。
斯托列托夫发现负电极在光的照射下会放出带负电的粒子,形成光电流,光电流的大小与入射光强度成正比,光电流实际是在照射开始时立即产生,无需时间上的积累。
光电效应测普朗克常量实验误差分析
在光电效应测普朗克常量实验误差1)根据爱因斯坦光电效应方程:1/2mvv=hv-Wk 式中m为电子质量,v为光电子的最大速度,Wk为该金属的逸出功,它的大小与入射光频率v无关,只决定于金属本身的属性。
一束频率为v的单色光入射在真空光电管的光阴极K上。
在光电管的收集极(阳板)C和光阴极K之间外加一反向电压,使得C、K之间建立起的电场,对光阴极中逸出的光电子起着阻挡它们到达收集极的作用(减速作用)。
随着两极间负电压的逐渐增大,到达收集极的光电子,亦即流过微电流计G的光电流将逐渐减小。
当U=Uo`时,光电流将为零。
此时逸出金属表面的光电子全部不能到达收集极。
Uo`称为外加遏止电势差。
(2)由于光电管在制造过程中的工艺问题及电极结构上的种种原因,在产生阴极光电流的同时,还伴随着下列两个主要物理过程: 反向电流,光电管制作过程中,工艺上很难做到阳极不被阴极材料所沾染,而且这种沾染在光电管使用过程中还会日趋严重。
所以当光射到阳极C上或阴极K漫反射到阳极C上,致使阳级C也发射光电子,而外电场对这些光电子却是一个加速场,因此它们很容易到达阴极而形成反向电流。
暗电流和本底电流,当光电管不受任何光照射时,在外加电压下光电管仍有微弱电流流过,称为光电管的暗电流。
其原因主要是热电子发射及光电管管壳漏电所致。
本底电流是因为室内各种漫反射光射入光电管所致。
暗电流和本底电流均使光电流不可能降为零,且随电压的变化而变化,形成光电管的暗特性。
由于上述两个因素的影响,实测电流实际上是阴极光电流、阳极光电子形成的反向电流及暗电流的代数和。
四、误差分析 产生误差的原因可能为: 1.反向电流的作用造成误差。
2.暗电流和本地电流对实验结果的影响,暗电流产生的主要原因是热电子发射及光电管管壳漏电所致,本地电流是因为室内各种漫反射光射入光电管所致,暗电流和本底电流使光电流不可能降为零,形成光电管的暗特性。
四、实验方案 (1)打开汞灯和微电流测试仪,均遇热20分钟左右进行测量。
用光电效应测普朗克常数实验报告
用光电效应测普朗克常数实验报告一、实验目的本实验旨在通过光电效应测量普朗克常数。
二、实验原理光电效应是指当金属表面受到光照射时,会发射出电子的现象。
根据经典物理学,当金属表面受到光照射时,电子会吸收能量而获得动能,直到能量大于或等于逸出功时才能从金属表面逸出。
但实际上,在某些情况下,即使光的频率很低,也会有电子发射的现象。
这一现象无法用经典物理学解释,只有引入量子理论才能解释。
根据量子理论,当金属表面受到光照射时,光子与金属中的电子相互作用,并将一部分能量转移给了电子。
如果这部分能量大于逸出功,则电子可以从金属表面逸出。
此时,逸出的电子所具有的最大动能为:Kmax = hf - φ其中h为普朗克常数,f为入射光的频率,φ为金属的逸出功。
因此,在已知入射光频率和逸出功的情况下,可以通过测量逸出电子的最大动能来确定普朗克常数。
三、实验器材1. 光电效应实验装置2. 单色光源3. 金属样品(锌或铜)4. 电子学计数器四、实验步骤1. 将金属样品安装在光电效应实验装置上,并将单色光源对准金属表面。
2. 调整单色光源的频率,使得逸出电子的最大动能可以被测量。
3. 测量逸出电子的最大动能,并记录下入射光的频率和金属的逸出功。
4. 重复以上步骤,测量多组数据。
5. 根据测得的数据,计算普朗克常数。
五、实验注意事项1. 实验过程中要注意安全,避免直接观察强烈的单色光源。
2. 测量逸出电子最大动能时,要保证其他条件不变,如入射光强度和逸出功等。
3. 测量多组数据可以提高结果的准确性。
六、实验结果与分析根据测得的数据,可以计算出普朗克常数。
假设入射光频率为f,逸出功为φ,逸出电子的最大动能为Kmax,则普朗克常数为:h = Kmax / (f - φ)通过多次实验可以得到多组数据,计算出的普朗克常数应该是相近的。
如果存在较大偏差,则需要重新检查实验步骤和仪器是否有问题。
七、实验结论本实验通过光电效应测量了普朗克常数。
大学物理实验光电效应测普朗克常数课后问题解答
光电效应测普朗克常数1.简述爱因斯坦光电效应方程的物理意义E=hv-W一束光打到一块金属上,光的;频率是v ,我们知道 hv 是一个光子的能量,即这束光的最小的能量,金属中电子要摆脱原子核的束缚飞出金属表面就需要吸收能量,及吸收一个光子,但是如果光子的能量不足以让电子飞出金属表面,电子式飞不出来的,我们就没看到有光电子。
若是能量大于所需能量(即逸出功W),就可以发生光电效应(更确切的说是外光电效应,还有一个就是内光电效应,即吸收了光子发生跃迁,没有脱离金属),并且多余的能量转化为光电子的动能,即E2.举例说明光电效应的应用利用光电效应可以把光信号转变为电信号,动作迅速灵敏,因此利用光电效应制作的光电器件在工农业生产、科学技术和文化生活领域内得到了广泛的应用.光电管就是应用最普遍的一种光电器件.光电管的类型很多.图7-3甲是其中的一种.玻璃泡里的空气已经抽出,有的管里充有少量的惰性气体(如氩、氖、氦等).管的内半壁涂有逸出功小的碱金属作为阴极K.管内另有一阳极A.使用时照图7-3乙那样把它连在电路里,当光照射到光电管的阴极K时,阴极发射电子,电路里就产生电流.光电管不能受强光照射,否则容易老化失效.光电管产生的电流很弱,应用时可以用放大器把它放大.光控继电器工业生产中的大部分光电控制设备都用光控继电器.图7-4是光控继电器的示意图.它由电源、光电管、放大器、电磁继电器几部分组成。
当光照射光电管时,光电管电路中便产生电流,经放大器放大后,使电磁铁M磁化,把衔铁N吸住;没有光照射光电管时,电路中没有电流,衔铁N在弹簧的作用下就自动离开M.如果把衔铁N跟控制机构相连,就可以达到自动控制的目的.光控继电器在工业上可以用于产品的自动计数、安全生产等方面.用于自动计数时,可以把产品放在传送带上,光源和光电管分别放在传送带的两侧,每当传送带上输送过去一个产品时,光线被挡住一次,光控继电器就放开衔铁一次,由衔铁控制的计数器的数字就加一.工人在冲床、钻床、锻压机械上劳动时,如有不慎,容易出事故.为保证安全,可以在这些机床上安装光控继电器.当工人不慎将手伸入危险部位时,由于遮住了光线,光控继电器就立即动作,使机床停下来,避免事故的发生.有声电影最早的电影是没有声音的.后来虽然有了声音,但那是靠留声机来配合影片播放的.声和影配合不好时,效果当然不好.我们现在能够看到声和影完全配合一致的有声电影,还是多亏了光电管.影片摄制完后,要进行录音.录音时通过专门的设备使声音的变化转变成光的变化,从而把声音的“像”摄制在影片的边缘上,形成宽窄变化的暗条纹,这就是影片边上的音道.放映电影时,利用光电管把“声音的照片”还原成声音.方法是:在电影放映机中用强度不变的极窄的光束照射音道,由于影片上各处的音道宽窄不同,所以在影片移动的过程中,通过音道的光的强度也就不断变化;变化的光射向光电管时,在电路中产生变化的电流,把电流放大后,通过喇叭就可以把声音放出来.3.何谓电子逸出功电子克服原子核的束缚,从材料表面逸出所需的最小能量,称为逸出功。
光电效应的所有公式
光电效应的所有公式
光电效应是指光子(光的量子)与物质相互作用时,电子从物质中被抽出的现象。
下面列出光电效应的公式以及其解释:
1. 基本公式:E = hf - Φ
其中,E是光电子能量,h是普朗克常数,f为光子的频率,Φ是金属的逸出功。
这个公式描述了光电效应的能量转换过程:光子的能量被传递给了电子,使得电子能够从金属中逸出。
2. 阈值频率公式:f0 = Φ/h
这个公式描述了能够引起光电效应的最低频率,即阈值频率,它取决于金属的逸出功和普朗克常数。
当光子的频率小于阈值频率时,没有光电子产生。
3. 光电流公式:I = neAve
其中,I是光电流,n是单位体积内的自由电子数,e是元电荷,A是光电极面积,v是电子的平均速度。
这个公式描述的是单位时间内从光电极发射的光电子数目。
4. 光电子最大动能公式:Kmax = hf - Φ
这个公式描述的是光电子在光电效应中能够获取的最大动能,它取决于光子的频率和金属的逸出功。
5. 光电子动量公式:p = h/λ
这个公式描述的是光子和光电子之间动量的守恒关系,其中p是光子或光电子的动量,h是普朗克常数,λ是光的波长。
总之,光电效应是量子物理学的一个基本现象,相关的公式和概念对于理解原子和分子结构、电子能带结构等领域非常重要。
用光电效应测普朗克常数实验报告
一、实验目的1. 深入理解光电效应的基本规律和爱因斯坦的光电效应理论。
2. 掌握利用光电管进行光电效应研究的方法。
3. 学习对光电管伏安特性曲线的处理方法,并以此测定普朗克常数。
二、实验原理光电效应是指当光照射到金属表面时,金属表面会发射出电子的现象。
根据爱因斯坦的光电效应理论,光子的能量与其频率成正比,每个光子的能量为 \( E = hv \),其中 \( h \) 为普朗克常数,\( v \) 为光的频率。
当光子的能量大于金属的逸出功 \( W \) 时,光子会将能量传递给金属表面的电子,使其逸出金属表面。
实验中,我们通过测量不同频率的光照射到光电管上时产生的光电流,根据光电效应方程 \( E = hv - W \) 和光电子的最大初动能 \( E_k = eU_0 \),可以计算出普朗克常数 \( h \)。
三、实验仪器1. YGD-1 普朗克常量测定仪(内有 75W 卤钨灯、小型光栅单色仪、光电管和微电流测量放大器、A/D 转换器、物镜一套)2. 汞灯及电源3. 滤色片(五个)4. 光阑(两个)5. 光电管6. 测试仪四、实验步骤1. 将光电管和微电流测量放大器连接到测试仪上,调整测试仪至合适的电压和电流范围。
2. 将滤色片插入光栅单色仪,选择不同频率的光源。
3. 调节光阑,使光线照射到光电管上。
4. 测量不同频率的光照射到光电管上时产生的光电流,记录数据。
5. 根据光电效应方程和光电子的最大初动能,计算普朗克常数 \( h \)。
五、实验数据及结果1. 波长(nm):365, 405, 436, 546, 5772. 频率(\( 10^{14} \) Hz):8.214, 7.408, 6.879, 5.490, 5.1963. 截止电压(V):1.724, 1.408, 1.183, 0.624, 0.504根据实验数据,利用线性回归方法计算得到斜率 \( k \) 的值为 0.001819,根据公式 \( k = \frac{h}{e} \) 计算得到普朗克常数 \( h \) 的值为6.523×\( 10^{-34} \) J·s。
光电实验效应实验报告
一、实验目的1. 了解光电效应的基本规律,加深对光的量子性的认识。
2. 通过实验验证爱因斯坦的光电效应方程,并测定普朗克常量。
3. 掌握使用光电管进行光电效应实验的方法。
二、实验原理光电效应是指当光照射到金属表面时,金属表面会发射出电子的现象。
根据爱因斯坦的光电效应方程,光子的能量E与电子的动能K之间存在以下关系:E = K + φ其中,E为光子的能量,K为电子的动能,φ为金属的逸出功。
当光子的能量E大于金属的逸出功φ时,光电效应会发生。
此时,电子的动能K 为:K = E - φ光子的能量E可以表示为:E = hν其中,h为普朗克常量,ν为光的频率。
通过测量光电管的伏安特性曲线,可以得到截止电压U0,即当电子的动能K为0时的电压。
根据截止电压U0和入射光的频率ν,可以计算出普朗克常量h。
三、实验仪器1. ZKY-GD-4光电效应实验仪:包括微电流放大器、光电管工作电源、光电管、滤色片、汞灯等。
2. 滑线变阻器3. 电压表4. 频率计5. 计算器四、实验步骤1. 连接实验仪器的各个部分,确保连接正确。
2. 打开汞灯电源,调整光电管工作电源,使光电管预热。
3. 选择合适的滤色片,调节光电管与滤色片之间的距离,使光束照射到光电管阴极上。
4. 改变滑线变阻器的阻值,调整外加电压,记录不同电压下的光电流值。
5. 在实验过程中,保持入射光的频率不变,记录不同电压下的光电流值。
6. 根据实验数据,绘制光电管的伏安特性曲线。
7. 通过伏安特性曲线,找到截止电压U0。
8. 利用截止电压U0和入射光的频率ν,计算普朗克常量h。
五、实验结果与分析1. 实验数据根据实验数据,绘制光电管的伏安特性曲线如下:(此处插入实验数据绘制的伏安特性曲线图)从图中可以看出,随着外加电压的增加,光电流先增加后趋于饱和。
当外加电压等于截止电压U0时,光电流为0。
2. 结果分析根据实验数据,计算出截止电压U0为V0,入射光的频率为ν0。
利用以下公式计算普朗克常量h:h = φ / (1 - cosθ)其中,φ为金属的逸出功,θ为入射光与金属表面的夹角。
光电效应以及普朗克常数的测量
- .word.zl.实验二十九 光电效应及普朗克常数的测量光电效应是指一定频率的光照射在金属外表时会有电子从金属外表逸出的现象。
光电效应实验对于认识光的本质及早期量子理论的开展,具有里程碑式的意义。
普朗克常数是量子力学当中的一个根本常量,它首先由普朗克在研究黑体辐射问题时提出,其值约为s J h ⋅⨯=-3410626069.6,它可以用光电效应法简单而又较准确地求出。
1905年,爱因斯坦借鉴了普朗克在黑体辐射研究中提出的辐射能量不连续观点,并应用于光辐射,提出了“光量子〞概念,建立了光电效应的爱因斯坦方程,从而成功地解释了光电效应的各项根本规律,使人们对光的本性认识有了一个飞跃。
1916年密立根用实验验证了爱因斯坦的上述理论,并准确测量了普朗克常数,证实了爱因斯坦方程。
因光电效应等方面的出色奉献,爱因斯坦与密立根分别于1921年和1923年获得了诺贝尔奖。
作为第一个在历史上实验测得普朗克常数的物理实验,光电效应的意义是不言而喻的。
一、实验目的1. 了解光电效应的规律,加深对光的量子性的理解。
2. 测量普朗克常数h 。
二、实验仪器仪器由汞灯及电源、滤色片、光阑、光电管、测试仪〔含光电管电源和微电流放大器〕构成,仪器构造如图1所示,测试仪的调节面板如图2所示。
汞灯:可用谱线365.0nm 、404.7nm 、435.8nm 、546.1nm 、577.0nm 、579.0nm 滤色片:5片,透射波长365.0nm 、404.7nm 、435.8nm 、546.1nm 、577.0nm 光阑:3片,直径分别为2mm 、4mm 、8mm光电管:阳极为镍圈,阴极为银-氧-钾〔Ag-O-K 〕,光谱响应范围320~700nm ,暗电流:I≤2×10-13A 〔-2V≤U AK ≤0V〕图1 仪器构造示意图1 2 3 4 5 6 7 8 9 1测试仪; 2光电管暗盒; 3光电管; 4光阑选择圈; 5滤色片选择圈;6基座; 7汞灯暗盒; 8汞灯; 9汞灯电源光电管电源:2档,-2~0V ,-2~+30V ,三位半数显,稳定度≤0.1%微电流放大器:6档,10-8~10-13A ,分辨率10-13A ,三位半数显,稳定度≤0.2%。
光电效应测量普朗克常数实验报告
光电效应测量普朗克常数实验报告实验目的本实验旨在通过测量光电效应中电子最大动能与光频率之间的关系,进而测量普朗克常数。
实验原理光电效应是指当光照射到金属表面时,如果光的频率足够高,就会使得金属表面的电子获得足够的能量,从而从金属表面逸出。
通过测量逸出电子的最大动能与光的频率之间的关系,我们可以得到普朗克常数。
实验装置主要由光源、金属阴极、电子收集系统和测量仪器组成。
光源发出单色光,经过准直系统后照射到金属阴极上。
当光照射到金属阴极上时,金属表面的电子会被激发,一部分电子能够克服金属表面的束缚势逸出,形成电子电流。
电子收集系统收集这些逸出的电子,并通过测量仪器测量电子的最大动能以及光的频率。
根据光电效应的理论,逸出电子的最大动能E与光的频率f之间的关系可以由以下公式描述:E = hf - φ其中,E为逸出电子的最大动能,h为普朗克常数,f为光的频率,φ为金属的逸出功。
根据公式可知,电子的最大动能与光的频率成正比,而与金属的逸出功无关。
因此,通过测量逸出电子的最大动能与光的频率之间的关系,我们可以计算出普朗克常数。
实验步骤1.准备实验装置:将光源放置在一定的距离上,使其能够照射到金属阴极上。
安装好电子收集系统,并将其连接到测量仪器上。
2.调整光源:调整光源的位置和角度,使得光能够准确照射到金属阴极的表面。
3.测量光的频率:使用频率计测量光的频率,并记录下来。
4.测量电子的最大动能:通过调节电子收集系统中的电压,测量逸出电子的最大动能,并记录下来。
5.重复实验:多次测量不同光频率下逸出电子的最大动能,以提高测量结果的准确性。
6.数据分析:根据测量得到的逸出电子的最大动能与光的频率之间的关系,绘制出逸出电子最大动能与光频率的图像。
通过拟合曲线,计算出普朗克常数。
实验结果与分析根据实验中测量得到的逸出电子的最大动能与光的频率之间的关系,我们得到了一组数据。
通过绘制出逸出电子最大动能与光频率的图像,并进行曲线拟合,我们可以计算出普朗克常数。
光电效应和普朗克常量的测定实验报告
光电效应和普朗克常量的测定实验报告光电效应和普朗克常数实验⼀、实验⽬的通过实验了解光电效应的基本规律,并⽤光电效应法测量普朗克常量。
在577.0nm、546.1nm、435.8nm、404.7nm四种单⾊光下分别测出光电管的伏安特性曲线,并根据此曲线确定遏⽌电位差值,计算普朗克常量。
⼆、实验仪器光电管,光源(汞灯),滤波⽚组(577.0nm,546.1nm,435.8nm,404.7nm,365nm滤波⽚,50%、25%,10%的透光⽚)。
光电效应测试仪包括:直流电源、检流计(或微电流计)、直流电压计等。
光源(汞灯):光电管:滤波⽚组盒⼦:光电效应测试仪:三、实验原理当光照在物体上时,光的能量仅部分地以热的形式被物体吸收,⽽另⼀部分则转换为物体中某些电⼦的能量,使电⼦逸出物体表⾯,这种现象称为光电效应,逸出的电⼦称为光电⼦。
在光电效应中,光显⽰出它的粒⼦性质,所以这种现象对认识光的本性,具有极其重要的意义。
光电效应实验原理如图1所⽰。
其中S 为真空光电管,K为阴极,A为阳极。
当⽆光照射阴极时,由于阳极与阴极是断路,所以检流计G中⽆电流流过,当⽤⼀波长⽐较短的单⾊光照射到阴极K上时,形成光电流,光电流随加速电位差U变化的伏安特性曲线如图2所⽰1.光电流与⼊射光强度的关系光电流随加速电位差U的增加⽽增加,加速电位差增加到⼀定量值后,光电流达到饱和值IH,饱和电流与光强成正⽐2.光电⼦的初动能与⼊射光频率之间的关系光电⼦从阴极逸出时,具有初动能。
当U=UA -UK为负值时,光电⼦逆着电场⼒⽅向由K极向A极运动,随着U的增⼤,光电流迅速减⼩,当光电流为零,此时的电压的绝对值称为遏⽌电位差Uα。
在减速电压下,当U=Uα时,光电⼦不再能达到A极,光电流为零。
所以电⼦的初动能等于它克服电场⼒所作的功。
即1/2*mv2=eUα(1)根据爱因斯坦关于光的本性的假设,光光是⼀种微粒,即为光⼦。
每⼀光⼦的能量为,其中h为普朗克常量,v为光波的频率。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
大连理工大学大学物理实验报告院(系)专业班级姓名学号实验台号实验时间年月日,第周,星期第节实验名称光电效应测量普朗克常量和金属逸出功教师评语实验目的与要求:1.通过测量不同频率光照下光电效应的截止电压来计算普朗克常量2.获得阴极材料的红限频率和逸出功主要仪器设备:1.光电效应实验仪(GGQ-50 高压汞灯,GDh-I型光电管电流测量仪)2.滤光片组(通光中心波长分别为365.0nm, 404.7nm, 435.8nm, 546.1nm, 577.0nm)3.圆孔光阑Φ=5mm, Φ’=10mm4.微电流仪实验原理和内容:1.理想光电效应光电效应实验装置如右上图所示,阴极K收到频率为v的单色光照射时,将有光电子由K逸出到达阳极A,形成回路电流I,可以由检流计G所检测到。
通过V来监控KA两端的电压变化,结合G所得到的电流值,可以得到U与光电流I之间的关系,如右下图所示。
根据爱因斯坦的解释,单色光光子的能量为E=hv,金属中的电子吸收了光子而获得了能量,其中除去与晶格的相互作用和克服金属表面的束缚(金属的逸出功A )外, 剩余的便是逸出光电子的动能, 显然仅仅损失了逸出功的光电子具有最大动能:A hv mv M -=221。
实验中所加的光电管电压U 起到协助光电流I 形成的作用, 当不加电压U 时, 到达阳极的光电子很少, 光电流十分微弱; 当加上正向电压时, 便有更多的光电子到达阳极, 使得I 增大, 而所有的光电子都被吸引到阳极形成电流时, I 到达最大值, 此时再增大U 也不会改变I , 成为饱和光电流IM , 饱和光电流在光频率一定时, 与光照强度成正比。
如果在光电管两极加反向电压便可以组织光电子到达阳极形成光电流, 当反向电压增大到光电流等于零时, 可知光电子的动能在电场的反向作用下消耗殆尽, 有以下关系式:a MeU mv=221,其中U a 成为截止电压。
结合以上最大动能的表达式可知,e Av e h U a -=, 如左图做出其对应的图像, 可知直线的斜率为e h k =, 截距为eAU =0。
图中斜线与x 轴的交点对应的频率v0称为阴极材料的红限频率, 照射光小于这个频率时, 无法产生光电效应(入射光光子能量小于电子的逸出功)。
显然, 通过测量多组v 和Ua , 便可以通过计算函数表达式而得到A 、h 、v0。
2. 实验中相关影响因素的修正1, 暗电流修正暗电流指没有光照时, 由于金属表面的隧道效应、 光电管漏电、 热噪声等原因造成的由K 向A 逸出电子形成的电流。
由于暗电流对截止电压的影响不大, 实验中可以使用无光照测量电流的方法测出暗电流值, 在后期处理中将其剔除。
2, 阳极电流修正由于KA 两级距离很近, 光照时阳极的材料同样可以发生一定程度的光电效应而发射光电子, 当光电管加的是反向电压时, 就会使阳极光电子到达阴极形成阳极电流。
在U-I 曲线上阳极电流的影响就是使在负向电压区的阴极电流出现负值下沉, 由于阳极光电子数目有限且相比阴极较少, 故阳极电流很快达到饱和, 可见实验中截止电压对应的实际情况是总体电流趋于反向稳定时的电压值。
步骤与操作方法:1.测量各个不同波长准单色光照射下光电管的U-I’数据1.1 仪器使用前预热10分钟,同时注意关闭光电管入射孔。
1.2 微电流仪调零,设置满度值(-100为宜),然后调节至10-6μA档,电压表量程选用20V1.3 确定入射孔大小、汞灯和光电管的距离,并在以后的实验过程中保持不变。
1.4 选择并以此切换滤光片,开始测量。
注意:测量时正向电流不必很大,更不需要达到到达正向饱和;正电流区的数据采集不必很多,而相比之下负电流区采集应当更加密集,并需要一直采集到反向电流趋于稳定。
2.暗电流的测量2.1 以上五组数据全部测量完毕以后,挡住光电管的入射孔,测量每一组数据中各个电压值对应的暗电流i。
注意:不要让进入光电管的光通量过大而损坏光电管;电压调节应缓慢进行,以免损坏仪器。
数据记录与处理:各组数据的波长,加载电压U,测量电流I’,暗电流i和实际电流I如下结果与分析:根据各个表格中的U-I数据,即可做出各个波长下对应的U-I曲线图作图使用Matlab 6.5 的cftool 绘图工具箱完成,同时在图中找到对应的拐点,确认为各个Ua作图程序如下:第一组U-I数据>> x=[-0.99 -1.09 -1.19 -1.29 -1.39 -1.49 -1.59 -2.07 -2.54 -3.00 ]x =Columns 1 through 3 -0.9900 -1.0900 -1.1900Columns 4 through 6 -1.2900 -1.3900 -1.4900Columns 7 through 9 -1.5900 -2.0700 -2.5400Column 10 -3.0000>> y=[1.0 -18.0 -28.8 -34.8 -37.1 -38.0 -39.0 -41.0 -43.0 -44.1 ]y = Columns 1 through 9 1.0000 -18.0000 -28.8000 -34.8000 -37.1000 -38.0000 -39.0000 -41.0000 -43.0000Column 10 -44.1000>>cftool第二组U-I数据>> x=[-0.86 -0.96 -1.06 -1.16 -1.26 -1.36 -1.46 -1.56 -1.64 -2.12 -2.74 -3.00 ]x = Columns 1 through 7 -0.8600 -0.9600 -1.0600 -1.1600 -1.2600 -1.3600 -1.4600 Columns 8 through 12 -1.5600 -1.6400 -2.1200 -2.7400 -3.0000>> y=[1.1 -19.0 -28.5 -33.2 -35.3 -37.0 -37.9 -38.8 -38.9 -40.9 -42.9 -43.0 ]y = Columns 1 through 7 1.1000 -19.0000 -28.5000 -33.2000 -35.3000 -37.0000 -37.9000 Columns 8 through 12 -38.8000 -38.9000 -40.9000 -42.9000 -43.0000>>cftool第三组数据>> x=[-0.74 -0.84 -0.94 -1.04 -1.14 -1.24 -1.34 -1.44 -1.45 -1.91 -2.48 -3.00 ]x = Columns 1 through 7 -0.7400 -0.8400 -0.9400 -1.0400 -1.1400 -1.2400 -1.3400 Columns 8 through 12 -1.4400 -1.4500 -1.9100 -2.4800 -3.0000>> y=[1.0 -21.0 -30.8 -34.9 -36.9 -37.2 -38.1 -38.8 -39.0 -41.0 -43.0 -44.0 ]y = Columns 1 through 7 1.0000 -21.0000 -30.8000 -34.9000 -36.9000 -37.2000 -38.1000 Columns 8 through 12 -38.8000 -39.0000 -41.0000 -43.0000 -44.0000>>cftool第四组数据>> x=[-0.61 -0.71 -0.81 -0.91 -1.01 -1.11 -1.21 -1.51 -2.00 -2.78 -3.00 ]x = Columns 1 through 7 -0.6100 -0.7100 -0.8100 -0.9100 -1.0100 -1.1100 -1.2100 Columns 8 through 11 -1.5100 -2.0000 -2.7800 -3.0000>> y=[1.0 -22.9 -31.1 -34.2 -35.1 -36.9 -37.1 -39.0 -41.0 -43.0 -43.2 ]y = Columns 1 through 7 1.0000 -22.9000 -31.1000 -34.2000 -35.1000 -36.9000 -37.1000 Columns 8 through 11 -39.0000 -41.0000 -43.0000 -43.2000>> cftool第五组数据>> x=[-0.51 -0.61 -0.71 -0.81 -0.91 -1.01 -1.11 -1.16 -1.66 -2.18 -3.00 ]x = Columns 1 through 7 -0.5100 -0.6100 -0.7100 -0.8100 -0.9100 -1.0100 -1.1100 Columns 8 through 11 -1.1600 -1.6600 -2.1800 -3.0000>> y=[1.1 -26.1 -33.0 -35.9 -36.9 -37.9 -38.8 -38.9 -40.9 -42.9 -44.7 ]y = Columns 1 through 7 1.1000 -26.1000 -33.0000 -35.9000 -36.9000 -37.9000 -38.8000 Columns 8 through 11 -38.9000 -40.9000 -42.9000 -44.7000>> cftool第六组数据>> x=[-0.42 -0.52 -0.62 -0.73 -0.83 -1.21 -1.71 -2.64 -3.00 ]x = Columns 1 through 7 -0.4200 -0.5200 -0.6200 -0.7300 -0.8300 -1.2100 -1.7100 Columns 8 through 9 -2.6400 -3.0000>> y=[1.0 -32.0 -36.2 -38.1 -39.0 -41.0 -43.0 -45.0 -45.8 ]y = Columns 1 through 7 1.0000 -32.0000 -36.2000 -38.1000 -39.0000 -41.0000 -43.0000 Columns 8 through 9 -45.0000 -45.8000>> cftool综合以上六张图,得到一系列v-Ua数据,如下所示(这里用x E+/-y的方法表示以10为基数的科学计数法)同样,将以上数据输入Matlab 6.5,以得到其拟合的v-Ua直线程序如下:>> x=[7.5E+14 7.00935E+14 6.50759E+14 6E+14 5.50459E+14 5E+14]x = 1.0e+014 * 7.5000 7.0094 6.5076 6.0000 5.5046 5.0000 >> y=[1.4309 1.30043 1.10452 0.91 0.848961 0.641381]y = 1.4309 1.3004 1.1045 0.9100 0.8490 0.6414>> cftool得到如下的函数图像,见下页:并且得到该直线的拟合方程为: Ua = 3.138*10-15*v - 0.9228 对应到本实验中的物理量, 得到1510*138.3-=e h , 9228.0=eA经计算得到:实验测得的普朗克常量为 s J h ⋅=-3410*308.5 阴极电子的金属逸出功为 J A 1910*476.1-=阴极材料的红限频率 Hz 1410*781.2=ν附加测量:波长为600nm下的正电流数据及其图像,正电流测量的数据如下:讨论、建议与质疑:1.根据实验中的现象与最后对实验结果进行处理时发现,暗电流相对于阴极电流来说很小,可以近似地认为其在某一个波长下的实验中没有发生变化,故可以在实验中设计增加一个步骤来消去暗电流的影响:在无光照的情况下在光电管两端加载-3.0V的负向电压,然后可见微安表的读数为当前的暗电流值;然后调节微安表调零旋钮,使微安表指零,再进行试验,这样在后续读取的数据中,暗电流的值实际上已经被减去了,这样便消除了暗电流对最终实验结果的影响(本方法不一定理想,仅为个人意见)。