薛定谔方程ppt
合集下载
《薛定谔方程》课件
波函数需要满足归一化条件,即 ∫Ψ*(r,t)Ψ(r,t)dV=1,以确保粒 子存在于有限空间内。
时间演化算符
时间演化算符定义
时间演化算符描述波函数的演化过程,通常表示为 U(t),其中t是时间。
时间演化算符的性质
时间演化算符是幺正算符,即U(t)U*(t)=I,其中I是 单位算符。
时间演化算符的作用
时间演化算符可以将初始时刻的波函数演化到任意时 刻的波函数。
能量算符
能量算符定义
能量算符描述微观粒子的能 量,通常表示为H。
能量算符的性质
能量算符是厄米特算符,即 H=H*。
能量算符的作用
能量算符可以将波函数投影 到能量本征态上,得到粒子 的能量。
边界条件和初始条件
边界条件
描述波函数在边界上的行为,如周期 边界、反射边界等。
原理
通过选取适当的变分函数,将薛定谔方程的 求解问题转化为求变分极值的问题。
步骤
选取合适的变分函数,将薛定谔方程转化为变分问 题,然后利用变分法的基本原理求解该问题。
应用范围
适用于具有某些特殊性质的薛定谔方程,如 具有对称性、周期性等性质的问题。
04
薛定谔方程的经典实例
一维无限深势阱
描述
一维无限深势阱是一个理想化的模型,用于描述粒子在一维空间中的 运动,其中势能只在有限区域内存在。
在生物学中,它可以用来描述生物分子的结构和性质, 如蛋白质的结构和功能等。
02
薛定谔方程的基本概念
波函数
01
波函数定义
波函数是描述微观粒子状态的函 数,通常表示为Ψ(rห้องสมุดไป่ตู้t),其中r是 位置向量,t是时间。
02
波函数的性质
量子力学:薛定谔方程省公开课一等奖全国示范课微课金奖PPT课件
则 (t,x,y,z) C Ψ(t,x,y,z) 2 Φ(t,x,y,z) 2
(t,x,y,z) Φ(t,x,y,z) 2
此式表示物质波波函数物理意义: 即:波函数(归一化)模平方(即波强度)表示物 质波概率密度。
第9页
例:将波函数 归一化
f x exp 2 x 2 2
设归一化因子为C,则归一化波函数为
两缝同时打开
依次打开一个缝
第3页
a.双缝同时打开
(1)入射强电子流 (2)入射弱电子流
概率波干涉结果
电子确是粒子,但电子 去向是完全不确定,一 个电子抵达何处完全是 概率事件
这种概率在一定条件下 (经双缝)有确定规律
在波强强度较强地方,单 个事件发生概率大;在波 强强度较弱地方单个事件 发生概率小
2
f
(
t
)
2
(
r
)
Uf
(
t
)
(
r
)
t
两边同除
(
r
)
f
2m (t )
i
1 f(t
)
f(t t
)
2 2m
2
(
r
)
U
(
r) Βιβλιοθήκη 1 (r)=E
得
2
2
(
r
)
U
(
r
)
E ( r )
2m
(1)
i f(t) E f(t) t (第217)页
由(2)式可得:
f
(
t
)
e
i
Et
由(1)式可得:
2 2 ( E U )
利用归一化条件,可得归一化波函数为:
(t,x,y,z) Φ(t,x,y,z) 2
此式表示物质波波函数物理意义: 即:波函数(归一化)模平方(即波强度)表示物 质波概率密度。
第9页
例:将波函数 归一化
f x exp 2 x 2 2
设归一化因子为C,则归一化波函数为
两缝同时打开
依次打开一个缝
第3页
a.双缝同时打开
(1)入射强电子流 (2)入射弱电子流
概率波干涉结果
电子确是粒子,但电子 去向是完全不确定,一 个电子抵达何处完全是 概率事件
这种概率在一定条件下 (经双缝)有确定规律
在波强强度较强地方,单 个事件发生概率大;在波 强强度较弱地方单个事件 发生概率小
2
f
(
t
)
2
(
r
)
Uf
(
t
)
(
r
)
t
两边同除
(
r
)
f
2m (t )
i
1 f(t
)
f(t t
)
2 2m
2
(
r
)
U
(
r) Βιβλιοθήκη 1 (r)=E
得
2
2
(
r
)
U
(
r
)
E ( r )
2m
(1)
i f(t) E f(t) t (第217)页
由(2)式可得:
f
(
t
)
e
i
Et
由(1)式可得:
2 2 ( E U )
利用归一化条件,可得归一化波函数为:
第一节氢原子的薛定谔方程(共26张PPT)
为了求解波动方程的方便,可先将氢原子(或类氢离子)波动方程 整理为:
ħ2 2m
1 r2
[ ∂∂r
(r2
∂ ∂r
)ψ] +
+
si1nθ[
∂ ∂θ
(sinθ∂∂θ )ψ] +
1 ∂2 + [ sin2θ∂φ2 ψ]
+(
Ze2 r
+
E)ψ=
0
根据变量分离原理,令:
ψ(r,θ,φ) = R(r) Y(θ,φ)= R(r) Θ(θ〕Φ(φ)
z
在研究氢原子或类氢离子中电子的运动时,可
把原子核近似地看成相对固定不动,把原子核选作
坐标系的原点。
+
-e y
2.动能
T(e) >> T(p)
电子的 动能
原子核的 动能
x
电子对核的相对运动
经典物理学的动能
Ek =
1 2
mv2
电子的运动“速度”>>核的运 动“速度”。
3.势能 若把氢原子中的核近似地看成相对固定不动,并把原子核选作坐标系的
1 sinθ
[
∂ ∂θ
(sinθ
∂∂θ)Y
]
+
[
1 sin2θ
∂2 ∂φ2
Y
]
由于 r、θ、φ三个均为独立变量,要使方程成立,方程两端必须等于 某一常量。
设此常量为β,则有:
1 R
[
d dr
(r2
d dr
)
R]
2mr2 Ze2 + ħ2( r +
E)=
β
1 Y
si1nθ[
∂∂θ(sinθ
ħ2 2m
1 r2
[ ∂∂r
(r2
∂ ∂r
)ψ] +
+
si1nθ[
∂ ∂θ
(sinθ∂∂θ )ψ] +
1 ∂2 + [ sin2θ∂φ2 ψ]
+(
Ze2 r
+
E)ψ=
0
根据变量分离原理,令:
ψ(r,θ,φ) = R(r) Y(θ,φ)= R(r) Θ(θ〕Φ(φ)
z
在研究氢原子或类氢离子中电子的运动时,可
把原子核近似地看成相对固定不动,把原子核选作
坐标系的原点。
+
-e y
2.动能
T(e) >> T(p)
电子的 动能
原子核的 动能
x
电子对核的相对运动
经典物理学的动能
Ek =
1 2
mv2
电子的运动“速度”>>核的运 动“速度”。
3.势能 若把氢原子中的核近似地看成相对固定不动,并把原子核选作坐标系的
1 sinθ
[
∂ ∂θ
(sinθ
∂∂θ)Y
]
+
[
1 sin2θ
∂2 ∂φ2
Y
]
由于 r、θ、φ三个均为独立变量,要使方程成立,方程两端必须等于 某一常量。
设此常量为β,则有:
1 R
[
d dr
(r2
d dr
)
R]
2mr2 Ze2 + ħ2( r +
E)=
β
1 Y
si1nθ[
∂∂θ(sinθ
量子力学--定态薛定谔方程 ppt课件
此波函数与时间t的关系是正弦型的,其角频率ω=2πE/h。 由de Broglie关系可知: E 就是体系处于波函数Ψ(r,t)所描写 的状态时的能量。也就是说,此时体系能量有确定的值,所以这 种状态称为定态,波函数Ψ(r,t)称为定态波函数。
空间波函数ψ(r)由方程
2 2 [ V ] (r ) E (r ) 2
* n
推论
x 常量 p 0
4. 能量本征函数是完备的正交归一系 可以证明(以后证明)
* m (r) n (r)dr mn
正交归一性
薛定鄂方程的通解可以用定态波函数的叠加表示为
( x, t ) cn n ( x, t ) cneiE t / n ( x)
PPT课件 4
(三)求解定态问题的步骤
讨论定态问题就是要求出体系可能有的定态波函数 Ψ(r,t)和在这些态中的能量 E。其具体步骤如下:
2 2 [ V ] ( r ) E ( r ) 2
(1)列出定态 Schrodinger方程 (2)根据波函数三个标准 条件求解能量 E 的 本征值问题,得: (3)写出定态波函数即得 到对应第 n 个本征值 En 的定态波函数
令:
( r , t ) ( r ) f ( t )
两边同除 (r ) f (t )
等式两边是相互无 关的物理量,故应 等于与 t, r 无关 的常数
d 2 2 i ( r ) f ( t ) f ( t )[ V ] ( r ) dt 2 2 1 d 1 2 i f (t ) V ] ( r ) E [ f ( t ) dt ( r ) 2
III 0
从物理考虑,粒子不能透过无穷高的势壁。 根据波函数的统计解释,要求在阱壁上和阱壁 外波函数为零,特别是 ψ(-a) = ψ(a) = 0。
量子物理第二章-薛定谔方程ppt课件.ppt
P2 Ψ 2
2 2Ψ
2m
x 2
i Ψ t
E
Ek
P2 2m
一维自由粒子的 含时薛定谔方程
2、一维势场 U (x,t) 中运动粒子薛定谔方程
E
Ek
U
(x,t)
P2 2m
U
(x,t)
Ψ t
i
EΨ
2Ψ x 2
P2 2
Ψ
Ψ t
i
[
P2 2m
U
(x,
t)]Ψ
2
2m
2Ψ x2
P2 Ψ 2m
2 2m
0
波函数本身无直观物理意义,只有模的平方反映粒子出 现的概率,在这一点上不同于机械波,电磁波!
2、玻恩(M..Born)的波函数统计解释:
概率密度: w Ψ (r,t) 2 ΨΨ*
单位体积内粒子出现的概率! 3、波函数满足的条件
1、单值: 在一个地方出现只有一种可能性; 2、连续:概率不会在某处发生突变; 3、有限 4、粒子在整个空间出现的总概率等于 1
(x) Asin(kx ) ( a x a)
(2)确定常数 A、
2
2
由波函数连续性, 边界条件 (-a/2) = 0 (a/2) = 0
Asin( ka 2 ) 0 ka 2 l1
Asin( ka 2 ) 0
2 (l1 l2) l
ka 2 l2 l
2
1)当 l 0 时 o Asin kx ——奇函数。 2)当 l 1 时 e Acos kx ——偶函数。
3. 薛定谔方程是对时间的一阶偏微分方程, 因此波动形式 解要求在方程中必须有虚数因子 i,波函数是复函数。
4. 只有动量确定的自由粒子才能用平面波的描写。
薛定谔方程-最全资料PPT
个波动学的基础,不是推导出来的,它与牛顿方程在 经典里写中的地位相仿。
2. 在利用算符对应规则时,这些算符不具有坐标 变换的不变性,例如,对极坐标
x22y22z22r22 22 22
3. 关于薛定谔方程的边界条件
① 若势能V(r)处处连续,则波函数及其一阶导数 也处处连续。
② 若势能V(r)具有某一不连续间断点或间断面, 则波函数及其一阶导数在该点或面处也处处连续。
3、薛定谔方程是线性方程。是微观粒子的基本 方程,相当于牛顿方程。
4、自由粒子波函数必须是复数形式,否则不满 足自由粒子薛定谔方程。
5、薛定谔方程是非相对论的方程。
1、薛定谔方程也称波动方程,描述在势场U中粒子状态随时间的变化规律。 3、薛定谔方程是线性方程。 1、薛定谔方程也称波动方程,描述在势场U中粒子状态随时间的变化规律。 ① 若势能V(r)处处连续,则波函数及其一阶导数也处处连续。
三、关于薛定谔方程的说明 1. 薛定谔方程是量子力学的基本假定之一,是整
③ 若势能V(r)具有一阶奇点,则波函数必须连 续,其一阶导数可以不连续。
讨论:
1、薛定谔方程也称波动方程,描述在势场U中粒 子状态随时间的变化规律。
2 、建立方程而不是推导方程,正确性由实验验 证。薛定谔方程实质上是一种基本假设,不能 从其他更基本原理或方程推导出来,它的正确 性由它解出的结果是否符合实验来检验。
§2.3 薛定谔方程
1、薛定谔方程也称波动方程,描述在势场U中粒子状态随时间的变化规律。 3、薛定谔方程是线性方程。 薛定谔方程是量子力学的基本假定之一,是整个波动学的基础,不是推导出来的,它与牛顿方程在经典里写中的地位相仿。 薛定谔方程实质上是一种基本假设,不能从其他更基本原理或方程推导出来,它的正确性由它解出的结果是否符合实验来检验。 1、薛定谔方程也称波动方程,描述在势场U中粒子状态随时间的变化规律。 3、薛定谔方程是线性方程。 是微观粒子的基本方程,相当于牛顿方程。
2. 在利用算符对应规则时,这些算符不具有坐标 变换的不变性,例如,对极坐标
x22y22z22r22 22 22
3. 关于薛定谔方程的边界条件
① 若势能V(r)处处连续,则波函数及其一阶导数 也处处连续。
② 若势能V(r)具有某一不连续间断点或间断面, 则波函数及其一阶导数在该点或面处也处处连续。
3、薛定谔方程是线性方程。是微观粒子的基本 方程,相当于牛顿方程。
4、自由粒子波函数必须是复数形式,否则不满 足自由粒子薛定谔方程。
5、薛定谔方程是非相对论的方程。
1、薛定谔方程也称波动方程,描述在势场U中粒子状态随时间的变化规律。 3、薛定谔方程是线性方程。 1、薛定谔方程也称波动方程,描述在势场U中粒子状态随时间的变化规律。 ① 若势能V(r)处处连续,则波函数及其一阶导数也处处连续。
三、关于薛定谔方程的说明 1. 薛定谔方程是量子力学的基本假定之一,是整
③ 若势能V(r)具有一阶奇点,则波函数必须连 续,其一阶导数可以不连续。
讨论:
1、薛定谔方程也称波动方程,描述在势场U中粒 子状态随时间的变化规律。
2 、建立方程而不是推导方程,正确性由实验验 证。薛定谔方程实质上是一种基本假设,不能 从其他更基本原理或方程推导出来,它的正确 性由它解出的结果是否符合实验来检验。
§2.3 薛定谔方程
1、薛定谔方程也称波动方程,描述在势场U中粒子状态随时间的变化规律。 3、薛定谔方程是线性方程。 薛定谔方程是量子力学的基本假定之一,是整个波动学的基础,不是推导出来的,它与牛顿方程在经典里写中的地位相仿。 薛定谔方程实质上是一种基本假设,不能从其他更基本原理或方程推导出来,它的正确性由它解出的结果是否符合实验来检验。 1、薛定谔方程也称波动方程,描述在势场U中粒子状态随时间的变化规律。 3、薛定谔方程是线性方程。 是微观粒子的基本方程,相当于牛顿方程。
第二十七章薛定谔方程ppt课件
粒子在x距离内的动量不确定度为
p 2x
2m(U0 E)
粒子进入该区域的速度为
xpx 2
v v p 2(U0 E)
m
m
则粒子进入的时间不确定度为
x
m
t
v 2 2m(U0 E) 2(U0 E) 4(U0 E)
根据能量-时间的不确定关系,粒子能量的不确定度为
E 2t 2(U0 E)
En
pn2 2m
,
k
n
a
x0 a 2
16E1
9E1 4E1 E1
ax
粒子的德布罗意波长
k n
n
h pn
2a n
2
k
a
, n 1, 2,...
波长也是量子化的,为势阱宽度2倍的整数分之一
n与两端固定弦的驻波波 长形式相同(见P158式n=2L/n)
n
n (x) 2
En
L
4 a 2
1 2L 1 2
2.无限深方势阱中粒子的波函数
一维定态薛定谔方程
2
2m
2
x2
U x
E
势阱外:x<0,x>a区域(边界条件),U=∞,不会有粒子
存在,则
0 , x 0, x a
势阱内:0≤x≤a区域,U=0,则有方程
2
x2
2mE
2
0
令
k2
2mE
2
k
2mE
2
x2
k 2
0
2
x2
k 2
0
与简谐运动方程
d2x dt 2
用波函数来描述微观粒子的运动
经典波的波函数:
机械波 y(x,t) Acos 2π( t x )
p 2x
2m(U0 E)
粒子进入该区域的速度为
xpx 2
v v p 2(U0 E)
m
m
则粒子进入的时间不确定度为
x
m
t
v 2 2m(U0 E) 2(U0 E) 4(U0 E)
根据能量-时间的不确定关系,粒子能量的不确定度为
E 2t 2(U0 E)
En
pn2 2m
,
k
n
a
x0 a 2
16E1
9E1 4E1 E1
ax
粒子的德布罗意波长
k n
n
h pn
2a n
2
k
a
, n 1, 2,...
波长也是量子化的,为势阱宽度2倍的整数分之一
n与两端固定弦的驻波波 长形式相同(见P158式n=2L/n)
n
n (x) 2
En
L
4 a 2
1 2L 1 2
2.无限深方势阱中粒子的波函数
一维定态薛定谔方程
2
2m
2
x2
U x
E
势阱外:x<0,x>a区域(边界条件),U=∞,不会有粒子
存在,则
0 , x 0, x a
势阱内:0≤x≤a区域,U=0,则有方程
2
x2
2mE
2
0
令
k2
2mE
2
k
2mE
2
x2
k 2
0
2
x2
k 2
0
与简谐运动方程
d2x dt 2
用波函数来描述微观粒子的运动
经典波的波函数:
机械波 y(x,t) Acos 2π( t x )
单电子原子体系的薛定谔方程及解 33页PPT文档
土、水、气、火
第二章 原子的结构和性质-原子的量子力学处理
( 三 ) 道 尔 顿 ( D a lto n ) 的 原 子 论
1 8 0 3 年 1 0 月 2 1 日 , 道 尔 顿 报 告 了 他 的 化 学 原 子 论 。 1 8 0 8 年 , 道 尔 顿 出 版 了 《 化 学 哲 学 的 新 体 系 》 认 为 构 成 物 质 的 最 小 颗 粒
结 论 原 子 间 的 排 列 并 不 紧 密
( 2 ) 少 量 粒 子 在 穿 过 金 属 薄 时 , 方 向 发 生 了 改 变 , 个 别 粒 子 被 弹 回 来 结论
原子里面一定有带正电的坚硬的核,粒子打正了,就 被弹回来,打偏了就改变方向,没有打着,就穿过去
第二章 原子的结构和性质-原子的量子力学处理
( 1 ) 偏 转 幅 度 小 、 带 正 电 的 射 线 , 称 为 射 线
( 2 ) 偏 转 幅 度 大 、 带 负 电 的 射 线 , 称 为 射 线
( 3 ) 不 偏 转 的 射 线 , 称 为 射 线
粒 子 的 散 射 实 验 发 现
( 1 ) 大 部 分 射 线 可 以 穿 透 薄 的 金 属 薄 , 如 入 无 人 之 境 (Erne卢st瑟Ru福th, e英rf国or物d, 理18学71家—1937)
动 , 既 不 放 出 能 量 也 不 吸 收 能 量 , 即 电 子 作 圆
周 运 动 的 角 动 量 M 必 须 等 于 h 2 的 整 数 倍 , 此
为量子化条件
M nh 2
n1,2,3,...
H.D.玻尔(N.H.D.Bohr) 1885~1962, 丹麦人
(2)频率规则
当 电 子 由 一 个 定 态 跃 迁 到 另 一 个 定 态 时 , 就 会 吸 收 或 发 射 频 率 为 v E h 的 光 子 , 这 E h v 称 为 两 个 定 态 之 间 的 能 量 差 。
薛定谔方程课件.ppt
(常数)
可得只含变量 t 和只含变量 x 的两个方程:
一个是变量为t 的方程 i d f E d t
f 可以把它先解出来:
其解为
f
A
e
i
Et
……(★)
(A 是待定复常数; E 有能量量纲,以后可知是
粒子的能量:动能 + 势能,不包括静能)
一个是变量为x 的方程
2 2m
d2
d x2
U
E
……(★)
若在样品与针尖之间加一微小电压Ub ,电子就会穿 过电极间的势垒形成隧道电流。
隧道电流对针尖与样品间的距离十分敏感。若控制隧 道电流不变,则探针在垂直于样品方向上的高度变化 就能反映样品表面的起伏;若控制针尖高度不变,通 过隧道电流的变化可得到表面态密度的分布。
0 10
30
50
70
90
硅晶体表面的STM扫描图象
能量连续, 量子 经典。
En
n2
22 2ma 2
,
3.最低能量不为零(称零点能)
22
———符合不确定关系。
E1 2ma 2 0
4.势阱内各处粒子出现的概率呈周期性分布 与经典粒子不同。
但是,当 n 很大时,势阱内各处粒子出现的
概率可以说是几乎相同的(忽略有限个节 点) 。
n 2
En
在大量子数的极限情况下,量子体系行为将 趋于与经典行为一致,这称为“对应原理”。
其解 (x) 与粒子所处的条件(外力场U)有关。
由上面可以看出:
(x,t) 2
(
x
)
e
i
t
2
(x) 2
即定态时,概率密度可以用 (x)2来表示, (x)称为定态波函数, 上面(★)式是 (x)满足的方程,
量子物理第3讲——薛定谔方程 定态薛定谔方程 一维无限深势阱 一维有限高势垒
E t / 2
3
六、薛定谔方程
1、薛定谔方程
自由粒子 的波函数
(r,
t)
i
0e
( EtPr )
,
可以看出:
E (r,t) i (r,t),
t
P
x
(r,
t
)
i
x
(r,
t
),
ቤተ መጻሕፍቲ ባይዱ
P
y
(r,
t
)
i
y
(r,
t
),
2 2m
2
V
(r)
(r,
t)
i
t
(r,
t)
分离变量法:设 (r,t) (r) f (t)
i
则:
f (t)
df (t) dt
1 (r)
2 2m
2
V
(r)
(r)
7
i f (t)
df (t) dt
1 (r )
电子,当 E 1eV , V 0 2eV ,
o
a 2 A时 , T 0.51;
o
a 5A时 , T 0.006
制作扫描隧穿显微镜 ( STM )
15
STM下硅表面结构重现 16
利用STM搬迁原子为电子造的“量子围栏” 17
例:质量为 m的粒子处于一维
对称势场
V (x)
0 , 0 x L;
V
(
x)
V0
,
x 0, x
3
六、薛定谔方程
1、薛定谔方程
自由粒子 的波函数
(r,
t)
i
0e
( EtPr )
,
可以看出:
E (r,t) i (r,t),
t
P
x
(r,
t
)
i
x
(r,
t
),
ቤተ መጻሕፍቲ ባይዱ
P
y
(r,
t
)
i
y
(r,
t
),
2 2m
2
V
(r)
(r,
t)
i
t
(r,
t)
分离变量法:设 (r,t) (r) f (t)
i
则:
f (t)
df (t) dt
1 (r)
2 2m
2
V
(r)
(r)
7
i f (t)
df (t) dt
1 (r )
电子,当 E 1eV , V 0 2eV ,
o
a 2 A时 , T 0.51;
o
a 5A时 , T 0.006
制作扫描隧穿显微镜 ( STM )
15
STM下硅表面结构重现 16
利用STM搬迁原子为电子造的“量子围栏” 17
例:质量为 m的粒子处于一维
对称势场
V (x)
0 , 0 x L;
V
(
x)
V0
,
x 0, x
量子力学课件-薛定谔方程
(3)由上面讨论可知,当体系处于能量本征态时,粒子能量是确定的,就是 能量本征值。
(三)求解定态问题的步骤
• 讨论定态问题就是要求出体系可能有的定态波函数 Ψ( r, t) 和在这些态中的能量 E。其具体步骤如下:
(1)列出定态 Schrodinger方程 (2)根据波函数三个标准 条件求解能量 E 的 本征值问题,得:
若V(r)是库伦场势,则方程的解代表库伦场中粒子的态。
若V(r)是谐振子势场,则方程的解代表谐振子势场中粒子的态。
……
态叠加原理: 一般情况下,如果Ψ1和Ψ2 是体系的可能状态,那 末它们的线性叠加 Ψ= C1Ψ1 + C2Ψ2 也是该体系的一个可能状态. 其中C1 和 C2 是复常数,这就是量子力学的态叠加原 理。
•
(2)几率流密度与时间无关
i J n (r , t ) [nn n n ] 2
i [ n e xp( iE n t / ) n e xp( iE n t / ) 2 n e xp( iE n t / ) n e xp( iE n t / )]
ψ(r)也可称为定态波函数,或可看作是t=0时刻 ψ(r,0)的定态波函数。
能量本征值方程
[ h 2 V ] E 2
ˆ E 表达成 H
(1)上述方程的形式特点是: 一个算符作用于一个函数上等于一个常数乘以该函数, 这种形式的等式在《数学物理方法》中,叫本征值方程, 本征值方程中的那个待求函数叫本征函数, 方程右边的那个与本征函数相乘的常数叫本征值。
i [ n ( r ) n ( r ) n ( r ) n ( r )] 2
作
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1
2
2
x
2
24
5. 概率密度
波函数
0 n=0
x
1
n=1
x
2
n=2
概率密度
0 2
n=0
1 2
x
n=1
x
2 2
n=2
x
x
25
线性谐振子 n =11 时的概率密度分布:
11 2
虚线是经 典结果 n 11
x
经典谐振子在原点速度最大,停留时间短, 粒子出现的概率小;振子在两端速度为零, 出现的概率最大。
1
U0
2
a
2(a)
Ce
2m(U0 E )
3
隧道效应
E
Ⅰ区 0Ⅱ区a Ⅲ区
x
2( x)
x= a
1
Ce 2(a)
2m(U0 E ) x
a
Ce
2m(U0 E )
波穿过后, 将以平面波的形式继续前进(3 ),
振幅为2(a)
。
这称为势垒穿透或隧道效应。 6
13
显示器
压电 控制
加电压
反馈传 感器 参考信号
隧道 电流
扫描隧道显微镜示意图 14
中国科学院化学研究所研制的CSTM-9000型 STM
15
用STM得到的神经细胞象
硅表面STM扫描图象
16
用原子操纵写出的“100”和“中国” 17
1991年恩格勒等用STM在镍单晶表面逐个移动 氙原子,拼成了字母IBM,每个字母长5纳米
i Ue A d
A — 常量
— 样品表面平均势
垒高度(。~ eV) d ~ 1nm( 10A )
d 变 i 变,反映表面情况。 12
d 变 ~ 0.1nm i 变几十倍,非常灵敏。 竖直分辨本领可达约10 2 nm; 横向分辨本领与探针、样品材料及绝缘物有关, 在真空中可达 0. 2 nm。 技术关键: 1. 消震:多级弹簧,底部铜盘涡流阻尼。 2. 探针尖加工:电化学腐蚀,强电场去污, 针尖只有1~2个原子! 3. 驱动和到位:利用压电效应的逆效应 — 电致伸缩, 一步步扫描,扫描一步0.04nm,扫描1(m)2 约0.7s。 4. 反馈:保持 i 不变 d 不变(不撞坏针尖)。
26
概率密度的特点:
U(x)
En
n很大 n 2
E2 E1 E0
0
2 2 1 2
0 2
x
(1) 概率在E < U 区仍有分布 —— 隧道效应
27
(2) n小时,概率分布与经典谐振子完全不同
例如基态位置概率分布在 x = 0 处最大,
W0( x) 0( x) 2
e 2 x2
1. 穿透系数
穿透系数
2a
Te
2m(U0 E )
a T
(U0 E) T
当 U0 E 5eV,势垒宽度 a 约50nm 以上时, 穿透系数会小6个数量级以上。此时隧道效应在
实际上已没有意义了,量子概念过渡到了经典。
7
2. 怎样理解粒子通过势垒区?
经典物理:从能量守恒的角度看是不可能的。
1986.
Nob:
毕宁(G.Binning) 罗尔(Rohrer)
发明STM
鲁斯卡(E.Ruska) 1932发明电 子显微镜
STM是一项技术上的重大发明, 用于观察 表面的微观结构(不接触、不破坏样品)。
原理:利用量子力学的隧道效应
11
电子云重叠
U0
U0
U0
E
样品
隧道电流 i A
探针
U
d
B
Ad B
18
1991年2月IBM的“原子书法” 小组又创造出“分子绘画”艺 术 图—中“C每O个小白人团”是单个CO分 子竖在铂片表面上的图象, 上端为氧原子 CO分子的间距:0.5 nm “分子人”身高:5 nm 堪称世界上最小的“小人图”
移动分子实验的成功,表明人们朝着用单一原子和小分子构 成新分子的目标又前进 了一步,其内在意义目前尚无法估量。
,k1
0,
有
d21
d x2
k12 1
0
II
区(x > 0):
d2 2
d x2
2m2(E
2 d2 2m d x2 U0
U0) 2 0
2 E2
令 ik2
2m(E U0 ) 2
,k2
0,有
d2 2
d x2
(ik2 )2 2
3
0
3. 通解 1( x) Ae ik1x Be ik1x
( )1/ 2
2n πn!
1 2x2
Hn (x)e 2 ,
m
Hn是厄密(Hermite)多项式,最高阶是 (x)n,
0( x)
(
)1
/
2
e
1
2
2
x2
π
1( 2(
x) x)
( (
2π
8π
)1/ )1/
2
2(x)e
1
2
2
x2
2[2
4(x
)2
]e
8
经典
隧道
效应
量子
9
三. 隧道效应的应用
隧道二极管,金属场致发射,核的 衰变,…
1. 核的 衰变
238U 234Th +4He
U
35MeV
库仑势能
E 4.25MeV 是通过 隧道效应出来的。
对不同的核,算出的 0 衰变概率和实验一致。
4.25MeV
R
r
核力势能
10
2. 扫描隧道显微镜(STM) (Scanning Tunneling Microscopy)
2 ( x) Ce k2x De k2x
入射+反射
1
透射 2
U0
E
Ⅰ区 0 Ⅱ区
x
当 x 时,2(x) 应有限,得 D = 0,于是有
1 ( x) Aeik1x Beik1x
入射波 反射波
(波动型解)
2
(
x)
Ce
k2 x
1
Ce
2m(U0 E )x (指数型解)
透射
4
4. 概率密度(II 区)
(
x)
2
e
2x
2m(U0 E )
可见在(E < U0)的区域粒子出现的概率 0 U0、x 透入的概率
经典:粒子不能进入E < U的区域(动能 0)。
量子:粒子可透入势垒。 例如,电子可逸出金属表面,在金属表面
形成一层电子气。
5
二. 有限宽势垒和隧道效应
势垒的物理模型:
入射 反射
U0
透射 ?
E
Ⅰ区 0 Ⅱ区 x
金属或半导体接触处势能隆起,形成势垒。 2
2. 定态薛定谔方程 I 区(x 0):
U(x)
U0
1
E
2
Ⅰ区 0 Ⅱ区 x
2 2m
d21(x)
d x2
E 1( x)
d21
d x2
2mE 2
1
0
令 k1
2mE 2
19
镶嵌了48个Fe原子的Cu表面的STM照片 48个Fe原子形成“量子围栏”,围栏中的电子形成驻波。 Fe原子间距:0.95 nm,圆圈平均半径:7.13 nm 20
§2.4 一维谐振子
谐振子不仅是经典物理的重要模型,
而且也是量子物理的重要模型。
如:黑体辐射、分子振动,晶格点阵振动。
1.势能 若选线性谐振子平衡位置为坐标原点和势能
量子物理:粒子有波动性,遵从不确定关系,
粒子穿过势垒区和能量守恒并不矛盾。
只要势垒区宽度 x = a 不是无限大,
粒子能量就有不确定量E 。
p2
2pΔ p pΔ p
E ΔE
2m
2m
m
x = a 很小时,P 很大,使 E也很大 ,以至
可以有: E U0 E E +E > U0
0 2 n0
经典振子在x = 0处概率最小。
x
(3) 当n 时, 量子概率分布
n 2 U(x)
n很大
经典概率分布, 符合玻尔对应原理。
n=3
n=2 n=1
0
x28所以室温下来自子可视为刚性。(2)有零点能:E0
1 2
h
,符合不确定关系
(3)有选择定则:能级跃迁要满足 n 1
(4) 当n 时,Δ E 0 ,能量量子化能量连续 En
(宏观振子能量相应n 1025 ,E 10-33J )
符合玻尔对应原理。 23
4. 谐振子的波函数
n( x)
2m 2
[E
1 m 2 x 2 ]
2
0
3. 谐振子的能量 解定态薛定谔方程得
En
(n
1 )
2
(n
1 )h
2
,n
=
0,
1,
2,
…
E0
1 2
h
,
E1
3 2
h
,E2