数学广角抽屉原理
六下(人教)第五单元数学广角——鸽巢问题(抽屉原理)(附答案)
第五单元数学广角——鸽巢问题(抽屉原理)一、最不利原则:为了保证能完成一件事情,需要考虑在最倒霉(最不利)的情况下,如何能达到目标。
二、抽屉原理:形式1:把n+1个苹果放到n个抽屉中,一定有2个苹果放在一个抽屉里;形式2:把m×n+1个苹果放到n个抽屉中,一定有m+1个苹果放在一个抽屉里。
模块一抽屉原理【例题1】把3个苹果放到两个抽屉中,有()种放法。
【练习1】把4支铅笔放进3个笔筒中,有()种放法。
【例题2】把8个桃子放到7个果盘里,一定有一个果盘里至少放进了()桃子。
【练习2】把7本书放进6个抽屉,不管怎么放,总有一个抽屉里至少放进()本书。
【例题3】五年级一班有28个学生,保证至少有几个同学在同一个月出生?【练习3】在任意25个人中,至少有几个人的星座相同?【例题4】把25个玻璃球最多放进几个盒子里,才能保证至少有一个盒子里有5个玻璃球?【练习4】把17本书最多放到()个空书架上,才能保证至少有一个书架上有5本书。
【例题5】平安路小学组织862名同学去参观甲、乙、丙3处景点。
规定每名同学至少参观一处,最多可以参观两处,至少有多少名同学参观的景点相同?【练习5】中国奥运代表团的173名运动员到超市买饮料,已知超市有可乐、雪碧、芬达、橙汁、味全和矿泉水6种饮料,每人各买两种不同的饮料,那么至少多少人买的饮料完全相同?【例题6】国庆嘉年华共有5项游艺活动,每个学生至多参加2项,至少参加1项。
那么至少有多少个学生,才能保证至少有4个人参加的活动完成相同?【练习6】桂苑小学六年级每名学生都订阅了《数学小灵通》、《小学生作文》、《英语天地》、《科学画报》这4种报刊中的2种,他们当中至少有34名学生订阅的报刊种类相同。
你知道桂苑小学六年级至少有多少名学生吗?【例题7】从1,2,3,……,21这些自然数中,最多可以取出多少个数,使得其中每两个数的差都不等于4?【练习7】1至70这70个自然数中,最多可以取出多少个数,使得其中每两个数的差都不等于6?【例题8】从1,4,7,10,……37,40这14个自然数,至少任取多少个数才能保证其中至少有2个数的和是41?【练习8】从1到50这50个自然数中,至少选出多少个数,才能保证其中一定有两个数的和是50?【例题9】从1到100这100个自然数中,至少选出多少个数才能保证其中一定有两个数的和是7的倍数?如果要保证是6的倍数呢?【练习9】从1至99这99个自然数中任意取出一些数,要保证其中一定有两个数的和是5的倍数,至少要取多少个?【例题10】某省有4千万人口,每个人的头发根数不超过15万根,那么该省中至少有多少人的头发根数一样多?【练习10】49名同学共同参加体操表演,其中最小的8岁,最大的11岁。
数学广角 抽屉原理
做一做: 45只鸽子飞回8个鸽舍,至少有多少 只鸽子要飞进同一个鸽舍?为什么?
抽屉原理:
m÷n=a… …b ( m>n>1)
把m个物体放进n个抽屉里
a ( m>n>1),不管怎么放总有
一个抽屉至少放进( +1 )个
物体。
狄利克雷 (1805~1859)
“抽屉原理”又称“鸽巢原理”, 最先是由19世纪的德国数学家
小学数学六年级下册
内蒙古乌兰察布市兴和县栋梁小学 孟日琴
把3本书放进两个抽屉,有几种放法?试试看。
方法一
(3,0)
方法二
(2,1)
例1、把4枝笔放进3个笔筒里,总有一
个笔筒里至少放进几枝笔?
至少放进2枝
如果我们先让每个笔筒里放1枝笔,最 多放3枝。剩下的1枝还要放进其中的一
个笔筒。所以不管怎么放,总有一个笔
筒里至少放进2枝笔。
想一想:
把5枝笔放在4个笔筒里,还是不 管怎么放,总有一个笔筒里至少放进了 2枝笔吗?
为什么会有这样 的结果?
这样分实际上是怎样分? 怎样列式?
做一做
7只鸽子飞回5个鸽舍,至少有2只鸽子要飞 进同一个鸽舍里。为什么?
例2、把5本抽屉至少放进3本书。为什
狄利克雷提出来的,所以又称
“狄利克雷原理”。抽屉原理的应 用是千变万化的,用它可以解决许 多有趣的问题,并且常常能得到一 些令人惊异的结果。
人教版六年级下册课件 5数学广角-抽屉原理(鸽巢原理)
3.明小学有367名年出生的学生,请问是否有生日相同的学生?
【解析】1年最多有366天,把366天看作366个“抽屉”,将367名学生看作个“苹果”.这样,把 367个苹果放 进366个抽屉里,至少有一个抽屉里不止放一个苹果.这就说明,至少有名同学的生日相同.
答案
探索新知
例2:如果把5个苹果放在2个抽屉里面,不管怎么放,总有一个抽 屉里至少放3个苹果,为什么?如果一共有7个苹果呢?9个呢?
做一做:42个苹果放在5个抽屉里,至少有多少个苹果放在一个抽 屉里?
42÷5 = 8(个) ...... 2(个) 8+1=9(个)
答:至少有9个苹果放在一个抽屉里
答案
知识总结
抽屉原理
将n件物品放入m个抽屉中,如果n÷m=a,那么一
定有一个抽屉里至少抽有屉a件原物理品。
将n件物品放入m个抽屉中,如果n÷m=a...b,那么 一定有一个抽屉里至少有a+1件物品。
答案
例题解析
例6:17名同学参加一次考试,考试题是3道判断题(答案只有对错之分 ),每名同学都在答题纸上依次写上了3道题目的答案。试说明至少有3 名同学的答案是一样的。
解析:3道题所有可能出现的答案有8种,8种答案可以看作8个抽屉,一共有17名同 学,看作17个苹果
17÷8= 2 ...... 1 2+1=3
答:至少有3名同学的答案是一样的。
数学广角《抽屉原理》教案
数学广角《抽屉原理》教案一、教学目标1. 让学生经历探索物体分类的过程,体会“抽屉原理”在生活中的应用。
2. 培养学生运用“抽屉原理”解决实际问题的能力。
3. 渗透分类、集合的初步思想,发展学生的抽象思维能力。
二、教学重点与难点1. 教学重点:理解“抽屉原理”,并能应用于实际问题中。
2. 教学难点:灵活运用“抽屉原理”解决生活中的问题。
三、教学准备1. 物质准备:教具、学具。
2. 经验准备:学生已有分类的经验。
四、教学过程1. 导入:a. 创设情境,引发思考。
出示情境图片,让学生观察并思考:停车场里停了几辆不同的车?b. 交流讨论,得出结论。
学生交流讨论,得出停车场里停了3辆不同的车。
2. 探究“抽屉原理”a. 初步感知“抽屉原理”。
出示问题:如果有4辆车停在这里,最多能停几种不同的车?学生思考并尝试解答,得出结论:最多能停2种不同的车。
b. 进一步探究“抽屉原理”。
出示问题:如果有5辆车停在这里,最多能停几种不同的车?学生思考并尝试解答,得出结论:最多能停3种不同的车。
3. 总结“抽屉原理”a. 引导学生总结“抽屉原理”。
学生总结出:如果有n辆车停在这里,最多能停的不同的车的种类数是n-1。
b. 讲解“抽屉原理”。
讲解“抽屉原理”的含义:如果把n辆车看做n个元素,把不同的车的种类看做抽屉,n辆车最多能停的不同的车的种类数就是n-1。
4. 应用“抽屉原理”a. 出示问题:一个抽屉里放了4个不同的玩具,如果再往里放一个玩具,最多还能放几种不同的玩具?学生应用“抽屉原理”解答,得出结论:最多还能放3种不同的玩具。
b. 出示问题:一个抽屉里放了5个不同的衣物,如果再往里放一件衣物,最多还能放几种不同的衣物?学生应用“抽屉原理”解答,得出结论:最多还能放4种不同的衣物。
5. 课堂小结a. 回顾本节课的学习内容。
学生总结出:我们学习了“抽屉原理”,并应用它解决了一些实际问题。
b. 强调“抽屉原理”在生活中的应用。
数学广角—抽屉原理
感谢观看
本课件中部分所用素材来源于网络,仅供教学使用
前提:如果任何一个抽屉都没有2个或以上的苹果(即有1个或0个) ,那9个抽屉中的苹 果数量就不超过9个;而9个抽屉共放进了10个苹果(苹果数量超过9个) 。
结论:总有一个抽屉至少放了2苹果。
四、抽屉原理的历史
狄利克雷 (1805~1859)
抽屉原理最早由德国数学家狄里克雷( Dirichlet)提出 并运用于解决数论中的问题,在一些学术著作中抽屉原理 又称“狄里克雷原理”,更严谨的表述为:把多于n个元 素分成n类,不管怎么分,总有一类中有2个或2个以上的 元素,它是组合数学中的一个重要原理。
利用“抽屉原理”可以做出许多有趣的推理和判断, 解决一些相当复杂甚至无从下手的问题。
学校有两人 同一天生日
吗?
五、抽屉原理的实际应用
(案例1)有一次开家长会,爸爸问小亮
问:你们学校每个年级几个班? 答:2个班。
一定有!
问:每个班大约多少学生?
答:40人。
问:你们学校一共有多少人?
答:480人左右。
教材利用完全归纳推理规则,使用“完全枚举” 的方法得到结论。所谓的完全枚举法就是考虑到 各种组合的可能性,对每一组合检查它是否符合给 定的条件。
三、小学教材中的抽屉原理
6只鸽子飞进5个鸽巢,总有一个鸽巢至少飞进2只鸽子。说一说其中的道理。
00 0 0
0 0 0
0 0 0
0 0
00
0
0
抽屉原理教案
《数学广角——抽屉原理》教学设计教学内容:《义务教育课程标准实验教科书数学》六年级下册第70-71页。
教学目标:1、经历“抽屉原理”的探究过程,初步了解“抽屉原理”,会用“抽屉原理”解决简单的实际问题。
2、通过猜测、验证、观察、分析等数学活动,发现规律。
3、经历从具体到抽象的探究过程,提高学生有根据、有条理地进行思考和推理的能力。
4、通过“抽屉原理”的灵活应用,提高学生解决数学问题的能力和兴趣,感受到数学文化及数学的魅力。
教学重点:经历“抽屉原理”的探究过程,初步了解“抽屉原理”。
教学难点:理解“抽屉原理”,并对一些简单实际问题加以“模型化”。
教学准备:多媒体课件、铅笔、杯子等。
教学过程:一、课前交流:师:老师想请几名同学抽取五名幸运观众。
老师虽然不敢保证这五名同学是谁,但是我确定在这五位幸运观众里至少有三名同学是同一性别的,信不信?那下面我们就来验证一下吧!师:其实这里面蕴藏着一个非常重要的数学原理,同学们学了本节课的内容就会解释此类问题。
下面我们一同走进今天的课堂。
二、新课导入:出示两个抽屉、三个苹果。
(1)师:老师想把三个苹果放到两个抽屉了里,可以怎么放?(2)学生上台演示。
板书:(2,1)(3)还有不同的放法吗?板书:(3,0)(4)师:通过这两种方法,你有什么发现?生:不管怎么放,总有一个抽屉里至少放两个苹果。
(5)板书课题:像这样的数学原理,我们把它叫做抽屉原理。
(板书课题:抽屉原理)三、探究新知:(一)坐板凳游戏:师:其实在我们的身边还有很多这样的现象:老师这里准备了2把椅子,请3个同学上来,谁愿来?师:听清要求,老师说开始以后,请你们3个都坐在椅子上,每个人必须都坐下,好吗?师:谁来说一说他们是怎样坐的?师:还可以怎么做?现在又怎样坐的?师:你发现了三个同学坐两个凳子,无论怎么做有什么现象?生:无论怎么坐,总有一个凳子上至少坐两位同学。
师:想一想,这里面我们可以把什么看作抽屉?几个抽屉?把什么看作苹果?(二)教学例1:1、出示例题:课件出示例1:把4枝铅笔放进3个杯子中,有几种放法?还有什么发现?2、小组合作交流,填写记录单。
《数学广角——抽屉原理》课件制作综述
盒 子里 至少 有2 支铅笔。 在设 计时只将
摆 放的结 果用 图片形式 做 了简 单的展 示, 还可以利用P weP it “ 定义 o r on 中的 自
P4 A.  ̄学习/组为单位, j 、 利用组 内 的铅笔
和文具盒动手放一放 , 发现其 中蕴含的 抽屉原理 。 结合课件的演示使学生初步 体会把3 支铅笔放入2 个盒子里总有1 个
选择 菜单栏 中的 “ 视图” 按钮 , 选择 “ 工 具栏 ” 里的 “ 控件 工具箱 ” 并选择 “ , 其
●
链接“ 二桃 杀三士” 的动画视 频来实现 的, 或也 可以把视 频 利用格 式工 具 ( 格
式工厂) 换成Fah 式的动 画影片, 转 l 格 s 利用菜单栏 “ 视图” 中的 “ 控件 ” 插入 动
画, 具体做法是 : 首先将 Fah ls 文件和幻 灯 片放在 同一目录下 或同一 个 文件 夹 中, 然后选择 要插入F ah ls 的位置 , 接着
立意是借 助 “ 分放铅 笔” 操作实验环 节 中的简单数 据— — 铅笔支 数和文具 盒 数 逐数 递 增, 课件 在 制作 时把 相应 需 要改 变的数 值 设置 成 自 定义 动 画中的 “ ” “ 出现 和 消失” 即可。 个环 节 主要 这 意 图是借 助 课件 启发学 生由形 象思维 转 化为抽象 思考 , 通过 变化 , 找到规 律 性的现象 , 然后总结 概括出抽屉原理 的
数学活动中来 , 在掌握 知识的同时, 也习 得了 方法, 培养了 能力, 学习便不再是一件 枯燥无味的事情, 而是一件与陕乐联 系在
苏教版六年级小升初奥数专项训练 第十二周 数学广角
第十二周数学广角1、抽屉原理(一)【题型概述】如果把n+k(k≥1)件东西放入n个抽屉,那么,至少有一个抽屉中有2件或2件以上的东西。
这个道理我们都能够想得通,它称为抽屉原理原则一。
今天,我们就来学习原则一的运用。
【典型试题】六年级有32名学生是在1月份出生的,那么其中至少有2名学生的生日是同一天,为什么?思路点拨:因为1月份有31天,可以看做31个抽屉,把32名学生看做32个苹果。
根据抽屉原理原则一,至少有一个抽屉里放2个苹果,也就是说至少有2名学生的生日是同一天。
【举一反三】1、育才小学六(1)班54名学生是同一年(该年有365天)出生的,能否说明至少有2人是在同一个星期过生日的?2、有红、黄、蓝三种颜色的球各5个,混合后放在一个布袋内,一次至少摸出几个才能保证有2个同色的?3、任意4个自然数,其中至少有2个数的差是3的倍数。
这是为什么?【拓展提高】在长度为2米的线段上任意画11个点,至少有两个点之间的距离不大于20厘米。
为什么?思路点拨:我们不妨把2米长的绳子平均分成10段,每段长20厘米。
把每一段看做一个抽屉,共10个抽屉;将11个点放入10个抽屉中,至少有1个抽屉中放了2个点。
那么,根据抽屉原理,在同一个抽屉(同一段)中,这两个点之间的距离一定不大于这段的长度20厘米。
【奥赛训练】4、在100米的路段上植树,至少要植多少棵树,才能保证至少有两棵树之间的距离小于10米。
5、一副扑克牌有54张,最少要抽取几张牌,方能保证其中至少有2张牌有相同的点数?2、抽屉原理(二)【题型概述】如果把m×n+k(k≥1)件东西放入n个抽屉,那么一定有一个抽屉里至少有m+1件东西。
这就是我们今天学习的抽屉原理原则二。
【典型例题】某幼儿班有40名小朋友,现有各种玩具共122件,把这些玩具全部分给小朋友,是否会有小朋友得到4件或是4件以上的玩具?思路点拨:将40名小朋友看成40个抽屉,122=3×40+2,由抽屉原理原则二知,至少会有一个小朋友得到3+1=4件,或4件以上的玩具。
六年级数学下册《数学广角》抽屉原理
3、把7本书进2个抽屉中,不管怎么放, 总有一个抽屉至少放进多少本书?为什 么?
7÷2=3……1
3、把9本书进2个抽屉中,不管怎么放,总有 一个抽屉至少放进多少本书?为什么?
9÷2=4……1
抽屉原理
在有些问题中,“抽屉”和“苹果”不 是很明显, 需要我们制造出“抽屉”和 “苹果”. 制造出“抽屉”和“苹果” 是比较困难的,这一方面需要同学们去分 析题目中的
如果要取出颜色相同的两双筷子,问至 少要取多少根才能保证达到要求?
把5枝笔放 进3个盒子中。
• 把6枝笔放进4个盒子呢? 把5枝笔放进2个盒子呢?
“ 抽屉原理”又称“鸽笼原理”,最先是 由19世纪的德国数学家狄利克雷提出来的, 所以又称“狄里克雷原理”,这一原理在解 决实际问题中有着广泛的应用。“抽屉原理” 的应用是千变万化的,用它可以解决许多有 趣的问题,并且常常能得到一些令人惊异的 结果。下面我们应用这一原理解决问题。
3、如果把100个苹果放入99个抽屉中, 至少有几个放到同一个抽屉里呢?(2个)
1、如果把6个苹果放入4个抽屉中,
至少有几个苹果被放到同一个抽
屉里呢?
(2个)
2、如果把8个苹果放入5个抽屉中,
至少有几个苹果被放到同一个抽
屉里呢?
(2个)
你发现了什么规律?
只要物体数量是抽屉数 量的1倍多,总有一个抽屉 里 至少放进2个的物体。
枝铅笔?至少:只有一个文具盒有 4 枝,
其余都是(4-1)枝
3+1
3
3
3
3×(4-1)+1=10(枝)
求总数=抽屉×(至少-1)+1
要分的份数 其中一个多1
抽屉原理(二)
抽屉原理
4、任给7个不同的整数,求证其中必有两个整数,它们的和 或差是10的倍数.
“连续”问题
1、有50名运动员进行某个项目的单循环赛, 如果没有平局,也没有全胜。试证明:一 定有两个运动员积分相同。
2、某学生用11个星期做完数学复习题,他每 天至少做一道题,每星期至多做12道题. 证明: 一定存在连续的若干天,他恰好做了21道题.
抽屉,年龄最大的 是13岁,最小的是11岁,那么其中必有( ) 名学生是同年同月出生的.
• 从一副张扑克牌(去掉大小王)中,至少 取出几张牌,才能保证一定有2张牌的点数 和颜色相同? • 至少取出几张牌,才能保证必定有相邻的3 张牌出现?
完成对应练习
染色问题
假设法最核心的思维是: 把物体尽量多的平均分给各个抽屉
这个核心思路是用“有余数的除法”这一数学形式表示出来的。
解题方法:
• 用物品数除以抽屉数,若除数不为零,则“至少数”为商 加1; • 若除数为零,则“至少数”为商。
抽屉原理解题的关键:
(1)找准抽屉和物品个数;
(2)营造“最不利情况”。
• • • • •
前面取的球都没有达到15个球颜色相同的状况。
4、布袋里有4种不同颜色的球,每种都有 10个。最少取出多少个球,才能保证其中 一定有3个球的颜色一样?
5、从一副完整的扑克牌中,至少抽出(23) 张牌,才能保证至少有6张牌的花色相同。
最不利状况: 各个花色都取了5张花色相同的牌,一共是5*4=20 然后取了大、小王共2张牌然后任取一张,就可以保证至 少有6张牌的花色相同了。
设此学生前i天做xi道题(i=1,2,…,77),则x1<x2<…<x77≤12×11=132, 令yi=xi+21,则y1<y2<…<y77≤132+21=153,于是x1,x2,…,x77,y1, y2,…,y77这154个数都≤153,其中必有两数相同,设xi=yj,则xi=xj+21, xi−xj=21,即从第j+1天到第i天,他恰好做了21道题.
六下(人教)第五单元数学广角 - 鸽巢问题(抽屉原理)(附答案
六下(人教)第五单元数学广角 - 鸽巢问题(抽屉原理)(附答案六下人教版同步奥数第五单元数学广角――鸽巢问题能力提升思维突破挑战极限第五单元数学广角――鸽巢问题(抽屉原理)一、最不利原则:为了保证能完成一件事情,需要考虑在最倒霉(最不利)的情况下,如何能达到目标。
二、抽屉原理:形式1:把n+1个苹果放到n个抽屉中,一定有2个苹果放在一个抽屉里;形式2:把m×n+1个苹果放到n个抽屉中,一定有m+1个苹果放在一个抽屉里。
模块一抽屉原理【例题1】把3个苹果放到两个抽屉中,有()种放法。
【练习1】把4支铅笔放进3个笔筒中,有()种放法。
【例题2】把8个桃子放到7个果盘里,一定有一个果盘里至少放进了()桃子。
【练习2】把7本书放进6个抽屉,不管怎么放,总有一个抽屉里至少放进()本书。
【例题3】五年级一班有28个学生,保证至少有几个同学在同一个月出生?【练习3】在任意25个人中,至少有几个人的星座相同?【例题4】把25个玻璃球最多放进几个盒子里,才能保证至少有一个盒子里有5个玻璃球?【练习4】把17本书最多放到()个空书架上,才能保证至少有一个书架上有5本书。
第 1 页共 14 页六下人教版同步奥数第五单元数学广角――鸽巢问题能力提升思维突破挑战极限【例题5】平安路小学组织862名同学去参观甲、乙、丙3处景点。
规定每名同学至少参观一处,最多可以参观两处,至少有多少名同学参观的景点相同?【练习5】中国奥运代表团的173名运动员到超市买饮料,已知超市有可乐、雪碧、芬达、橙汁、味全和矿泉水6种饮料,每人各买两种不同的饮料,那么至少多少人买的饮料完全相同?【例题6】国庆嘉年华共有5项游艺活动,每个学生至多参加2项,至少参加1项。
那么至少有多少个学生,才能保证至少有4个人参加的活动完成相同?【练习6】桂苑小学六年级每名学生都订阅了《数学小灵通》、《小学生作文》、《英语天地》、《科学画报》这4种报刊中的2种,他们当中至少有34名学生订阅的报刊种类相同。
数学广角(抽屉原理)
有一个盒子里至少有2个球。为 什么? 2、把13只鸡关在4个笼子里,总 有一个笼子里至少有4只鸡。为 什么?
3、在任意的37人中,至少有四人 的属相相同。为什么?
4、夏令营有400个学生参加,请 问在这些学生中:至少有多少人 在同一天过生日?
5、把15个球放在6个盒子里,总 有一个盒子里至少有几个球?
6、在跳绳练习中,一分钟至少跳 多少个才能保证某一秒钟内至少 跳了两次?
义务教育课程标准实验教科书 六年级 下册
数学广角(抽屉原理)
将10个苹果放进9个抽屉,那 么肯定有一个抽屉里放进了两 个或更多的苹果(也可以说有一 个抽屉里面至少放进了两个苹 果). 该道理被称为“抽屉原理” 或“鸽笼原理”(以鸽子比做苹 果,以笼子比做抽屉).
把m个物体放入n个空抽屉里 (m>n,n是非0自然数), 那么一定有一个抽屉中放进了 至少2个物体。
记 住 了 吗?
把多于kn个物体任意放进n个 空抽屉里(k是正整数),那么 一定有一个抽屉中放进了至少 (k+1)个物体。
填一填
1、把5枚棋子放入下图中四个小 三角形内,那么一定有一个小三 角形内至少有( 2 )个棋子。
2、把9粒大米放入4个小方格。
想一想
数学广角 抽屉原理
在计算几何中,抽屉原理可以帮助我们解决一些几何问题, 例如在计算多边形的最小面积或最小周长时,可以利用抽屉 原理来推导其结果。
04 抽屉原理的扩展
超限归纳法
定义
超限归纳法是一种数学归纳法的 扩展,它不仅适用于自然数,还 适用于实数、复数等更广泛的数
域。
应用
超限归纳法在数学分析、实变函数、 复变函数等领域有着广泛的应用, 用于证明一些关于数列、函数等性 质的命题。
03 抽屉原理的应用
组合数学中的应用
鸽笼原理
在组合数学中,鸽笼原理 (Pigeonhole Principle)是抽 屉原理的一种应用,它表明如果 n+1个元素被放入n个容器中, 至少有一个容器包含两个或以上
的元素。
整数划分问题
抽屉原理可以应用于整数划分问 题,例如将n个整数划分为若干 组,使得每组的最大值不超过给 定的限制,证明至少有一组包含
概率分布的性质
在研究概率分布的性质时,抽屉原理可以帮助我们证明一些重要的不等式和性 质,例如在研究随机变量的期望和方差时,可以利用抽屉原理来推导其性质。
计算机科学中的应用
数据结构和算法设计
在计算机科学中,抽屉原理可以应用于数据结构和算法设计 ,例如在设计和分析优先队列、堆等数据结构时,可以利用 抽屉原理来证明其正确性和效率。
证明方法三:数学归纳法
总结词
数学归纳法是通过归纳推理来证明结论的正确性。
详细描述
首先,我们证明当n=1时,结论成立。然后,我们假 设当n=k时结论成立,即存在k+1个物品可以放入k个 抽屉中。接着,我们考虑当n=k+1时的情况,如果第 k+1个物品与前k个物品中的任何一个都不相同,那么 它可以放入相应的抽屉中。但如果它与前k个物品中的 某个物品相同,那么根据归纳假设,这个物品只能放 入之前已经放入的抽屉中。因此,无论哪种情况,第 k+1个物品都可以放入某个抽屉中,证明了结论的正 确性。
数学广角
数学广角——抽屉原理四川省德阳市东电外国语小学颜昭伟教学内容:人教版实验教材小学六年级下册数学广角——抽屉原理教学目标:1.经历“抽屉原理”的探究过程,初步了解“抽屉原理”,会用“抽屉原理”解决简单的实际问题。
2.通过操作发展学生的类推能力,形成比较抽象的数学思维;通过猜测、验证、观察、分析等数学活动,建立数学模型,发现规律。
3.通过与多媒体的结合教学,让学生感知数学与多媒体的联系,明白借助多媒体可以使数学学习更形象、更生动、更容易理解。
4.通过“抽屉原理”的灵活应用,提高学生解决数学问题的能力和兴趣,感受到数学文化及数学的魅力。
教学重点:经历“抽屉原理”的探究过程,对抽屉原理的理解和应用。
教学难点:理解“抽屉原理”,并对一些简单实际问题加以“模型化”。
教学过程一.创设情景,引入新课。
(游戏引入)师:同学们喜欢玩扑克牌吗?今天,我们也来玩一玩怎样?请组长拿出扑克牌,先取出大、小王,还剩下52张牌。
请随意抽取5张,看看都有哪些花色。
(师边说边演示)生:学生分小组随意抽取5张牌,放在桌上。
(2人一组)师:老师不知道你们抽取了哪些花色的牌,但是,我可以肯定的说:“不管你们是怎样抽的,总有一种花色的牌至少有2张。
”老师说对了吗?师:那你们知道老师为什么能够说对吗?因为这里面隐藏了一个数学奥秘,大家想知道吗?今天就让我们一起走进数学广角,来研究这一类问题吧。
师:板书课题:数学广角二.自主探索,学习新知1.多媒体出示:场景1(1).把4枝铅笔放入3个文具盒里,可以怎样放?有哪几种不同的放法呢?(2).把5枝铅笔放入4个文具盒子里,可以怎样放?又有哪几种不同的放法呢?师:我们分组来研究好不好?(分类教学)生:选择一种情况,实际动手摆一摆。
(小组活动)操作完毕,派代表到展示台出示各种不同的摆法,边摆边描述。
(多媒体展示)图1师:摆完第一题后,让学生观察,看看能发现什么?(讨论一)生:不管哪种摆法,总有一个文具盒里至少有2枝铅笔。
数学广角《抽屉原理》教案
数学广角《抽屉原理》教案第一章:引言1.1 教学目标让学生了解抽屉原理的基本概念和实际应用。
培养学生对数学问题的探究和思考能力。
1.2 教学内容抽屉原理的定义和基本思想。
抽屉原理在实际生活中的应用举例。
1.3 教学方法通过生活中的实例引入抽屉原理的概念。
引导学生通过小组讨论和思考,理解抽屉原理的基本思想。
1.4 教学评估观察学生在小组讨论中的参与程度和理解程度。
学生能够正确解释和应用抽屉原理解决问题。
第二章:抽屉原理的基本概念2.1 教学目标让学生理解抽屉原理的基本概念和数学表达式。
培养学生对数学概念的理解和记忆能力。
2.2 教学内容抽屉原理的数学表达式和证明过程。
抽屉原理在不同情况下的应用举例。
2.3 教学方法通过数学证明和例题来加深学生对抽屉原理的理解。
引导学生通过自主学习和合作交流,掌握抽屉原理的应用。
2.4 教学评估检查学生对抽屉原理数学表达式的记忆和理解。
学生能够运用抽屉原理解决简单的数学问题。
第三章:抽屉原理的实际应用3.1 教学目标让学生了解抽屉原理在实际生活中的应用。
培养学生将数学知识应用到实际问题中的能力。
3.2 教学内容抽屉原理在排序、分配和优化问题中的应用举例。
抽屉原理在其他学科和领域中的应用。
3.3 教学方法通过实际例子和问题解决引导学生了解抽屉原理的应用。
引导学生通过小组讨论和思考,探索抽屉原理在其他领域的应用。
3.4 教学评估观察学生在小组讨论中的参与程度和应用能力。
学生能够运用抽屉原理解决实际问题。
第四章:抽屉原理的综合应用4.1 教学目标让学生综合运用抽屉原理解决复杂的数学问题。
培养学生解决实际问题的能力和创新思维。
4.2 教学内容抽屉原理在复杂问题中的应用举例。
抽屉原理与其他数学知识的综合应用。
4.3 教学方法通过复杂问题和案例引导学生综合运用抽屉原理和其他知识。
引导学生通过自主学习和合作交流,探索抽屉原理的综合应用。
4.4 教学评估观察学生在解决问题中的参与程度和创新能力。
小学数学《抽屉原理》教案
小学数学《抽屉原理》教案抽屉原理教学设计及反思一、教学设计1.教材分析《抽屉原理》是义务教育课程标准实验教科书数学六年级下册第五单元数学广角的教学内容。
这部分教材通过几个直观例子,借助实际操作,向学生介绍“抽屉原理”,使学生在理解“抽屉原理”这一数学方法的基础上,对一些简单的实际问题加以“模型化”,会用“抽屉原理”加以解决。
2.学情分析“抽屉原理”在生活中运用广泛,学生在生活中常常能遇到实例,但并不能有意识地从数学的角度来理解和运用“抽屉原理”。
教学中应有意识地让学生理解“抽屉原理”的“一般化模型”。
六年级学生的逻辑思维能力、小组合作能力和动手操作能力都有了较大的提高,加上已有的生活经验,很容易感受到用“抽屉原理”解决问题带来的乐趣。
3.教学理念激趣是新课导入的抓手,喜欢和好奇心比什么都重要,以“抢椅子”,让学生置身游戏中开始研究,为理解抽屉原理埋下伏笔。
通过小组合作,动手操作的探究性研究把抽屉原理较为抽象难懂的内容变为学生感兴趣又易于理解的内容。
特别是对教材中的结论“总有、至少”等字词作了充分的阐释,帮助学生进行较好的“建模”,使复杂问题简单化,简单问题模型化,充分体现了新课标要求。
4.讲授方针1.经历“抽屉原理”的探究过程,初步了解“抽屉原理”,会用“抽屉原理”解决简单的实际问题。
2.通过操作发展学生的类推能力,形成比较抽象的数学思维。
3.通过“抽屉原理”的灵活应用感受数学的魅力。
5.讲授重难点重点:经历“抽屉原理”的探究过程,初步了解“抽屉原理”。
难点:理解“抽屉原理”,并对一些简单实际问题加以“模型化”。
6.教学过程一、课前游戏引入。
上课前,我们先来热身一下,一起来玩抢椅子的游戏。
请3位同学上来参加游戏,第三位同学是请女生还是男生呢?老师认为,不管是请男生还是女生,都一定至少有两位同学的性别是相同的。
同意我的说法吗?游戏规则是:在老师说开始时,3位同学绕着椅子走,当老师说停的,三位同学都要坐在椅子上。
抽屉原理教案
《数学广角——抽屉原理》三家子学校李建叶【教学目标】:知识与技能:经历“抽屉原理”的探究过程,初步了解“抽屉原理”,会用“抽屉原理”解决简单的实际问题。
通过猜测、验证、观察、分析等数学活动,建立数学模型,发现规律。
渗透“建模”思想。
过程与方法:经历从具体到抽象的探究过程,提高学生有根据、有条理地进行思考和推理的能力。
情感与态度:通过“抽屉原理”的灵活应用,提高学生解决数学问题的能力和兴趣,感受到数学文化及数学的魅力。
【教学重点】:1、经历“抽屉原理”的探究过程,初步了解“抽屉原理”。
2、“总有”“至少”具体含义,以及为什么商+1而不是加余数。
【教学难点】:理解“抽屉原理”,并对一些简单实际问题加以“模型化”。
【教法和学法】:以学生为课堂的主体,采用创设情境,提出问题,让学生动手操作、自主探究、合作交流。
【教学准备】:一定数量的笔、铅笔盒、课件。
【教学过程】:一、激情导入1.三人行,至少有两人同一性别。
理解“至少”的含义。
2.师生共13人,至少有2人在同一个月过生日;52张扑克牌(去掉大小王)任意抽出5张,至少有2张是同一花色的,二、操作探究,发现规律1、把三本书放进2个抽屉,有几种方法?。
(分组操作,汇报,弄清摆放的方法)2.例1.4枝笔放进3个笔筒里,总有一个笔筒至少放进了2枝笔。
(分组操作——汇报——课件辅助——证明结论)教师点拨:“总有”的含义;枚举法,假设法。
3.初建模型①如果把5枝铅笔放入4个盒子(出示),会是什么结果呢?②增加难度:把100支铅笔放进99个盒子呢?③师:你有什么发现?(铅笔数比盒子数多1时,无论怎么放,总有一个盒子至少放2枝铅笔)。
4.完善模型①师:我们研究了铅笔数比杯子数多1的,那铅笔数比杯子数多2,多3,多4呢?会有什么情况出现呢?我们再来研究研究。
(出示例2:5本书放进2个抽屉里,不管怎么放,总有一个抽屉至少放几本书?为什么?)可以和小组的同学交流一下(小组交流)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
六年级(1)班男生有27人,至少
有(3 )名男生的生日是在同一个
月。
27÷12 = 2人……3 人
2+1 = 3(名)
有27个玩具,放在4个箱子 里,有一个箱子里至少有 ( 7 )个玩具。
27÷4 = 6个……3个
6+1 = 7(个)
计算方法
物体数÷抽屉数
至少数=商数+1
整除时 至少数=商数
从电影院中任意找来13个观众, 至少有( )人属相相同。
总有一个抽屉至少放进( 3)本书。为什么?
5÷2=2本……1本
8只鸽子飞回3个鸽舍,至少有( 3 )只
鸽子要飞进同一个鸽舍。为什么?
我们先让一个鸽舍里飞进2只鸽子,3个鸽舍最多可飞进6 只鸽子,还剩下2只鸽子,无论怎么飞,所以至少有3只 鸽子要飞进同一个笼子里。
8÷3=2只……2只 2+1=3只
1、如果把11个苹果放入3个抽屉中,总有
小组合作
规则: 把4个围棋子放入3个圆盘里, 会有哪几情况?并做好记录。 4=( )+( )+( ) 思考:不管怎么放,总有什么情况出现?
把6枝铅笔放在4个文具盒里, 会有什么结果呢?
1、如果把8个苹果放入5个抽屉中, 至少有几个放到同一个抽屉里?(2个)
2、如果把9个苹果放入5个抽屉中, 至少有几个放到同一个抽屉里呢?(2个)
一个抽屉里至少放了(4 )个苹果。
11÷3=3(个)……2(个)
3+1=4个 2、如果把19个苹果放入4个抽屉中,总有
一个抽屉里至少放了( 5 )个苹果。
19÷4=4(个)……3(个)
4+1=5个
你又发现了什么规律?
把m个物体放入n个抽屉里 (m>n),如果m是n的k倍还多,即 m÷ n=k……b, b>0那么总有一个抽 屉里至少放入(k+1)个的物体。
12属相
12个抽屉
13人
13个苹果
张叔叔参加飞镖比赛,投了5镖, 成绩是41环。张叔叔至少有一镖 不低于( )环。
从扑克牌中取出两张王牌,在剩 下的52张中任意抽出5张,至少 有( )张是叫做 “抽屉原理”。
7只鸽子飞回5个鸽舍,至少有( ) 只鸽2 子要飞进同一个鸽舍里。
如果每个鸽舍里飞进一只鸽子,最多飞进5只鸽子, 剩下的2只鸽子飞进其中的一个鸽舍里或分别飞进两 个鸽舍里,所以,至少有2只鸽子要飞进同一个鸽舍里。
例2、把5本书放进2个抽屉中,不管怎么放,
3、如果把100个苹果放入90个抽屉中, 至少有几个放到同一个抽屉里呢?
(2个)
你发现了什么规律?
只要物体数量是抽屉数 量的1倍多,总有一个抽屉 里 至少 放进2个的物体。
最先发现这些规律的人是谁呢? 他就是德国数学家“狄里克雷”, 后来人们为了纪念他从这么平凡 的事情中发现的规律,就把这个 规律用他的名字命名,叫“狄里 克雷原理”,又把它