高一数学必修五基本不等式ppt课件
高中数学必修5基本不等式PPT共66页
36、自己的鞋子,自己知道紧在哪里。——西班牙
37、我们唯一不会改正的缺点是软弱。——拉罗什福科
xiexie! 38、我这个人走得很慢,但是我从不后退。——亚伯拉罕·林肯
39、勿问成功的秘诀为何,且尽全力做你应该做的事吧。——美华纳
40、学而不思则罔,思而不学则殆。——孔子
高中数学必修5基本不等式
56、死去何所道,托体同山阿。 57、春秋多佳日,登高赋新诗。 58、种豆南山下,草盛豆苗稀。晨兴 理荒秽 ,带月 荷锄归 。道狭 草木长 ,夕露 沾我衣 。衣沾 不足惜 ,但使 愿无违 。 59、相见无杂言,但道桑麻长。 60、迢迢新秋夕,பைடு நூலகம்亭月将圆。
谢谢!
第三章3.1基本不等式-北师大版高一数学必修5课件(共21张PPT)
探究结果
1. 对于任意实数a,b,总有 a2 b2 2ab 如何证明?
当且仅当a=b时,等号成立.
特别地,如果 a 0,b 0 ,我们用 a , b 分别代替a,b,可得
a b 2 ab,即a b ab, 2
当且仅当a=b时,等号成立.
探究结果 1. 对于
a,b,总有 a2 b2 2ab
当且仅当a=b时,等号成立.
2. 如果a,b都是
,那么 a b ab 2
当且仅当a=b时,等号成立.
我们称上述不等式为
ab ,其中 2 称为a,b的算术
平均数, ab 称为a,b
. 因此,基本不等式又被称为
均值不等式.
探究结果 1. 对于
a,b,总有 a2 b2 2ab
当且仅当a=b时,等号成立.
当且仅当a=b时,等号成立.
文字语言可叙述为:两个非负实数的算术平均数不小于它们 的几何平均数.
从数列的角度看:两个正实数的等差中项不小于它们正的等 比中项.
课堂升华 几何解释
如图,AB是圆O的直径,AC=a,BC=b,过点C作CD⊥AB交圆O上半
圆于D. 由射影定理可知
D
CD ab, 而OD a b ,
同向相加可得 a b c ab ac bc, 当且仅当a b c时,等号成立.
例题讲解
例2 若a b 1,比较P lg a lg b,Q 1 (lg a lg b), 2
R lg a b 的大小关系. 2
解 因为a b 1,所以 lg a lg b 0,
由 ab a b , 2
证明 (方法2)
ab
2
ab 2ab
ab(b a) 2ab
11
ba
基本不等式课件(共43张PPT)
02
基本不等式的证明方法
综合法证明基本不等式
利用已知的基本不等式推导
01
通过已知的不等式关系,结合不等式的性质(如传递性、可加
性等),推导出目标不等式。
构造辅助函数
02
根据不等式的特点,构造一个辅助函数,通过对辅助函数的分
析来证明原不等式。
利用数学归纳法
03
对于涉及自然数n的不等式,可以考虑使用数学归纳法进行证明。
分析法证明基本不等式
寻找反例
通过寻找反例来证明某个不等式不成 立,从而推导出原不等式。
利数,可以利用中间值定理 来证明存在某个点使得函数值满足给 定的不等式。
通过分析不等式在极限情况下的性质, 来证明原不等式。
归纳法证明基本不等式
第一数学归纳法
通过对n=1和n=k+1时的情况进行归纳假设和推导,来证 明对于所有正整数n,原不等式都成立。
拓展公式及其应用
要点一
幂平均不等式
对于正实数$a, b$和实数$p, q$,且$p < q$,有 $left(frac{a^p + b^p}{2}right)^{1/p} leq left(frac{a^q + b^q}{2}right)^{1/q}$,用于比较不同幂次的平均值大小。
要点二
切比雪夫不等式
算术-几何平均不等式(AM-GM不等式):对于非负实数$a_1, a_2, ldots, a_n$,有 $frac{a_1 + a_2 + ldots + a_n}{n} geq sqrt[n]{a_1a_2ldots a_n}$,用于求解最值问题。
柯西-施瓦茨不等式(Cauchy-Schwarz不等式):对于任意实数序列${a_i}$和${b_i}$,有 $left(sum_{i=1}^{n}a_i^2right)left(sum_{i=1}^{n}b_i^2right) geq left(sum_{i=1}^{n}a_ib_iright)^2$,用于证明与内积有关的不等式问题。
高中数学基本不等式 PPT课件 图文
谢谢! 学妹给我打电话,说她又换工作了,这次是销售。电话里,她絮絮叨叨说着一年多来工作上的不如意,她说工作一点都不开心,找不到半点成就感。 末了,她问我:学姐,为什么想找一份 自己热 爱的工 作这么 难呢? 我问她上一份工作干了多久,她说不到 三个月 ,做的 还是行 政助理 的工作 ,工作 内容枯 燥乏味 不说, 还特别 容易得 罪人, 实在不 是自己 的理想 型。 我又问了她前几份工作辞职的原因,结 果都是 大同小 异,不 是因为 工作乏 味,就 是同事 不好相 处,再 者就是 薪水太 低,发 展前景 堪忧。 粗略估计,这姑娘毕业不到一年,工作 却已经 换了四 五份, 还跨了 三个行 业。 但即使如此频繁的跳槽,她也仍然没有 找不到 自己满 意的工 作。 2 我问她,心目中理想型的工作是什么样 子的。 她说, 姐,你 知道苏 明玉吗 ?就是 《都挺 好》电 视剧里 的女老 大,我 就喜欢 她样子 的工作 ,有挑 战有成 就感, 有钱有 权,生 活自由 ,如果 给我那 样的工 作,我 会投入 我全部 的热情 。 听她说完,我尴尬的笑了笑。 其实每一个人都向往这样的成功,但这 姑娘却 本末倒 置了, 并不是 有了钱 有了权 有了成 就以后 才全力 以赴的 工作, 而是全 力以赴 工作, 投入了 自己的 全部以 后,才 有了地 位名望 钱财。 你要先投入,才会有收获,当你真正投 入做一 件事后 ,会明 白两件 事:首 先你会 明白, 把一件 事认认 真真做 好,所 获得的 收益远 大于同 时做很 多事; 你会明白,有人风风火火做各种事仍未 有回报 ,是因 为他们 从未投 入过。 从“做 了”到 “做” ,正如 “知道 ”到“ 懂得” 的距离 。 3 之前
高中数学必修5优质课件:基本不等式
第七页,编辑于星期日:二十三点 三十九分。
解得 x=1- 22,y= 2-1,∴当 x=1- 22,y= 2 -1 时,1x+1y有最小值 3+2 2.
法二:1x+1y=1x+1y·1=1x+1y(2x+y)=3+2yx+xy≥3 +2 xy·2yx=3+2 2,
以下同解法一.
第八页,编辑于星期日:二十三点 三十九分。
A.最大值为 0
B.最小值为 0
Байду номын сангаасC.最大值为-4
D.最小值为-4
解析:∵x<0,∴f(x)=--x+-1x-2≤-2-2=-4, 当且仅当-x=-1x,即 x=-1 时取等号. 答案:C
第二十二页,编辑于星期日:二十三点 三十九 分。
2.若 a>b>0,则下列不等式成立的是( ) A.a>b>a+2 b> ab B.a>a+2 b> ab>b C.a>a+2 b>b> ab D.a> ab>a+2 b>b
[解] (1)∵m,n>0 且 m+n=16, 所以由基本不等式可得 mn≤m+2 n2=1262=64, 当且仅当 m=n=8 时,mn 取到最大值 64.∴12mn 的最大值为 32.
第六页,编辑于星期日:二十三点 三十九分。
(2)∵x>3,∴x-3>0,x-4 3>0,于是 f(x)=x+x-4 3=x-3
基本不等式
【知识梳理】
1.重要不等式 当 a,b 是任意实数时,有 a2+b2≥ 2ab ,当且仅当 a=b 时,等号成立. 2.基本不等式
a+b (1)有关概念:当 a,b 均为正数时,把 2 叫做正 数 a,b 的算术平均数,把 ab 叫做正数 a,b 的几何平均数.
第一页,编辑于星期日:二十三点 三十九分。
第三页,编辑于星期日:二十三点 三十九分。
高中数学人教版必修五:基本不等式(共23张PPT)
ab
a
b 2
(第一课时)
2019/10/5
一、情境创设 导入课题
第24届国际数学家大会(ICM2002)的会标
问题 :你能在这个图中找出一些相等关系或不 等关系吗?
二、自主探究 推导公式
问题 1:在正方形 ABCD 中有4个全等的直角三角形.设直角三角形的
两条直角边长为a,b,正方形ABCD的面积为 S ,4个直角三角形的面积和
2
又称为基本不等式
4、从数列角度看:
把
ab 2
看做两个正数a,b 的等差中项,
ab 看做正数a,b的等比中项,
那么上面不等式可以叙述为:
两个正数的等差中项不小于它们的等比 中项。
还有没有其它的证明方法证明均值 不等式呢?
二、自主探究 推导公式 探究:如图,AB 是圆的直径,点 C 是 AB上一点,
显然,④是成立的.当且仅当 a b 时,④中的等号成立.
2019/10/5
析 : a 0,b 0,
a b ab a b 2 ab ( a b)2 0
2
2
2
即 a b ab 2
当且仅当 a b即a b等号成立
上面所证结论通常称为均值不等式
(2)设矩形的长、宽分别为x(m),y(m),
依题意有2(x+y)=36,即x+y=18, 因为x>0,y>0,所以, xy ≤ x y
2
因此 xy ≤9
将这个正值不等式的两边平方,得xy≤81, 当且仅当x=y时,式中等号成立,此时x=y=9,
因此,当这个矩形的长与宽都是9m时,它的 面积最大,最大值是81m2。
基本不等式(共43张)ppt课件
判别式及根的关系
根的关系
判别式:$Delta = b^2 4ac$,用于判断一元二次方
程的根的情况。
01
02
03
当 $Delta > 0$ 时,方程有 两个不相等的实根;
当 $Delta = 0$ 时,方程有 两个相等的实根(即一个重
根);
04
2024/1/25
05
当 $Delta < 0$ 时,方程无 实根,有两个共轭复根。
基本不等式性质
传递性
若$a > b$且$b > c$,则$a > c$。
正数乘法保序性
若$a > b > 0$且$c > d > 0$ ,则$ac > bd$。
对称性
若$a = b$,则$b = a$;若 $a > b$,则$b < a$。
2024/1/25
可加性
若$a > b$且$c > d$,则$a + c > b + d$。
2024/1/25
35
思考题与练习题
思考题:如何利用均值不 等式证明其他不等式?
2024/1/25
|x - 3| < 5
练习题:解下列不等式, 并在数轴上表示解集
(x + 1)/(x - 2) > 0
36
THANKS。
2024/1/25
37
次不等式组来解决。
12
03
一元二次不等式解法
2024/1/25
13
一元二次不等式概念
一元二次不等式
只含有一个未知数,并且未知数的最高次数是2的不等式。
标准形式
$ax^2+bx+c>0$ 或 $ax^2+bx+c<0$,其中 $a neq 0$。
基本不等式ppt课件
a+b
当且仅当a
2
= b时,等号成立.
思考:如图,是圆的直径,点是上一点, = ,
D
= .过点作垂直于的弦,连接,.
a+b
ab
2
半径 = _______________,则
= _______________
与大小关系怎么样?
a+b
≥
(1)当积xy等于定值P时,
≥
2
证明:∵ x,y都是正数, ∴
1 2
时,积有最大值 .
4
xy.
p, ∴ x + y ≥ 2 p,
积定和最小
当且仅当x = y时,上式等号成立.
于是,当x = y时,和x + y有最小值2 p.
(2)当和x + y等于定值S时, xy ≤
S
,∴xy
2
当且仅当x = y,上式等号成立.
2
2
∴x +
4
]
2−x
4
,得x
2−x
4
的最大值为−2.
x−2
+ 2 ≤ −2 (2 − x)(
4
)
2−x
+ 2 = −2,
= 0或x = 4(舍去),即x = 0时等号成立.
练习巩固
练习2:已知0 < < 1,求 1 − 的最大值.
解:∵0 < < 1,∴ 1 − x > 0
∴ 1 − ≤
∴x +
4
x+4
− 4 ≥ 2 (x + 4) ∙
4
,即x
x+4
4
的最小值为0.
人教版必修五数学《基本不等式》PPT课件
人教版必修五数学《基本不等式》PPT课件•课程介绍与目标•基本不等式概念及性质•基本不等式证明方法•基本不等式应用举例目录•拓展与提高:含参数的基本不等式问题•课程总结与回顾01课程介绍与目标人教版必修五数学教材基本不等式章节内容概述与前后知识点的联系教材版本及内容概述教学目标与要求知识与技能目标掌握基本不等式的形式、性质和应用方法,能够运用基本不等式解决简单的最值问题。
过程与方法目标通过探究、归纳、证明等过程,培养学生的数学思维和逻辑推理能力。
情感态度与价值观目标让学生感受数学的美和严谨性,培养学生的数学兴趣和数学素养。
本节课共分为引入、新课、巩固练习、小结四个部分。
课程安排时间分配重点与难点引入部分5分钟,新课部分30分钟,巩固练习部分15分钟,小结部分5分钟。
本节课的重点是基本不等式的形式、性质和应用方法;难点是运用基本不等式解决复杂的最值问题。
030201课程安排与时间02基本不等式概念及性质不等式定义及表示方法不等式的定义用不等号连接两个解析式所组成的数学式子。
不等式的表示方法常见的不等号有“<”、“>”、“≤”、“≥”和“≠”,用于表示两个量之间的大小关系。
对称性传递性可加性同向正值可乘性基本不等式性质探讨01020304当a=b 时,a<b,b>a 同时成立,反之亦然。
若a>b 且b>c ,则a>c ;若a<b且b<c ,则a<c 。
同向不等式可以相加,即若a>b 且c>d ,则a+c>b+d 。
若a>b>0且c>d>0,则ac>bd 。
特殊情况下的基本不等式均值不等式对于任意两个正数a和b,有√(ab)≤(a+b)/2,当且仅当a=b 时取等号。
柯西不等式对于任意两组实数a1, a2, …, an和b1, b2, …, bn,有(a1^2+a2^2+...+an^2)(b1^2+b2^2+...+bn^2)≥(a1b1+a2b2+...+anbn)^2,当且仅当ai/bi为常数时取等号。
高中数学必修5《基本不等式》优秀课件
ab a b (a 0,b 0) 2
(当且仅当a=b时,等号成立)
几何平均数 算术平均数
基本不等式
代数意义:几何平均数小于等于算术平均数 几何意义:半弦长小于等于半径
从数列角度看:两个正数的等比中项小于等于它们的
v
等差中项
重要不等式: a2 b2 2ab(a、b R)
当且仅当a=b时,等号成立.
基本不等式: ab a b (a 0,b 0) 2
当且仅当a =b时,等号成立.
注意:
(1)不同点:两个不等式的适用范围不同。
(2)相同点:当且仅当a=b时,等号成立。
a与b为正实数
积定和最小 和定积最大
若等号成立, a与b必须 能够相等
变式训练
1.已知函数 f x x 3 ,求函数的最值和
此时x的取值.
x
运用均值不等式的过程中,切记不要忽略 了“正数”这个条件.
2.已知x>1,f x x 1 的最小值.
x 1
运用均值不等式的过程中,切记不要忽略 了“积为定值”这个条件.
3.4基本不等式:
ab a b 2
学习目标
学习目标: 1、探索并了解基本不等式的证明过程; 2、会用基本不等式解决简单的最大(小)值问题。
重点与难点
重点:利用数形结合思想理解基本不等式。 难点:基本不等式成立的条件及应用。
导学案反馈
● 优秀小组:4组、7组、10组、12组 ● 优秀个人:
(评价标准:卷面干净,书写规范,正确率高)
李 傲、李艳萌
优秀导学案展示
卷面干净 书写规范 正确率高
基本不等式课件(共43张)
可用于证明数列中的基本不等式及其他需要归纳证明的数学问题。
复合函数的不等式
概念
由函数f和g构成的复合函数,通常记为f(g(x))。
定理
若g(x) 在[a,b]上单调递增,且在[a,b]上有连续导数, 则f(g(x)) 在[g(a),g(b)]上也有连续导数;若f(x) 在 [g(a),g(b)]上是凸函数,则有:f(g((sa+tb)/(s+t))) < (sf(g(a))+tf(g(b)))/(s+t) (0<s<t)
3 注意事项
某些情况下需要分类讨论,如系数符号和大小关系不同。
两个变量的基本不等式
定义
指两个变量之间的不等关系。
公式
(a+b)² > a²+2ab+b² (a,b为变量)
多个变量的基本不等式
公式
对于n个非负实数a1、a2、…、an,有(∑ai)² ≥ n∑ai²
应用
可用于证明柯西不等式、绝对值不等式等多项式不 等式。
集中不等式
2
权值后再求和,然后除以所有的权值之 和所得的数。
对于任意n个实数(不限正负),有下 面这些不等式。
(1)(非加权)算数平均数 ≥ (非 加权)几何平均数 ≥ 调和平均数 (2)若各实数互不相等,则平方差
中项≥2几何平均中项减去(非加权) 算数平均中项
3
应用
可以用于求解一些需要加权平均数作为 结果的应用题。
(1+a)^x > 1+ax (1-a)^x > 1-ax
3
应用
可用于证明基本不等式等各种不等式定理。
函数保证与不等式
概念
将不等式在两端同时乘以正数或同时乘以负数, 得到的新不等式的符号不变,就称原不等式与 新不等式互为保证。
高一数学必修五基本不等式详细版.ppt
深
基本不等式:a b aba 0,b 0
入
2
探
当且仅当a=b时,等号成立。
究
揭 基本不等式的几何解释:
示
D
本
半径不小于半弦
质
A
aCb B
.精品课件.
E
3
剖析公式应用
深
入 探
a b ab 2
究
均值不等式
揭
算术平均数 几何平均数
示 基本不等式可以叙述为:
本 两个正数的算术平均数不小于它们的几何平均
3.4基本不等式: ab a b 2
.精品课件.
1
基 本 不 等 式 的 几A 何 背 景
D
a2 b2
b
G aF
C
A HE
B
D
a
Ob
C
B
重要不等式: 一般地,对于任意实数a、b,我
们有
a2 b2 2ab
当且仅当a=b时,等号成立。
如何证明?
用 a和 ba 0,b .精品0课件代. 替a,b会得到什么? 2
.精品课件.
15
【基础训练3】
1、 求函数 y 1 x(x 3) 的最小值.
x3
2、求函数f(x)=x2(4-x2) (0<x<2)的最大值是多 少?
.精品课件.
16
例1:(1)用篱笆围成一个面积为100m2的矩形菜园, 问这个矩形的长、宽各为多少时,所用篱笆最短。
最短的篱笆是多少?
解:设矩形菜园的长为x m,宽为y m,
xy 81
当且仅当x y 9时取等号。
两个正数的和为定值,积有最大值。
利用a b 2 ab
你还有其他的解法吗?
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基 本 不 等 式 : abab (a0,b0) 2
1、aba2b2
a2b2
2
2、1
2
1
ab
ab ab 2
a2 b2 ,
2
(a,bR,当且仅当a b时取“=”)
.
5
例 例1、(1)当x>0时,x 1 2 ,当且仅当
题
x
x= 1 时取等号。
讲 2若 x0, y0且 x•y9,则 xy的最小 6 , 值
此x时 y3 .
解 : Qx0, y0xy2 x•y6
当且仅x当y3时取等号。
两个正数积为定值P,和有最小值 2 。P
利用 ab2 ab
.
6
3、基本不等式求最值的条件的探究:
变式判:断以下命题是否正确
(1)因为 yx42 x
x•4 x
4,所以 ymin4.
错 。 因 为 x和 1 x不 一 定 是 正 数
解:(1)∵x<54,∴5-4x>0, ∴y=4x-2+4x1-5=- 5-4x +5-14x +3≤-2+3=1.
当且仅当 5-4x=5-14x时,即 x=1 时,上式等号成立, 故 x=1 时,ymax=1.
(2)(“1”的代换)∵1x+9y=1,∴x+y=(x+y)
1+9 xy
=10+y+9x. xy
∵x>0,y>0,∴xy+9yx≥2 yx·9yx=6.
当且仅当y=9x,即 y=3x,取“=”. xy
又∵1+9=1,∴x=4,y=12.∴当 xy
x=4,y=12
时,(x+y)min=16.
.
15
新坐标74页例2
3、已知 x>0,y>0,且 xy=4x+y+12,求 xy 的最小值.
解:∵x>0,y>0,xy=4x+y+12≥4 xy+12, ∴( xy)2-4 xy-12≥0, ∴( xy-6)( xy+2)≥0, ∴ xy≥6,当且仅当 4x=y 时取等号. 由 4x=y 且 xy=4x+y+12,得 x=3,y=12. 此时 xy 有最小值 36.
当 x=4x,即 x=2 时,ymin=1 760 元. 故当池底长为 2 米时,这个水池的造价最低,最低造价 为 1 760 元.
.
18
3.4基本不等式:
ab a b 2
.
1
一
D
、
a2 b2
基
b
本
G aF
C
不A
HE
A
等
D
a
Ob
C
式
的
B
B
探 重要不等式: 一般地,对于任意实数a、b,我
究 们有
a2b2 2ab
当且仅当a=b时,等号成立。
.
2
深
入 用a和ba0,b0代a替 ,b会得到
探
究 基本不等式:ab aba0,b0
2 揭
当且2仅 x当 y即x9,y9时取等号。 2
.
11
基本不等式的应用
新坐标71页例2
1:已知 a、b、c 为正数,a+b+c=1, 且不全相等,求证:1a+1b+1c>9.
.
12
解: ∵a,b,c 为正数,
∴1a+1b+1c=(a+b+c)
1+1+1 abc
=a+ab+c+a+bb+c+a+bc+c=3+ba+ac+ab+bc+ac+bc
.
16
新坐标75页第四题
4、建造一个容积为 8 m3,深为 2 m 的长方体无盖水池, 若池底每平方米 120 元,池壁的造价为每平方米 80 元, 这个水池的最低造价为多少元?
x 2
.
17
【解】 设水池的总造价为 y 元,池底长为 x 米,则宽 为4x米,由题意可得:
y = 4×120 + 2 2x+8x ·80 = 480 + 320·x+4x ≥480 + 320·2 x·4x=480+320·2 4=1 760.
一正
二定
三相等
a与b为正实数
积定和最小 和定积最大
若等号成立, a与b必须 能够相等
强调:求最值时要考虑不等式是否能取到“=”
.
8
最值定理:若x、y皆为正数,则
(1)当x+y的值是常数S时,当且仅当x=y时,xy有最和 和
大值__14__S_2__; (2)当xy的值是常数P时,当且仅当x=y时,
一正
( 2 ) 设 x R ,则 y x 2 8 x 中 ,当 x 2 8 x ,x 2 时 ,y m 8 i; n
错。因x2为 •8不是定值
x
二定
3若0x,则ysin x 9 2 96,
sin x 所以函数的6.最小值是
错。因 sinx为 9
.
sinx
三相等
7
应用基本不等式求最值的条件:
示
当且仅当a=b时,等号成立。
本
质
.
3
剖析公式应用
深
入
ab ab
探
2
均值不等式
究
算术平均数 几何平均数
揭 基本不等式可以叙述为:
示 两个正数的算术平均数不小于它们的几何平均
数. 本
注意:(1)不等式使用的条件不同;
质
(2)当且仅当a=b时取等号;
.
4
2、两个不等式的推论:
重 要 不 等 式 : a2b22ab (a,bR)
xy81
当且仅x当y9时取等号。
解 法 二 : Q x0,y0
xyxy2 2
81
公式变形:ab
a
2
b
2
当且仅x当y9时取等号。
.
10
例 2 、 若 正 数 x , y 满 足 2 x y 1 8 , 求 x y 的 最 大 值 。
解 : Qx0,y0
2xy2xy281
2
xy
81 2
最 x+y有最小
定 积
小值__2___P__.
最
注意:①各项皆为正数;
一“正”
大
②和为定值或积为定值;二“定”
,
③注意等号成立的条件. 三“相等”
积
定
注:应用此不等式关键是配凑和一定或积一定
.
9
例 2、若x,正 y满数 x足 y1,8 求 x的 y 最大
解 法 一 : Q x0,y0
xy2x即 y2xy18
=3+
b+a ab
+
c+b bc
+
c+a ac
≥3+2+2+2=9,
∵a,b,c 不全相等,∴“=”不成立.即1+1+1>9. abc
.
13
新坐标73页例1
2、(1)、已知
x<54,求函数
y=4x-2+ 4xห้องสมุดไป่ตู้
1-5的最大值.
(2)、已知 x>0,y>0,且1x+9y=1,求 x+y 的最小值.
.
14