部编版人教初中数学九年级上册《第21章(一元二次方程)测试卷(含答案解析)》最新精品优秀测试题
人教版九年级上《第21章一元二次方程》单元测试题含答案解析
秋人教版九年级上册数学 第21章 一元二次方程 单元测试题一.选择题(共10小题)1.方程2(1)230m x mx -+-=是关于x 的一元二次方程, 则( )A .1m ≠±B .1m =C .1m ≠-D .1m ≠2.一元二次方程23610x x -+=的二次项系数、一次项系数分别是( )A .3,6-B .3,1C .6-,1D .3,63.下列方程中有一个根为1-的方程是( )A .220x x +=B .23250x x +-=C .2540x x -+=D .22350x x --=4.关于x 的方程2(2)1x m -=-无实数根, 那么m 满足的条件是( )A .2m >B .2m <C .1m >D .1m <5.一元二次方程2430y y --=配方后可化为( )A .2(2)7y -=B .2(2)7y +=C .2(2)3y -=D .2(2)3y +=6.一元二次方程210x x +-=的根是( )A .15x =-B .15x -+=C .15x =-+D .15x -±= 7.一元二次方程(1)(2)2x x ++=的解是( )A .10x =,23x =-B .11x =-,22x =-C .11x =,22x =D .10x =,23x =8.一元二次方程25204x x +-=的根的情况是( ) A . 有两个不相等的实数根B . 有两个相等的实数根C . 没有实数根D . 无法判断 9.方程2240x x --=和方程2420x x -+=中所有的实数根之和是( )A . 2B . 4C . 6D . 810.某超市一月份的营业额为 40 万元, 一月、 二月、 三月的营业额共 200 万元, 如果平均每月增长率为x ,则由题意列方程为( )A .240(1)200x +=B .40402200x +⨯⨯=C .40403200x +⨯⨯=D .240[1(1)(1)]200x x ++++=二.填空题(共8小题) 11.若31210m x x ---=是关于x 的一元二次方程, 则m 的值为 . 12.已知m 是关于x 的方程2450x x +-=的一个根, 则228m m +=13.一元二次方程20x mx n --=的两实根是12x =,23x =,则m = ,n = .14.一个三角形的两边长分别为 3 和 5 ,第三边长是方程2680x x -+=的根, 则三角形的周长为 .15.已知关于x 的一元二次方程210mx x ++=有实数根, 则m 的取值范围是 .16.若关于x 的一元二次方程22(2)340m x x m -++-=有一个根为 0 ,则另一个根为 .17.如图所示, 点阵M 的层数用n 表示, 点数总和用S 表示, 当66S =时, 则n = .18.如图, 在长为10m ,宽为8m 的矩形场地上修建两条宽度相等且互相垂直的道路, 剩余部分进行绿化, 要使绿化面积为248m ,则道路的宽应为 m .三.解答题(共8小题)19.解下列方程(1)2640x x ++=(2)2230x x --=(3)3(2)105x x x -=-20.已知关于x 的一元二次方程22(21)0x k x k --+=有两个不相等的实数根, 求k 的取值范围 .21.小强看见九年级的哥哥在做这样一道题“解方程:2(3)(2)(2)5x x x +=+--”,他看了看后,发现可以用《整式的乘法》知识来去括号,然后转化为一元一次方程来解答.试按照小强的思路完成此题的解答.22.已知方程2(2)(3)10m m x m x -+-+=.(1)当m 为何值时,它是一元二次方程?(2)当m 为何值时,它是一元一次方程?23.小刚在做作业时, 不小心将方程2350x bx --=的一次项系数用墨水覆盖住了, 但从题目的答案中, 他知道方程的一个解为5x =,请你帮助小刚求出被覆盖住的数 .24.已知关于x 的一元二次方程2(2)10x k x k -++-=.(1) 若方程的一个根为1-,求k 的值和方程的另一个根;(2) 求证: 不论k 取何值, 该方程都有两个不相等的实数根 .25.某天猫店销售某种规格学生软式排球, 成本为每个 30 元 . 以往销售大数据分析表明: 当每只售价为 40 元时, 平均每月售出 600 个;若售价每上涨 1 元, 其月销售量就减少 20 个, 若售价每下降 1 元, 其月销售量就增加 200 个 .(1) 若售价上涨m 元, 每月能售出 个排球 (用m 的代数式表示) .(2) 为迎接“双十一”, 该天猫店在 10 月底备货 1300 个该规格的排球, 并决定整个 11 月份进行降价促销, 问售价定为多少元时, 能使 11 月份这种规格排球获利恰好为 8400 元 .26.列一元二次方程解应用题某公司今年 1 月份的纯利润是 20 万元, 由于改进技术, 生产成本逐月下降, 3 月份的纯利润是 22.05 万元 . 假设该公司 2 、 3 、 4 月每个月增长的利润率相同 .(1) 求每个月增长的利润率;(2) 请你预测 4 月份该公司的纯利润是多少?秋人教版九年级上册数学 第21章 一元二次方程 单元测试题参考答案与试题解析一.选择题(共10小题)1.方程2(1)230m x mx -+-=是关于x 的一元二次方程, 则( )A .1m ≠±B .1m =C .1m ≠-D .1m ≠【分析】根据一元二次方程的定义, 得到关于m 的不等式, 解之即可 .【解答】解: 根据题意得:10m -≠,解得:1m ≠,故选:D .【点评】本题考查了一元二次方程的定义, 正确掌握一元二次方程的定义是解题的关键 .2.一元二次方程23610x x -+=的二次项系数、一次项系数分别是( )A .3,6-B .3,1C .6-,1D .3,6【分析】找出所求的二次项系数、一次项系数即可.【解答】解:一元二次方程23610x x -+=的二次项系数,一次项系数分别是3,6-. 故选:A .【点评】考查了一元二次方程的一般形式:20(ax bx c a ++=,b ,c 是常数且0)a ≠特别要注意0a ≠的条件.这是在做题过程中容易忽视的知识点.在一般形式中2ax 叫二次项,bx 叫一次项,c 是常数项.其中a ,b ,c 分别叫二次项系数,一次项系数,常数项.3.下列方程中有一个根为1-的方程是( )A .220x x +=B .23250x x +-=C .2540x x -+=D .22350x x --=【分析】利用一元二次方程解的定义对各选项分别进行判断 .【解答】解: 当1x =-时,22212x x +=-=,所以1x =-不是方程220x x +=的解; 当1x =-时,23253256x x +-=--=-,所以1x =-不是方程23250x x +-=的解; 当1x =-时,25415410x x -+=++=,所以1x =-不是方程2540x x -+=的解; 当1x =-时,22352350x x --=+-=,所以1x =-是方程22350x x --=的解 . 故选:D .【点评】本题考查了一元二次方程的解: 能使一元二次方程左右两边相等的未知数的值是一元二次方程的解 .4.关于x 的方程2(2)1x m -=-无实数根, 那么m 满足的条件是( )A .2m >B .2m <C .1m >D .1m <【分析】方程左边是一个式的平方, 根据平方的非负性, 得关于m 的不等式, 求解不等式即可 .【解答】解: 当10m -<时, 方程无解 .即1m >.故选:C .【点评】本题考查了一元二次方程的直接开平方法, 运用直接开平方法, 等号的另一边必须是非负数 .5.一元二次方程2430y y --=配方后可化为( )A .2(2)7y -=B .2(2)7y +=C .2(2)3y -=D .2(2)3y +=【分析】先表示得到243y y -=,再把方程两边加上 4 ,然后把方程左边配成完全平方形式即可 .【解答】解:243y y -=,2447y y -+=,2(2)7y -=.故选:A .【点评】本题考查了解一元二次方程-配方法: 将一元二次方程配成2()x m n +=的形式, 再利用直接开平方法求解, 这种解一元二次方程的方法叫配方法 .6.一元二次方程210x x +-=的根是( )A .15x =-B .152x -+=C .15x =-+D .152x -±= 【分析】先计算判别式的值,然后根据判别式的意义可判断方程根的情况.【解答】解:△214(1)50=-⨯-=>,∴方程有两个不相等的两个实数根, 即152x -±=. 故选:D .【点评】本题考查了公式法解一元二次方程,用公式法解一元二次方程的前提条件有两个:①0a ≠;②240b ac -.7.一元二次方程(1)(2)2x x ++=的解是( )A .10x =,23x =-B .11x =-,22x =-C .11x =,22x =D .10x =,23x =【分析】先把方程化为一般式, 然后利用因式分解法解方程 .【解答】解:230x x +=,(3)0x x +=,0x =或30x +=,所以10x =,23x =-.故选:A .【点评】本题考查了解一元二次方程-因式分解法: 就是先把方程的右边化为 0 ,再把左边通过因式分解化为两个一次因式的积的形式, 那么这两个因式的值就都有可能为 0 ,这就能得到两个一元一次方程的解, 这样也就把原方程进行了降次, 把解一元二次方程转化为解一元一次方程的问题了 (数 学转化思想) .8.一元二次方程25204x x +-=的根的情况是( ) A . 有两个不相等的实数根 B . 有两个相等的实数根C . 没有实数根D . 无法判断【分析】根据方程的系数结合根的判别式, 可得出△90=>,进而可得出方程25204x x +-=有两个不相等的实数根, 此题得解 . 【解答】解:△25241()904=-⨯⨯-=>, ∴方程25204x x +-=有两个不相等的实数根 . 故选:A .【点评】本题考查了根的判别式, 牢记“当△0>时, 方程有两个不相等的实数根”是解题的关键 .9.方程2240x x --=和方程2420x x -+=中所有的实数根之和是( )A . 2B . 4C . 6D . 8【分析】根据方程的系数结合根的判别式, 可得出两方程均有两个不相等的实数根, 再利用根与系数的关系可求出每个方程的两根之和, 将其相加后即可得出结论 .【解答】解:方程2240x x --=的根的判别式△2(2)41(4)200=--⨯⨯-=>, ∴方程2240x x --=有两个不相等的实数根, 两根之和为 2 ;方程2420x x -+=的根的判别式△2(4)41280=--⨯⨯=>,∴方程2420x x -+=有两个不相等的实数根, 两根之和为 4 .246+=,∴两方程所有的实数根之和是 6 .故选:C .【点评】本题考查了根的判别式以及根与系数的关系, 牢记两根之和等于b a-是解题的关键 .10.某超市一月份的营业额为 40 万元, 一月、 二月、 三月的营业额共 200 万元, 如果平均每月增长率为x ,则由题意列方程为( )A .240(1)200x +=B .40402200x +⨯⨯=C .40403200x +⨯⨯=D .240[1(1)(1)]200x x ++++=【分析】设平均每月增长率为x ,由一月、 二月、 三月的营业额共 200 万元, 即可得出关于x 的一元二次方程, 此题得解 .【解答】解: 设平均每月增长率为x ,根据题意得:240[1(1)(1)]200x x ++++=.故选:D .【点评】本题考查了由实际问题抽象出一元二次方程, 找准等量关系, 正确列出一元二次方程是解题的关键 .二.填空题(共8小题)11.若31210m x x ---=是关于x 的一元二次方程, 则m 的值为 1 .【分析】本题根据一元二次方程的一般形式, 即可得到312m -=,即可求得m 的值 .【解答】解: 依题意得:312m -=,解得1m =.故答案是: 1 .【点评】本题利用了一元二次方程的概念 . 只有一个未知数且未知数最高次数为 2 的整式方程叫做一元二次方程, 一般形式是20ax bx c ++=(且0)a ≠.12.已知m 是关于x 的方程2450x x +-=的一个根, 则228m m += 10【分析】利用一元二次方程的解的定义得到245m m +=,再把228m m +变形为22(4)m m +,然后利用整体代入的方法计算 .【解答】解:m 是关于x 的方程2450x x +-=的一个根,2450m m ∴+-=,245m m ∴+=,22282(4)2510m m m m ∴+=+=⨯=.故答案为 10 .【点评】本题考查了一元二次方程的解: 能使一元二次方程左右两边相等的未知数的值是一元二次方程的解 .13.一元二次方程20x mx n --=的两实根是12x =,23x =,则m = 5 ,n = .【分析】根据根与系数的关系结合方程的两实根是12x =,23x =,可求出m ,n 的值,此题得解.【解答】解:一元二次方程20x mx n--=的两实根是12x=,23x=,125m x x∴=+=,126n x x=-=-.故答案为:5 ;6-.【点评】本题考查了根与系数的关系,牢记“两根之和等于ba-,两根之和等于ca”是解题的关键.14.一个三角形的两边长分别为3 和5 ,第三边长是方程2680x x-+=的根,则三角形的周长为12 .【分析】先利用因式分解法解方程得到12x=,24x=,然后利用三角形三边的关系得到三角形第三边的长为 4 ,从而得到计算三角形的周长.【解答】解:2680x x-+=,(2)(4)0x x--=,20x-=或40x-=,所以12x=,24x=,而235+=,所以三角形第三边的长为 4 ,所以三角形的周长为34512++=.故答案为12 .【点评】本题考查了解一元二次方程-因式分解法:就是先把方程的右边化为0 ,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0 ,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).也考查了配方法解一元二次方程.也考查了三角形三边的关系.15.已知关于x的一元二次方程210mx x++=有实数根,则m的取值范围是14m且m≠.【分析】由于关于x的一元二次方程有实数根,计算根的判别式,得关于m的不等式,求解即可.【解答】解:关于x 的一元二次方程210mx x ++=有实数根,则△140m =-,且0m ≠. 解得14m且0m ≠. 故答案为:14m 且0m ≠. 【点评】本题考查了根的判别式、 一次不等式的解法及一元二次方程的定义 . 题目难度不大, 解题过程中容易忽略0m ≠条件而出错 .16.若关于x 的一元二次方程22(2)340m x x m -++-=有一个根为 0 ,则另一个根为34 . 【分析】先把2x =代入方程22(2)340m x x m -++-=得到满足条件的m 的值为2-,此时方程化为2430x x -=,设方程的另一个根为t ,利用根与系数的关系得到304t +=,然后求出t 即可 .【解答】解: 把2x =代入方程22(2)340m x x m -++-=得方程240m -=,解得12m =,22m =-, 而20m -≠,所以2m =-,此时方程化为2430x x -=, 设方程的另一个根为t ,则304t +=,解得34t =, 所以方程的另一个根为34. 故答案为34. 【点评】本题考查了根与系数的关系: 若1x ,2x 是一元二次方程20(0)ax bx c a ++=≠的两根时,12b x x a +=-,12c x x a=. 17.如图所示, 点阵M 的层数用n 表示, 点数总和用S 表示, 当66S =时, 则n = 11 .【分析】由等差数列的求和公式结合66S=,即可得出关于n的一元二次方程,解之取其正值即可得出结论.【解答】解:根据题意得:(1)662n n+=,化简得:21320n n+-=,解得:111n=,212n=-(舍去).故答案为:11 .【点评】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.18.如图,在长为10m,宽为8m的矩形场地上修建两条宽度相等且互相垂直的道路,剩余部分进行绿化,要使绿化面积为248m,则道路的宽应为 2 m.【分析】设道路的宽为xm,则剩余部分可合成长为(10)x m-,宽为(8)x-米的长方形,根据矩形的面积公式结合绿化面积为248m,即可得出关于x的一元二次方程,解之取其较小值即可得出结论.【解答】解:设道路的宽为xm,则剩余部分可合成长为(10)x m-,宽为(8)x-米的长方形,根据题意得:(10)(8)48x x--=,整理得:12x=,216x=.80x->,8x∴<,2x∴=.故答案为:2 .【点评】本题考查了一元二次方程的应用, 找准等量关系, 正确列出一元二次方程是解题的关键 .三.解答题(共8小题)19.解下列方程(1)2640x x ++=(2)2230x x --=(3)3(2)105x x x -=-【分析】(1) 利用配方法得到2(3)5x +=,然后利用直接开平方法解方程;(2) 利用因式分解法解方程;(3) 先变形为3(2)5(2)0x x x -+-=,然后利用因式分解法解方程 .【解答】解: (1)264x x +=-,2695x x ++=,2(3)5x +=,35x += 所以135x =-235x =-;(2)(23)(1)0x x -+=,230x -=或10x +=, 所以132x =,21x =-; (3)3(2)5(2)0x x x -+-=,(2)(35)0x x -+=,20x -=或350x +=,所以12x =,253x =-. 【点评】本题考查了解一元二次方程-因式分解法: 就是先把方程的右边化为 0 ,再把左边通过因式分解化为两个一次因式的积的形式, 那么这两个因式的值就都有可能为 0 ,这就能得到两个一元一次方程的解, 这样也就把原方程进行了降次, 把解一元二次方程转化为解一元一次方程的问题了 (数 学转化思想) . 也考查了配方法解一元二次方程 .20.已知关于x 的一元二次方程22(21)0x k x k --+=有两个不相等的实数根, 求k 的取值范围 .【分析】计算根的判别式△, 由题意得到关于k 的不等式, 求解即可 .【解答】解:关于x 的一元二次方程22(21)0x k x k --+=有两个不相等的实数根, ∴△22[(21)]410k k =---⨯⨯>即410k -+>,14k ∴<. 【点评】本题考查了根的判别式, 题目比较简单 . 根的判别式△24b ac =-.21.小强看见九年级的哥哥在做这样一道题“解方程:2(3)(2)(2)5x x x +=+--”,他看了看后,发现可以用《整式的乘法》知识来去括号,然后转化为一元一次方程来解答.试按照小强的思路完成此题的解答.【分析】将原方程去括号化成方程的一般形式后求解即可.【解答】解:去括号得:226945x x x ++=--,移项、合并同类项得:618x =-,解得:3x =-.【点评】本题考查了方程的解法,解题的关键是能够利用完全平方公式和平方差公式化简,难度不大.22.已知方程2(2)(3)10m m x m x -+-+=.(1)当m 为何值时,它是一元二次方程?(2)当m 为何值时,它是一元一次方程?【分析】(1)根据一元二次方程的定义解答本题;(2)根据一次方程的定义可解答本题.【解答】解:(1)方程2(2)(3)10m m x m x -+-+=为一元二次方程,∴2220m m ⎧=⎨-≠⎩, 解得:2m =±,所以当m 2或2-时,方程方程2(2)(3)10m m x m x -+-+=为一元二次方程;(2)方程2(2)(3)10m m x m x -+-+=为一元一次方程, ∴2030m m -=⎧⎨-≠⎩或21m = 解得,2m =或1m =±,故当m 为2或1±时,方程方程2(2)(3)10m m x m x -+-+=为一元一次方程.【点评】本题考查了一元一次方程的定义、一元二次方程的定义,能理解一元一次方程的定义和一元二次方程的定义是解此题的关键,尤其是要注意一元一次方程的各种情况要考虑全面.23.小刚在做作业时, 不小心将方程2350x bx --=的一次项系数用墨水覆盖住了, 但从题目的答案中, 他知道方程的一个解为5x =,请你帮助小刚求出被覆盖住的数 .【分析】把5x =代入方程2350x bx --=,得到关于b 的一元一次方程, 解之即可 .【解答】解: 把5x =代入方程2350x bx --=得:235550b ⨯--=, 解得:14b =,答: 被覆盖住的数是 14 .【点评】本题考查一元二次方程的解, 正确找出等量关系, 列出一元一次方程是解题的关键 .24.已知关于x 的一元二次方程2(2)10x k x k -++-=.(1) 若方程的一个根为1-,求k 的值和方程的另一个根;(2) 求证: 不论k 取何值, 该方程都有两个不相等的实数根 .【分析】(1) 把1x =-代入方程可求得k 的值, 再解方程可求得另一根;(2) 根据方程的系数结合根的判别式, 即可得出△280k =+>,由此可证出不论k 取何值, 方程必有两个不相等的实数根 .【解答】(1) 解: 把1x =-代入方程可得1(2)10k k +++-=,解得1k =-,当1k =-时, 原方程为220x x --=,解得11x =-,22x =,即方程的另一根为 2 ;(2) 证明:1a =,(2)b k =-+,1c k =-,∴△2224[(2)]41(1)80b ac k k k =-=-+-⨯⨯-=+>,∴不论k 取何值, 该方程都有两个不相等的实数根 .【点评】本题考查了根与系数的关系 . 一元二次方程20(0)ax bx c a ++=≠的根与系数的关系为:12b x x a +=-,12c x x a=. 也考查了根的判别式 . 25.某天猫店销售某种规格学生软式排球, 成本为每个 30 元 . 以往销售大数据分析表明: 当每只售价为 40 元时, 平均每月售出 600 个;若售价每上涨 1 元, 其月销售量就减少 20 个, 若售价每下降 1 元, 其月销售量就增加 200 个 .(1) 若售价上涨m 元, 每月能售出 60020m - 个排球 (用m 的代数式表示) .(2) 为迎接“双十一”, 该天猫店在 10 月底备货 1300 个该规格的排球, 并决定整个 11 月份进行降价促销, 问售价定为多少元时, 能使 11 月份这种规格排球获利恰好为 8400 元 .【分析】(1) 由销售数量60020=-⨯上涨价格, 即可得出结论;(2) 设每个排球降价x 元, 则 11 月份可售出该种排球(200600)x +个, 根据月利润=单件利润⨯月销售数量, 即可得出关于x 的一元二次方程, 解之取其较小值即可得出结论 .【解答】解: (1) 根据题意得:60020m -.故答案为:60020m -.(2) 设每个排球降价x 元, 则 11 月份可售出该种排球(200600)x +个,根据题意得:(4030)(200600)8400x x --+=,解得:13x =,24x =.当3x =时, 销量为12001300<,适合题意;当4x =时, 销量为14001300>,舍去 .4037x ∴-=.答: 每个排球的售价为 37 元 .【点评】本题考查了一元二次方程的应用, 找准等量关系, 正确列出一元二次方程是解题的关键 .26.列一元二次方程解应用题某公司今年 1 月份的纯利润是 20 万元, 由于改进技术, 生产成本逐月下降, 3 月份的纯利润是 22.05 万元 . 假设该公司 2 、 3 、 4 月每个月增长的利润率相同 .(1) 求每个月增长的利润率;(2) 请你预测 4 月份该公司的纯利润是多少?【分析】(1) 设每个月增长的利润率为x ,根据 1 月份及 3 月份该公司的纯利润, 即可得出关于x 的一元二次方程, 解之取其正值即可得出结论;(2) 根据 4 月份该公司的纯利润3=月份该公司的纯利润(1⨯+增长率) ,即可求出 4 月份该公司的纯利润 .【解答】解: (1) 设每个月增长的利润率为x ,根据题意得:220(1)22.05x ⨯+=,解得:10.055%x ==,2 2.05x =-(不 合题意, 舍去) .答: 每个月增长的利润率为5%.(2)22.05(15%)23.1525⨯+=(万 元) .答: 4 月份该公司的纯利润为 23.1525 万元 .【点评】本题考查了一元二次方程的应用, 找准等量关系, 正确列出一元二次方程是解题的关键 .。
人教版九年级数学上册第21章一元二次方程单元测试题(含答案)
人教版九年级数学上册第21章一元二次方程单元测试题(含答案)一、选择题(每小题4分,共32分)1.下列方程中,是一元二次方程的有( )①x 2=0; ②ax 2+bx +c =0; ③3x 2=x ; ④2x (x +4)-2x 2=0;⑤(x 2-1)2=9; ⑥1x 2+1x-1=0.A .2个B .3个C .4个D .5个 2.将一元二次方程x 2-4x +3=0配方可得( ) A .(x -2)2=7 B .(x -2)2=1 C .(x +2)2=1 D .(x +2)2=23.若关于x 的一元二次方程x 2-2x +m =0有一个解为x =-1,则另一个解为( ) A .1 B .-3 C .3 D .4 4.已知方程kx 2+4x +4=0有实数根,则k 的取值范围是( ) A .k ≤1 B .k ≥-1 C .k ≤1且k ≠0 D .k <-15.若一个三角形的两边长分别为3和6,第三边长是方程x 2-13x +36=0的根,则这个三角形的周长为( )A .13B .15C .18D .13或186.小红按某种规律写出4个方程:①x 2+x +2=0;②x 2+2x +3=0;③x 2+3x +4=0;④x 2+4x +5=0.按此规律,第五个方程的两个根为( )A .-2,3B .2,-3C .-2,-3D .2,37.若关于x 的一元二次方程x 2-3x +p =0(p ≠0)的两个不相等的实数根分别为a 和b ,且a 2-ab +b 2=18,则a b +ba的值是( )A .3B .-3C .5D .-58.某企业2018年初获利润300万元,到2020年初计划利润达到507万元.设这两年利润的年平均增长率为x ,则可列方程为( )A .300(1+x )=507B .300(1+x )2=507C .300(1+x )+300(1+x )2=507D .300+300(1+x )+300(1+x )2=507 二、填空题(每小题4分,共24分)9.把方程(2x +1)(x -2)=5-3x 整理成一般形式得____________,其中一次项系数为______.10.若(m +1)x |m -1|+5x -3=0是关于x 的一元二次方程,则m 的值为________. 11.关于x 的方程kx 2-4x -4=0有两个不相等的实数根,则k 的最小整数值为________. 12.关于x 的一元二次方程x 2+(a 2-2a )x +a -1=0的两个实数根互为相反数,则a 的值为________.13.为创建“国家生态园林城市”,某小区在规划设计时,在小区中央设置一块面积为1200平方米的矩形绿地,并且长比宽多40米.设绿地宽为x 米,根据题意,可列方程为________________.14.小明发明了一个魔术盒,当任意实数对(a ,b )进入其中时,会得到一个新的实数:a 2+b -1,例如把(3,-2)放入其中,就会得到32+(-2)-1=6.现将实数对(m ,-2m )放入其中,得到实数2,则m =________.三、解答题(共44分)15.(9分)用适当的方法解下列方程: (1)12(x +1)2-6=0;(2)x 2+25x +2=0;(3)2x (2-x )=3(x -2).16.(8分)已知关于x 的一元二次方程(x -3)(x -2)=p (p +1). (1)求证:无论p 取何值,此方程总有两个实数根;(2)若原方程的两个根分别为x 1,x 2,且满足x 12+x 22-x 1x 2=3p 2+1,求p 的值.17.(8分)如图21,在直角墙角AOB (OA ⊥OB ,且OA ,OB 长度不限)中,要砌20 m 长的墙(即AC +BC =20 m),与直角墙角AOB 围成地面为矩形的储仓,且地面矩形AOBC 的面积为96 m2.(1)求该地面矩形的长;(2)有规格为0.80×0.80和1.00×1.00(单位:m)的地板砖,单价分别为50元/块和80元/块,若只选其中一种地板砖都恰好能铺满储仓的矩形地面(不计缝隙),则用哪一种规格的地板砖费用较少?图2118.(8分)某批发商以每件50元的价格购进800件T恤,第一个月以单价80元/件的价格销售,售出了200件;第二个月如果单价不变,预计仍可售出200件,批发商为增加销量,决定降价销售,根据市场调查发现,该T恤的单价每降低1元/件,可多售出10件,但最低单价应高于购进的价格;第二个月结束后,批发商将对剩余的T恤一次性清仓销售,清仓时单价为40元/件,设第二个月单价降低x元/件.(1)填表(不需要化简):(2)19.(11分)如图22所示,已知在△ABC中,∠B=90°,AB=5 cm,BC=7 cm,点Q 从点A开始沿AB边以1 cm/s的速度向点B移动,点P从点B开始沿BC边以2 cm/s的速度向点C移动,如果点Q,P分别从点A,B同时出发,当一动点运动到终点时,另一动点也随之停止运动.(1)几秒后,△PBQ的面积等于4 cm2?(2)几秒后,PQ的长度等于210 cm?(3)在(1)中,△PBQ的面积能否等于7 cm2?试说明理由.图22答案1.A 2.B3.C [解析] 设方程的另一个解为x 1.根据题意,得-1+x 1=2,解得x 1=3.4.A [解析] 当k =0时,方程为一元一次方程4x +4=0,有唯一实数根;当k ≠0时,方程是一元二次方程.∵方程有实数根,∴根的判别式b 2-4ac =16-16k ≥0,即k ≤1且k ≠0.综上所述k 的取值范围是k ≤1.5.A6.C [解析] 根据小红写出的4个方程,发现其规律是第n 个方程是x 2+nx +(n +1)=0,所以第五个方程是x 2+5x +6=0,即(x +2)(x +3)=0,则x +2=0或x +3=0,∴x 1=-2,x 2=-3.7.D [解析] ∵a ,b 为方程x 2-3x +p =0(p ≠0)的两个不相等的实数根, ∴a +b =3,ab =p .∵a 2-ab +b 2=(a +b )2-3ab =32-3p =18,∴p =-3.当p =-3时,b 2-4ac =(-3)2-4p =9+12=21>0,∴p =-3符合题意.∴a b +b a =(a +b )2-2ab ab =(a +b )2ab -2=32-3-2=-5. 故选D.8.B 9.2x 2-7=0 0 10.311.1 [解析] ∵关于x 的方程kx 2-4x -4=0有两个不相等的实数根,∴k ≠0且b 2-4ac >0,即k ≠0且16+16k >0,解得k >-1且k ≠0,∴k 的最小整数值为1.12.0 [解析] ∵方程x 2+(a 2-2a )x +a -1=0的两个实数根互为相反数, ∴a 2-2a =0,解得a =0或a =2.当a =2时,方程为x 2+1=0,该方程无实数根,舍去,∴a =0. 13.x (x +40)=120014.3或-1 [解析] 把实数对(m ,-2m )代入a 2+b -1=2中,得m 2-2m -1=2. 移项,得m 2-2m -3=0.因式分解,得(m -3)(m +1)=0. 解得m 1=3,m 2=-1.15.解:(1)整理,得(x +1)2=12,开平方,得x +1=±2 3,所以x 1=-1+2 3,x 2=-1-2 3. (2)因为a =1,b =2 5,c =2, 所以b 2-4ac =12>0,代入公式,得x =-b ±b 2-4ac 2a =-2 5±2 32=-5±3,所以原方程的解为x 1=-5+ 3,x 2=-5- 3.(3)移项,得3(x -2)+2x (x -2)=0, 即(3+2x )(x -2)=0,所以x -2=0或2x +3=0,所以x 1=2,x 2=-32.16.解:(1)证明:原方程可变形为x 2-5x +6-p 2-p =0.∵b 2-4ac =(-5)2-4(6-p 2-p )=25-24+4p 2+4p =4p 2+4p +1=(2p +1)2≥0, ∴无论p 取何值,此方程总有两个实数根. (2)∵原方程的两个根分别为x 1,x 2, ∴x 1+x 2=5,x 1x 2=6-p 2-p . 又∵x 12+x 22-x 1x 2=3p 2+1, ∴(x 1+x 2)2-3x 1x 2=3p 2+1, ∴52-3(6-p 2-p )=3p 2+1, ∴25-18+3p 2+3p =3p 2+1, ∴3p =-6,∴p =-2.17.解:(1)设AC =x m ,则BC =(20-x )m. 由题意,得x (20-x )=96, 即x 2-20x +96=0, ∴(x -12)(x -8)=0,解得x =12或x =8.当AC =12 m 时,BC =8 m ,AC 为矩形的长,此时矩形的长为12 m. 当AC =8 m 时,BC =12 m ,BC 为矩形的长,此时矩形的长为12 m. 答:该地面矩形的长为12 m.(2)①若选用规格为0.80×0.80(单位:m)的地板砖,则 120.8×80.8=15×10=150(块), 150×50=7500(元);②若选用规格为1.00×1.00(单位:m)的地板砖,则 121×81=96(块), 96×80=7680(元). ∵7500<7680,∴选用规格为0.80×0.80(单位:m)的地板砖费用较少.18.[解析] (1)第二个月的单价=第一个月的单价-降低的价格,销售量=200+10×降低的单价;清仓时的销售量=800-第一个月的销售量-第二个月的销售量.(2)等量关系为总售价-总进价=9000元.把相关数值代入计算即可. 解:(1)填表如下.即x 2-20x +100=0,解得x 1=x 2=10. 当x =10时,80-x =80-10=70.答:第二个月的单价应为70元/件.[点评] 本题考查一元二次方程的应用.用列表格的方法得到第二个月的单价和销售量以及清仓时的销售量是解决本题的突破点,得到总利润的等量关系是解决本题的关键.19.[解析] (1)设点Q ,P 分别从点A ,B 同时出发,x s 后,AQ =x cm ,QB =(5-x )cm ,BP =2x cm ,则△PBQ 的面积等于12×2x (5-x ),令该式等于4,列出方程求出符合题意的解;(2)根据勾股定理可求;(3)△PBQ 的面积能否等于7 cm 2,只需令12×2x (5-x )=7,化简该方程后,判断该方程的判别式与0的关系,若判别式大于或等于0,则能等于7 cm 2,否则不能等于7 cm 2.解:(1)设x s 后,△PBQ 的面积等于4 cm 2, 此时,AQ =x cm ,QB =(5-x )cm ,BP =2x cm.由12BP ·QB =4,得12×2x (5-x )=4, 即x 2-5x +4=0,解得x 1=1,x 2=4(不合题意,舍去). 所以1 s 后,△PBQ 的面积等于4 cm 2. (2)设y s 后,PQ 的长度等于210 cm. 此时QB =(5-y )cm ,BP =2y cm.在Rt △PBQ 中,因为PQ =210 cm ,根据勾股定理,得(5-y )2+(2y )2=(210)2, 解得y 1=3,y 2=-1(舍去).所以3 s 后,PQ 的长度等于210 cm. (3)由(1),得12×2x (5-x )=7.整理,得x 2-5x +7=0. 因为b 2-4ac =25-28<0, 所以此方程无实数解.所以△PBQ 的面积不可能等于7 cm 2.人教版九年级数学上册第21章一元二次方程单元检测题(有答案)(4)一、精心选一选1.已知x=1是一元二次方程x 2-2mx+1=0的一个解,则m 的值是( ) A .1 B .0 C .0或1 D .0或-12.已知a 、b 为一元二次方程0922=-+x x 的两个根,那么b a a -+2的值为( )(A )-7 (B )0 (C )7 (D )113.若关于x 的一元二次方程(k ﹣2)x 2﹣2kx +k =6有实数根,则k 的取值范围为( ) A .k ≥0B .k ≥0且k ≠2C .k ≥23 D .k ≥23且k ≠2 4.等腰三角形的底和腰是方程x 2-6x+8=0的两根,则这个三角形的周长为( ) A.8 B.10 C.8或10 D.不能确定5.现定义某种运算()a b a a b ⊗=>,若2(2)2x x x +⊗=+,那么x 的取值范围是( )(A )12x -<<(B )2x >或1x <-(C )2x >(D )1x <-6.已知a b ,是关于x 的一元二次方程210x nx +-=的两实数根,则式子b aa b+的值是( ) A .22n +B .22n -+C .22n -D .22n --7.关于x 的一元二次方程222310x x a --+=的一个根为2,则a 的值是( )A .1B C .D .8. 国家实施”精准扶贫“政策以来,很多贫困人口走向了致富的道路.某地区2016年底有贫困人口9万人,通过社会各界的努力,2018年底贫困人口减少至1万人.设2016年底至2018年底该地区贫困人口的年平均下降率为x ,根据题意列方程得( )A .9(1﹣2x )=1B .9(1﹣x )2=1C .9(1+2x )=1D .9(1+x )2=1 二、耐心填一填9.已知一元二次方程有一个根是2,那么这个方程可以是 (填上你认为正确的一个方程即可).10.如果αβ、是一元二次方程23 1 0x x +-=的两个根,那么2+2ααβ-的值是___________11.已知2是一元二次方程240x x c -+=的一个根,则方程的另一个根是 .12.已知01a a b x ≠≠=,,是方程2100ax bx +-=的一个解,则2222a b a b--的值是 .13.在实数范围内定义一种运算“*”,其规则为22b a b a -=*,根据这个规则,方程05)2(=+*x 的解为14、已知三个连续奇数,其中较大的两个数的平方和比最小数的平方的3倍还小25,则这三个数分别为_________15、甲、乙两同学解方程x 2+px+q=0,甲看错了一次项系数,得根为2和7;乙看错了常数项,得根为1和-10,则原方程为16、如图,张大叔从市场上买回一块矩形铁皮,他将此矩形铁皮的四个角各剪去一个边长为1米的正方形后,剩下的部分刚好能围成一个容积为15米3的无盖长方体箱子,且此长方体箱子的底面长比宽多2米,现已知购买这种铁皮每平方米需20元钱,问张大叔购回这张矩形铁皮共花了 元钱?三、专心解一解 17、我们已经学习了一元二次方程的四种解法:因式分解法,开平方法,配方法和公式法.请从以下一元二次方程中任选一个..,并选择你认为适当的方法解这个方程. ①2310x x -+=;②2(1)3x -=;③230x x -=;④224x x -=.18、关x 的一元二次方程(x-2)(x-3)=m 有两个不相等的实数根x 1、x 2,则m 的取值范围是 ;若x 1、x 2满足等式x 1x 2-x 1-x 2+1=0,求m 的值.19、数学课上,李老师布置的作业是图2中小黑板所示的内容,楚楚同学看错了第(2)题※中的数,求得(1)的一个解x=2;翔翔同学由于看错了第(1)题※中的数,求得(2)的一个解是x=3;你知道今天李老师布置作业的正确答案吗?请你解出来20.已知下列n (n 为正整数)个关于x 的一元二次方程:()x x x x x x n x n n 2222101202230310-=<>+-=<>+-=<>+--=<>……(1)请解上述一元二次方程<1>、<2>、<3>、<n>;(2)请你指出这n 个方程的根具有什么共同特点,写出一条即可 21.广东将一条长为20cm 的铁丝剪成两段,并以每一段铁丝的长度为周长做成一个正方形.(1)要使这两个正方形的面积之和等于17cm 2,那么这段铁丝剪成两段后的长度分别是多少?(2)两个正方形的面积之和可能等于12cm 2吗? 若能,求出两段铁丝的长度;若不能,请说明理由.22.某商场在“五一节”的假日里实行让利销售,全部商品一律按九销售,这样每天所获得的利润恰是销售收入的20%,如果第一天的销售收入4万元,且每天的销售收入都有增长,第三天的利润是1.25万元,(1)求第三天的销售收入是多少万元?(2)第二天和第三天销售收入平均每天的增长率是多少?23.学校为了美化校园环境,在一块长40米,宽20米的长方形空地上计划新建一块长9米,宽7米的长方形花圃.(1)若请你在这块空地上设计一个长方形花圃,使它的面积比学校计划新建的长方形花圃的面积多1平方米,请你给出你认为合适的三种不同的方案;(2)在学校计划新建的长方形花圃周长不变的情况下,长方形花圃的面积能否增加2平方米?如果能,请求出长方形花圃的长和宽;如果不能,请说明理由.24、已知:△ABC 的两边AB 、AC 的长是关于x 的一元二次方程023)32(22=++++-k k x k x 的两个实数根,第三边BC 的长为5.(1)k 为何值时,△ABC 是以BC 为斜边的直角三角形?(2)k 为何值时,△ABC 是等腰三角形?并求△ABC 的周长. 25、阅读材料:各类方程的解法 求解一元一次方程,根据等式的基本性质,把方程转化为x=a 的形式.求解二元一次方程组,把它转化为一元一次方程来解;类似的,求解三元一次方程组,把它转化为解二元一次方程组.求解一元二次方程,把它转化为两个一元一次方程来解.求解分式方程,把它转化为整式方程来解,由于“去分母”可能产生增根,所以解分式方程必须检验.各类方程的解法不尽相同,但是它们有一个共同的基本数学思想转化,把未知转化为已知.用“转化”的数学思想,我们还可以解一些新的方程.例如,一元三次方程x 3+x 2﹣2x=0,可以通过因式分解把它转化为x (x 2+x ﹣2)=0,解方程x=0和x 2+x ﹣2=0,可得方程x 3+x 2﹣2x=0的解.(1)问题:方程x 3+x 2﹣2x=0的解是x 1=0,x 2= ,x 3= ; (2)拓展:用“转化”思想求方程x x =+32的解;(3)应用:如图,已知矩形草坪ABCD 的长AD=8m ,宽AB=3m ,小华把一根长为10m 的绳子的一端固定在点B ,沿草坪边沿BA ,AD 走到点P 处,把长绳PB 段拉直并固定在点P ,然后沿草坪边沿PD 、DC 走到点C 处,把长绳剩下的一段拉直,长绳的另一端恰好落在点C .求AP 的长.参考答案:一、1~5.ADDBB ;6~8.DDB ;二、9、x 2-2x=0; 10、4;11、2+;12、5;13、3,-7; 14、-3,-1,1或15,17,19;15、x 2+9x+14=0;16、700;三、17、①1232x ±=,;②121x =,10x =,23x =;④121x =,18、m >-1/4 ,m=2;19、方程(1)的解是x 1=2,x 2=0;方程(2)的解是x 1=3,x 2=4 20、解:(1)<1>()()x x +-=110,所以x x 1211=-=, <2>()()x x +-=210,所以x x 1221=-=, <3>()()x x +-=310,所以x x 1231=-=,……<n>()()x n x +-=10,所以x n x 121=-=,(2)比如:共同特点是:都有一个根为1;都有一个根为负整数;两个根都是整数根等 21、(1)解:设剪成两段后其中一段为xcm ,则另一段为(20-x )cm 由题意得:2220()()1744xx -+=,解得:116x =,24x = 当116x =时,20-x=4,当24x =时,20-x=16(2)不能。
2024-2025学年人教版九年级数学上册第二十一章 一元二次方程单元测试卷(含答案)
第二十一章一元二次方程一、选择题1.下列方程中,是一元二次方程的是( )A.x−1=0B.x2−x−1=0C.x2−y=0D.1x+x−1=02.一元二次方程x2−4x+1=0配方后,可化为( )A.(x−2)2=3B.(x+2)2=3C.(x−2)2=4D.(x+2)2=43.若x=1是方程x2+mx+1=0的一个解,则m的值为( )A.1B.2C.−1D.−24.方程x(x−2)=0的解是( )A.0B.2C.−2D.0或25.如果关于x的一元二次方程k x2−4x+2=0有实数根,则k的取值范围是( )A.k≤2B.k≤2且k≠0C.k<2且k≠0D.k≥2且k≠06.若x1+x2=3,x1x2=2,则以x1,x2为根的一元二次方程是( )A.x2−3x+2=0B.x2+3x−2=0C.x2+3x+2=0D.x2−3x−2=07.学校要组织一场篮球联赛,赛制为单循环形式,即每两队之间比赛一场,计划安排15场比赛,应邀请多少个队参加比赛?设应邀请x个球队参加比赛,下列算式正确的是( )A.x(x+1)=15B.x(x−1)=15C.12x(x+1)=15D.12x(x−1)=158.若m,n是关于x的一元二次方程x2+2x−5=0的两个根,则m2+mn−2n的值为( )A.−6B.6C.−4D.4二、填空题9.若关于x的方程(m+1)x2﹣3x+2=0是一元二次方程,则m的取值范围是 .10.将关于x的一元二次方程x2−6x−5=0化成(x+a)2=b的形式,则b= .11.方程3x2−6x=0的解是 12.已知关于x的方程(a−2)x2−2x+1=0有实数根,则a的取值范围是 13.若x1,x2是一元二次方程x2−x−6=0的两个实数根,则1x1+1x2的值为 .三、计算题14.解方程:(1)3x2−10x+6=0;(2)5(x+3)2=2(x+3).15.已知关于x的一元二次方程x2−(2k+1)x+k2+k=0 .(1)求证:方程有两个不相等的实数根.(2)若 Rt△ABC的两边AB,AC的长分别是这个方程的两个实数根,第三边BC的长为5,求 k 的值.16.已知关于x的一元二次方程x2+(2m+1)x+m2−1=0有两个不相等的实数根.(1)求m的取值范围.(2)设x1,x2分别是方程的两个根,且x21+x22+x1x2−17=0,求m的值.17.交警部门提醒市民,骑车出行必须严格遵守“一盔一带”的规定,某头盔经销商统计了某品牌头盔4月份到6月份的销量,该品牌头盔4月份销售150个,6月份销售216个,且从4月份到6月份销售量的月增长率相同.(1)求该品牌头盔销售量的月增长率.(2)若此种头盔的进价为30元/个,经测算,此种头盔在市场中,当售价为40元/个时,月销售量为600个,在此基础上售价每上涨1元/个,则月销售量将减少10个.现希望该头盔每月销售利润为10 000元,而且尽可能让顾客得到实惠,则该品牌头盔的实际售价应定为多少?18.某超市销售一种衬衫,平均每天可售出20件,每件盈利40元.为了扩大销售、增加盈利,该超市准备适当降价,经过一段时间测算,发现每件衬衫每降价1元,平均每天可多售出2件.(1)若每件衬衫降价4元,平均每天可售出多少件衬衫? 此时每天销售获利多少元?(2)在每件盈利不少于 25元的前提下,要使该衬衫每天销售获利为1 200元,问每件衬衫应降价多少元?(3)该衬衫每天的销售获利能达到 1 300 元吗?如果能,请写出降价方案;如果不能,请说明理由.1.B 2.A 3.D 4.D 5.B 6.A 7.D 8.D 9.m≠-1 10.1411.x1=0,x2=212.a≤313.−1614.(1)解:3x2−10x+6=0,∵a=3,b=−10,c=6,∴b2−4ac=(−10)2−4×3×6=28>0,∴x=−b±b2−4ac2a =10±286=5±73,∴x1=5+73,x2=5−73;(2)解:5(x+3)2=2(x+3),5(x+3)2−2(x+3)=0,(x+3)(5x+13)=0,x+3=0或5x+13=0,解得x1=−3,x2=−135.15.(1)证明:∵关于x的一元二次方程为x2−(2k+1)x+k2+k=0,∴Δ=[−(2k+1)]2−4(k2+k)=4k2+4k+1−4k2−4k=1>0,∴关于x的一元二次方程x2−(2k+1)x+k2+k=0有两个不相等的实数根;(2)解:∵关于x的一元二次方程为x2−(2k+1)x+k2+k=0,∴(x−k)[x−(k+1)]=0,解得:x1=k,x2=k+1.∵ Rt△ABC的两边AB,AC的长分别是这个方程的两个实数根,分两种情况讨论如下:当BC=5为直角边时,k2+52=(k+1)2,解得:k=12;当BC=5为斜边时,k2+(k+1)2=52,解得:k1=3,k2=−4(根据边长为正判断不合题意,舍去),∴k=12或k=3.16.(1)解:∵一元二次方程有两个不相等的实根∴(2m+1)2−4×1×(m2−1)=4m2+4m+1−4m2+4=4m+5>0,解得m>−54;(2)解:∵ x1,x2分别是方程的两个根∴x1+x2=−(2m+1)=−2m−1,x1·x2=m2−1;∵x12+x22+x1x2−17=0,配方后可得(x1+x2)2−x1x2−17=0;将x1+x2=−(2m+1)=−2m−1和x1·x2=m2−1代入,可得:(−2m−1)2−(m2−1)−17=0,化简可得3m2+4m−15=0;解得m=53或-3(舍去);∴m的值为53.17.(1)设该品牌头盔销售量的月增长率为x,依题意,得:150(1+x)2=216,解得:x1=0.2=20%,x2=−2.2(不合题意,舍去).答:该品牌头盔销售量的月增长率为20%;(2)设该品牌头盔的实际售价为y元,依题意,得:(y−30)(600−y−400.5×5)=10000,整理,得:y2−130y+4000=0,解得:y1=80(不合题意,舍去),y2=50,∵尽可能让顾客得到实惠,∴该品牌头盔的实际售价应定为50元,答:该品牌头盔的实际售价应定为50元.18.(1)解:由题意可得,每件衬衫降价4元,平均每天可售出衬衫的数量为:20+4×2=28(件);此时每天获取的利润为(40-4)×28=1008(元);(2)解:设每件衬衫降价x元(0≤x≤15),由题意可得(20+2x)×(40-x)=1200,整理得x2-30x+200=0,解得x1=10,x2=20(舍),答:在每件盈利不少于25元的前提下,要使该衬衫每天销售获利为1200元,每件衬衫应降价10元;(3)解:该衬衫每天的销售获利不能达到1300元,理由如下:设每件衬衫降价y元,由题意可得(20+2y)×(40-y)=1300,整理得y2-30y+250=0,∵b2-4ac=302-4×1×250=-100<0,∴此方程没有实数根,即该衬衫每天的销售获利不能达到1300元.。
人教版九年级数学上册《第二十一章一元二次方程》单元测试卷-附答案
人教版九年级数学上册《第二十一章一元二次方程》单元测试卷-附答案学校:___________班级:___________姓名:___________考号:___________一、选择题1.下列方程中是一元二次方程的是()A.x+y2=2B.x+4=2C.x2+4x=2D.x2+1x=22.如果x=2是一元二次方程x2+bx+2=0的一个根,则b的值是()A.2 B.-2 C.3 D.−33.一元二次方程x2−6x+1=0配方后可变形为()A.(x−3)2=8B.(x−3)2=10C.(x+3)2=8D.(x+3)2=104.一元二次方程x2+2x−1=0的实数根有()A.1个B.2个C.0个D.无数个5.方程x2−49=0的解为()A.x1=7,x2=−7B.x1=1,x2=7C.x1=x2=7D.x1=x2=−76.已知关于x的一元二次方程ax2+2x−1=0有两个实数根,则a的取值范围是()A.a>−1且a≠0B.a≥−1且a≠0C.a≥−1D.a≤−17.2024年元旦开始,梧州市体育训练基地吹响冬季足球训练“集结号”,该基地组织了一次单循环的足球比赛(每两支队伍之间比赛一场),共进行了36场比赛,设有x支队伍参加了比赛,依题意可列方程为()A.x(x+1)=36B.x(x−1)=36C.x(x+1)2=36D.x(x−1)2=368.设x1,x2是一元二次方程x2−2x−1=0的两根,则1x1+1x2=()A.12B.−12C.2 D.−2二、填空题9.若方程(m−1)x m2+1−x−2=0是一元二次方程,则m的值是.10.将一元二次方程x2−8x−5=0化成(x+a)2=b(a,b 为常数)的形式,则ab=.11.关于x的一元二次方程ax2−2(a−1)x+a=0有实数根.则a的取值范围.12.已知三角形的两边长为1和2,第三边的长是方程x2−5x+6=0的一个根,则这个三角形的周长是.13.若 m,n 是一元二次方程x2−2x−5=0的两个根,则m2n+mn2=.三、计算题14.解方程:(1)x2+1=7x;(2)x2+4x−5=0.四、解答题15.关于x的一元二次方程−x2+2x−k=0.(1)若方程有两个实根,求k的取值范围.(2)若方程的一根为−1,求k的值及另一根.16.已知关于x的方程x2﹣3ax﹣3a﹣6=0(1)求证:方程恒有两不等实根;(2)若x1,x2是该方程的两个实数根,且(x1﹣1)(x2﹣1)=1,求a的值.17.如图,某小区矩形绿地的长宽分别为35m,15m.现计划对其进行扩充,将绿地的长、宽增加相同的长度后,得到一个新的矩形绿地.(1)若扩充后的矩形绿地面积为800m2,求新的矩形绿地的长与宽;(2)扩充后,实地测量发现新的矩形绿地的长宽之比为5:3.求新的矩形绿地面积.18.第31届世界大学生夏季运动会在成都举办,吉祥物“蓉宝”深受大家的喜爱.某商场从厂家购进了成都大运会吉祥物蓉宝毛绒公仔和3D钥匙扣两种商品,每个毛绒公仔的进价比每个3D钥匙扣的进价多30元.若购进毛绒公仔4个,3D钥匙扣5个,共需要570元.(1)求毛绒公仔、3D钥匙扣两种商品的每个进价分别是多少元?(2)该商场从厂家购进成都大运会吉祥物蓉宝毛绒公仔和3D钥匙扣两种商品共60个,所用资金恰好为4200元.在销售时,每个毛绒公仔的售价为100元,要使得这60个商品卖出后获利25%,则每个3D钥匙扣的售价应定为多少元?参考答案1.【答案】C2.【答案】D3.【答案】A4.【答案】B5.【答案】A6.【答案】B7.【答案】D8.【答案】D9.【答案】-110.【答案】-111.【答案】a≤12且a≠012.【答案】513.【答案】514.【答案】(1)解:原方程可化为x2−7x+1=0b2−4ac=(−7)2−4×1×1=45>0x=7±√452=7±3√52x1=7+3√52(2)解:∵x2+4x−5=0∴(x+5)(x−1)=0∴x+5=0或x−1=0∴x1=−515.【答案】(1)解:∵方程有两个实根∴Δ=22−4×(−1)×(−k)≥0解得k≤1∴k的取值范围为k≤1.(2)解:设方程的另一根为x 2,依题意得{−1+x 2=2−x 2=k解得{x 2=3k =−3∴k 的值为−3,另一根为316.【答案】(1)证明:∵Δ=b 2−4ac =(−3a)2−4×1×(−3a −6)=9a 2+12a +24=(3a +2)2+20>0∴该方程恒有两个不等实根;(2)解:由根与系数的关系x 1+x 2=3a,x 1x 2=−3a −6∵(x 1−1)(x 2−1)=1∴x 1x 2−(x 1+x 2)+1=1∴−3a −6−3a +1=1解得a =−117.【答案】(1)解:(1)设将绿地的长、宽增加xm ,则新的矩形绿地的长为(35+x)m ,宽为(15+x)m 根据题意得:(35+x)(15+x)=800整理得:x 2+50x −275=0解得:x 1=5,x 2=−55(不符合题意,舍去)∴35+x =35+5=40,15+x =15+5=20答:新的矩形绿地的长为40m ,宽为20m(2)设将绿地的长、宽增加ym ,则新的矩形绿地的长为(35+y)m ,宽为(15+y)m 根据题意得:(35+y):(15+y)=5:3即3(35+y)=5(15+y)解得:y =15∴(35+y)(15+y)=(35+15)×(15+15)=1500答:新的矩形绿地面积为1500m 218.【答案】(1)解:设毛绒公仔、3D 钥匙扣两种商品的每个进价分别是(30+x)和x 元,由题意得: 4(30+x)+5x =570,解得x =50答:毛绒公仔、3D 钥匙扣两种商品的每个进价分别是80和50元;(2)解:设毛绒公仔买了x 个,由题意可得:80x +50(60−x)=4200解得x=40设3D钥匙扣的每个售价为y元,由题意得:20x40+20(y−50)=4200×25%解得y=62.5答:每个3D钥匙扣的售价为62.5元。
人教版九年级上第21章《一元二次方程》单元测试题(含答案解析)
二、填空题
13.请写出一个根为x=1,另一个根满足-1<x<1的一元二次方程______________.
14.如果关于x的方程x2+2ax﹣b2+2=0有两个相等的实数根,且常数a与b互为倒数,那么a+b=_____.
15.某药品经两次降价后,从原来每箱 元降为每箱 元,则平均每次的降价率为________.
(1)求证:对于任意实数k,方程总有两个不相等的实数根;
(2)若方程的一个根是2,求k的值及方程的另一个根.
22.现代互联网技术的广泛应用,催生了快递行业的高速发展,据调查,某家快递公司,今年三月份与五月份完成投递的快件总件数分别是5万件和 万件,现假定该公司每月投递的快件总件数的增长率相同.
求该公司投递快件总件数的月平均增长率;
【详解】
把x=1代入把x=1代入x2+px+1=0,得
1+p+1=0,
∴p=-2.
故选D.
【点睛】
本题考查了一元二次方程的解得定义,能使一元二次方程成立的未知数的值叫作一元二次方程的解,熟练掌握一元二次方程解得定义是解答本题的关键.
3.C
【解析】
【分析】
先计算△=b2-4ac的值,再根据计算结果判断方程根的情况即可.
【详解】
∵△=b2-4ac=1-8=-7<0,
∴一元二次方程2x2-x+1=0没有实数根.x2+bx+c=0(a≠0,a,b,c为常数)的根的判别式△=b2-4ac.当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.
D、是一元二次方程,故此选项正确;
人教版九年级数学上册第21章一元二次方程单元测试卷(含答案)
人教版九年级数学上册第21章一元二次方程单元测试卷(含答案)一、选择题 (每题3分,共30分)1.若方程||(2)310m m x mx +++=是关于x 的一元二次方程,则( ) A .2m =±B .m =2C .m= -2D .2m ≠±2.一元二次方程()224260m x mx m --+-=有两个相等的实数根,则m 等于( )A. -6B. 1C. 2D. -6或1 3.对于任意实数x ,多项式x 2-5x+8的值是一个( )A .非负数B .正数C .负数D .无法确定 4.已知代数式3x -与23x x -+的值互为相反数,则x 的值是( )A .-1或3B .1或-3C .1或3D .-1和-3 5.如果关于x 的方程ax 2+x –1= 0有实数根,则a 的取值范围是( )A .a >–14B .a ≥–14C .a ≥–14且a ≠0 D .a >–14且a ≠0 6.方程x 2+ax +1=0和x 2-x -a=0有一个公共根,则a 的值是( )A .0B .1C .2D .3 7.已知m 方程210x x --=的一个根,则代数式2m m -的值等于( )A.-1B.0C.1D.28.从正方形的铁皮上,截去2cm 宽的一条长方形,余下的面积是48cm 2,则原来的正方形铁皮的面积是( ) A.9cm 2B.68cm 2C.8cm 2D.64cm 29.县化肥厂第一季度增产a 吨化肥,以后每季度比上一季度增产x %,则第三季度化肥增产的吨数为( )A 、 2(1)a x +B 、2(1)a x +%C 、2(1%)x +D 、2(%)a a x +10. 一个多边形有9条对角线,则这个多边形有多少条边( )A 、6B 、7C 、8D 、9二、填空题 (每题3分,共30分)11.若方程mx 2+3x -4=3x 2是关于x 的一元二次方程,则m 的取值范围是 .12.一元二次方程(x +1)(3x -2)=10的一般形式是 . 13.方程23x x =的解是____14.已知两个连续奇数的积是15,则这两个数是______ 15.已知4)2)(1(2222=-+-+y x y x ,则22x y +的值等于 .16.已知2320x x --=,那么代数式32(1)11x x x --+-的值为 .17.若一个等腰三角形的三边长均满足方程x 2-6x +8=0,则此三角形的周长为 . 18.k = 时,二次三项式x 2-2(k +1)x +k +7是一个x 的完全平方式.19.当k <1时,方程2(k +1)x 2+4kx +2k -1=0的根的情况为: .20.已知方程x 2-b x + 22 = 0的一根为b = ,另一根为= .三、解答题21.解方程(每小题5分,共20分)① 2430x x --= ② 2(3)2(3)0x x x -+-=(3) 2(1)4x -= (4) 3x 2+5(2x+1)=022.(本题10分)有一面积为150平方米的矩形鸡场,鸡场的一边靠墙(墙长18米),另三边用竹篱笆围成,如果竹篱笆的长为35米.求鸡场的长和宽.23.(本题10分)百货商店服装柜在销售中发现:某品牌童装平均每天可售出20件,每件盈利40元.为了迎接“六一”国际儿童节,商场决定采取适当的降价措施,扩大销售量,增加盈利,减少库存.经市场调查发现:如果每件童装降价1元,那么平均每天就可多售出2件.要想平均每天销售这种童装盈利1200元,那么每件童装应降价多少元?24.(本题10分)一张桌子的桌面长为6米,宽为4米,台布面积是桌面面积的2倍,如果将台布铺在桌子上,各边垂下的长度相同,求这块台布的长和宽.25.(本题10分)美化城市,改善人们的居住环境已成为城市建设的一项重要内容.某市近几年来,通过拆迁旧房,植草,栽树,修公园等措施,使城区绿地面积不断增加(如图所示).(1)根据图中所提供的信息回答下列问题:2003年底的绿地面积为 公顷,比2002年底增加了 公顷;在2001年,2002年,2003年这三个中,绿地面积最多的是 年;(2)为满足城市发展的需要,计划到2005年底使城区绿地面积达到72.6公顷,试求这两年(2003~2005)绿地面积的年平均增长率.答案:一、选择题1.B 2.D 3.B 4.A 5.B 6.C 7.C 8.D 9.B ;10.A ;11.m ≠3 12.23120x x +-= 13.3,021==x x 14.3和5或—3和—5 15.4 16.2 17.10 18.-3或2; 19.有两个不相等的实数根;20.10,5 +3; 21.①1227,27x x =+=-;②121,3x x ==; (3).解:开平方,得12x -=±, 即1212x x -=-=-或, 所以123,1x x ==-.(4).解:移项,得 23(5)2(5)0x x -+-=,(5)[3(5)2]0,x x --+=即(5)(313)0,x x --= 503130,x x -=-=或12135,3x x ==. 22.解:设鸡场的一边长为x 米,则另一边长为(35—2x ),列方程,得 (352)150,x x -=解得1210,7.5x x ==,当x =10时,35—2x =15<18,符合题意; 当x =7.5时,35—2x =20>18,不符合题意,舍去. 答:鸡场的长为15米,宽为10米.23.解:设每件童装应降价x 元,则(40)20812004x x ⎛⎫-+⨯= ⎪⎝⎭,解得1220,10x x ==.因为要尽快减少库存,所以x =20. 答:每件童装应降价20元. 24.台布的长为8cm ,宽为6cm ;25.60,4,2003,2005~2006年的年平均增长率为10%.人教版九年级数学上册第21章一元二次方程单元测试卷(含解析)一、单选题(每小题3分,共30分) 1.下列方程中,是一元二次方程的为( ) A .20ax bx c ++= B .230x x +=C .2110x x+=D .()2210x x x +--= 2.已知一元二次方程x 2+kx -3=0有一个根为1,则k 的值为() A .−2B .2C .−4D .43.把一元二次方程223x x =-化为一般形式,若二次项系数为1,则一次项系数及常数项分别为() A .2,3B .2,3-C .2,3-D .2,3--4.关于x 的一元二次方程2x 2+4x ﹣c =0有两个不相等的实数根,则实数c 可能的取值为( ) A .﹣5B .﹣2C .0D .﹣85.在解方程22410x x ++=时,对方程进行配方,文本框①中是嘉嘉的方法,文本框②中是琪琪的方法,则()A .两人都正确B .嘉嘉正确,琪琪不正确C .嘉嘉不正确,琪琪正确D .两人都不正确6.已知一元二次方程22510x x -+=的两个根为1x ,2x ,下列结论正确的是() A .1x ,2x 都是正数 B .121x x ⋅= C .1x ,2x 都是有理数D .1252x x +=-7.已知1x =是一元二次方程()22210m x mx m --+=的一个根,则m 的值是() A .12或1- B .12-C .12或1 D .128.某超市今年二月份的营业额为82万元,四月份的营业额比三月份的营业额多20万元,若二月份到四月份每个月的月销售额增长率都相同,若设增长率为x ,根据题意可列方程( )A .82(1+x )2=82(1+x )+20B .82(1+x )2=82(1+x )C .82(1+x )2=82+20D .82(1+x )=82+209.某航空公司有若干个飞机场,每两个飞机场之间都开辟一条航线,一共开辟了15条航线,则这个航空公司共有飞机场( ) A .5个B .6个C .7个D .8个10.定义:如果一元二次方程20(a 0)++=≠ax bx c 满足0a b c -+=,那么我们称这个方程为“美丽”方程.已知20(a 0)++=≠ax bx c 是“美丽”方程,且有两个相等的实数根,则下列结论正确的是() A .a b c ==B .a b =C .b c =D .a c =二、填空题(每小题3分,共30分)11.已知一元二次方程的一个根是﹣3,则这个方程可以是________(填上你认为正确的一个方程即可)12.若关于x 的一元二次方程2220x mx m --+=的二次项系数、一次项系数和常数项的和为0,则m 的值是_______.13.方程(21)(53)(8)0x x x --+=可以化为三个一次方程,它们分别是________,________,____________.14.关于x 的方程()2228(2)10a a x a x --++-=,当a __________时为一元一次方程;当a ________时为一元二次方程.15.若关于x 的方程x 2+mx -3=0有一根是1,则它的另一根为________.16.三角形的两边长分别为3和6,第三边的长是方程2x -6x +8=0的解,则此三角形的第三边长是_____17.某商品原价为180元,连续两次提价%x 后售价为300元,依题意可列方程:____ 18.若()()215x y x y +++=,则x y +=________.19.如果a 是一元二次方程2350x x --=的一个根,那么代数式283a a -+=_______.20.已知x =y =则225x xy y -+的值为__________.三、解答题(共60分)21.(16分)用合适的方法解下列方程: (1)2860x x --=;(2)22(3)8x -=;(3)24630x x --=;(4)2(23)5(23)x x -=-.22.(6分)先化简:再求值(1﹣11a +)÷221aa -,其中a 是一元二次方程x 2﹣2x ﹣2=0的正实数根.23.(6分)已知关于x 的一元二次方程()22210x m x m +-+=.(1)用含有m 的式子表示判别式∆=________;(2)当m 在什么范围内取值时,方程有两个不相等的实数根;(3)若该方程有两个不相等的实数根1x ,2x ,问当m 取何值时221214x x +=.24.(6分)如图,在菱形ABCD 中,,AC BD 交于点O ,8cm AC ,6cm BD =,动点M 从点A 出发沿AC 以2cm /s 的速度匀速运动到点C ,动点N 从点B 出发沿BO 以1cm/s 的速度匀速运动到点O ,若点,M N 同时出发,问出发后几秒时,MCN ∆的面积为22cm ?25.(8分)“绿水青山就是金山银山”,为进一步发展美丽乡村建设,自2016年以来,某县加大了美丽乡村环境整治的经费投入,2015年该县投人环境整治经费9亿元,2018年投入环境整治经费12.96亿元.假设该县这两年投入环境整治经费的年平均增长率相同.(1)求这两年该县投入环境整治经费的年平均增长率;(2)若该县环境整治经费的投入还将保持相同的年平均增长率,请你预测2019年该县投入环境整治的经费为多少亿元?26.(8分)随着旅游旺季的到来,某旅行社为吸引市民组团取旅游,推出了如下收费标准:某单位组织员工旅游,共支付给该旅行社费用27000元,请问该单位这次共有多少员工取旅游?27.(10分)某市正大力发展绿色农产品,有一种有机水果A特别受欢迎,某超市以市场价格10元/千克在该市收购了6000千克A水果,立即将其冷藏,请根据下列信息解决问题:①水果A的市场价格每天每千克上涨0.1元;②平均每天有10千克的该水果损坏,不能出售;③每天的冷藏费用为300元;④该水果最多保存110天.(1)若将这批A水果存放x天后一次性出售,则x天后这批水果的销售单价为_____元;可以出售的完好水果还有_____千克;(2)将这批A水果存放多少天后一次性出售所得利润为9600元?参考答案1.B【解析】根据一元二次方程的概念逐一进行判断即可得.解:A. 2ax bx c 0++=,当a =0时,不是一元二次方程,故不符合题意;B. 2x 3x 0+=,是一元二次方程,符合题意;C. 2110x x+=,不是整式方程,故不符合题意; D. ()2x 2x x 10+--=,整理得:2+x =0,不是一元二次方程,故不符合题意,故选B.2.B【解析】根据一元二次方程的解的定义,把x =1代入方程得关于k 的一次方程1-3+k =0,然后解一次方程即可.解:把x =1代入方程得1+k -3=0,解得k =2.故选:B .3.D【解析】先将223x x =-变形为2230x x --=,再根据一次项系数及常数项的定义即可得到答案.解:根据题意可将方程变形为2230x x --=,则一次项系数为2-,常数项为3-.故选D .4.C【解析】利用一元二次方程根的判别式(△=b 2﹣4ac )可以判断方程的根的情况,有两个不相等的实根,即△>0.解:依题意,关于x 的一元二次方程,有两个不相等的实数根,即△=b 2﹣4ac =42+8c >0,得c >﹣2根据选项,只有C 选项符合,故选:C .5.A【解析】利用配方法把含未知数的项写成完全平方式,然后利用直接开平方法解方程. 解:嘉嘉是把方程两边都乘以2,把二次项系数化为平方数,再配方,正确;琪琪是把方程两边都除以2,把二次项系数化为1,再配方,正确;∴两人的做法都正确.故选A .6.A【解析】由根与系数的关系可得出x 1+x 2=52、x 1x 2=12,进而可得出x 1、x 2都是正数,再进行判断.解:∵一元二次方程2x 2-5x +1=0的两个根为x 1、x 2,∴x 1+x 2=52,x 1x 2=12, ∴x 1、x 2都是正数.故选:A .7.B【解析】把x =1代入方程(m 2 -1)x 2 -mx +m 2 =0,得出关于m 的方程,求出方程的解即可.解:把x =1代入方程(m 2 -1)x 2 -mx +m 2 =0得:(m 2 -1)-m +m 2 =0,即2m 2 -m -1=0,(2m +1)(m -1)=0,解得:m =- 12或1,当m =1时,原方程不是二次方程,所以舍去.故选B .8.A【解析】根据题意找出等量关系:20=+四月份的营业额三月份的营业额,列出方程即可.解:由二月份到四月份每个月的月营业额增长率都相同,二月份的营业额为82万元,若设增长率为x ,则三月份的营业额为82(1)x +,四月份的营业额为282(1)x +,四月份的营业额比三月份的营业额多20万元,则282(1)82(1)20x x +=++,故选:A9.B【解析】每个飞机场都要与其余的飞机场开辟一条航行,但两个飞机场之间只开通一条航线.等量关系为:飞机场数×(飞机场数-1)=15×2,把相关数值代入求正数解即可. 解:设这个航空公司共有x 个飞机场,依题意得1x(x 1)152-=, 解得16x =,25x =-(不符合题意,舍去),所以这个航空公司共有6个飞机场.故选B .10.D【解析】根据已知得出方程20(a 0)++=≠ax bx c 有x =-1,再判断即可.解:把x =−1代入方程20(a 0)++=≠ax bx c 得出a −b +c =0,∴b =a +c ,∵方程有两个相等的实数根,∴△=24b ac -=22()()4=0a c ac a c --=+, ∴a =c ,故选D .11.x 2+3x =0【解析】方程一个解为−3,假设另一个解为0,则方程可为x (x +3)=0,然后把方程化为一般式即可.解:一元二次方程的一个根是−3,则这个方程可以是x (x +3)=0,即x 2+3x =0. 故答案为x 2+3x =0.12.1【解析】二次项系数、一次项系数、常数项分别是1,-2,-m +2.它们的和是0,即得到1220m m --+=解方程求出m 即可.解:由题意可得1220m m --+=,解得1m =.故答案为:1.13.2x -1=0. 5x -3=0. x +8=0.【解析】如果三个因数的积等于0,那么三个因数中每一个因数都可能等于0.由此可写出三个方程.解:∵(21)(53)(8)0x x x --+=∴2x -1=0或5x -3=0或x +8=0.∴三个方程是2x -1=0或5x -3=0或x +8=0.14.a =4 a ≠4且a ≠-2.【解析】分别根据一元二次方程及一元一次方程的定义求解即可.解:(1) 由于一元一次方程的定义可知:a 2-2a -8=0且a +2≠0,解得:a =4(2)由一元二次方程的定义可知:a 2-2a -8≠0,解得a ≠4且a ≠-2.故答案为:4;a ≠4且a ≠-2,15.-3【解析】设方程x 2+mx -3=0的两根为x 1、x 2,根据根与系数的关系可得出x 1•x 2=﹣3,结合x 1=1即可求出x 2,此题得解.解:设方程x 2+mx -3=0的两根为x 1、x 2,则:x 1•x 2=﹣3.∵x 1=1,∴x 2=﹣3.故答案为:﹣3.16.4【解析】求出方程的解,有两种情况:x =2时,看看是否符合三角形三边关系定理;x =4时,看看是否符合三角形三边关系定理;求出即可.解:x 2-6x +8=0,(x -2)(x -4)=0,x -2=0,x -4=0,x 1=2,x 2=4,当x =2时,2+3<6,不符合三角形的三边关系定理,所以x =2舍去,当x =4时,符合三角形的三边关系定理,此三角形的第三边长是4,故答案为:4.17.2180(1%)300x +=【解析】本题可先用x %表示第一次提价后商品的售价,再根据题意表示第二次提价后的售价,然后根据已知条件得到关于x %的方程.解:当商品第一次提价x %时,其售价为180+180x %=180(1+x %);当商品第二次提价x %后,其售价为180(1+x %)+180(1+x %)x %=180(1+x %)2. ∴2180(1%)300x +=.故答案为:2180(1%)300x +=.18.3或5-【解析】首先将x y +看成一个整体,转化方程,再利用十字相乘法即可得解.解:令t x y =+,则方程可化为()215t t += 22150t t +-=()()350t t -+=解得3t =或5t =-即答案为3或5-.19.3【解析】根据一元二次方程的解的定义得到a 2-3a =5,再把8-a 2+3a 变形为8-(a 2-3a ),然后利用整体代入的方法计算即可.解:把x =a 代入x 2-3x -5=0得a 2-3a -5=0,所以a 2-3a =5,所以8-a 2+3a =8-(a 2-3a )=8-5=3.故答案为:3.20.5【解析】由于x +y =xy =1方便运算,故可考虑将代数式化为含(x +y )和xy 的项,再整体代入(x +y )和xy 的值,进行代数式的求值运算.解:∵x =y =∴x +y =xy =1,∵225x xy y -+22(2)7x xy y xy =++-=2()7x y xy +-,∴原式=271-⨯=5,故答案为:5.21.(1)14x =,24x =;(2)15=x ,21x =;(3)1x =,2x =;(4)132x =,24x =. 【解析】(1)方程整理后,利用配方法求出解即可;(2)利用直接开平方法求出解即可;(3)用公式法求解即可;(4)方程整理后,利用因式分解法求出解即可.解:(1)配方,得28161660x x -+--=,2(4)22x -=,两边开平方,得4x -=即4x -=4x -=,∴14x =,24x =.(2)方程两边同除以2,得2(3)4x -=,两边开平方,得32x -=±,∴15=x ,21x =.(3)这里4,6,3a b c ==-=-,∵224(6)44(3)840b ac -=--⨯⨯-=>,∴x ===,即134x +=,234x -=. (4)原方程可变形为2(23)5(23)0x x ---=,(23)[(23)5]0x x ---=,230x -=或280x -=, ∴132x =,24x =.22.2【解析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,求出方程的正实数根得到a 的值,代入计算即可求出结果. 解:原式=11(1)(1)(1)11222a a a a a a a a a +-+---==+, 把x =a 代入方程得:a 2﹣2a ﹣2=0,即a 2﹣2a +1=3,整理得:(a ﹣1)2=3,即a ﹣1=解得:a =a =1,23.(1)4-8m ;(2)12m <;(3)-1.【解析】(1)将方程的各项系数直接代入根的判别式即可求解;(2)由于无论m 取何值时,方程总有两个不相等的实数根,所以证明判别式是正数即可;(3)利用根与系数的关系可以得到如果把所求代数式利用完全平方公式变形,结合前面的等式即可求解.解:(1)一元二次方程x 2+2(m -1)x +m 2=0中,a =1,b =2(m -1),c =m 2,∴△=b 2-4ac =[2(m -1)]2-4×1×m 2=48m -(2)方程有两个不相等的实数根,480m ∴->,12m ∴<. (3)()22210x m x m +-+=,()1221x x m ∴+=--,212x x m ⋅=,()22221212122284x x x x x x m m ∴+=+-=-+,221214x x +=, 228414m m ∴-+=,11m ∴=-,25m =(舍),故m =-1.24.出发后2s 时,MCN ∆的面积为22cm .【解析】根据点M 、N 运动过程中与O 点的位置关系,设出发后xs 时MCN ∆的面积为22cm ,则3x <.根据三角形面积公式列方程求解即可.解:设出发后 s x 时,MCN ∆的面积为22cm ,则3x <. 根据题意,得(82)(3)22x x --=, 解得12x =,25x =(舍去).答:出发后2s 时,MCN ∆的面积为22cm .25.(1)这两年该县投入环境整治经费的年平均增长率为20%;(2)2018年该县投入环境整治的经费为15.552亿元.【解析】(1)设这两年该县投入环境整治经费的年平均增长率为x ,根据2015年该县投入环境整治经费9亿元,2017年投入环境整治经费12.96亿元列出方程,再求解即可;(2)根据2017年该县投入环境整治经费和每年的增长率,直接得出2018年该县投入环境整治经费为12.96×(1+0.2),再进行计算即可.解:(1)设这两年该县投入环境整治经费的年平均增长率为x ,根据题意得,29(1)12.96x +=,解得10.220%x ==,2 2.2x =-(不合题意,舍去).答:这两年该县投入环境整治经费的年平均增长率为20%.(2)因为2017年投入环境整治的经费为12.96亿元,且年平均增长率为20%,所以2018年该县投入环境整治的经费为12.96(10.2)15.552⨯+=(亿元).答:2018年该县投入环境整治的经费为15.552亿元.26.单位这次共有30名员工去旅游【解析】由题意易知该单位旅游人数一定超过25人,然后设共有x 名员工去旅游,依据题意列出方程解方程,得到两个x 的解,再通过人均旅游不低于700,对x 的解进行检验即可得到答案解:设该单位这次共有x 名员工去旅游 2510002500027000⨯-<∴旅游的员工人数一定超过25人根据题意得()1000202527000x x ⎡⎤--=⎣⎦整理得,27513500x x -+=()()45300x x --=解得1245,30x x ==当45x =时,()110002025600700,45x x ---<∴=不合题意应舍去当30x =时,()110002025900700,30x x --->∴=符合题意答:该单位这次共有30名员工去旅游.27.(1)(100.1)x +;(600010)x -;(2)这批A 水果存放80夫后一次性出售所得利润为9600元.【解析】(1)根据销售价=成本价+每天每千克上涨0.1元填空;完好水果的质量=总质量-损坏的水果的质量;(2)按照等量关系“利润=销售总金额-收购成本-各种费用”列出方程求解即可. 解:(1) 10+0.1x ;6000-10x .故答案是:10+0.1x ;6000-10x ;(2)设存放x 天后一次性出售所得利润为9600元,根据题意得,(100.1)(600010)1060003009600x x x +--⨯-=,解得80x =或120x =.x,∵110∴这批A水果存放80天后一次性出售所得利润为9600元.人教版九年级数学上册第21章一元二次方程单元检测题(有答案)(1)一、选择题(每题4分,满分32分)1.已知3是关于x 的方程012342=+-ax x 的一个解,则a 2的值是( ) A.11 B.12 C.13 D.142.用配方法解方程2210x x +-=时,配方结果正确的是( )A .2(2)2x +=B .2(1)2x +=C .2(2)3x +=D .2(1)3x += 3.一元二次方程0122=--x x 的根的情况为( )A.有两个相等的实数根B.有两个不相等的实数根C.只有一个实数根D.没有实数根4.某校办工厂生产的某种产品,今年产量为200件,计划通过改革技术,使今后两年的产量都比前一年增长一个相同的百分数,使得三年的总产量达到1400件.若设这个百分数为x ,则可列方程为( )A.()140012002002=++xB. ()()1400120012002002=++++x x C. ()140012002=+x D. ()()1400120012002=+++x x 5.关于x 的方程()01452=---x x a 有实数根,则a 满足( ) A. a ≥1 B. a >1且a ≠5 C. a ≥1且a ≠5 D. a ≠56.若31-是方程022=+-c x x 的一个根,则c 的值为( )A .2-B .234- C.33- D .31+7.现定义某种运算()a b a a b ⊗=>,若2(2)2x x x +⊗=+,那么x 的取值范围是( )(A )12x -<<(B )2x >或1x <-(C )2x >(D )1x <-8. 关于x 的方程ax 2-(a +2)x +2=0只有一解(相同解算一解),则a 的值为( )(A)a =0. (B)a =2. (C)a =1. (D)a =0或a =2.二、填空题(每题4分,满分32分)9.已知一元二次方程有一个根是2,那么这个方程可以是 (填上你认为正确的一个方程即可).10.已知实数x 满足4x 2-4x+l=O ,则代数式2x+x21的值为________. 11.如果αβ、是一元二次方程23 1 0x x +-=的两个根,那么2+2ααβ-的值是___________12.已知23-是一元二次方程240x x c -+=的一个根,则方程的另一个根是 .13.已知01a a b x ≠≠=,,是方程2100ax bx +-=的一个解,则2222a b a b --的值是 .14、在Rt △ABC 中, ∠C =90°,斜边c=5,两直角边的长a 、b 是关于x 的一元二次方程x 2-mx +2m -2=0的两个根 ,则Rt △ABC 中较小锐角的正弦值_________15、已知三个连续奇数,其中较大的两个数的平方和比最小数的平方的3倍还小25,则这三个数分别为_________16、若关于x 的一元二次方程2(1)410k x x -++=有实数根,则k 的取值范围是 .三、解答题(满分56分)17. 解方程(1) 2430x x --= (2) 2(3)2(3)0x x x -+-=(3) 2(1)4x -= (4) 3x 2+5(2x+1)=018. 求证:代数式3x 2-6x+9的值恒为正数。
人教版数学九年级上册第21章《一元二次方程》单元检测题含答案解析
九年级数学第21章《一元二次方程》单元检测题分值:120分时间:90分钟一、选择题(本大题共12道小题,共36分)1.关于x的方程是一元二次方程的条件是A. B. C. D. a为任意实数2.把一元二次方程化成一般形式,其中a,b,c分别为A. 2,3,B. 2,,C. 2,,1D. 2,3,13.已知是关于x的一元二次方程的一个根,则m的值是A. 1B.C. 0D. 无法确定4.若方程中,a,b,c满足和,则方程的根是A. 1,0B. ,0C. 1,D. 无法确定5.用配方法解一元二次方程,配方正确的是A. B. C. D.6.一元二次方程的根的情况为A. 有两个相等的实数根B. 有两个不相等的实数根C. 只有一个实数根D. 没有实数根7.已知,是关于x的一元二次方程的两个实数根,且,,则a,b的值分别是A. ,1B. 3,1C. ,D. ,18.关于x的方程的两个根是和1,则的值为A. B. 8 C. 16 D.9.王叔叔从市场上买了一块长80cm,宽70cm的矩形铁皮,准备制作一个工具箱.如图,他将矩形铁皮的四个角各剪掉一个边长xcm的正方形后,剩余的部分刚好能围成一个底面积为的无盖长方形工具箱,根据题意列方程为A. B.C. D.11.某县以“重点整治环境卫生”为抓手,加强对各乡镇环保建设的投入,计划从2019年起到2021年累计投入4250万元,已知2019年投入1500万元,设投入经费的年平均增长率为x,根据题意,下列所列方程正确的是A.B.C.D.12.关于x的一元二次方程有两个整数根且乘积为正,关于y的一元二次方程同样也有两个整数根且乘积为正.给出三个结论:这两个方程的根都是负根;;其中正确结论的个数是A. 0个B. 1个C. 2个D. 3个二、填空题(本大题共6小题,共18分)13.已知关于x的方程没有实数根,则m的取值范围是______.14.已知方程的一根为,则方程的另一根为______.15.已知,是一元二次方程的两实数根,则的值是______.16.在中,,,,且关于x的方程有两个相等的实数根,则AC边上的中线长为.17.某公司今年1月份的生产成本是400万元,由于改进技术,生产成本逐月下降,3月份的生产成本是361万元假设该公司2、3月每个月生产成本的下降率都相同,则每个月生产成本的下降率是.18.定义符号的含义为:当时,当时,,如:,,则方程的解是______.三、解答题(本大题共7小题,共66分)19.解下列方程:.20.已知关于x的一元二次方程,求证:无论实数m取得何值,方程总有两个实数根;若方程有一个根的平方等于1,求m的值.21.若要建一个矩形养鸡场,养鸡场的一面靠墙,如图所示,墙长18 m,墙对面有一个2 m宽的门,另三边用竹篱笆围成,篱笆总长33 m,且围成的养鸡场的面积为,则鸡场的长和宽各为多少米.22.已知实数a,b,c满足:,,又,为方程的两个实根,试求的值.23.某生物实验室需培育一群有益菌现有60个活体样本,经过两轮培植后,有益菌总和达24000个,其中每个有益菌每一轮可分裂出若干个相同数目的有益菌.每轮分裂中每个有益菌可分裂出多少个有益菌按照这样的分裂速度,经过三轮培植后共有多少个有益菌24.某菜市场有平方米和4平方米两种摊位,平方米的摊位数是4平方米摊位数的2倍.管理单位每月底按每平方米20元收取当月管理费,该菜市场全部摊位都有商户经营且各摊位均按时全额缴纳管理费.菜市场毎月可收取管理费4500元,求该菜市场共有多少个4平方米的摊位?为推进环保袋的使用,管理单位在5月份推出活动一:“使用环保袋送礼物”,平方米和4平方米两种摊位的商户分别有和参加了此项活动.为提高大家使用环保袋的积极性,6月份准备把活动一升级为活动二:“使用环保袋抵扣管理费”,同时终止活动一.经调査与测算,参加活动一的商户会全部参加活动二,参加活动二的商户会显著增加,这样,6月份参加活动二的平方米摊位的总个数将在5月份参加活动一的同面积个数的基础上增加,毎个摊位的管理费将会减少;6月份参加活动二的4平方米摊位的总个数将在5月份参加活动一的同面积个数的基础上增加,每个摊位的管理费将会减少这样,参加活动二的这部分商户6月份总共缴纳的管理费比他们按原方式共缴纳的管理费将减少,求a的值.25.己知的一条边BC的长为5,另两边AB、AC的长是关于x的一元二次方程的两个实数根,求证:无论k为何值时,方程总有两个不相等的实数根:为何值时,是以BC为斜边的直角三角形;为何值时,是等腰三角形,并求的周长.参考答案一、选择题(本大题共12道小题,共36分)1-5 CBBCA 6-10 BDCCC 11-12 DD二、填空题(本大题共6小题,共18分)13、14、15、616、217、18、或三、解答题(本大题共7小题,共66分)19、解:因式分解,得.或.,;移项,得.提公因式,得.解得,;将看作一个整体,分解因式,得,即.解得.20、证明:,,所以无论实数m取得何值,方程总有两个实数根;解:方程有一个根的平方等于1,此根是,当根是1时,代入得:,即,此时m为任何数;当根是时,,解得:.21、解:设养鸡场的宽为xm,根据题意得:,解得:,,当时,,当时,舍去,答:养鸡场的宽是10m,长为15m.22、解:,即,,2 ab为方程的两根,,由得,或即,由根与系数的关系得:23、设每轮分裂中每个有益菌可分裂出x个有益菌,根据题意,得.解得,不合题意,舍去.答:每轮分裂中每个有益菌可分裂出19个有益菌.个.答:经过三轮培植后共有480000个有益菌.24、解:设该菜市场共有x个4平方米的摊位,则有2x个平方米的摊位,依题意,得:,解得:.答:该菜市场共有25个4平方米的摊位.由可知:5月份参加活动一的平方米摊位的个数为个,5月份参加活动一的4平方米摊位的个数为个.依题意,得:整理,得:,解得:舍去,.答:a的值为50.25、解:因为,所以方程总有两个不相等的实数根.根据根与系数的关系:,,则,即,解得或.根据三角形的边长必须是正数,因而两根的和且两根的积,解得,.若时,5是方程的实数根,根据一元二次方程根与系数的关系可得:,当时,,则周长是;当时,则周长是.。
第一学期人教版九年级上册数学第21章《一元二次方程》单元测试卷(含答案)
第一学期人教版九年级上册数学第21 章《一元二次方程》单元测试卷(含答案)、填空题(共10 小题,每题 3 分,共30 分)一1.已知??= ??2 + ? ?- 3 4,当??= ________时,??= - 2.2.关于??的一元二次方程( ??+ 1) ??2 + 2??- 1 = 0有两个不相等的实数根,则??的取值范围为________.3.有一个人患了流感,经过两轮传染后共有144人患了流感.若设平均每轮传染??人,则可列方程为________.4.一元二次方程??2 + 2??= 0的解是________.5.若3是关于??的方程??2 - ? ?+ ??= 0的一个根,则方程的另一个根等于________.6.若是关于??的一元二次方程( ??- 2) ??2 - 4√????+ 2 = 0有实数根,则??的取值范围是________.7.有一个两位数比它的个位数字的平方小2,个位数字比十位数字大3,求这个两位数.若是设十位数字为??,则可列方程为:________.8.方程??2 - 3??- ??= 0的一个根是4,则另一个根是________.9.商场某种商品平均每天可销售30件,每件盈利50元.为了赶忙减少库存,商场决定采用合适的降价措施.经检查发现,每件商品每降价1元,商场平均每天可多售出2件.据此规律计算:每件商品降价________元时,商场日盈利可达到2100元.10.关于??的方程4????2 + 12??- 5 = 0有实数根,则??的取值范围是________.第1页/共6页二、选择题(共10 小题,每题 3 分,共30 分)11.以下方程是一元二次方程的是()A. 2????- 7 = 0B.√2??2 - 7 = 012 - 7??= 0 D.5( ??+ 1) = 72C.??12.已知2是关于??的方程??2 - 2??= 0的一个根,则2??- 1的值是()A.3B.4C.5D. 613.方程2( ??- 3)2 = 8的根是()A. ??1 = 2,??2 = - 2B. ??1 = 5,??2 = 1C.??1 = - 5,??2 = - 1D.??1 = - 5,??2 = - 114.已知??1、??2是方程??2 - 5??- 6 = 0的两个根,则代数式??12 + ??2的值是()A. 37B.26C.13D. 1015.设??、??是方程??2 + ??- 2012 = 0的两个实数根,则??2 + 2??+ ??的值为()A. 2008B. 2009C.2010D. 201116.方程??2 - 2??- 3 = 0经过配方后,其结果正确的选项是()A. ( ??+ 1)2 = 4B.( ??- 1)2 = 4C.( ??+ 1)2 = 2D.( ??- 1)2 = 217.一种分裂病菌,经过两次分裂后变成了100个,那么在每次分裂中,平均一个病菌可以分裂为()A. 8个B. 9个C.10个D. 11个18.解方程??2 + 2016??= 0的最正确方案是()第2页/共6页A.配方法B.直接开平方法C.公式法D.因式分解法19.已知关于??的方程??2 + ????- 2 = 0的一个根是- 1,则??的值是()A.- 1B.0C.1D. 0或120.将一元二次方程2??2 - 3??+ 1 = 0配方,以下配方正确的选项是()A. ( ??- 32)2 = 16 B.2( ??- 34)2 =116C.( ??- 34)2 = 116D.以上都不对三、解答题(共 6 小题,每题10 分,共60 分)21.解方程(1)3??2 - 6??= - 3;( 2) 4(??- 2)2 -( 3??- 1)2 = 0;(3)??(3??- 2) - 6??2 = 0;( 4)( ??+ 2) ( ??- 5) = 1.22.已知关于??的方程??2 + ????+ ? ?- 2 = 0.( 1)求证:不论??取何实数,该方程都有两个不相等的实数根;( 2)若该方程的一个根为1,求??的值及该方程的另一根;( 3)直接写出该方程一个不可以能的根.23.某商场六月份投资11万元购进一批商品,计划今后每个月以相同的增添率进行投资,八月份投资18 .59万元.( 1)求该商场投资的月平均增添率;( 2)从六月份到八月份,该商场三个月为购进商品共投资多少万元?24.如图,要利用一面墙(墙长为25米)建羊圈,用100米的围栏围成总面积为400平方米的三个大小相同的矩形羊圈,求羊圈的边长????,第3页/共6页???各?为多少米?25.某商场经销一种成本为 4 0元/ ????的水产品,市场检查发现,按50元/ ???销?售,一个月能售出500???.?经市场检查,销售单价每涨1元,月销售量就减少10???,?针对这种水产品的销售情况,商场在月成本不高出10000元的情况下,使得月销售利润达到8000元,请你帮忙算算,销售单价定为多少?°,点??从26.如图,在△?????中?,????= 10√41??,????= 40??, ????= 90点??开始沿???边?向点??以2??/ ??的速度匀速搬动,同时另一点??由?? 点开始以3??/ ??的速度沿着???匀?速搬动,几秒时,△?????的? 面积等于450??2?答案- 1+ √129 1.2- 1- √129 或22.?? >- 54且??≠- 13.1 + ??+ (1+??) ??= 1444.0或- 25.- 26.??≥0,??≠27.10( ??- 3) + ??= ??2 - 28.- 19.2010.??≥- 9511-20:BABAD BCDAC第4页/共6页21.解:( 1)整理得3??2 - 6??+ 3 = 03( ??- 1)2 = 0??1 = ??2 = 1;( 2)整理得[2( ??- 2) + ( 3??- 1)][ 2( ??- 2) - ( 3??- 1)] = 0( ??- 1)( ??+ 3) = 0??1 = 1,??2 = - 3;(3)整理得- 3??2 - 2??= 0??(- 3??- 2) = 0??1 = 0,??2 = - 2 ;(4)整理得??2 - 3??- 11 = 03∵??= 1,??= - 3,??= - 11∵??= - ??±√??2- 4????=2??3±√9+ 442= 3±√532∵??1 = 3+ √53 ,??2=2 3- √53.222.解:( 1)∵△=??2 - 4( ??- 2) = ??2 - 4??+ 8 = ??2 - 4??+ 4 + 4 = ( ??- 2)2 + 4 > 0,∵不论??取何实数,该方程都有两个不相等的实数根;( 2)将??= 1代入方程??2 + ????+ ? ?- 2 = 0得,1 + ??+ ??- 2 = 0,解得,??= 12;方程为??2 + 12 ??- 32= 0,即2??2 + ? ?- 3 = 0,设另一根为??1,则??1=- 3 .( 3) ??= - 1.223.该商场投资的月平均增添率是30%.(2)11 ×(1 + 30%) = 1 4.3(万元),11 + 1 4.3 + 18 .59 = 43.89(万元),答:该商场三个月为购进商品共投资43.89万元.24.羊圈的边长???,????分?别是2 0米、20米.第5页/共6页25.销售单价定为80元.26.解:????= √???2?- ???2?=50设??秒后,△?????的? 面积等于450平方米,1( 50 - 2??) ?3??= 4502??= 10或??= 1 5.∵????= 3??15= 45 > 40 > ????,∵??= 15应舍去,所以??= 10当1 0秒时面积450平方米.第6页/共6页。
人教版九年级上册数学第21章《一元二次方程》 单元测试(含答案)
试卷第1页,总3页 第二十一章《一元二次方程》 测试题一、单选题(共12小题,每小题3分,共36分)1.下列方程为一元二次方程的是 ( )A .ax 2+bx+c=0B .x 2-2x -3C .2x 2=0D .xy +1=02.把方程x (3-2x )+5=1化成一般式后二次项系数与常数项的积是( )A .3B .-8C .-10D .153.若关于x 的一元二次方程(a +1)x 2+x +a 2-1=0的一个解是x =0,则a 的值为( )A .1B .-1C .±1D .04.若a-b+c=0,则方程ax 2+bx+c=0(a 0≠)必有一个根是( )A .0 B .1C .-1 D .b a -5.用配方法解一元二次方程2x 2﹣4x+1=0,变形正确的是( )A .(x ﹣12)2=0 B .(x ﹣12)2=12 C .(x ﹣1)2=12 D .(x ﹣1)2=06.已知直角三角形的两边长是方程x 2﹣7x+12=0的两根,则第三边长为( ) A .7 B .5C 7D .577.若关于 x 的一元二次方程x 2﹣x ﹣3m =0有两个不相等的实数根,则 m 的取值范围是()A .m 12>B .m 112<C .m >﹣112D .m 112< 8.若方程x 2-3x -1=0的两根为x 1、x 2,则11x +21x 的值为( ) A .3 B .-3 C .13 D .-139.已知关于x 的一元二次方程(2a -1)x 2+(a +1)x +1=0的两个根相等,则a 的值等于( )A .-1或-5B .-1或5C .1或-5D .1或510.如图,在长为33米宽为20米的矩形空地上修建同样宽的道路(阴影部分),余下的部分为草坪,要使草坪的面积为510平方米,则道路的宽为( )A .1米B .2米C .3米D .4米11.是下列哪个一元二次方程的根( ) A .3x 2+5x+1=0、 B .3x 2﹣5x+1=0、 C .3x 2﹣5x ﹣1=0、 D .3x 2+5x ﹣1=012.已知m ,n 是方程x 2﹣2018x +2019=0的两个根,则(m 2﹣2019m +2018)(n 2﹣2019n +2018)的值是( )A .1B .2C .4037D .4038二、填空题(共4小题,每小题5分,共20分)13.一元二次方程4x 2= 3x 的解是_____________.14.圣诞节时,某班一个小组有x 人,他们每两人之间互送贺卡一张,已知全组共送贺卡110张,则可列方程为_____.15.关于a 的方程2420a a ++=的两个解为1a 、2a ,则2212a a +=_____. 16.已知两数的积是12,这两数的平方和是25, 以这两数为根的一元二次方程是___________.三、解答题(共6小题,第17题8分,第18题12分,第19题6分,第20题6分,第21题8分,第22题12分,共52分)17、解下列方程 (1) x 2-2x-5=0 (用配方法) (2)2x 2+3x=4(公式法)18、已知关于x 的方程||(2)210m m x x ++-=.(1)当m 为何值时是一元一次方程?(2)当m 为何值时是一元二次方程?19、 已知两个方程20x px q ++=和20x qx p ++=仅有一个相同的根,求p q +的值.20、小刚在做作业时,不小心将方程2350x bx --=的一次项系数用墨水覆盖住了,但从题目的答案中,他知道方程的一个解为5x =,请你帮助小刚求出被覆盖住的数试卷第3页,总3页 21、已知关于x 的一元二次方程22(51)40x m x m m -+++=. 求证:无论m 取任何实数时,原方程总有两个实数根;22、现代互联网技术的广泛应用,催生了快递行业的高度发展,据调查,长沙市某家小型“大学生自主创业”的快递公司,今年三月份与五月份完成投递的快递总件数分别为10万件和12.1万件,现假定该公司每月投递的快递总件数的增长率相同.(1)求该快递公司投递总件数的月平均增长率;(2)如果平均每人每月最多可投递0.6万件,那么该公司现有的21名快递投递业务员能否完成今年6月份的快递投递任务?如果不能,请问至少需要增加几名业务员?参考答案1.考点:一元二次方程试题解析:解析:A 选二次项系数为字母,要强调不为0;B 选项不是等式;D 选项有两个未知数,故选C .答案:C2..考点:一元二次方程的一般形式试题解析:解析:x (3-2x )+5=1 -2x 2+3x+4=0 -2×4=-8 故选B .答案:B3.考点:一元二次方程的解试题解析:解析:将x =0代入原方程得a 2-1=0且a +1≠0所以a=1故选A .答案:A4.考点:一元二次方程试题解析:解析:A 选二次项系数为字母,要强调不为0;B 选项不是等式;D 选项有两个未知数,故选C .答案:C5.考点:配方法答案第4页,总3页试题解析:解析x 2﹣2x+12=0 x 2﹣2x+1=12(x ﹣1)2=12故选C .答案:C6.考点:解一元二次方程和勾股定理试题解析:解析:解方程得x 1 =3, x 2=4.当3和4为直角边时,第三边为5,当4为斜边故选D .答案:D7.考点:一元二次方程根的判别式和一元一次不等式的解法试题解析:解析:∆= b ²-4ac >0即1+12m >0 m >﹣112故选C . 答案:C8.考点:一元二次方程根与系数的关系 试题解析:解析:11x +21x =(x ₁+x ₂)/(x ₁x ₂)=﹣3 故选B . 答案:B9.考点:一元二次方程根的判别式和解一元二次方程试题解析:解析:(a +1)²- 4(2a -1)=0解得a ₁=1a ₂=5故选D .答案:D10.考点:一元二次方程的应用试题解析:解析:设路宽为x,依题可得:(20-x )(33-x)=510解得x 1 =3, x 2=50(舍去)故选C .答案:C11.考点:一元二次方程求根公式试题解析:解析:由一元二次方程求根公式与方程给出的根可找出a=3 b=5 c = - 1 故选D .答案:D12.考点:一元二次方程的解和根与系数的关系试题解析:解析:将m 和n 分别代入方程变形得m 2﹣2018m =-2019n 2﹣2018n =-2019将原式变形后整体代入(-2019-m+2018(-2019-n+2018)=(-1-m)(-1-n)=1+m+n+mn∵m+n=2018 mn=2019∴原式=1+2018+2019=4038故选D .答案:D13.考点:解一元二次方程(因式分解法)试题解析:解析:4x 2 -3x= 0 x(4x-3)=0 x 1 =0, x 2=34答案:x 1 =0, x 2=3414.考点:一元二次方程的应用试题解析:答案:x (x ﹣1)=11015.考点:一元二次方程根与系数的关系和完全平方公式试题解析:解析:2212a a +=(a ₁+a ₂)²-2a ₁a ₂答案:1216.考点:一元二次方程解法和根与系数的关系试题解析:解析:∵ x₁x₂=12 x₁²+x₂²=25∴x ₁+x ₂=7或-7答案:x 2-7x+12=0或x 2+7x+12=017.考点:一元二次方程解法答案:(1)11x =21x =;(2)134x -=,234x -= 18.考点:一元一次方程和一元二次方程的概念试题解析:解析:(1)注意分三种情况讨论(2)注意指数和系数答案:(1)-2或±1或0 (2)2 19.考点:一元二次方程根和方程组试题解析:解析:x ²+px+q= x ²+qx+p (p-q)x=p-q x=1代入原方程1+p+q=0 ∴p+q=-1答案:-1;.20.考点:一元二次方程解试题解析:解析:答案:1421.考点:一元二次方程根的判别式和完全平方公式试题解析:解析:答案:∵∆= b ²-4ac =(5m+1)²-4(4m ²+m )=9m ²+6m+1=(3m+1)²≥0∴不论m 取任何实数,原方程总有两个实数根22.考点:一元二次方程的应用和一元一次不等式试题解析:解析:(1)设增长率为x ,依题可得10(1+x )²=12.1解得x 1 =0.1, x 2=-2.1(舍去)故增长率为10%;(2)6月总数12.1×(1+10%)=13.31>21×0.6所以不能完成任务。
人教版初三数学上册第21章《一元二次方程》单元测试题含答案解析
7.输入一组数据,按下列程序进行计算,输出结果如表:
6
人教版初三数学上册第 21 章《一元二次方程》单元测试题含答案解析
x 输出
20.5 -13.75
20.6 -8.04
20.7 -2.31
20.8 3.44
20.9 9.21
分析表格中的数据,估计方程(x+8)2-826=0 的一个正数解 x 的大致范围为(C) A.20.5<x<20.6 B.20.6<x<20.7 C.20.7<x<20.8 D.20.8<x<20.9
17.(本题 8 分)小明用下面的方法求出方程 2 x-3=0 的解,请你仿照他的方法求出下面另 外两个方程的解,并把你的解答过程写在下面的表格中. 方程 换元法得新方程 令 x=t 则 2t-3=0 解新方程 3 2 检验 3 t= >0 2 求原方程的解 3 x= , 2 9 所以 x= . 4
(2)如果该养殖户第 3 年的养殖成本为 7.146 万元,求可变成本平均每年增长的百分率 x.
21.(本题 8 分)一张长为 30 cm,宽 20 cm 的矩形纸片,如图 1 所示,将这张纸片的四个角 各剪去一个边长相同的正方形后,把剩余部分折成一个无盖的长方体纸盒,如图 2 所示,如 果折成的长方体纸盒的底面积为 264 cm2,求剪掉的正方形纸片的边长.
人教版初三数学上册第 21 章《一元二次方程》单元测试题含答案解析
初三数学上册第 21 章《一元二次方程》单元测试题
(满分:120 分 考试时间:120 分钟)
一、选择题(本大题共 10 个小题,每小题 3 分,共 30 分.) 1.下列方程是关于 x 的一元二次方程的是( A.ax2+bx+c=0 1 1 B. 2+ =2 x x ) C.x2+2x=y2-1 ) D.3(x+1)2=2(x+1)
人教版九年级数学上册第二十一章一元二次方程单元测试卷-(含答案及解析)
保密★启用前人教版九年级数学上册单元测试卷第二十一章 一元二次方程考试范围:一元二次方程;考试时间:120分钟;试卷总分:120分一、单选题(共30分,每小题3分) 1.下列是一元二次方程的是( )A .2230x x --=B .25x y +=C .112xx += D .10x +=2.方程4x 2=81化成一元二次方程的一般形式后,其中的二次项系数、一次项系数和常数项分别是( )A .4,0,81B .﹣4,0,81C .4,0,﹣81D .﹣4,0,﹣81 3.方程2690x x +-=的根的情况是( )A .有两个相等的实数根B .有两个不相等的实数根C .有一个根为1-D .没有实数根4.已知关于x 的一元二次方程22(1)210a x x a --+-=有一个根为0x =,则a 的值为( )A .0B .±1C .1D .1-5.若一次函数y kx b =+的图象不经过第二象限,则关于x 的方程20x kx b ++=的根的情况是( )A .有两个不相等的实数根B .有两个相等的实数根C .无实数根D .无法确定6.已知23-=x x ,则代数式()()()323210x x x x +-+-的值为( ).A .34B .14C .26D .77.等腰三角形一边长为2,它的另外两条边的长度是关于x 的一元二次方程x 2﹣6x+k =0的两个实数根,则k 的值是( )A .8B .9C .8或9D .128.用“配方法”解一元二次方程x 2﹣16x +24=0,下列变形结果,正确的是( ) A .(x ﹣4)2=8B .(x ﹣4)2=40C .(x ﹣8)2=8D .(x ﹣8)2=409.设m 、n 是一元二次方程x 2+3x ﹣7=0的两个根,则m 2+4m +n =( ) A .﹣3 B .4 C .﹣4 D .5 10.某农机厂一月份生产零件50万个,第一季度共生产零件182万个.设该厂二、三月份平均每月的增长率为x ,那么x 满足的方程是( )A .50(1+x )²=182B .50+50(1+x )+50(1+x )²=182C .50(1+2x )=182D .50+50(1+x )+50(1+2x )²=182二、填空题(共24分,每小题3分) 11.一元二次方程230x -=的解为_______.12.方程220x x -+=与方程2610x x --=的所有实数根的和是______.13.已知m ,n 是方程2310x x +-=的两个根,则22m n +=_________.14.若关于x 的一元二次方程2840ax x -+=有两个不相等的实数根,则a 的取值范围是_____.15.若关于x 的一元二次方程2(1)210a x x --+=有两个不相等的实数根,则a 的最大整数值是__________.16.如果关于x 的一元二次方程20ax bx c ++=有两个实数根,且其中一个根为另外一个根的2倍,则称这样的方程为“倍根方程”,以下关于“倍根方程”的说法,正确的有_____(填序号).①方程220x x --=是“倍根方程”;①若(2)()0x mx n -+=是“倍根方程”,则22450m mn n ++=;①若,p q 满足2pq =,则关于x 的方程230px x q ++=是“倍根方程”;①若方程20ax bx c ++=是“倍根方程”,则必有229b ac =.17.一次会议上,每两个参加会议的人都相互握一次手,有人统计一共握手78次,则这次会议参加的人数是__.18.我国南宋数学家杨辉在1275年提出的一个问题:“直田积(矩形面积)八百六十四步(平方步),只云阔(宽)不及长一十二步(宽比长少一十二步),问阔及长各几步?若设阔(宽)为x 步,则可列方程 .三、解答题(共66分) 19.解方程:(共8分)(1)()2140x --= (2)()2236x x -=-20.阅读下列材料,解答问题.(共6分)222(25)(37)(52)x x x -++=+.解:设25,37m x n x =-=+,则52m n x +=+,原方程可化为222()m n m n +=+, 0mn ,即(25)(37)0x x -+=.250x ∴-=或370x +=,解得1257,23x x ==-. 请利用上述方法解方程:222(45)(32)(3)x x x -+-=-.21.方程2ax 10x ++=与方程2x a 0x --=有且只有一个公共根,求a 的值(共6分)22.已知:关于x的方程x2﹣(k+2)x+2k=0(共8分)(1)求证:无论k取任何实数值,方程总有实数根;(2)若等腰三角形ABC的一边长a=1,另两边长b,c恰好是这个方程的两个根,求①ABC的周长.23.一个两位数,个位上的数字比十位上的数字小4,且个位上数字与十位上数字的平方和比这个两位数小4,求这个两位数.(共6分)24.如图,利用一面墙(墙的长度不限),用20m长的篱笆,怎样围成一个面积为250m的矩形场地?(共6分)25.某单位通过旅行社组织职工去上海世博会.下面是领队与旅行社导游收费标准的一段话:领队:每人的收费标准是多少?导游:如果人数不超过30人,人均旅游费用为120元.领队:超过30人怎样优惠呢?导游:如果超过30人,每增加1人,人均旅游费用就降低2元,但人均旅游费用不得低于90元.该单位按旅行社的收费标准组团参观世博会后,共支付给旅行社4000元.请你根据上述信息,求该单位这次参观世博会的共有几人?(共8分)26.安顺市某商贸公司以每千克40元的价格购进一种干果,计划以每千克60元的价格销售,为了让顾客得到更大的实惠,现决定降价销售,已知这种干果销售量y (千克)与每千克降价x (元)(020)x <<之间满足一次函数关系,其图象如图所示:(共8分)(1)求y 与x 之间的函数关系式;(2)商贸公司要想获利2090元,则这种干果每千克应降价多少元?27.如图,长方形ABCD 中(长方形的对边平行且相等,每个角都是90°),AB =6cm ,AD =2cm ,动点P ,Q 分别从点A ,C 同时出发,点P 以2cm/s 的速度向终点B 移动,点Q 以1cm/s 的速度向点D 移动,当有一点到达终点时,另一点也停止运动,设运动的时间为t (s ),问:(共10分)(1)当t =1s 时,四边形BCQP 面积是多少?(2)当t 为何值时,点P 和点Q 距离是3cm ?(3)当t = s 时,以点P ,Q ,D 为顶点的三角形是等腰三角形.(直接写出答案)参考答案:1.A2.C3.B4.D5.A6.C7.B8.D9.B10.B11.1x 2x = 12.6 13.11 14.4a <且0a ≠15.0 16.①①① 17.13 18.x (x +12)=86419.(1)13x =,21x =-;(2)12x =,25x =(1)()2140x --= ()214x -=12x -=或12x -=-13x =,21x =-(2)()2236x x -=- ()()22320x x ---=()()250x x --=20=或50x -=12x =,25x =20.x 1=54,x 2=23 解:(4x -5)2+(3x -2)2=(x -3)2,设m =4x -5,n =3x -2,则m -n =(4x -5)-(3x -2)=x -3,原方程化为:m 2+n 2=(m -n )2,整理得:mn =0,即(4x -5)(3x -2)=0,①4x -5=0,3x -2=0,①x 1=54,x 2=23. 21.-2解:∵有且只有一个公共根∴22ax 1x a x x ++=--∴ax 10x a +++=①当a=-1时两个方程完全相同,故a≠-1,①()11a x a -+=+∴1x =-当1x =-时,代入第一个方程可得1-a+1=0解得:2a =22.(1)见解析;(2)5(1)证明:由题意知:Δ=(k +2)2﹣4•2k =(k ﹣2)2,①(k ﹣2)2≥0,即①≥0,①无论取任何实数值,方程总有实数根;(2)解:当b =c 时,Δ=(k ﹣2)2=0,则k =2,方程化为x 2﹣4x +4=0,解得x 1=x 2=2,①①ABC 的周长=2+2+1=5;当b =a =1或c =a =1时,把x =1代入方程得1﹣(k +2)+2k =0,解得k =1,方程化为x 2﹣3x +2=0,解得x 1=1,x 2=2,不符合三角形三边的关系,此情况舍去,①①ABC 的周长为5.23.这个两位数为84.设十位上的数字为x ,则个位上的数字为(x ﹣4).可列方程为:x 2+(x ﹣4)2=10x +(x ﹣4)﹣4解得:x 1=8,x 2=1.5(舍),①x ﹣4=4,①10x +(x ﹣4)=84.答:这个两位数为84.24.用20m 长的篱笆围成一个长为10 m ,宽为5 m 的矩形(其中一边长10m ,另两边长5 m )解:设与墙垂直的篱笆长为x m ,则与墙平行的篱笆长为()202x -m ,根据题意,得(202)50x x -=,整理得,210250x x -+=,解得125x x ==,()202202510x m ∴-=-⨯=.答:用20m 长的篱笆围成一个长为10 m ,宽为5 m 的矩形(其中一边长10m ,另两边长5 m ).25.30X120="3600" ①3600小于4000,①参观的人数大于30人设共有x 人,则人均旅游费为【120-2(x-30)】元由题意得:x 【120-2(x-30)】=4000整理得:x 1=40,x 2=50当x=40时,120—2(40-30)=100大于90当x=50时,120—2(50.30)=80.小于90(不合,舍去)答:该单位这次参观世博会共又40人30×120=3600.①3600<4000,∴参观的人数大于30人,设共有x 人,则人均旅游费为[120﹣2(x ﹣30)]元,由题意得:x [120﹣2(x ﹣30)]=4000解得:x 1=40,x 2=50.当x =40时,120﹣2(40﹣30)=100>90;当x =50时,120﹣2(50﹣30)=80<90(不合,舍去).答:该单位这次参观世博会共有40人.26.(1)10100y x =+;(2)商贸公司要想获利2090元,则这种干果每千克应降价9元.解:(1)设一次函数解析式为:y kx b =+,根据图象可知:当2x =,120y =;当4x =,140y =;①21204140k b k b +=⎧⎨+=⎩,解得:10100k b =⎧⎨=⎩, ①y 与x 之间的函数关系式为10100y x =+;(2)由题意得:(6040)(10100)2090x x --+=,整理得:21090x x -+=,解得:11x =.29x =,①让顾客得到更大的实惠,①9x =.答:商贸公司要想获利2090元,这种干果每千克应降价9元.27.(1)5cm 2;(2;(365 解:(1)如图,①四边形ABCD 是矩形,①AB =CD =6,AD =BC =2,①A =①B =①C =①D =90°. ①CQ =1cm ,AP =2cm ,①AB =6﹣2=4(cm ).①S =()14252+⨯=(cm 2). 答:四边形BCQP 面积是5cm 2;(2)如图1,作QE ①AB 于E ,①①PEQ =90°,①①B =①C =90°,①四边形BCQE 是矩形,①QE =BC =2cm ,BE =CQ =t (cm ).①AP =2t (cm ),①PE =6﹣2t ﹣t =(6﹣3t )cm .在Rt △PQE 中,由勾股定理,得(6﹣3t )2+4=9,解得:t 如图2,作PE ①CD 于E ,①①PEQ=90°.①①B=①C=90°,①四边形BCQE是矩形,①PE=BC=2cm,BP=CE=6﹣2t.①CQ=t,①QE=t﹣(6﹣2t)=3t﹣6在Rt△PEQ中,由勾股定理,得(3t﹣6)2+4=9,解得:t综上所述:t(3)如图3,当PQ=DQ时,作QE①AB于E,①①PEQ=90°,①①B=①C=90°,①四边形BCQE是矩形,①QE=BC=2cm,BE=CQ=t(cm).①AP=2t,①PE=6﹣2t﹣t=6﹣3t.DQ=6﹣t.①PQ=DQ,①PQ=6﹣t.在Rt△PQE中,由勾股定理,得(6﹣3t)2+4=(6﹣t)2,解得:t如图4,当PD=PQ时,作PE①DQ于E,①DE=QE=12DQ,①PED=90°.①①A=①D=90°,①四边形APED是矩形,①PE=AD=2cm.DE=AP=2t,①DQ=6﹣t,①DE=62t-.①2t=62t-,解得:t=65;如图5,当PD=QD时,①AP=2t,CQ=t,①DQ=6﹣t,①PD=6﹣t.在Rt△APD中,由勾股定理,得4+4t2=(6﹣t)2,解得t1t2.综上所述:t 6565。
初中数学 人教版 九年级上册 第21章 一元二次方程 单元考试测试卷(含解析答案)
初中数学 人教版 九年级上册 第21章 一元二次方程 单元考试测试卷(含解析答案)1 / 6第21章 一元二次方程 单元测试卷一、单选题(共10题;共30分)1.下列方程是关于 的一元二次方程的是 A.B.C.D.2.将一元二次方程x 2-6x+5=0配方后,原方程变形为( )A. (x-3)2=5 B. (x-6)2=5 C. (x-6)2=4 D. (x-3)2=4 3.已知点A (m 2-2,5m+4)在第一象限角平分线上,则m 的值是( )A. 6B. -1C. 2或3D. -1或64.若关于x 的一元二次方程x 2﹣2x ﹣k+1=0有两个不相等的实数根,则一次函数y=kx ﹣k 的大致图象是( )A.B.C.D.5.如果关于 的方程 有两个实数根,则 满足的条件是( )A.B.C.且D.且6.在一次酒会上,每两人都只碰一次杯,如果一共碰杯55次,则参加酒会的人数为( ) A. 9人 B. 10人 C. 11人 D. 12人7.已知一个直角三角形的两条直角边的长恰好是方程x 2﹣3x =4(x ﹣3)的两个实数根,则该直角三角形斜边上的中线长是( )A. 3B. 4C. 6D. 2.58.若一元二次方程x 2﹣x ﹣2=0的两根为x 1 , x 2 , 则(1+x 1)+x 2(1﹣x 1)的值是( ) A. 4 B. 2 C. 1 D. ﹣29.王叔叔从市场上买了一块长80cm ,宽70cm 的矩形铁皮,准备制作一个工具箱.如图,他将矩形铁皮的四个角各剪掉一个边长xcm 的正方形后,剩余的部分刚好能围成一个底面积为3000cm 2的无盖长方形工具箱,根据题意列方程为( )A. (80﹣x )(70﹣x )=3000B. 80×70﹣4x 2=3000C. (80﹣2x )(70﹣2x )=3000D. 80×70﹣4x 2﹣(70+80)x=300010.如图的六边形是由甲、乙两个长方形和丙、丁两个等腰直角三角形所组成,其中甲、乙的面积和等于丙、丁的面积和.若丙的一股长为2,且丁的面积比丙的面积小,则丁的一股长为何?( )A. B. C. 2﹣ D. 4﹣2二、填空题(共6题;共18分)11.方程 转化为一元二次方程的一般形式是________.12.一元二次方程的根是________.13.关于x 的一元二次方程(m ﹣3)x 2+x+(m 2﹣9)=0的一个根是0,则m 的值是________. 14.若一元二次方程x 2+2kx+k 2-2k+1=0的两个根分别为x 1 , x 2 , 满足x 12+x 22=4,则k 的值=________。
人教版九年级(上册)数学第21章一元二次方程单元测试卷(含答案和解析)
人教版九年级上册数学第21章一元二次方程单元测试卷考试时间:100分钟;试卷满分:120分学校__________班级_________姓名_________座号_________成绩__________一.选择题(共10小题,满分30分,每小题3分)1.(3分)若代数式x2﹣2x﹣3的值等于0,则x的值是()A.3或﹣1B.1或﹣3C.﹣1D.32.(3分)用配方法解一元二次方程m2﹣6m+8=0,结果是下列配方正确的是()A.(m﹣3)2=1B.(m+3)2=1C.(m﹣3)2=﹣8D.(m+3)2=9 3.(3分)将一元二次方程x2﹣6x=2化成(x+h)2=k的形式,则k等于()A.﹣7B.9C.11D.54.(3分)已知关于x的一元二次方程x2﹣6x+k=0的一个根是1,则另一个根是()A.5B.﹣5C.﹣6D.﹣75.(3分)下列方程中,两根分别为2和3的方程是()A.x2﹣x﹣6=0B.x2﹣6x+5=0C.x2+x﹣6=0D.x2﹣5x+6=0 6.(3分)用直接开平方法解方程3(x﹣3)2﹣24=0,得方程的根是()A.x=3+2B.x=3﹣2C.x1=3+2,x2=3﹣2D.x=﹣3±27.(3分)等腰三角形的底和腰是方程x2﹣7x+12=0的两个根,则这个三角形的周长是()A.11B.10C.11或10D.不能确定8.(3分)下列方程:①5x2=2y;②2x(x+3)=x2﹣5;③x2+x+3=0;④﹣x2+5x=0;⑤3x2++3=0;⑥mx2+nx=0.其中是一元二次方程的有()A.1个B.2个C.3个D.4个9.(3分)已知(m2+n2)2﹣2(m2+n2)﹣3=0,则m2+n2=()A.﹣1或3B.3C.﹣1D.无法确定10.(3分)方程x2+3x=14的解是()A.x=B.x=C.x=D.x=二.填空题(共6小题,满分24分,每小题4分)11.(4分)把方程3x2+x=5x﹣2整理成一元二次方程的一般形式为.12.(4分)一元二次方程x2﹣x﹣2=0的二次项系数是,一次项系数是,常数项是.13.(4分)如果x1、x2是方程x2﹣7x+2=0的两个根,那么x1+x2=.14.(4分)已知x=1是方程x2+mx﹣n=0的一个根,则m2﹣2mn+n2=.15.(4分)某学校准备修建一个面积为200平方米的矩形花圃,它的长比宽多10米.设花圃的宽为x米,则可列方程为,化为一般形式为.16.(4分)方程是关于x的一元二次方程,则m的取值范围是.三.解答题(共9小题,满分66分)17.(6分)解方程(1)x2﹣4x﹣5=0(2)3x(x﹣1)=2﹣2x.18.(6分)不解方程,判别方程根的情况.①3x2﹣5x+4=0;②x2﹣2x=5﹣x.19.(6分)若a是方程x2﹣x﹣1=0的一个根,求代数式a3﹣2a+3的值.20.(6分)从一块正方形的木板上锯掉2米宽的长方形木条,剩下的面积是48平方米,求原来正方形木板的面积.21.(8分)若a是方程x2﹣5x+1=0的一个根,求a2+的值.22.(8分)某商场销售一批进价为120元的名牌衬衫,平均每天可销售20件,每件可盈利40元.经调查发现,在一定范围内,衬衫的单价每降1元,每天就可多售出2件衬衫.这种衬衫的单价应降价多少元?才能使商场通过销售这批衬衫平均每天盈利1200元.23.(8分)本届政府为了解决农民看病难的问题,决定下调药品的价格.某种药品经过连续两次降价后,由每盒200元下调至128元,(1)求这种药品平均每次降价的百分率是多少?(2)经调查某药店,该药品每盒降价5%,即可多销售10盒.若该药店原来每天可销售500盒,那么两次调价后,每月可销售该药多少盒?24.(9分)经市场调查发现,某种进货价格为30元的书包以40元的价格出售时,平均每月售出600个,并且书包的售价每提高1元,某月销售量就减少10个,某商场计划购进一批这种书包.当商场每月有10000元的销售利润时,(1)书包的售价应为多少元?(2)书包的月销售量为多少个?(3)为体现“薄利多销”的销售原则,你认为销售价格应定为多少?25.(9分)如图.用长为24m的篱笆、一面墙(墙的最大可用长度为10m)围成中间有一道篱笆的长方形花圃.(1)如果花圃的面积为45m2,求花圃的宽AB的长.(2)花圃的面积能围成18m2吗?若能,请求出这时花圃的宽AB的长;若不能,请说明理由.(3)花圃的面积能围成51m2吗?若能,请求出这时花圃的宽AB的长;若不能,请说明理由.人教版九年级上册数学第21章一元二次方程单元测试卷参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.(3分)若代数式x2﹣2x﹣3的值等于0,则x的值是()A.3或﹣1B.1或﹣3C.﹣1D.3【分析】根据题意得到x2﹣2x﹣3=0,利用因式分解法解方程即可.【解答】解:依题意得:x2﹣2x﹣3=0,整理,得(x﹣3)(x+1)=0,解得x1=3,x2=﹣1.故选:A.2.(3分)用配方法解一元二次方程m2﹣6m+8=0,结果是下列配方正确的是()A.(m﹣3)2=1B.(m+3)2=1C.(m﹣3)2=﹣8D.(m+3)2=9【分析】移项,配方,即可得出选项.【解答】解:m2﹣6m+8=0,m2﹣6m=﹣8,m2﹣6m+9=﹣8+9,(m﹣3)2=1,故选:A.3.(3分)将一元二次方程x2﹣6x=2化成(x+h)2=k的形式,则k等于()A.﹣7B.9C.11D.5【分析】方程配方得到结果,即可确定出k的值.【解答】解:方程x2﹣6x=2,配方得:x2﹣6x+9=11,即(x﹣3)2=11,则k等于11,故选:C.4.(3分)已知关于x的一元二次方程x2﹣6x+k=0的一个根是1,则另一个根是()A.5B.﹣5C.﹣6D.﹣7【分析】设方程x2﹣6x+k=0的两根为α、β,由根与系数的关系可得出α+β=6,结合α=1即可求出β值.【解答】解:设方程x2﹣6x+k=0的两根为α、β,则有:α+β=6,∵α=1,∴β=6﹣1=5.故选:A.5.(3分)下列方程中,两根分别为2和3的方程是()A.x2﹣x﹣6=0B.x2﹣6x+5=0C.x2+x﹣6=0D.x2﹣5x+6=0【分析】根据方程的两根为2和3,结合根与系数的关系即可得出方程,此题得解.【解答】解:∵方程的两根分别为2和3,∴2+3=5,2×3=6,∴方程为x2﹣5x+6=0.故选:D.6.(3分)用直接开平方法解方程3(x﹣3)2﹣24=0,得方程的根是()A.x=3+2B.x=3﹣2C.x1=3+2,x2=3﹣2D.x=﹣3±2【分析】先移项、系数化1,则可变形为(x﹣3)2=8,然后利用数的开方解答,求出x ﹣3的值,进而求x.【解答】解:移项得,3(x﹣3)2=24,两边同除3得,(x﹣3)2=8,开方得,x﹣3=±2,所以x1=3+2,x2=3﹣2.故选C.7.(3分)等腰三角形的底和腰是方程x2﹣7x+12=0的两个根,则这个三角形的周长是()A.11B.10C.11或10D.不能确定【分析】利用因式分解法求出方程的解得到x的值,确定出底与腰,即可求出周长.【解答】解:方程分解得:(x﹣3)(x﹣4)=0,解得:x1=3,x2=4,若3为底,4为腰,三角形三边为3,4,4,周长为3+4+4=11;若3为腰,4为底,三角形三边为3,3,4,周长为3+3+4=10.故选:C.8.(3分)下列方程:①5x2=2y;②2x(x+3)=x2﹣5;③x2+x+3=0;④﹣x2+5x=0;⑤3x2++3=0;⑥mx2+nx=0.其中是一元二次方程的有()A.1个B.2个C.3个D.4个【分析】本题根据一元二次方程的定义解答.一元二次方程必须满足四个条件:(1)未知数的最高次数是2;(2)二次项系数不为0;(3)是整式方程;(4)含有一个未知数.由这四个条件对四个选项进行验证,满足这四个条件者为正确答案.【解答】解:①5x2=2y,方程含有两个未知数,故错误;②2x(x+3)=x2﹣5,符合一元二次方程的定义,正确;③x2+x+3=0,符合一元二次方程的定义,正确;④﹣x2+5x=0,符合一元二次方程的定义,正确;⑤3x2++3=0,不是整式方程,故错误;⑥mx2+nx=0,方程二次项系数可能为0,故错误.故选:C.9.(3分)已知(m2+n2)2﹣2(m2+n2)﹣3=0,则m2+n2=()A.﹣1或3B.3C.﹣1D.无法确定【分析】设y=m2+n2,原式化成关于y的一元二次方程,解方程即可求得.【解答】解:设y=m2+n2,则原式化为:y2﹣2y﹣3=0,(y﹣3)(y+1)=0,∴y=3或y=﹣1,∵m2+n2≥0,∴m2+n2=3.故选:B.10.(3分)方程x2+3x=14的解是()A.x=B.x=C.x=D.x=【分析】把方程化为一元二次方程的一般形式,用一元二次方程的求根公式求出方程的根.【解答】解:方程整理得:x2+3x﹣14=0a=1,b=3,c=﹣14,△=9+56=65x=.故选:B.二.填空题(共6小题,满分24分,每小题4分)11.(4分)把方程3x2+x=5x﹣2整理成一元二次方程的一般形式为3x2﹣4x+2=0.【分析】方程移项合并,整理为一般形式即可.【解答】解:方程整理得:3x2﹣4x+2=0,故答案为:3x2﹣4x+2=012.(4分)一元二次方程x2﹣x﹣2=0的二次项系数是1,一次项系数是﹣1,常数项是﹣2.【分析】找出一元二次方程的二次项系数,一次项系数,以及常数项即可.【解答】解:元二次方程x2﹣x﹣2=0的二次项系数是1,一次项系数是﹣1,常数项是﹣2.故答案为:1;﹣1;﹣213.(4分)如果x1、x2是方程x2﹣7x+2=0的两个根,那么x1+x2=7.【分析】根据根与系数的关系求解.【解答】解:根据题意得x1+x2=7.故答案为:7.14.(4分)已知x=1是方程x2+mx﹣n=0的一个根,则m2﹣2mn+n2=1.【分析】把x=1代入方程求出m﹣n=﹣1,根据完全平方公式得出(m﹣n)2,代入求出即可.【解答】解:∵x=1是方程x2+mx﹣n=0的一个根,∴代入得:1+m﹣n=0,m﹣n=﹣1,∴m2﹣2mn+n2=(m﹣n)2=(﹣1)2=1,故答案为:1.15.(4分)某学校准备修建一个面积为200平方米的矩形花圃,它的长比宽多10米.设花圃的宽为x米,则可列方程为x(x+10)=200,化为一般形式为x2+10x﹣200=0.【分析】根据花圃的面积为200列出方程即可.【解答】解:∵花圃的长比宽多10米,花圃的宽为x米,∴长为(x+10)米,∵花圃的面积为200,∴可列方程为x(x+10)=200.化为一般形式为x2+10x﹣200=0,故答案为:x(x+10)=200,x2+10x﹣200=0.16.(4分)方程是关于x的一元二次方程,则m的取值范围是m=±.【分析】根据一元二次方程的定义可得m2﹣1=2,且m﹣1≠0,再解即可.【解答】解:由题意得:m2﹣1=2,且m﹣1≠0,解得:m=±,故答案为:m=±.三.解答题(共9小题,满分66分)17.(6分)解方程(1)x2﹣4x﹣5=0(2)3x(x﹣1)=2﹣2x.【分析】(1)根据因式分解法可以解答本题;(2)先移项,然后提公因式可以解答此方程.【解答】解:(1)x2﹣4x﹣5=0(x﹣5)(x+1)=0∴x﹣5=0或x+1=0,解得,x1=5,x2=﹣1;(2)3x(x﹣1)=2﹣2x3x(x﹣1)+2(x﹣1)=0(3x+2)(x﹣1)=0∴3x+2=0或x﹣1=0,解得,.18.(6分)不解方程,判别方程根的情况.①3x2﹣5x+4=0;②x2﹣2x=5﹣x.【分析】①根据方程的系数结合根的判别式得出△=﹣23<0,由此得出方程无解;②根据方程的系数结合根的判别式得出△=21>0,由此得出方程有两个不相等的实数根.【解答】解:①∵△=(﹣5)2﹣4×3×4=﹣23<0,∴该方程无解;②原方程可变形为x2﹣x﹣5=0,∴△=(﹣1)2﹣4×1×(﹣5)=21>0,∴该方程有两个不相等的实数根.19.(6分)若a是方程x2﹣x﹣1=0的一个根,求代数式a3﹣2a+3的值.【分析】直接解方程求出a的值,再代入求代数式的值,是一种基本思路.但这种思路比较麻烦.另外一种思路是由已知得到:a2﹣a﹣1=0即a2﹣a=1用a2﹣a把已知的式子表示出来,从而求代数式的值.【解答】解:由a是方程x2﹣x﹣1=0的一个根得:a2﹣a﹣1=0,即a2﹣a=1,∴a3﹣2a+3=a3﹣a2+a2﹣a﹣a+3=a(a2﹣a)+(a2﹣a)﹣a+3=a+1﹣a+3=4.20.(6分)从一块正方形的木板上锯掉2米宽的长方形木条,剩下的面积是48平方米,求原来正方形木板的面积.【分析】设原来的正方形木板的边长为x,锯掉2米宽厚,就变为长为x米,宽为(x﹣2)米的长方形,根据长方形的面积公式列方程求x,继而可求正方形的面积.【解答】解:设原来的正方形木板的边长为x.x(x﹣2)=48,x=8或x=﹣6(舍去),8×8=64(平方米).答:原来正方形木板的面积是64平方米.21.(8分)若a是方程x2﹣5x+1=0的一个根,求a2+的值.【分析】把a代入原方程,得到关于a的一元二次方程,a2﹣5a+1=0,代入直接求值即可.【解答】解:依题意得,a2﹣5a+1=0,则a≠0,方程两边同时除以a,得a﹣5+=0,∴a+=5,两边同时平方,得:(a+)2=25,a2++2=25,∴a2+=23.22.(8分)某商场销售一批进价为120元的名牌衬衫,平均每天可销售20件,每件可盈利40元.经调查发现,在一定范围内,衬衫的单价每降1元,每天就可多售出2件衬衫.这种衬衫的单价应降价多少元?才能使商场通过销售这批衬衫平均每天盈利1200元.【分析】设衬衫的单价应下降x元.则每天可售出(20+2x)件,每件盈利(40﹣x)元.再根据相等关系:每天的获利=每天售出的件数×每件的盈利;列方程求解即可.【解答】解:设这种衬衫的单价应降价x元,根据题意,得(20+2x)(40﹣x)=1200,解得:x1=10,x2=20.答:这种衬衫的单价应降价10元或20元,才能使商场平均每天盈利1200元.23.(8分)本届政府为了解决农民看病难的问题,决定下调药品的价格.某种药品经过连续两次降价后,由每盒200元下调至128元,(1)求这种药品平均每次降价的百分率是多少?(2)经调查某药店,该药品每盒降价5%,即可多销售10盒.若该药店原来每天可销售500盒,那么两次调价后,每月可销售该药多少盒?【分析】增长率问题,一般用增长后的量=增长前的量×(1+增长率),设这种药品平均每次降价的百分率是x则两个次降价以后的价格是200(1﹣x)2,据此即可列方程求解.【解答】解:(1)设这种药品平均每次降价的百分率是x,由题意得200(1﹣x)2=128解得x=1.8(不合题意舍去)x=0.2答:这种药品平均每次降价的百分率是20%;(2)由(1)可知:该药品的降价率为×100%=36%,500+×10=572,572×30=17160(盒).24.(9分)经市场调查发现,某种进货价格为30元的书包以40元的价格出售时,平均每月售出600个,并且书包的售价每提高1元,某月销售量就减少10个,某商场计划购进一批这种书包.当商场每月有10000元的销售利润时,(1)书包的售价应为多少元?(2)书包的月销售量为多少个?(3)为体现“薄利多销”的销售原则,你认为销售价格应定为多少?【分析】(1)设书包的售价为x元,由这种书包的售价每上涨1元,其销售量就减少10个,列出函数关系式,(2)将求得的x的值代入600﹣10(x﹣40)求值即可,(3)取使得销售量最大的未知数的取值即可.【解答】解:(1)设书包的售价应定为x元,则有(x﹣30)[600﹣10(x﹣40)]=10000.解得x1=50,x2=80.所以书包的售价应定为50元或80元.(2)当售价为50元时,销售量为500个;当售价为80元,销售量为200个.(3)∵当x=50时候,销售量为500个,最多,∴销售价格应定为50元.25.(9分)如图.用长为24m的篱笆、一面墙(墙的最大可用长度为10m)围成中间有一道篱笆的长方形花圃.(1)如果花圃的面积为45m2,求花圃的宽AB的长.(2)花圃的面积能围成18m2吗?若能,请求出这时花圃的宽AB的长;若不能,请说明理由.(3)花圃的面积能围成51m2吗?若能,请求出这时花圃的宽AB的长;若不能,请说明理由.【分析】(1)设花圃的宽AB为x米,可先用篱笆的长表示出BC的长,然后根据矩形的面积为45m2,根据矩形的面积公式得出方程,求解即可.(2)设花圃的宽AB为y米,可先用篱笆的长表示出BC的长,然后根据矩形的面积为18m2,根据矩形的面积公式得出方程,求解即可.(3)设花圃的宽AB为z米,可先用篱笆的长表示出BC的长,然后根据矩形的面积为51m2,根据矩形的面积公式得出方程,求解即可.【解答】解:(1)设花圃的宽AB为x米,则BC的长为(24﹣3x)米,依题意有x(24﹣3x)=45,解得x1=3,x2=5,∵当x1=3时,24﹣3x=15,墙的最大可用长度为10m,∴x1=3不合题意舍去.故花圃的宽AB的长为5m.(2)设花圃的宽AB为y米,则BC的长为(24﹣3y)米,依题意有y(24﹣3y)=18,解得y1=4﹣,y2=4+,∵当y1=4﹣时,24﹣3y=12+3,墙的最大可用长度为10m,∴y1=4﹣不合题意舍去;当y2=4+时,24﹣3y=12﹣3,墙的最大可用长度为10m,∴y2=4+.故花圃的宽AB的长为(4+)m.(2)设花圃的宽AB为z米,则BC的长为(24﹣3z)米,依题意有z(24﹣3z)=51,z2﹣8z+17=0,∵△=(﹣8)2﹣4×1×17=﹣4<0,∴不能.。
人教版九年级数学上册第二十一章《一元二次方程》测试卷(含答案)
人教版九年级数学上册第二十一章《一元二次方程》测试卷(含答案)题号 一 二 三总分 19 20 21 22 23 24分数一.选择题(共10小题,每题3分,共30分) 1.下列式子是一元二次方程的是( )A .3x 2-6x +2B .x 2-y +1=0 C .x 2=0D.1x 2+x =22.若方程2x 2+mx =4x +2不含x 的一次项,则m =( )A .1B .2C .3D .43.一元二次方程x 2-2x =0的根是( )A .x 1=0,x 2=-2B .x 1=1,x 2=2C .x 1=1,x 2=-2D .x 1=0,x 2=24.用配方法解方程x 2-6x -8=0时,配方结果正确的是( )A .(x -3)2=17B .(x -3)2=14C .(x -6)2=44D .(x -3)2=1 5.若方程x 2﹣5x ﹣1=0的两根为x 1、x 2,则+的值为( )A .5B .C .﹣5D .6. 已知(m 2+n 2)(m 2+n 2+2)-8=0,则m 2+n 2的值为( )A. -4或2 B .-2或4 C. 4 D. 2 7、某超市一月份的营业额为200万元,三月份的营业额为288万元,如果每月比上月增长的百分数相同,则平均每月的增长率为( )A .10%B .15%C .20%D .25%8、已知实数x 满足()()2224120x x x x ----=,则代数式21x x -+的值是( )A .7B .-1C .7或-1D .-5或39、上海世博会的某纪念品原价168元,连续两次降价a %后售价为128元,下面所列方程中正确的是( )A.168(1+a%)2=128 B.168(1-a%)2=128C.168(1-2a%)=128 D.168(1-a2%)=12810、《代数学》中记载,形如21039x x+=的方程,求正数解的几何方法是:“如图1,先构造一个面积为2x的正方形,再以正方形的边长为一边向外构造四个面积为52x的矩形,得到大正方形的面积为392564+=,则该方程的正数解为853-=.”小聪按此方法解关于x的方程260x x m++=时,构造出如图2所示的图形,已知阴影部分的面积为36,则该方程的正数解为()A.6 B.353 C.352 D.3 352二、填空题(每题3分,共24分)11.关于x的方程3x m﹣3﹣2x+4=0是一元二次方程,则m的值为.12.把方程x2+x+3=0变形为(x+h)2=k的形式,其中h,k为常数,则k =.13.若关于x的一元二次方程ax2+2x﹣1=0无解,则a的取值范围是.14.若一元二次方程mx+x2+2=0有两个相等的实数根,则m =.15.菱形的两条对角线的长分别是方程x2﹣mx+56=0的两个根,则菱形的面积是.16.长汀县体育局要组织一次篮球赛,赛制为单循环形式(每两队之间都赛一场),计划安排28场比赛,应邀请支球队参加比赛.17.若α、β是一元二次方程x2+2x﹣6=0的两根,则α2+β2=.18.已知关于x的二次方程ax2+bx+c=0没有实数根,一位老师改动了方程的二次项系数后,得到的新方程有两个根为12和4;另一位老师改动原来方程的某一个系数的符号,所得到的新方程的两个根为﹣2和6,那么=.三.解答题(共46分,19题6分,20 ---24题8分)19.解方程:(1)x2+2x﹣3=0;(2)2(5x﹣1)2=5(5x﹣1);(3)(x+3)2﹣(2x﹣3)2=0;(4)3x2﹣4x﹣1=0.20.已知关于x的方程x2+mx﹣6=0的一个根为2,求方程的另一个根.21.已知关于x的一元二次方程x2﹣(2k﹣2)x+k2=0有两个实数根x1,x2.(1)求实数k的取值范围;(2)若方程的两实数根x1,x2满足|x1+x2|=x1x2﹣22,求k的值.22.已知等腰三角形的三边长分别为a,b,4,且a,b是关于x的一元二次方程x2﹣12x+m+2=0的两根,求m的值.23.如图,要利用一面墙(墙长为55m),用100m的围栏建羊圈,基本结构为三个大小相同的矩形.(1)如果围成的总面积为400m2,求羊圈的边AB,BC的长各为多少;(2) 保持羊圈的基本结构,羊圈总面积是否可以达到800m2?请说明理由.24.为进一步促进义务教育均衡发展,某市加大了基础教育经费的投入,已知2018年该市投入基础教育经费5000万元,2020年投入基础教育经费7200万元.(1)求该市投入基础教育经费的年平均增长率.(2) 如果按(1) 中投入基础教育经费的年平均增长率计算,该市计划2021年用不超过当年基础教育经费的5%购买电脑和实物投影仪共1500台调配给农村学校,若购买一台电脑需3500元,购买一台实物投影仪需2000元,则最多可购买电脑多少台?参考答案一.选择题(共10小题)题号 1 2 3 4 5 6 7 8 9 10 答案 C D D A C B B C D A二.填空题(共8小题)11.解:∵关于x的方程3x m﹣3﹣2x+4=0是一元二次方程,∴m﹣3=2,解得:m=5,故答案为:5.12.解;移项,得x2+x=﹣3,配方,得x2+x+=﹣3+,∴(x+)2=﹣.∴h=,k=﹣.故答案为:﹣.13.解:∵关于x的一元二次方程ax2+2x﹣1=0无解,∴a≠0且Δ=22﹣4×a×(﹣1)<0,解得a<﹣1,∴a的取值范围是a<﹣1.故答案为:a<﹣1.14.解:∵mx+x2+2=0,∴x2+mx+2=0,a=1,b=m,c=2,∵方程有两个相等的实数根,∴b2﹣4ac=0,∴m2﹣4×1×2=0,即m2=8,∴m=.故答案为:.15.解:设菱形的两条对角线的长为m、n,根据题意得mn=56,所以菱形的面积=mn=×56=28.故答案为28.16.解:设要邀请x支球队参加比赛,由题意,得x(x﹣1)=28解得:x1=8,x2=﹣7(舍去).答:应邀请8支球队参加比赛.故答案为:8.17.解:∵α、β是一元二次方程x2+2x﹣6=0的两根,∴α+β=﹣2,αβ=﹣6,∴α2+β2=(α+β)2﹣2αβ=(﹣2)2﹣2×(﹣6)=4+12=16,故答案为:16.18.解:利用新方程有两个根为12和4构造1个一元二次方程为:x2﹣(12+4)x+12×4=0 即x2﹣16x+48=0,与ax2+bx+c=0对应.于是得到:b=﹣16k,c=48k.(其中k是不为0的整数.)从而原方程为:kx2﹣16kx+48k=0(方程从无根变有根,只能是改变系数a或c).同样再由另一个新方程的两个根﹣2和6,构造一个方程:x2﹣(﹣2+6)x+(﹣2)×6=0,即x2﹣4x﹣12=0.此方程两边同乘以4k,得 4kx2﹣16kx﹣48k=0,它与ax2﹣16kx+48k=0对应,得a=4k,从而原方程就是:4kx2﹣16kx+48k =0,所以==8.故答案为8.三.解答题(共7小题)19.解:(1)分解因式得:(x+3)(x﹣1)=0,可得x+3=0或x﹣1=0,解得:x1=﹣3,x2=1;(2)方程整理得:2(5x﹣1)2﹣5(5x﹣1)=0,分解因式得:(5x﹣1)[2(5x﹣1)﹣5]=0,可得5x﹣1=0或10x﹣7=0,解得:x1=0.2,x2=0.7;(3)分解因式得:(x+3+2x﹣3)(x+3﹣2x+3)=0,可得3x=0或﹣x+6=0,解得:x1=0,x2=6;(4)这里a=3,b=﹣4,c=﹣1,∵△=16+12=28>0,∴x==,解得:x1=,x2=.20.解:设方程另一个根为x1,根据题意得2x1=﹣6,解得x1=﹣3,即方程的另一个根是﹣3.21.解:(1)∵方程有两个实数根x1,x2,∴△=(2k﹣2)2﹣4k2≥0,解得k≤;(2)由根与系数关系知:x1+x2=2k﹣2,x1x2=k2,∵k≤,∴2k﹣2<0,又|x1+x2|=x1x2﹣1,代入得,|2k﹣2|=k2﹣22,可化简为:k2+2k﹣24=0.解得k=4(不合题意,舍去)或k=﹣6,∴k=﹣6.22.解:当a=4时,∵a,b是关于x的一元二次方程x2﹣12x+m+2=0的两根,∴4+b=12,∴b=8,而4+4≠0,不符合题意;当b=4时,∵a,b是关于x的一元二次方程x2﹣12x+m+2=0的两根,∴4+a=12,而4+4=8,不符合题意;当a=b时,∵a,b是关于x的一元二次方程x2﹣12x+m+2=0的两根,∴12=a+b,解得a=b=6,∴m+2=36,∴m=34.23.【答案】(1)设AB=xm,则BC=(100-4x)m,100-4x55,x11.25.由题意知,x(100-4x)=400,即x2-25x+100=0,解得x1=20,x2=5(舍),AB=20m,BC=100-420=20m.答:羊圈的边AB长为20m,BC长为20m.(2)不能.理由:设AB=ym时,羊圈总面积可以达到800m2,由题意,得y(100-4y)=800,即y2-25y+200=0,a=1,b=-25,c=200,-4ac=(−25)2-41200=-175<0,方程无实数根,羊圈总面积不可能达到800m2.24.解:(1)设该市投入基础教育经费的年平均增长率为x,根据题意,得5000(1+x)2=7200,解得x1=0.2=20%,x2=-2.2(舍去).答:该市投入基础教育经费的年平均增长率为20%.(2)2021年投入基础教育经费为7200(1+20%)=8640(万元), 设购买电脑m台,则购买实物投影仪(1500-m)台,根据题意,得3500m+2000(1500-m)864000005%,解得m880. 答:最多可购买电脑880台.。
人教版九年级上第21章《一元二次方程》单元测试题(含答案解析)
【解析】
【分析】
首先在-1<x<1的范围内选取x的一个值,作为方程的另一根,再根据因式分解法确定一元二次方程.本题答案不唯一.
【详解】
由题意知,另一根为0时,满足-1<x<1,
∴方程可以为:x(x-1)=0,
故答案为:x(x-1)=0(本题答案不唯一).
【点睛】
C.没有实数根D.无法判断
4.已知一元二次方程 ,若 ,则该方程一定有一个根为()
A.0B.1C.2D.-1
5.用配方法解一元二次方程x2﹣6x﹣1=0时,下列变形正确的是( )
A.(x﹣3)2=1B.(x﹣3)2=10C.(x+3)2=1D.(x+3)2=10
6.关于x的一元二次方程(k-1)x2+2x-2=0有两个不相等的实数根,则整数k的最小值是( )
(1)△>0⇔方程有两个不相等的实数根;
(2)△=0⇔方程有两个相等的实数根;
(3)△<0⇔方程没有实数根.
9.B
【解析】
分析:设剪去的小正方形边长是xcm,则纸盒底面的长为(10−2x)cm,宽为(6−2x)cm,根据长方形的面积公式结合纸盒的底面(图中阴影部分)面积是32cm2,即可得出关于x的一元二次方程,此题得解.
D、是一元二次方程,故此选项正确;
故选D.
【点睛】
此题主要考查了一元二次方程,关键是掌握判断一个方程是否是一元二次方程应注意抓住5个方面:“化简后”;“一个未知数”;“未知数的最高次数是2”;“二次项的系数不等于0”;“整式方程”.
2.D
【解析】
【分析】
把x=1代入x2+px+1=0,即可求得p的值.
详解:设剪去的小正方形边长是xcm,则纸盒底面的长为(10−2x)cm,宽为(6−2x)cm,
人教版九年级数学上学期(第一学期)《一元二次方程》综合检测题及答案.docx
《第21章一元二次方程》一、选择题(本大题共10小题,每小题3分,共30分)1.关于x的一元二次方程(a2﹣1)x2+x﹣2=0是一元二次方程,则a满足()A.a≠1 B.a≠﹣1 C.a≠±1 D.为任意实数2.用配方法解方程x2﹣2x﹣5=0时,原方程应变形为()A.(x+1)2=6 B.(x﹣1)2=6 C.(x+2)2=9 D.(x﹣2)2=93.若关于x的一元二次方程kx2﹣2x﹣1=0有两个不相等的实数根,则k的取值范围是()A.k>﹣1 B.k>﹣1且k≠0 C.k<1 D.k<1且k≠04.若关于x的一元二次方程为ax2+bx+5=0(a≠0)的解是x=1,则2013﹣a﹣b的值是()A.2018 B.2008 C.2014 D.20125.方程x2﹣9x+18=0的两个根是等腰三角形的底和腰,则这个三角形的周长为()A.12 B.12或15 C.15 D.不能确定6.对于任意实数k,关于x的方程x2﹣2(k+1)x﹣k2+2k﹣1=0的根的情况为()A.有两个相等的实数根B.没有实数根C.有两个不相等的实数根 D.无法确定7.已知函数y=kx+b的图象如图所示,则一元二次方程x2+x+k﹣1=0根的存在情况是()A.没有实数根B.有两个相等的实数根C.有两个不相等的实数根 D.无法确定8.已知实数a,b分别满足a2﹣6a+4=0,b2﹣6b+4=0,且a≠b,则的值是()A.7 B.﹣7 C.11 D.﹣119.如图,在长为100米,宽为80米的矩形场地上修建两条宽度相等且互相垂直的道路,剩余部分进行绿化,要使绿化面积为7644米2,则道路的宽应为多少米?设道路的宽为x米,则可列方程为()A.100×80﹣100x﹣80x=7644 B.(100﹣x)(80﹣x)+x2=7644C.(100﹣x)(80﹣x)=7644 D.100x+80x=35610.如图是某月的日历表,在此日历表上可以用一个矩形圈出3×3个位置相邻的9个数(如6,7,8,13,14,15,20,21,22).若圈出的9个数中,最大数与最小数的积为192,则这9个数的和为()A.32 B.126 C.135 D.144二、填空题(本大题共6小题,每小题4分,共24分)11.一元二次方程x2﹣3=0的根为.12.把一元二次方程(x﹣3)2=4化为一般形式为:,二次项为,一次项系数为,常数项为.13.已知2是关于x的一元二次方程x2+4x﹣p=0的一个根,则该方程的另一个根是.14.已知x1,x2是方程x2﹣2x﹣1=0的两个根,则+等于.15.若|b﹣1|+=0,且一元二次方程kx2+ax+b=0有两个实数根,则k的取值范围是.16.一个长100m宽60m的游泳池扩建成一个周长为600m的大型水上游乐场,把游泳池的长增加xm,那么x等于多少时,水上游乐场的面积为20000m2?列出方程,能否求出x的值:(能或不能).三、解答题(一)(本大题共3小题,每小题6分,共18分)17.用公式法解方程:2x2﹣4x=5.18.用配方法解方程:x2﹣4x+1=019.用因式分解法解方程:(y﹣1)2+2y(1﹣y)=0.四、解答题(二)(本大题共3小题,每小题7分,共21分)20.若a,b,c是△ABC的三条边,且a2﹣6a+b2﹣10c+c2=8b﹣50,判断此三角形的形状.21.如图,在长为32m,宽为20m的矩形耕地上,修筑同样宽的三条道路,把耕地分成大小不等的六块作实验田,要使试验田面积为570m2,道路的宽应为多少?22.在实数范围内定义一种新运算“△”,其规则为:a△b=a2﹣b2,根据这个规则:(1)求4△3的值;(2)求(x+2)△5=0中x的值.五、解答题(三)(本大题共3小题,每小题9分,共27分)23.已知关于x的方程x2﹣2(m+1)x+m2=0.(1)当m取何值时,方程有两个不相等的实数根.(2)为m选取一个合适的整数,使方程有两个不相等的实数根,并求这两个根.24.已知下列n(n为正整数)个关于x的一元二次方程:x2﹣1=0,x2+x﹣2=0,x2+2x﹣3=0,…x2+(n﹣1)x﹣n=0.(1)请解上述一元二次方程;(2)请你指出这n个方程的根具有什么共同特点,写出一条即可.25.某水果批发商场经销一种高档水果,如果每千克盈利10元,每天可售出500千克.经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销售量将减少20千克.(1)现该商场要保证每天盈利6 000元,同时又要顾客得到实惠,那么每千克应涨价多少元?(2)若该商场单纯从经济角度看,每千克这种水果涨价多少元,能使商场获利最多?《第21章一元二次方程》参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.关于x的一元二次方程(a2﹣1)x2+x﹣2=0是一元二次方程,则a满足()A.a≠1 B.a≠﹣1 C.a≠±1 D.为任意实数【考点】一元二次方程的定义.【分析】本题根据一元二次方程的定义求解.一元二次方程必须满足两个条件:(1)未知数的最高次数是2;(2)二次项系数不为0.由这两个条件得到相应的关系式,再求解即可.【解答】解:由题意得:a2﹣1≠0,解得a≠±1.故选C.【点评】本题利用了一元二次方程的概念.只有一个未知数且未知数最高次数为2的整式方程叫做一元二次方程,一般形式是ax2+bx+c=0(且a≠0).特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点.2.用配方法解方程x2﹣2x﹣5=0时,原方程应变形为()A.(x+1)2=6 B.(x﹣1)2=6 C.(x+2)2=9 D.(x﹣2)2=9【考点】解一元二次方程-配方法.【专题】计算题.【分析】方程常数项移到右边,两边加上1变形即可得到结果.【解答】解:方程移项得:x2﹣2x=5,配方得:x2﹣2x+1=6,即(x﹣1)2=6.故选:B【点评】此题考查了解一元二次方程﹣配方法,熟练掌握完全平方公式是解本题的关键.3.若关于x的一元二次方程kx2﹣2x﹣1=0有两个不相等的实数根,则k的取值范围是()A.k>﹣1 B.k>﹣1且k≠0 C.k<1 D.k<1且k≠0【考点】根的判别式;一元二次方程的定义.【分析】根据根的判别式及一元二次方程的定义得出关于k的不等式组,求出k的取值范围即可.【解答】解:∵关于x的一元二次方程kx2﹣2x﹣1=0有两个不相等的实数根,∴,即,解得k>﹣1且k≠0.故选B.【点评】本题考查的是根的判别式,熟知一元二次方程的根与判别式的关系是解答此题的关键.4.若关于x的一元二次方程为ax2+bx+5=0(a≠0)的解是x=1,则2013﹣a﹣b的值是()A.2018 B.2008 C.2014 D.2012【考点】一元二次方程的解.【分析】将x=1代入到ax2+bx+5=0中求得a+b的值,然后求代数式的值即可.【解答】解:∵x=1是一元二次方程ax2+bx+5=0的一个根,∴a•12+b•1+5=0,∴a+b=﹣5,∴2013﹣a﹣b=2013﹣(a+b)=2013﹣(﹣5)=2018.故选:A.【点评】此题主要考查了一元二次方程的解,解题的关键是把已知方程的根直接代入方程得到待定系数的方程即可求得代数式a+b的值.5.方程x2﹣9x+18=0的两个根是等腰三角形的底和腰,则这个三角形的周长为()A.12 B.12或15 C.15 D.不能确定【考点】等腰三角形的性质;解一元二次方程-因式分解法;三角形三边关系.【专题】分类讨论.【分析】先解一元二次方程,由于未说明两根哪个是腰哪个是底,故需分情况讨论,从而得到其周长.【解答】解:解方程x2﹣9x+18=0,得x1=6,x2=3∵当底为6,腰为3时,由于3+3=6,不符合三角形三边关系∴等腰三角形的腰为6,底为3∴周长为6+6+3=15故选C.【点评】此题是一元二次方程的解结合几何图形的性质的应用,注意分类讨论.6.对于任意实数k,关于x的方程x2﹣2(k+1)x﹣k2+2k﹣1=0的根的情况为()A.有两个相等的实数根B.没有实数根C.有两个不相等的实数根 D.无法确定【考点】根的判别式.【分析】判断上述方程的根的情况,只要看根的判别式△=b2﹣4ac的值的符号就可以了.【解答】解:∵a=1,b=﹣2(k+1),c=﹣k2+2k﹣1,∴△=b2﹣4ac=[﹣2(k+1)]2﹣4×1×(﹣k2+2k﹣1)=8+8k2>0∴此方程有两个不相等的实数根,故选C.【点评】此题主要考查了根的判别式,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.7.已知函数y=kx+b的图象如图所示,则一元二次方程x2+x+k﹣1=0根的存在情况是()A.没有实数根B.有两个相等的实数根C.有两个不相等的实数根 D.无法确定【考点】根的判别式;一次函数图象与系数的关系.【分析】先根据函数y=kx+b的图象可得;k<0,再根据一元二次方程x2+x+k﹣1=0中,△=12﹣4×1×(k﹣1)=5﹣4k>0,即可得出答案.【解答】解:根据函数y=kx+b的图象可得;k<0,b<0,则一元二次方程x2+x+k﹣1=0中,△=12﹣4×1×(k﹣1)=5﹣4k>0,则一元二次方程x2+x+k﹣1=0根的存在情况是有两个不相等的实数根,故选:C.【点评】此题考查了一元二次方程根的判别式,用到的知识点是一次函数图象的性质,关键是根据函数图象判断出△的符号.8.已知实数a,b分别满足a2﹣6a+4=0,b2﹣6b+4=0,且a≠b,则的值是()A.7 B.﹣7 C.11 D.﹣11【考点】根与系数的关系.【专题】计算题.【分析】根据已知两等式得到a与b为方程x2﹣6x+4=0的两根,利用根与系数的关系求出a+b与ab 的值,所求式子通分并利用同分母分式的加法法则计算,再利用完全平方公式变形,将a+b与ab 的值代入计算即可求出值.【解答】解:根据题意得:a与b为方程x2﹣6x+4=0的两根,∴a+b=6,ab=4,则原式===7.故选A【点评】此题考查了一元二次方程根与系数的关系,熟练掌握根与系数的关系是解本题的关键.9.如图,在长为100米,宽为80米的矩形场地上修建两条宽度相等且互相垂直的道路,剩余部分进行绿化,要使绿化面积为7644米2,则道路的宽应为多少米?设道路的宽为x米,则可列方程为()A.100×80﹣100x﹣80x=7644 B.(100﹣x)(80﹣x)+x2=7644C.(100﹣x)(80﹣x)=7644 D.100x+80x=356【考点】由实际问题抽象出一元二次方程.【专题】几何图形问题.【分析】把所修的两条道路分别平移到矩形的最上边和最左边,则剩下的草坪是一个长方形,根据长方形的面积公式列方程.【解答】解:设道路的宽应为x米,由题意有(100﹣x)(80﹣x)=7644,故选C.【点评】此题主要考查了由实际问题抽象出一元二次方程,把中间修建的两条道路分别平移到矩形地面的最上边和最左边是做本题的关键.10.如图是某月的日历表,在此日历表上可以用一个矩形圈出3×3个位置相邻的9个数(如6,7,8,13,14,15,20,21,22).若圈出的9个数中,最大数与最小数的积为192,则这9个数的和为()A.32 B.126 C.135 D.144【考点】一元二次方程的应用.【专题】压轴题.【分析】根据日历上数字规律得出,圈出的9个数,最大数与最小数的差为16,以及利用最大数与最小数的积为192,求出两数,再利用上下对应数字关系得出其他数即可.【解答】解:根据图象可以得出,圈出的9个数,最大数与最小数的差为16,设最小数为:x,则最大数为x+16,根据题意得出:x(x+16)=192,解得:x1=8,x2=﹣24,(不合题意舍去),故最小的三个数为:8,9,10,下面一行的数字分别比上面三个数大7,即为:15,16,17,第3行三个数,比上一行三个数分别大7,即为:22,23,24,故这9个数的和为:8+9+10+15+16+17+22+23+24=144.故选:D.【点评】此题主要考查了数字变化规律以及一元二次方程的解法,根据已知得出最大数与最小数的差为16是解题关键.二、填空题(本大题共6小题,每小题4分,共24分)11.一元二次方程x2﹣3=0的根为x1=,x2=﹣.【考点】解一元二次方程-直接开平方法.【分析】直接解方程得出答案,注意用直接开平方法.【解答】解:x2﹣3=0,x2=3,x=,x1=,x2=﹣.故答案为:x1=,x2=﹣.【点评】此题主要考查了直接开平方法解方程,题目比较典型,是中考中的热点问题.12.把一元二次方程(x﹣3)2=4化为一般形式为:x2﹣6x+5=0 ,二次项为x2,一次项系数为﹣6 ,常数项为 5 .【考点】一元二次方程的一般形式.【分析】一元二次方程的一般形式是:ax2+bx+c=0(a,b,c是常数且a≠0),在一般形式中ax2叫二次项,bx叫一次项,c是常数项.其中a,b,c分别叫二次项系数,一次项系数,常数项.【解答】解:把一元二次方程(x﹣3)2=4化为一般形式为:x2﹣6x+5=0,二次项为x2,一次项系数为﹣6,常数项为5.【点评】去括号的过程中要注意符号的变化,以及注意不能漏乘,移项时要注意变号.注意在说明二次项系数,一次项系数,常数项时,一定要带上前面的符号.13.已知2是关于x的一元二次方程x2+4x﹣p=0的一个根,则该方程的另一个根是﹣6 .【考点】根与系数的关系;一元二次方程的解.【分析】根据根与系数的关系:x1+x2=﹣,x1•x2=,此题选择两根和即可求得.【解答】解:∵2是关于x的一元二次方程x2+4x﹣p=0的一个根,∴2+x1=﹣4,∴x1=﹣6,∴该方程的另一个根是﹣6.【点评】此题主要考查了一元二次方程的根与系数的关系.14.已知x1,x2是方程x2﹣2x﹣1=0的两个根,则+等于﹣2 .【考点】根与系数的关系.【专题】计算题.【分析】根据一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系得到x1+x2=2,x1•x2=1,然后变形+得,再把x1+x2=2,x1•x2=﹣1整体代入计算即可.【解答】解:∵x1,x2是方程x2﹣2x﹣1=0的两个根,∴x1+x2=2,x1•x2=﹣1,∴+==﹣2.故答案为﹣2.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程的两根为x1,x2,则x1+x2=﹣,x1•x2=.也考查了一元二次方程的根的判别式.15.若|b﹣1|+=0,且一元二次方程kx2+ax+b=0有两个实数根,则k的取值范围是k≤4且k ≠0 .【考点】根的判别式;非负数的性质:绝对值;非负数的性质:算术平方根.【专题】计算题.【分析】首先根据非负数的性质求得a、b的值,再由二次函数的根的判别式来求k的取值范围.【解答】解:∵|b﹣1|+=0,∴b﹣1=0,=0,解得,b=1,a=4;又∵一元二次方程kx2+ax+b=0有两个实数根,∴△=a2﹣4kb≥0且k≠0,即16﹣4k≥0,且k≠0,解得,k≤4且k≠0;故答案为:k≤4且k≠0.【点评】本题主要考查了非负数的性质、根的判别式.在解答此题时,注意关于x的一元二次方程的二次项系数不为零.16.一个长100m宽60m的游泳池扩建成一个周长为600m的大型水上游乐场,把游泳池的长增加xm,那么x等于多少时,水上游乐场的面积为20000m2?列出方程(x+100)(200﹣x)=20000 ,能否求出x的值:能(能或不能).【考点】由实际问题抽象出一元二次方程.【专题】几何图形问题.【分析】如果把游泳池的长增加xm,那么游乐场的长和宽分别为(100+x)和(600÷2﹣100﹣x),然后矩形根据面积公式可列出方程.【解答】解:由于游泳池的长增加xm,那么游乐场的长和宽分别为(100+x)和(600÷2﹣100﹣x),即(x+100)(200﹣x)=20000,解得x=100.故填空答案:(x+100)(200﹣x)=20000,能.【点评】要会用x分别表示扩建前后长、宽和面积的变化.三、解答题(一)(本大题共3小题,每小题6分,共18分)17.用公式法解方程:2x2﹣4x=5.【考点】解一元二次方程-公式法.【分析】先求出△的值,再代入求根公式计算即可.【解答】解:原方程可化为:2x2﹣4x﹣5=0,∵a=2,b=﹣4,c=﹣5,∴b2﹣4ac=(﹣4)2﹣4×2×(﹣5)=56>0,∴x==1±.∴x1=1+,x2=1﹣.【点评】此题考查了公式法解一元二次方程,用到的知识点是一元二次方程的求根公式,关键是求出△的值,注意△≥0.18.用配方法解方程:x2﹣4x+1=0【考点】解一元二次方程-配方法.【专题】配方法.【分析】首先把方程移项变形为x2﹣4x=﹣1的形式,然后在方程的左右两边同时加上一次项系数一半的平方,左边就是完全平方式,右边就是常数,然后利用平方根的定义即可求解.【解答】解:移项,得:x2﹣4x=﹣1,配方,得:x2﹣4x+(﹣2)2=﹣1+(﹣2)2,即(x﹣2)2=3,解这个方程,得:x﹣2=±;即x1=2+,x2=2﹣.【点评】配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.19.用因式分解法解方程:(y﹣1)2+2y(1﹣y)=0.【考点】解一元二次方程-因式分解法.【专题】计算题.【分析】先把方程变形为(y﹣1)2﹣2y(y﹣1)=0,然后利用因式分解法解方程.【解答】解:(y﹣1)2+2y(1﹣y)=0,(y﹣1)2﹣2y(y﹣1)=0,(y﹣1)(y﹣1﹣2y)=0,y﹣1=0或y﹣1﹣2y=0,所以y1=1,y2=﹣1.【点评】本题考查了解一元二次方程﹣因式分解法:先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).四、解答题(二)(本大题共3小题,每小题7分,共21分)20.若a,b,c是△ABC的三条边,且a2﹣6a+b2﹣10c+c2=8b﹣50,判断此三角形的形状.【考点】配方法的应用;非负数的性质:偶次方;勾股定理的逆定理.【分析】先将已知等式利用配方法变形得到(a﹣3)2+(b﹣4)2+(c﹣5)2=0,再利用非负数的性质,分别求出a、b、c的值,然后利用勾股定理的逆定理得出△ABC是直角三角形.【解答】解:△ABC是直角三角形,理由如下:∵a2﹣6a+b2﹣10c+c2=8b﹣50,∴a2﹣6a+9+b2﹣8b+16+c2﹣10c+25=0,即(a﹣3)2+(b﹣4)2+(c﹣5)2=0,∴a=3,b=4,c=5,∵32+42=52,即a2+b2=c2,∴△ABC是直角三角形.【点评】本题考查了配方法的应用、勾股定理的逆定理、非负数的性质,解题的关键是将已知等式利用配方法变形,利用非负数的性质解题.21.如图,在长为32m,宽为20m的矩形耕地上,修筑同样宽的三条道路,把耕地分成大小不等的六块作实验田,要使试验田面积为570m2,道路的宽应为多少?【考点】一元二次方程的应用.【专题】几何图形问题.【分析】相等关系:试验地的面积=试验地的长×宽.如果设道路宽x,可根据此关系列出方程求出x 的值,然后将不合题意的舍去即可.【解答】解:设道路为x米宽,由题意得:(32﹣2x)(20﹣x)=570,整理得:x2﹣36x+35=0,解得:x=1,x=35,经检验是原方程的解,但是x=35>20,因此不合题意舍去.答:道路为1m宽.【点评】本题考查了一元二次方程的应用,对于面积问题应熟记各种图形的面积公式.如何表示出剩余矩形的长和宽是解决此题的关键.22.在实数范围内定义一种新运算“△”,其规则为:a△b=a2﹣b2,根据这个规则:(1)求4△3的值;(2)求(x+2)△5=0中x的值.【考点】解一元二次方程-直接开平方法.【专题】新定义.【分析】(1)根据规则为:a△b=a2﹣b2,代入相应数据可得答案;(2)根据公式可得(x+2)△5=(x+2)2﹣52=0,再利用直接开平方法解一元二次方程即可.【解答】解:(1)4△3=42﹣32=16﹣9=7;(2)由题意得(x+2)△5=(x+2)2﹣52=0,(x+2)2=25,两边直接开平方得:x+2=±5,x+2=5,x+2=﹣5,解得:x1=3,x2=﹣7.【点评】此题主要考查了直接开平方法解一元二次方程,解这类问题要移项,把所含未知数的项移到等号的左边,把常数项移项等号的右边,化成x2=a(a≥0)的形式,利用数的开方直接求解.五、解答题(三)(本大题共3小题,每小题9分,共27分)23.已知关于x的方程x2﹣2(m+1)x+m2=0.(1)当m取何值时,方程有两个不相等的实数根.(2)为m选取一个合适的整数,使方程有两个不相等的实数根,并求这两个根.【考点】根的判别式.【分析】(1)根据题意可得△>0,进而可得[﹣2(m+1)]2﹣4m2>0解不等式即可;(2)根据(1)中所计算的m的取值范围,确定出m的值,再把m的值代入方程,解方程即可.【解答】解:(1)关于x的一元二次方程x2﹣2(m+1)x+m2=0有两个不相等的实数根,∴△>0,即:[﹣2(m+1)]2﹣4m2>0解得m>﹣;(2)∵m>﹣,∴取m=0,方程为x2﹣2x=0,解得x1=0,x2=2.【点评】此题主要考查了根的判别式,以及解一元二次方程,关键是掌握一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.24.已知下列n(n为正整数)个关于x的一元二次方程:x2﹣1=0,x2+x﹣2=0,x2+2x﹣3=0,…x2+(n﹣1)x﹣n=0.(1)请解上述一元二次方程;(2)请你指出这n个方程的根具有什么共同特点,写出一条即可.【考点】解一元二次方程-因式分解法;一元二次方程的解.【专题】规律型.【分析】(1)分别利用因式分解法解各方程;(2)根据方程根的特征易得这n个方程都有一个根为1,另外一根等于常数项.【解答】解:(1)x2﹣1=0,解得x1=1,x2=﹣1,x2+x﹣2=0,解得x1=1,x2=﹣2,x2+2x﹣3=0,解得x1=1,x2=﹣3,…x2+(n﹣1)x﹣n=0,解得x1=1,x2=﹣n;(2)这n个方程都有一个根为1,另外一根等于常数项.【点评】本题考查了解一元二次方程﹣因式分解法:先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).25.某水果批发商场经销一种高档水果,如果每千克盈利10元,每天可售出500千克.经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销售量将减少20千克.(1)现该商场要保证每天盈利6 000元,同时又要顾客得到实惠,那么每千克应涨价多少元?(2)若该商场单纯从经济角度看,每千克这种水果涨价多少元,能使商场获利最多?【考点】二次函数的应用;二次函数的最值.【专题】应用题.【分析】本题的关键是根据题意列出一元二次方程,再求其最值.【解答】解:(1)设每千克应涨价x元,则(10+x)(500﹣20x)=6 000解得x=5或x=10,为了使顾客得到实惠,所以x=5.(2)设涨价z元时总利润为y,则y=(10+z)(500﹣20z)=﹣20z2+300z+5 000=﹣20(z2﹣15z)+5000=﹣20(z2﹣15z+﹣)+5000=﹣20(z﹣7.5)2+6125当z=7.5时,y取得最大值,最大值为6 125.(8分)答:(1)要保证每天盈利6000元,同时又使顾客得到实惠,那么每千克应涨价5元;(2)若该商场单纯从经济角度看,每千克这种水果涨价7.5元,能使商场获利最多.(10分)【点评】求二次函数的最大(小)值有三种方法,第一种可由图象直接得出,第二种是配方法,第三种是公式法,常用的是后两种方法,当二次系数a的绝对值是较小的整数时,用配方法较好,如y=﹣x2﹣2x+5,y=3x2﹣6x+1等用配方法求解比较简单.。
人教新版九年级上学期数学 第21章 一元二次方程 单元练习试卷 含解析
第21章一元二次方程一.选择题(共11小题)1.下列方程是一元二次方程的是()A.x2+=2B.x2﹣5x﹣1=0C.x2﹣2x﹣3D.2x﹣y=02.一元二次方程x2﹣3=2x的二次项系数、一次项系数、常数项分别是()A.1,﹣2,﹣3B.1,﹣2,3C.1,2,3D.1,﹣3,23.已知一元二次方程2x2+3x﹣b=0的一个根是1,则b=()A.3B.0C.1D.54.方程(x﹣3)2﹣25=0的两根是()A.8和﹣2B.2和﹣8C.5和﹣5D.3和﹣35.用配方法解方程2x2﹣8x﹣3=0时,原方程可变形为()A.(x﹣2)2=﹣B.(x﹣2)2=C.(x+2)2=7D.(x﹣2)2=76.用公式法解方程3x2+5x+1=0,正确的是()A.B.C.D.7.已知实数x满足(x2﹣x)2﹣4(x2﹣x)﹣12=0,则代数式x2﹣x+1的值是()A.7B.﹣1C.7或﹣1D.﹣5或38.关于x的方程(m﹣2)x2+2x+1=0有实数根,则m的取值范围是()A.m≤3B.m≥3C.m≤3且m≠2D.m<39.设m,n分别为一元二次方程x2+2x﹣1=0的两个实数根,则m+n+mn的值为()A.﹣3B.3C.﹣2D.210.已知实数a、b满足5a2+2b2+1=6ab+2a﹣2b,则(a﹣b)2009的值是()A.0B.1C.2D.311.某药品原价为100元,连续两次降价a%后,售价为64元,则a的值为()A.10B.20C.23D.36二.填空题(共8小题)12.把方程(3x+2)﹣(3x+2)(x﹣5)=49化成一般形式,则一次项系数为.13.已知m是方程式x2+x﹣1=0的根,则式子m3+2m2+2019的值为.14.用配方法解一元二次方程x2﹣mx=1时,可将原方程配方成(x﹣3)2=n,则m+n的值是.15.若关于x的方程(x+a)(x﹣4)=0和x2﹣3x﹣4=0的解完全相同,则a的值为.16.关于x的一元二次方程4ax2+4x+1=0有两相等实数根,则a=.17.如果关于x的一元二次方程x2+x+a=0的一个根是1﹣,那么另一个根是,a的值为18.一批上衣,每件原件500元,第一次降价后,销售甚慢,于是再次进行大幅降价,第二次降价后的百分率是第一次降价的百分率的2倍,结果这批上衣以每件240元的价格迅速出售,设第一次降价的百分率为x,则可列方程为19.已知矩形ABCD的周长的平方与面积的比为k.则矩形ABCD的较长的一边与较短的一边的长度的比等于.三.解答题(共5小题)20.已知x=﹣1是关于x的方程x2+2ax+a2=0的一个根,求a的值.21.今年以来,因生猪受到猪瘟的影响,导致多地猪肉价格连续上涨,引起了民众与政府的高度关注,当市场猪肉的平均价格每千克达到一定的单价时,政府将投入储备猪肉以平抑猪肉价格.据统计:从今年年初至9月20日,猪肉价格不断上涨,9月20日比年初价格上涨了60%、某市民于某超市今年9月20日购买3千克猪肉花120元钱.(1)问:那么今年年初猪肉的价格为每千克多少元?(2)现在某超市以每千克30元的猪肉进货,按9月20日价格出售,平均一天能销售出100千克,经调查表明:猪肉的售价每千克下降1元,其日销售量就增加20千克,超市为了实现销售猪肉每天有1120元的销售利润,为了尽可能让顾客优惠应该每千克定价为多少元?22.解下列方程:(1)4(x﹣1)2﹣100=0;(2)x2﹣7x﹣18=0;(3)3(3﹣x)2+(x﹣3)=0.23.如图,在△ABC中,∠B=90°,AB=5cm,BC=7cm,点P从点A开始沿AB边向点B以1cm/s的速度移动,点Q从点B开始沿BC边向点C以2cm/s的速度移动.(1)如果P,Q分别从A,B同时出发那么几秒后,PQ的长度等于cm?(2)在(1)中,△PQB的面积能否等于7cm2?请说明理由.24.如图,长方形草坪ABCD的长AD为40m,宽AB为30m,草坪内有3条直的道路EC,EF和FC,ED=AF.小丽在点E处沿E→D→C方向步行,与此同时小明在点F处沿FC方向以相同的速度步行,经过26秒后两人刚好在点C处相遇,请求出小明步行的速度.参考答案与试题解析一.选择题(共11小题)1.下列方程是一元二次方程的是()A.x2+=2B.x2﹣5x﹣1=0C.x2﹣2x﹣3D.2x﹣y=0【分析】直接利用一元二次方程的定义分别分析得出答案.【解答】解:A、x2+=2,含有分式,不合题意;B、x2﹣5x﹣1=0,是一元二次方程,符合题意;C、x2﹣2x﹣3,是二次三项式,不是方程;D、2x﹣y=0,是二元一次方程,不合题意.故选:B.2.一元二次方程x2﹣3=2x的二次项系数、一次项系数、常数项分别是()A.1,﹣2,﹣3B.1,﹣2,3C.1,2,3D.1,﹣3,2【分析】将方程化为一般式,【解答】解:方程x2﹣3=2x,即x2﹣2x﹣3=0的二次项系数是1、一次项系数是﹣2、常数项是﹣3,故选:A.3.已知一元二次方程2x2+3x﹣b=0的一个根是1,则b=()A.3B.0C.1D.5【分析】将x=1代入已知方程,得到关于b的方程,通过解该方程求得b的值即可.【解答】解:把x=1代入2x2+3x﹣b=0,得2+3﹣b=0.解得b=5.故选:D.4.方程(x﹣3)2﹣25=0的两根是()A.8和﹣2B.2和﹣8C.5和﹣5D.3和﹣3【分析】移项后,两边开平方即可得.【解答】解:∵(x﹣3)2﹣25=0,∴(x﹣3)2=25,则x﹣3=5或x﹣3=﹣5,解得x=8或x=﹣2,故选:A.5.用配方法解方程2x2﹣8x﹣3=0时,原方程可变形为()A.(x﹣2)2=﹣B.(x﹣2)2=C.(x+2)2=7D.(x﹣2)2=7【分析】将常数项移到方程的右边,两边都加上一次项系数一半的平方配成完全平方式后即可得.【解答】解:∵2x2﹣8x﹣3=0,∴2x2﹣8x=3,则x2﹣4x=,∴x2﹣4x+4=+4,即(x﹣2)2=,故选:B.6.用公式法解方程3x2+5x+1=0,正确的是()A.B.C.D.【分析】利用求根公式求出解即可.【解答】解:这里a=3,b=5,c=1,∵△=25﹣12=13,∴x=,故选:A.7.已知实数x满足(x2﹣x)2﹣4(x2﹣x)﹣12=0,则代数式x2﹣x+1的值是()A.7B.﹣1C.7或﹣1D.﹣5或3【分析】由整体思想,用因式分解法解一元二次方程求出x2﹣x的值就可以求出结论.【解答】解:∵(x2﹣x)2﹣4(x2﹣x)﹣12=0,∴(x2﹣x+2)(x2﹣x﹣6)=0,∴x2﹣x+2=0或x2﹣x﹣6=0,∴x2﹣x=﹣2或x2﹣x=6.当x2﹣x=﹣2时,x2﹣x+2=0,∵b2﹣4ac=1﹣4×1×2=﹣7<0,∴此方程无实数解.当x2﹣x=6时,x2﹣x+1=7故选:A.8.关于x的方程(m﹣2)x2+2x+1=0有实数根,则m的取值范围是()A.m≤3B.m≥3C.m≤3且m≠2D.m<3【分析】讨论:当m﹣2=0,方程变形为2x+1=0,此一元一次方程有解;当m﹣2≠0,方程为一元二次方程,利用判别式的意义得到则△=22﹣4(m﹣2)≥0,解得m≤3且m≠2,然后综合两种情况即可得到m的范围.【解答】解:当m﹣2=0,即m=2时,方程变形为2x+1=0,解得x=﹣;当m﹣2≠0,则△=22﹣4(m﹣2)≥0,解得m≤3且m≠2,综上所述,m的范围为m≤3.故选:A.9.设m,n分别为一元二次方程x2+2x﹣1=0的两个实数根,则m+n+mn的值为()A.﹣3B.3C.﹣2D.2【分析】根据一元二次方程根与系数的关系即可得出m+n=﹣2,mn=﹣1,将其代入m+n+mn中即可求出结论.【解答】解:∵m,n分别为一元二次方程x2+2x﹣1=0的两个实数根,∴m+n=﹣2,mn=﹣1,则m+n+mn=﹣2﹣1=﹣3.故选:A.10.已知实数a、b满足5a2+2b2+1=6ab+2a﹣2b,则(a﹣b)2009的值是()A.0B.1C.2D.3【分析】将已知等式配方成几个非负数的和为0的形式,可求a、b的值,再代值计算.【解答】解:由已知,得(4a2﹣4ab+b2)+(a2﹣2ab+b2)﹣2(a﹣b)+1=0,即(2a﹣b)2+(a﹣b﹣1)2=0,∴,解得,∴(a﹣b)2009=(﹣1+2)2009=1.故选:B.11.某药品原价为100元,连续两次降价a%后,售价为64元,则a的值为()A.10B.20C.23D.36【分析】可先用x表示第一次降价后商品的售价,再根据题意表示第二次降价后的售价,然后根据已知条件得到关于x的方程.【解答】解:当药品第一次降价%时,其售价为100﹣100a%=100(1﹣a%);当药品第二次降价x后,其售价为100(1﹣a%)2.∴100(1﹣a%)2=64.解得:a=20或a=﹣180(舍去),故选:B.二.填空题(共8小题)12.把方程(3x+2)﹣(3x+2)(x﹣5)=49化成一般形式,则一次项系数为﹣16.【分析】方程整理为一般形式,确定出一次项系数即可.【解答】解:方程整理得:3x+2﹣3x2+13x+10=49,即3x2﹣16x+37=0,则一次项系数为﹣16,故答案为:﹣1613.已知m是方程式x2+x﹣1=0的根,则式子m3+2m2+2019的值为2020.【分析】由m是方程的根,可得m2+m=1,变形m3+2m2+2019为m3+m2+m2+2019,然后整体代入得结果;【解答】解:∵m是方程x2+x﹣1=0的根,∴m2+m=1∵m3+2m2+2019=m3+m2+m2+2019=m(m2+m)+m2+2019=m+m2+2019=1+2019=2020.故答案为:2020.14.用配方法解一元二次方程x2﹣mx=1时,可将原方程配方成(x﹣3)2=n,则m+n的值是16.【分析】根据配方法可以将题目中的方程变形,然后根据题意即可得到m和n的值,从而可以求得m+n 的值.【解答】解:∵x2﹣mx=1,∴(x﹣)2=1+,∵一元二次方程x2﹣mx=1配方成(x﹣3)2=n,∴,得,∴m+n=6+10=16,故答案为:16.15.若关于x的方程(x+a)(x﹣4)=0和x2﹣3x﹣4=0的解完全相同,则a的值为1.【分析】先分解因式,根据两方程的解相同即可得出答案.【解答】解:x2﹣3x﹣4=0,(x﹣4)(x+1)=0,∵关于x的方程(x+a)(x﹣4)=0和x2﹣3x﹣4=0的解完全相同,∴a=1,故答案为:1.16.关于x的一元二次方程4ax2+4x+1=0有两相等实数根,则a=1.【分析】根据根的判别式得出当△=0时,方程有两个相等的实数根,再求出即可.【解答】解:∵关于x的一元二次方程4ax2+4x+1=0有两相等实数根,∴4a≠0且△=42﹣4•4a•1=0,解得:a=1,故答案为:1.17.如果关于x的一元二次方程x2+x+a=0的一个根是1﹣,那么另一个根是1,a的值为1﹣【分析】设方程另一根为b,根据根与系数的关系得到1﹣+b=﹣,(1﹣)b=a,再求出即可.【解答】解:设方程x2+x+a=0的另一个根为b,则1﹣+b=﹣,(1﹣)b=a,解得:b=﹣1,a=﹣1,故答案为:﹣1,﹣1.18.一批上衣,每件原件500元,第一次降价后,销售甚慢,于是再次进行大幅降价,第二次降价后的百分率是第一次降价的百分率的2倍,结果这批上衣以每件240元的价格迅速出售,设第一次降价的百分率为x,则可列方程为500(1﹣x)(1﹣2x)=240【分析】先设第次降价的百分率是x,则第一次降价后的价格为500(1﹣x)元,第二次降价后的价格为500(1﹣2x),根据两次降价后的价格是240元建立方程.【解答】解:设第一次降价的百分率为x,则第二次降价的百分率为2x,根据题意得:500(1﹣x)(1﹣2x)=240,故答案是:500(1﹣x)(1﹣2x)=24019.已知矩形ABCD的周长的平方与面积的比为k.则矩形ABCD的较长的一边与较短的一边的长度的比等于.【分析】根据矩形ABCD的周长的平方与面积的比为k得到相应的等式,整理为整式后,设矩形ABCD的较长的一边与较短的一边的长度的比为未知数,用求根公式求解即可.【解答】解:设矩形的长、宽分别为a、b(a≥b).则=k,即4a2+(8﹣k)ab+4b2=0.两边都除以b2,令t=,则4t2+(8﹣k)t+4=0.解得t=.故答案为:.三.解答题(共5小题)20.已知x=﹣1是关于x的方程x2+2ax+a2=0的一个根,求a的值.【分析】根据一元二次方程解的定义,把x=﹣1代入x2+2ax+a2=0得到关于a的一元二次方程1﹣2a+a2=0,然后解此一元二次方程即可.【解答】解:把x=﹣1代入x2+2ax+a2=0得1﹣2a+a2=0,解得a1=a2=1,所以a的值为121.今年以来,因生猪受到猪瘟的影响,导致多地猪肉价格连续上涨,引起了民众与政府的高度关注,当市场猪肉的平均价格每千克达到一定的单价时,政府将投入储备猪肉以平抑猪肉价格.据统计:从今年年初至9月20日,猪肉价格不断上涨,9月20日比年初价格上涨了60%、某市民于某超市今年9月20日购买3千克猪肉花120元钱.(1)问:那么今年年初猪肉的价格为每千克多少元?(2)现在某超市以每千克30元的猪肉进货,按9月20日价格出售,平均一天能销售出100千克,经调查表明:猪肉的售价每千克下降1元,其日销售量就增加20千克,超市为了实现销售猪肉每天有1120元的销售利润,为了尽可能让顾客优惠应该每千克定价为多少元?【分析】(1)利用单价=总价÷数量可求出9月20日猪肉的单价,设今年年初猪肉的价格为每千克x元,根据年初与9月20日猪肉单价间的关系,可得出关于x的一元一次方程,解之即可得出结论;(2)设每千克降价y元,则日销售(100+20y)千克,根据总利润=每千克的利润×销售数量,即可得出关于y的一元二次方程,解之即可得出y值,再将其较大值代入(40﹣y)中即可求出结论.【解答】解:(1)今年9月20日猪肉的价格=100÷2.5=40(元/千克).设今年年初猪肉的价格为每千克x元,依题意,得:(1+60%)x=40,解得:x=25.答:今年年初猪肉的价格为每千克25元.(2)设每千克降价y元,则日销售(100+20y)千克,依题意,得:(40﹣30﹣y)(100+20y)=1120,整理,得:y1=2,y2=3,∵尽可能让顾客优惠,∴y=3,∴40﹣y=37.答:应该每千克定价为37元.22.解下列方程:(1)4(x﹣1)2﹣100=0;(2)x2﹣7x﹣18=0;(3)3(3﹣x)2+(x﹣3)=0.【分析】(1)直接开平方法求解可得;(2)因式分解法求解可得;(3)整理后因式分解法求解可得.【解答】解:(1)4(x﹣1)2﹣100=0,(x﹣1)2=25,∴x﹣1=5或x﹣1=﹣5,解得:x=6或x=﹣4;(2)x2﹣7x﹣18=0,(x﹣9)(x+2)=0,∴x﹣9=0或x+2=0,解得:x=9或x=﹣2;(3)3(3﹣x)2+(x﹣3)=0,因式分解可得:(x﹣3)(3x﹣9+1)=0,即(x﹣3)(3x﹣8)=0,∴x﹣3=0或3x﹣8=0,解得:x=3或x=.23.如图,在△ABC中,∠B=90°,AB=5cm,BC=7cm,点P从点A开始沿AB边向点B以1cm/s的速度移动,点Q从点B开始沿BC边向点C以2cm/s的速度移动.(1)如果P,Q分别从A,B同时出发那么几秒后,PQ的长度等于cm?(2)在(1)中,△PQB的面积能否等于7cm2?请说明理由.【分析】(1)根据PQ=52利用勾股定理BP2+BQ2=PQ2,求出即可;(2)由(1)得,当△PQB的面积等于7cm2,然后利用根的判别式判断方程根的情况即可;【解答】(1)设x秒后,PQ=2BP=5﹣x BQ=2x∵BP2+BQ2=PQ2∴(5﹣x)2+(2x)2=(2)2解得:x1=3 x2=﹣1(舍去)∴3秒后,PQ的长度等于2;△PQB的面积不能等于7cm2,原因如下:(2)设t秒后,PB=5﹣t QB=2t又∵S△PQB=×BP×QB=7×(5﹣t)×2t=7∴t2﹣5t+7=0△=52﹣4×1×7=25﹣28=﹣3<0∴方程没有实数根∴△PQB的面积不能等于7cm2.24.如图,长方形草坪ABCD的长AD为40m,宽AB为30m,草坪内有3条直的道路EC,EF和FC,ED=AF.小丽在点E处沿E→D→C方向步行,与此同时小明在点F处沿FC方向以相同的速度步行,经过26秒后两人刚好在点C处相遇,请求出小明步行的速度.【分析】由矩形的性质得出CD=AB=30,BC=AD=40,∠B=90°,设EDE=AF=x,则DE+CD=x+30,在Rt△BCF中,BF=AB﹣AF=30﹣x,由勾股定理得出CF2=BF2+BC2=(30﹣x)2+402,由题意得DE+CD =CF,得出方程(x+30)2=(30﹣x)2+402,解得x=,求出CF=+30=,即可得出答案.【解答】解:∵四边形ABCD是矩形,∴CD=AB=30,BC=AD=40,∠B=90°,设EDE=AF=x,则DE+CD=x+30,在Rt△BCF中,BF=AB﹣AF=30﹣x,∴CF2=BF2+BC2=(30﹣x)2+402,由题意得:DE+CD=CF,∴(x+30)2=(30﹣x)2+402,解得:x=,∴CF=+30=,∴小明步行的速度为÷26=(m/s);答:小明步行的速度为m/s.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
部编版人教初中数学九年级上册
第21章(一元二次方程)测试卷(含答案解析)
前言:
该试题(卷)由多位一线国家特级教师针对当前最新的热点、考点、重点、难点、知识点,精心编辑而成。
以高质量的试题(卷)助力考生查漏补缺,在原有基础上更进一步。
(最新精品测试卷)
第二十一章一元二次方程测试卷
一、单选题(共10题;共30分)
1、上海世博会的某纪念品原价168元,连续两次降价a%后售价为128元. 下列所列方程中正确的是()
A、168(1+a)2=128
B、168(1-a%)2=128
C、168(1-2a%)=128
D、168(1-a2%)=128
2、在俄罗斯民间流着这样一道数学趣题:甲、乙两人合养了若干头羊,而每头羊的卖价又恰与羊的头数相等,全部卖完后,两人按下面的方法分钱:先由甲拿十元,再由乙拿十元,如此轮流,拿到最后,剩下不足十元,轮到乙拿去。
为了平均分配,甲应该找补给乙多少元?()
A、1元
B、2元
C、3元
D、4元
3、已知关于x的方程(m+3)x2+x+m2+2m-3=0的一根为0,另一根不为0,则m 的值为()
A、1
B、-3
C、1或-3
D、以上均不对
4、用因式分解法解方程,下列方法中正确的是()
A、(2x-2)(3x-4) =0 ∴2-2x=0或3x-4=0
B、(x+3)(x-1)=1 ∴x+3=0或x-1=1
C、(x-2)(x-3)=2×3 ∴x-2=2或x-3=3
D、x(x+2)=0 ∴
x+2=0
5、已知α,β是关于x的一元二次方程x2+(2m+3)x+m2=0的两个不相等的实数根,且满足,则m的值是
A、3或﹣1
B、3
C、1
D、﹣3或1
6、方程x2=9的解是()
A、x
1=x
2
=3 B、x
1
=x
2
=9 C、x
1
=3,x
2
=﹣3 D、x
1
=9,x
2
=
﹣9
7、如果关于x的一元二次方程x2﹣6x+2k=0有两个实数根,那么实数k的取值范围是()
A、k≤
B、k
C、k
D、k
8、已知x=2是方程x2﹣6x+m=0的根,则该方程的另一根为()
A、2
B、3
C、4
D、8
9、若关于x的一元二次方程kx2﹣6x+9=0有两个不相等的实数根,则k的取值范围是()
A、k>1
B、k≠0
C、k<1
D、k<1且k≠0
10、(2017•黔东南州)已知一元二次方程x2﹣2x﹣1=0的两根分别为x
1
,
x
2
,则+ 的值为()
A、2
B、﹣1
C、
D、﹣2
二、填空题(共8题;共25分)
11、(2015•凉山州)已知实数m,n满足3m2+6m﹣5=0,3n2+6n﹣5=0,且m ≠n,则=________ .。