比较两个代数式大小
新教材高中数学第一章预备知识3不等式3-1不等式性质课件北师大版必修第一册

+
>
.
+
1
,x>y,求证:
+
>
1
,x>y,∴
>
>
.
+
>0,∴0<
<
,故
0<+1<+1,即
角度3利用不等式性质求取值范围
【例4】 如果3<a<7,1<b<10,试求a+b,3a-2b, 2 的取值范围.
解因为3<a<7,1<b<10,
所以3+1<a+b<7+10,即4<a+b<17.
以改变符号后移到不等号的另一边,称为移项法则,在解不等式时经常用到.
4.倒数法则:
如果a>b,ab>0,那么
1 1
<
a b
,结论成立的条件是a,b要同号.
过关自诊
1.判断正误.(正确的画√,错误的画×)
(1)在一个不等式的两边同乘一个非零实数,不等式仍然成立.( × )
(2)同向不等式具有可加性和可乘性.( × )
性质4(同向不等
如果a>b,c>d,那么a+c>b+d
式可加性)
如果a>b>0,c>d>0,那么ac>bd;
性质5(不等式的
如果a>b>0,c<d<0,那么ac<bd.
可乘性)
乘方法则:当a>b>0时,an>bn,其中n∈N+,n≥2
如何比较两个代数式的大小

比较代数式的大小问题常以选择题、填空题的形式出现.此类问题的难度一般不大,侧重于考查同学们的观察能力和运算能力.在解题时,需灵活运用简单基本函数的图象、性质来进行分析.本文主要探讨以下两种比较代数式大小的技巧.一、通过放缩进行比较有时两个要比较的代数式之间没有任何关联,此时可以通过放缩代数式,来确定要比较的两个代数式的大小或者范围,进而比较出两个代数式的大小.利用放缩法比较代数式的大小,可以从基本不等式、泰勒公式、柯西不等式、绝对值不等式、曲线的切线、重要不等式等入手,对要比较的代数式进行合理的放缩.例1.(2022年高考全国甲卷文科,第12题)已知9m=10,a=10m-11,b=8m-9,则().A.a>0>bB.a>b>0C.b>a>0D.b>0>a解法1:由9m=10,得m=log910=lg10lg9,则m-lg11=1lg9-lg11=1-lg9lg11lg9lg10>1-æèçöø÷lg9+lg1122lg9lg10>1-æèçöø÷lg10022lg9lg10=0,所以a=10m-11=10m-10lg11>0.则m-log89=lg10lg9-lg9lg8=lg10lg8-(lg9)2lg9lg8<æèçöø÷lg10+lg822-(lg9)2lg9lg8<æèçöø÷lg8122-(lg9)2lg9lg8=0,所以b=8m-9=8m-8log89<0.所以a>0>b,故选A.解法2:由9m=10,得m=log910=lg10lg9>1.由糖水不等式,得lg10lg9>lg10+lg109lg9+lg109=lg1009lg10>lg999lg10=lg11lg10,所以m=log109>lg11,从而可得a=10m-11>10lg11-11=0.同理可得lg9lg8>lg9+lg98lg8+lg98=lg818lg9>lg808lg9=lg10lg9,所以log98>log109=m,则b=8m-9<8log89-9=0,故a>0>b.解法1是利用指数与对数运算性质以及基本不等式进行放缩;解法2是利用“糖水不等式”进行放缩,从而确定了a、b的临界值,比较出三个代数式的大小.例2.(2022年全国新高考1卷,第7题)设a=0.1e0.1,b=19,c=-ln0.9,则().A.a<b<cB.c<b<aC.c<a<bD.a<c<b解法1:由泰勒展开式,得e x=1+x+x22!+x33!+⋯+x nn!+⋯,则ln(1+x)=x-x22+x33-x44+⋯+(-1)n-1x n n+⋯,所以xe x=x+x2+x32!+x43!+⋯+x n+1n!+⋯,-ln(1-x)=x+x22+x33+x44+⋯+x n n+⋯.令x=0.1,得a=0.1+0.12+0.132!+⋯,b=0.1+0.12+0.13+⋯,c=-ln0.9=0.1+0.122+0.133+⋯,故c<a<b.故选C.解法2:由重要不等式e x≥x+1(当x=0时取等号),可知e-110>1-110=910,即e110<109,所以110e110<19,所以a<b.令x=0.1,由e x≥x+1可得e0.1>1.1,所以0.1e0.1>0.11;由ln x≤12æèöøx-1x(x≥1),得ln109<12æèöø109-910=19180=0.105·<0.11,所以c<a.综上可知,c<a<b.根据三个代数式的结构特征很容易联想到泰勒公式,解法1是从泰勒公式入手,通过赋值、放缩,比较出三个代数式的大小.解法2是从重要不等式e x≥x+1入手,对其进行合理的赋值、放缩,从而比较出三个代数式的大小.例3.(2022年全国甲卷理科,第12题)已知a=3132,b=cos14,c=4sin14,则().B.b>a>c解题宝典36解题宝典C.a >b >cD.a >c >b解:由泰勒展开式,得sin x =x -x 33!+x 55!-x 77!+⋯,cos x =1-x 22!+x 44!-x 66!+⋯,所以当x >0时,cos x >1-x 22,sin x x =1-x 23!+x 45!-⋯>cos x ,令x =14,得cos 14>1-12×42=3132,则4sin 14>cos 14,故c >b >a .解答本题,需联想到泰勒展开式的变形式sin x =x -x 33!+x 55!-x 77!+⋯,cos x =1-x 22!+x 44!-x 66!+⋯,将两个式子进行放缩,以确定cos x 、sin xx的取值范围.然后将x 用14替换,通过赋值,判断出三个代数式之间的大小关系.二、利用函数的性质进行比较在比较代数式的大小时,我们常需要用到简单基本函数的单调性.一般地,若自变量x 1>x 2,且函数单调递增,则f ()x 1>f ()x 2;若自变量x 1>x 2,且函数单调递减,则f ()x 1<f ()x 2.在解题时,需仔细观察要比较的代数式的结构特征,合理构建函数模型,以便利用函数的单调性进行比较.以例1为例.解:由9m =10,得m =log 910=lg 10lg 9>1.设函数f (x )=x m -(x +1)(x >1),则f ′(x )=mx m -1-1.由{x >1,m >1,得x m -1>x 0=1,所以mx m -1>1,即f ′(x )>0,所以f (x )在(1,+∞)上单调递增,所以f (10)>f (9)>f (8),即10m -11>9m -10>8m -9,故a >0>b .我们仔细观察9m =10、a =10m -11、b =8m -9三式,可发现其结构形如f (x )=x m -(x +1)(x >1),于是构造出函数f (x )=x m -(x +1)(x >1),并对其求导,判断出函数的单调性,即可根据函数的单调性比较出三式的大小.以例2为例解:因为a =0.1e 0.1,b =0.11-0.1,c =-ln(1-0.1),则a b =0.1e 0.10.11-0.1=(1-0.1)e 0.1,设f (x )=(1-x )e x ,x ∈[0,0.1],则f ′(x )=-xe x≤0,所以f (x )在[0,0.1]上单调递减,所以f (0.1)<f (0)=1,即(1-0.1)e 0.1<1,所以a <b .设g (x )=xe x+ln(1-x ),x ∈éëöø0,19,则g ′(x )=(x +1)∙e x (x 2-1)+1x -1.设h (x )=e x (x 2-1)+1,h ′(x )=e x (x 2+2x -1)<0,则函数h (x )在区间éëöø0,19上单调递减,因为h (0)=0,所以h (x )<0,因为x +1>0,x -1<0,所以g ′(x )>0,则函数g (x )在区间éëöø0,19上单调递增.因为g (0)=0,所以g (x )=xe x+ln(1-x )>0,所以xe x>-ln(1-x ).当x =0.1时,0.1e 0.1>-ln 0.9,即a >c .所以c <a <b .本题中的a 、b 、c 三式分别为指数、分式、对数式,很难比较它们的大小,于是将ab、a -c .然后构造出函数f (x )=(1-x )e x 、g (x )=xe x +ln(1-x ),根据导函数与函数单调性之间的关系判断出函数的单调性,进而根据函数的单调性比较出三个代数式的大小.以例3为例解:设f (x )=x -sin x ,x ∈éëöø0,π2,则f ′(x )=1-cos x ≥0,所以f (x )在éëöø0,π2上单调递增,所以f (x )≥f (0)=0,即x ≥sin x .设g (x )=cos x +12x 2-1,x ∈éëöø0,π2,则g ′(x )=-sin x +x ≥0,所以g (x )在éëöø0,π2上单调递增,所以g æèöø14=cos 14+12×æèöø142-1>g (0)=0,即cos 14>3132,即b >a .设h (x )=sin x -x cos x ,0≤x <π2,则h ′(x )=x sin x ≥0,所以h (x )在éëöø0,π2上单调递增,所以h æèöø14>h (0),即sin 14>14cos 14,得c >b .故c >b >a .故选A .要比较的三个代数式分别为分数、正弦函数式、余弦函数式,需先分别将a 与b ,c 与b 作差;再构造函数f (x )=x -sin x 、h (x )=sin x -x cos x ;然后讨论其单调性,根据其单调性判断代数式之间的大小关系.可见,比较代数式的大小,可以从不等式的结构特征、函数的性质入手,灵活运用不等式的性质进行放缩,还可以构造合适的函数,利用函数的单调性进行比较.但需注意,在解题时,还需灵活运用各种运算技巧、性质,以及数形结合思想来辅助解题.(作者单位:甘肃省天水市第三中学)37。
【新教材】新人教A版必修一 不等关系与不等式的性质 教案

不等关系与不等式的性质1.了解不等式的概念,理解不等式的性质.2.会比较两个代数式的大小.3.会利用不等式的性质解决有关问题.知识梳理1.不等式的定义用不等号“〉、≥、〈、≤、≠”将两个数学表达式连接起来,所得的式子叫不等式.2.两个实数的大小比较(1)作差法.设a,b∈R,则a-b>0⇔a〉b;a-b〈0⇔a<b;a-b=0⇔a=b。
(2)作商法.设a>0,b〉0,则错误!>1⇔a>b;错误!=1⇔a=b;错误!<1⇔a<b。
3.不等式的基本性质①对称性:a>b⇔b〈a;②传递性:a>b,b>c⇔a〉c;③可加性:a〉b⇔a+c>b+c;④不等式加法:a>b,c〉d⇔a+c〉b+d;⑤可乘性:a>b,c〉0⇒ac>bc;a〉b,c〈0⇒ac<bc;⑥不等式乘法:a〉b〉0,c>d>0ac>bd;⑦不等式乘方:a>b>0⇒a n〉b n(n∈N,n≥1);⑧不等式开方:a〉b〉0⇒错误!>错误!(n∈N,n〉1).1.倒数性质(1)a〉b,ab〉0错误!〈错误!;(2)a<0〈b错误!<错误!。
2.分数性质若a>b>0,m〉0,则(1)真分数性质:错误!<错误!;错误!>错误!(b-m〉0);(2)假分数性质:a b>错误!;错误!〈错误!(b -m >0).热身练习1.某地规定本地最低生活保障金不低于300元,若最低保障金用W 表示,则上述关系可以表示为(B )A .W >300B .W ≥300C .W 〈300D .W ≤3002.若f (x )=3x 2-x +1,g (x )=2x 2+x -1,则f (x )与g (x )的大小关系是(A)A .f (x )>g (x )B .f (x )=g (x )C .f (x )〈g (x )D .随x 的值的变化而变化因为f (x )-g (x )=(3x 2-x +1)-(2x 2+x -1)=x 2-2x +2=(x -1)2+1〉0,所以f (x )>g (x ).3.“a +c 〉b +d "是“a >b 且c 〉d ”的(A)A .必要而不充分条件B .充分而不必要条件C .充分必要条件D .既不充分也不必要条件 a >b 且c >d ⇒a +c 〉b +d .当取a =1,b =2,c =5,d =3时,满足a +c >b +d ,但不能推出a >b 且c 〉d ,故选A 。
作差比较在高考中应用

⑵
f
'
1 当a 0时, a a
(, a)
x
( x)
a
0
极大值
( a,
1 1 ) a a
(
1 , ) a
f (x )
+ ↗
↘
0
极小值
+ ↗
y 1 y ; 极大值 极小值-a 2 1 f ( x )在( , a )与( ,)上增加 a 1 在( a, )上减少。 a
链接高考:
在高考中不会单一的考察两个不等式的大 小比较,而是和下列知识点综合考察。 Ⅰ:解含参数的一元二次不等式或分式不等 式时,其对应方程的两个根大小比较。 Ⅱ:求导数的极值时,导数为零时方程根的 大小比较。 Ⅲ:求闭区间上最值时,最后比较端点处的 函数值与导数为零点的函数值的大小。
类型1:解含参数不等式时根的大小比较 1 例3:解不等式: a)(x ) (a 0) (x 0 a 1 分析:(x a)(x ) 0的两根为 a 1 x1 a; x2 - a 1 比较a与 - 的大小;做差比较 a
2
2 : 当a 1时, 3)(a 5) a 6a 11; (a
2
3 : 当a 1时, 3)(a 5) a 6a 11; (a
2
归纳总结:
两个代数式大小比较有两种情况: ⑴两代数式的差与零的大小关系唯一时 (如例1)此时两代数式的大小关系唯一。 ⑵两代数式的差与零的大小关系不唯一时 (如例2)此时要分类讨论,一般情况下, 分类讨论的标准是, Ⅰ:令差大于零 Ⅱ:令差等于零 Ⅲ:令差小于零。
作业
1已知函数:f ( x) ( x k )e (Ⅰ)求的单调区间; (Ⅱ)求在区间[0,1]上的最小值.
人教版七年级上册数学分层单元测第二章 整式的加减--提升卷(解析版)

2020-2021学年七年级数学上册《单元测试定心卷》(人教版)第二章 整式的加减(能力提升)一、选择题1. 下列叙述中,正确的是( )A. 单项式212xy π的系数是12,次数是4 B. 202a π、、、都是单项式C. 多项式32321a b a +-的常数项是1D. 2m n+是单项式【答案】B 【解析】【分析】根据单项式的次数、系数的定义和多项式的次数、系数的定义解答.【详解】A 、错误,单项式212xy π的系数是12π,次数是3;B 、正确,符合单项式的定义;C 、错误,多项式32321a b a +-的常数项是-1;D 、错误,2m n+是一次二项式. 故选:B .【点睛】此题主要考查了多项式与单项式,正确把握相关定义是解题关键. 2. 点O ,A ,B ,C 在数轴上的位置如图所示,其中O 为原点,2BC =,OA OB =,若C 点所表示的数为x ,则A 点所表示的数为( )A. 2x -+B. 2x --C. 2x +D. -2【答案】A 【解析】【分析】由BC=2,C 点所表示的数为x ,求出B 表示的数,然后根据OA=OB ,得到点A 、B 表示的数互为相反数,则问题可解. 【详解】解:∵BC=2,C 点所表示的数为x , ∴B 点表示的数是x-2,又∵OA=OB ,∴B 点和A 点表示的数互为相反数, ∴A 点所表示的数是-(x-2),即-x+2. 故选:A .【点睛】此题考查用数轴上的点表示数的方法和数轴上两点间的距离以及相反数的性质,解答关键是应用数形结合思想解决问题.3. 单项式21412n a b --与83m ab 是同类项,则57(1)(1)+-n m =( )A.14B. 14-C. 4D. -4【答案】B 【解析】【分析】直接利用同类项的概念得出n ,m 的值,即可求出答案.【详解】21412n a b --与83m ab 是同类项,∴21184n m -=⎧⎨=⎩,解得:121m n ⎧=⎪⎨⎪=⎩, 则()()5711n m +-=14-, 故答案选:B .【点睛】本题考查的知识点是同类项,解题的关键是熟练地掌握同类项. 4. 下列去括号正确的是( )A. 112222x y x y ⎛⎫ =⎭-⎪⎝--- B. ()12122x y x y ++=+- C. ()16433232x y x y --+=-++ D. ()22x y z x y z +-+=-+【答案】D 【解析】【分析】根据整式混合运算法则和去括号的法则计算各项即可.【详解】A. 112222x y x y ⎛⎫ =⎭-⎪⎝--+,错误;B. ()12122x y x y ++=++,错误;C. ()136433222x y x y --+=-+-,错误; D. ()22x y z x y z +-+=-+,正确; 故答案为:D .【点睛】本题考查了整式的混合运算,掌握整式混合运算法则和去括号的法则是解题的关键.5. 若多项式2x 3﹣8x 2+x ﹣1与多项式3x 3+2mx 2﹣5x +3的差不含二次项,则m 等于( ) A. 2 B. ﹣2C. 4D. ﹣4【答案】D 【解析】【分析】直接利用整式的加减运算法则得出8+2m =0,进而得出答案.【详解】解:∵多项式2x 3﹣8x 2+x ﹣1与多项式3x 3+2mx 2﹣5x +3的差不含二次项, ∴2x 3﹣8x 2+x ﹣1﹣(3x 3+2mx 2﹣5x +3)=﹣x 3﹣(8+2m )x 2+6x ﹣4, ∴8+2m =0,解得:m =﹣4,故D 正确. 故选:D .【点睛】此题主要考查了整式的加减,正确合并同类项是解题关键.6. 已知a+4b =﹣15,那么代数式9(a+2b )﹣2(2a ﹣b )的值是( )A. ﹣15B. ﹣1C. 15D. 1【答案】B 【解析】【分析】先化简所求代数式,再将已知等式作为一个整体代入求解即可. 【详解】9(2)2(2)a b a b +--91842a b a b =+-+ 520a b =+5(4)a b =+将145a b +=-代入得:原式15(4)5()15a b =+=⨯-=-故选:B .【点睛】本题考查了代数式的化简求值,掌握代数式的化简方法是解题关键. 7. 若2M 3x 5x 2=-+,2 N 3x 5x 1=-- 则M 和N 的大小关系为 ( ) A. M<N B. M=N C. M> N D. 无法确定【答案】C 【解析】【分析】要比较两个代数式的大小,可以求出它们的差来作比较.若差小于0,则被减数小于减数; 若差大于0,则被减数大于减数;若差等于0,则被减数等于减数.【详解】解:∵2M 3x 5x 2=-+,2 N 3x 5x 1=--,∴()()2222M N 3x 5x 23x 5x 13x 5x 23x 5x 13-=-+---=-+-++=>0,∴M N > 故选C .【点睛】本题考查代数式如何比较大小的问题,熟练掌握代数式比较大小的方法,如作差法、作商法等等是解题关键.8. 实数a 在数轴上的位置如图所示,则|a-4|+|a-11|化简后为( )A. 7B. -7C. 2a -15D. 无法确定【答案】A 【解析】【详解】解:由图可知:5,a ,10,,a -4,0,a -11,0,,|a -4|+|a -11|=a -4+11-a =7,故选A,点睛:考查绝对值的化简问题;判断出绝对值里面的式子的符号是解决本题的关键;用到的知识点为:正数的绝对值是它本身;负数的绝对值是它的相反数. 9. 如图1,将一个边长为a 的正方形纸片剪去两个小矩形,得到一个“”的图案,如图2所示,再将剪下的两个小矩形拼成一个新的矩形,如图3所示,则新矩形的周长可表示为()A. 2a﹣3bB. 4a﹣8bC. 2a﹣4bD. 4a﹣10b【答案】B【解析】【分析】剪下的两个小矩形的长为a−b,宽为1(a−3b),所以这两个小矩形拼成2的新矩形的长为(a−b),宽为(a−3b),然后计算这个新矩形的周长.【详解】解:根据题意得:2(a﹣b+a﹣3b)=2(2a﹣4b)=4a﹣8b,故选B.【点睛】本题考查了列代数式:把问题中与数量有关的词语,用含有数字、字母和运算符号的式子表示出来,就是列代数式.解题的关键用a和b表示出剪下的两个小矩形的长与宽.10. 用棋子摆出下列一组图形:按照这种规律摆下去,第n个图形用的棋子个数为()A. 3nB. 6nC. 3n+6D. 3n+3【答案】D【解析】【详解】观察可知:①中有棋子6个,6=3×1+3,②中有棋子9个,9=3×2+3,③中有棋子12个,12=3×3+3, …所以第n 个图形用的棋子个数为:3n +3, 故答案为:3n +3,【点睛】主要考查了规律性问题,通过题中的图形找出规律是解决本题的关键.二、填空题11. 若关于x 、y 的多项式25x 2y ﹣7mxy+34y 3+6xy 化简后不含二次项,则m=______. 【答案】67【解析】【分析】根据合并同类项法则进行合并后得25 x 2y+34 y 3+(6-7m)xy ,再由不含二次项即可求出m 的值 【详解】25x 2y ﹣7mxy+34y 3+6xy=25x 2y+34y 3+(6-7m)xy , ∵不含二次项, ∴6-7m=0, ∴m=67【点睛】此题主要考查整式的加减,解题的关键是熟知不含某项可得其系数为0.12. 已知多项式21231363m x y xy x +-+--是五次四项式,单项式250.4n m x y -的次数与这个多项式的次数相同,则m =__________,n =__________. 【答案】 ①. 2 ②. 1 【解析】【详解】解:,多项式21231363m x y xy x +-+--的次数是5,单项式250.4n m x y -的次数与这个多项式的次数相同, ,2+m +1=5,2n +5﹣m =5, ,m =2, ,n =1. 故答案为2,1.13. 当x=1时,多项式3ax bx 1++的值为5,则当x=-1时,多项式311ax bx 122++的值为________. 【答案】-1 【解析】【分析】将x=1代入多项式中得出a+b 的值,再将x=-1及a+b 分别代入所求多项式中计算即可解答.【详解】解:由x=1时,代数式3ax bx 1++的值为5得:a+b+1=5 整理得:a+b=4.将311ax bx 122++变形为31ax bx 12++()将x=-1代入31(ax bx)12++得:1(a b)12-++将a+b=4代入上式,得14112-⨯+=-故代数式311ax bx 122++的值为-1,故答案为:﹣1.【点睛】本题考查了代数式的求值,利用整体代入的思想方法是解答本题的关键.14. 已知22251,34A x ax y B x x by =+-+=+--,且对于任意有理数 ,x y ,代数式 2A B - 的值不变,则12()(2)33a A b B ---的值是_______.【答案】-2 【解析】【分析】先根据代数式2A B -为定值求出a,b 的值及 2A B -的值,然后对所求代数式进行变形,然后代入计算即可.【详解】222(251)2(34)A B x ax y x x by -=+-+-+--222512628x ax y x x by =+-+--++ (6)(25)9a x b y =-+-+∵对于任意有理数,x y ,代数式 2A B - 的值不变 ∴60,250a b -=-=,29A B -=56,2a b ∴==∵121()(2)2(2)333a Ab B a b A B ---=---∴原式=51629653223-⨯-⨯=--=-故答案为:-2【点睛】本题主要考查代数式的求值,能够对代数式进行化简,变形是解题的关键.15. 如图,图1是“杨辉三角”数阵;图2是(a+b )n 的展开式(按b 的升幂排列).若(1+x )45的展开式按x 的升幂排列得:(1+x )45=a 0+a 1x+a 2x 2+…+a 45x 45,则a 2=_____.【答案】990 【解析】【分析】根据图形中的规律即可求出(1+x )45的展开式中第三项的系数为前44个数的和,计算得到结论.【详解】解:由图2知:(a+b )1的第三项系数为0, (a+b )2的第三项的系数为:1, (a+b )3的第三项的系数为:3=1+2, (a+b )4的第三项的系数为:6=1+2+3, …∴发现(1+x )3的第三项系数为:3=1+2; (1+x )4的第三项系数为6=1+2+3; (1+x )5的第三项系数为10=1+2+3+4;不难发现(1+x )n 的第三项系数为1+2+3+…+(n ﹣2)+(n ﹣1), ∴(1+x )45=a 0+a 1x+a 2x 2+…+a 45x 45,则a 2=1+2+3+…+44=44(441)2⨯+=990; 故答案为:990.【点睛】本题考查了完全平方式,也是数字类的规律题,首先根据图形中数字找出对应的规律,再表示展开式:对应(a+b )n 中,相同字母a 的指数是从高到低,相同字母b 的指数是从低到高.三、解答题16. 先化简下列各式,再求值。
《二元一次方程组解法》(二)--加减法 配套知识讲解 人教七年级下

二元一次方程组解法(提高)知识讲解【学习目标】1. 掌握加减消元法解二元一次方程组的方法;2. 能熟练、正确、灵活掌握代入法和加减法解二元一次方程组;3.会对一些特殊的方程组进行特殊的求解.【要点梳理】要点一、加减消元法解二元一次方程组两个二元一次方程中同一未知数的系数相反或相等时,将两个方程的两边分别相加或相减,就能消去这个未知数,得到一个一元一次方程,这种方法叫做加减消元法,简称加减法.要点诠释:用加减消元法解二元一次方程组的一般步骤:(1)方程组的两个方程中,如果同一个未知数的系数既不互为相反数,又不相等,那么就用适当的数乘方程的两边,使同一个未知数的系数互为相反数或相等;(2)把两个方程的两边分别相加或相减,消去一个未知数,得到一个一元一次方程;(3)解这个一元一次方程,求得一个未知数的值;(4)将这个求得的未知数的值代入原方程组中的任意一个方程中,求出另一个未知数的值,并把求得的两个未知数的值用“大括号”联立起来,就是方程组的解.要点二、选择适当的方法解二元一次方程组解二元一次方程组的基本思想(一般思路)是消元,消元的方法有两种:代入消元和加减消元,通过适当练习做到巧妙选择,快速消元.【典型例题】类型一、加减法解二元一次方程组1.(2020春•澧县期末)用加减消元法解方程组34659 23x y x y++==【思路点拨】先将原方程写成方程组的形式后,再求解. 【答案与解析】解:此式可化为:349(1) 2659(2) 3x yx y+⎧=⎪⎪⎨+⎪=⎪⎩由(1):3x+4y=18 (1) 由(2):6x+5y=27 (2) (1)×2:6x+8y=36 (3) (3)-(2):3y=9y=3代入(1):3x+12=183x=6x=2∴23 xy=⎧⎨=⎩【总结升华】先将每个式子化至最简,即形如ax+by=c的形式再消元. 举一反三:【变式】方程组201020092008200820072006x y x y -=⎧⎨-=⎩的解为:.【答案】12x y =-⎧⎨=-⎩2.已知关于x 、y 的方程组ax by cex dy f+=⎧⎨+=⎩的解为31x y =⎧⎨=⎩,求关于x 、y 的方程组()()()()a x y b x y ce x y d x y f-++=⎧⎨-++=⎩的解. 【思路点拨】如果用一般方法来解答此题,很难达到目标,观察发现,两方程的系数相同,只是未知数的呈现方式不同,如果我们把x -y ,x+y 看作一个整体,则两个方程同解. 【答案与解析】解:方程组的解仅仅与未知数的系数有关,与未知数选用什么字母无关,因此把(x -y )与(x+y )分别看成一个整体当作未知数,可得3,1.x y x y -=⎧⎨+=⎩ 解得:2,1.x y =⎧⎨=-⎩【总结升华】本例采用了类比的方法,若把其中的x+y 和x -y 分别看作整体,则第二个方程组与第一个方程组相同,即x+y =1,x -y =3. 举一反三:【变式】三个同学对问题“若方程组111222a xb yc a x b y c +=⎧⎨+=⎩的解是34x y =⎧⎨=⎩,求方程组111222325325a x b y c a x b y c +=⎧⎨+=⎩的解.”提出各自的想法.甲说:“这个题目好象条件不够,不能求解”;乙说:“它们的系数有一定的规律,可以试试”;丙说:“能不能把第二个方程组的两个方程的两边都除以5,通过换元替代的方法来解决”.参考他们的讨论,你认为这个题目的解应该是:. 【答案】 解:由方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解是34x y =⎧⎨=⎩,得1112223434a b c a b c +=⎧⎨+=⎩,上式可写成111222352105352105a b c a b c ⨯+⨯=⎧⎨⨯+⨯=⎩,与111222325325a x b y c a x b y c +=⎧⎨+=⎩比较,可得:510x y =⎧⎨=⎩.类型二、用适当方法解二元一次方程组3.解方程组36101610x y x yx y x y +-⎧+=⎪⎪⎨+-⎪-=-⎪⎩【思路点拨】解决本题有多种方法:加减法或代入法,或整体代入法,整体代入法最简单. 【答案与解析】解:设,610x y x ym n +-==,则原方程组可化为31m n m n +=⎧⎨-=-⎩①②解得12m n =⎧⎨=⎩即16210x y x y +⎧=⎪⎪⎨-⎪=⎪⎩ ,所以620x y x y +=⎧⎨-=⎩解得137x y =⎧⎨=-⎩所以原方程组的解为137x y =⎧⎨=-⎩.【总结升华】解一个方程组的方法一般有多种方法,我们要根据方程组的特点选择最简便的求解方法. 举一反三:【变式】【答案】解:去分母,整理化简得,9112061925x y x y +=⎧⎨+=⎩①②,②×3-①×2得,3535y =,即1y =, 将1y =代入①得,99x =,即1x =, 所以原方程组的解为11x y =⎧⎨=⎩. 4.试求方程组27526x y x y ⎧-=--⎪⎨-=-⎪⎩的解.【答案与解析】解:27526x y x y ⎧-=--⎪⎨-=-⎪⎩①②①-②,整理得513y y -=-③ ∵50y -≥,∴13-y ≥0,即y ≤13,当513y ≤≤时,③可化为513y y -=-,解得9y =; 当5y ≤时,③可化为513y y -=-,无解. 将9y =代入②,得23x -=,解得15x =-或.综上可得,原方程组的解为:19x y =-⎧⎨=⎩或59x y =⎧⎨=⎩.【总结升华】解含有绝对值的方程组,一般先转化为含绝对值的一元一次方程,再分类讨论求出解. 举一反三:【变式】(2020春•杭锦后旗校级期末)若二元一次方程组和y=kx+9有相同解,求(k+1)2的值. 【答案】 解:方程组,①×3+②得:11x=22, 解得:x=2,将x=2代入①得:6﹣y=7, 解得:y=﹣1, ∴方程组的解为,将代入y=kx+9得:k=﹣5,则当k=﹣5时,(k+1)2=16. 第二课时 【学习目标】1.理解不等式的有关概念,掌握不等式的三条基本性质;2.理解不等式的解(解集)的意义,掌握在数轴上表示不等式的解集的方法;3.会利用不等式的三个基本性质,熟练解一元一次不等式或不等式组;4.会根据题中的不等关系建立不等式(组),解决实际应用问题;5.通过对比方程与不等式、等式性质与不等式性质等一系列教学活动,理解类比的方法是学习数学的一种重要途径.【知识网络】【要点梳理】要点一、不等式1.不等式:用符号“<”(或“≤”),“>”(或“≥”),≠连接的式子叫做不等式.要点诠释:(1)不等式的解:能使不等式成立的未知数的值叫做不等式的解.(2)不等式的解集:对于一个含有未知数的不等式,它的所有解组成这个不等式的解集.解集的表示方法一般有两种:一种是用最简的不等式表示,例如x a>,x a≤等;另一种是用数轴表示,如下图所示:(3)解不等式:求不等式的解集的过程叫做解不等式.2. 不等式的性质:不等式的基本性质1:不等式两边加(或减)同一个数(或式子),不等号的方向不变.用式子表示:如果a>b,那么a±c>b±c不等式的基本性质2:不等式两边都乘(或除以)同一个正数,不等号的方向不变.用式子表示:如果a>b,c>0,那么ac>bc(或a bc c >).不等式的基本性质3:不等式两边乘(或除以)同一个负数,不等号的方向改变.用式子表示:如果a>b,c<0,那么ac<bc(或a bc c <).要点二、一元一次不等式1.定义:不等式的左右两边都是整式,经过化简后只含有一个未知数,并且未知数的最高次数是1,这样的不等式叫做一元一次不等式,要点诠释:ax+b>0或ax+b<0(a≠0)叫做一元一次不等式的标准形式.2.解法:解一元一次不等式步骤:去分母、去括号、移项、合并同类项、系数化为1.要点诠释:不等式解集的表示:在数轴上表示不等式的解集,要注意的是“三定”:一是定边界点,二是定方向,三是定空实.3.应用:列不等式解应用题的基本步骤与列方程解应用题的步骤相类似,即:(1)审:认真审题,分清已知量、未知量;(2)设:设出适当的未知数;(3)找:找出题中的不等关系,要抓住题中的关键字,如“大于”“小于”“不大于”“至少”“不超过”“超过”等关键词的含义;(4)列:根据题中的不等关系,列出不等式;(5)解:解出所列的不等式的解集;(6)答:检验是否符合题意,写出答案.要点诠释:列一元一次不等式解应用题时,经常用到“合算”、“至少”、“不足”、“不超过”、“不大于”、“不小于”等表示不等关系的关键词语,弄清它们的含义是列不等式解决问题的关键. 要点三、一元一次不等式组关于同一未知数的几个一元一次不等式合在一起,就组成一个一元一次不等式组.要点诠释:(1)不等式组的解集:不等式组中各个不等式的解集的公共部分叫做这个不等式组的解集. (2)解不等式组:求不等式组解集的过程,叫做解不等式组.(3)一元一次不等式组的解法:分别解出各不等式,把解集表示在数轴上,取所有解集的公共部分,利用数轴可以直观地表示不等式组的解集.(4)一元一次不等式组的应用:①根据题意构建不等式组,解这个不等式组;②由不等式组的解集及实际意义确定问题的答案.【典型例题】类型一、不等式1.(2020春•天津期末)判断以下各题的结论是否正确(对的打“√”,错的打“×”).(1)若 b﹣3a<0,则b<3a;(2)如果﹣5x>20,那么x>﹣4;(3)若a>b,则 ac2>bc2;(4)若ac2>bc2,则a>b;(5)若a>b,则 a(c2+1)>b(c2+1).(6)若a>b>0,则<..【答案与解析】解:(1)若由b﹣3a<0,移项即可得到b<3a,故正确;(2)如果﹣5x>20,两边同除以﹣5不等号方向改变,故错误;(3)若a>b,当c=0时则 ac2>bc2错误,故错误;(4)由ac2>bc2得c2>0,故正确;(5)若a>b,根据c2+1,则 a(c2+1)>b(c2+1)正确.(6)若a>b>0,如a=2,b=1,则<正确.故答案为:√、×、×、√、√、√.【总结升华】本题考查了不等式的性质,两边同乘以或除以一个不为零的负数,不等号方向改变.2. 设x>y ,试比较代数式-(8-10x)与-(8-10y)的大小,如果较大的代数式为正数,则其中最小的正整数x 或y 的值是多少?【思路点拨】比较两个代数式的大小,可以运用不等式的性质得出比较方法。
不等式的基本性质

不等式的基本性质编稿:周尚达审稿:张扬责编:辛文升目标认知学习目标:理解并掌握不等式的性质,理解不等关系、感受在显示时节和日常生活中存在着大量的不等关系、了解不等式(组)的实际背景.能用不等式的基本性质比较代数式的大小。
重点:不等式的性质及运用,用不等式的基本性质比较代数式的大小。
难点:不等式性质的应用。
学习策略:①不等式的基本性质是进行不等式的变换,证明不等式和解不等式的依据,应正确理解和运用不等式的性质,注重性质的推导过程,弄清每条性质的条件与结论,注意条件与结论之间的关系。
②要比较两个式子的大小,通常只需将他们作差即可。
如果差的符号不确定,就需要对其差进行讨论。
③要证的不等式或者需要比较大小的式子含“幂”或“指数”,常采用作商比较法。
知识要点梳理知识点一:不等式的概念用不等号()表示不等关系的式子叫不等式.知识点二:不等式的性质1、不等式的基本性质:①对称性:②传递性:③可加性:()④可乘性:如果,则2、不等式的运算性质:①可加法则:②可乘法则:③可乘方性:④可开方性:知识点三:比较大小的方法1、作差法:任意两个式子、,可以作差后比较差与0的大小关系,从而得到与的大小关系,这种比较大小的方法称为作差比较法。
作差比较法的理论依据:①;②;③。
2、作商法:任意两个式子,如果、,可以作商后比较商与1的关系,从而得到与的大小关系。
作商差比较法的理论依据:若、,则有①;②;③.注意:作商比较法一般适合含“幂”、“指数”的式子比较大小。
3、中间量法:若且,则(实质是不等式的传递性).一般选择0或1为中间量.4、利用函数的单调性比较大小若两个式子具有相同的函数结构,可以利用相应的基本函数的单调性比较大小.规律方法指导1、作差比较法的主要步骤:①作差;②变形(分解因式,配方等);③判断差的符号;如果差的符号不确定,就需要对其差进行讨论。
④下结论。
注意:这里“判断差的符号”是目的,“变形”是关键过程。
2、作商比较法的主要步骤:①判断要比较两式的符号都为正;②作商;③变形;④判断商与1的大小关系;如果商与1的大小关系不确定,就需要对其商进行讨论。
人教版中职数学基础模块上册--第二章不等式教案

2.1.1 实数的大小【教学目标】1.理解并掌握实数大小的基本性质,初步学习用作差比较法来比较两个实数或代数式的大小.2.从学生身边的事例出发,体会由实际问题上升为数学概念和数学知识的过程.3.培养学生勤于分析、善于思考的优秀品质.善于将复杂问题简单化也是我们着意培养的一种优秀的思维品质.【教学重点】理解实数的大小的基本性质,初步学习作差比较的思想.【教学难点】用作差比较法比较两个代数式的大小.【教学方法】这节课主要采用讲练结合法.通过联系公路上的限速标志,引入不等式的问题,并且从关注数字的大小入手,引导学生学习用作差比较法来比较两个实数、代数式的大小.通过穿插有针对性的练习,引导学生边学边练,及时巩固,逐步掌握作差比较法.【教学过程】教学环节教学内容师生互动设计意图导入右面是公路上对汽车的限速标志,表示汽车在该路段行使的速度不得超过40 km/h.若用v(km/h)表示汽车的速度,那么v 与40之间的数量关系用怎样的式子表示?右面是公路上对汽车的限速标志,表示汽车在该路段行使的速度不得低于50 km/h.若用v(km /h)表示汽车的速度,那么v 与50之间的数量关系用怎样的式子表示?学生根据生活经验回答情境问题.答:v≤40.答:v≥50.从学生身边的生活经验出发进行新知的学习,有助于调动学生学习积极性.研究实数与数轴上的点的对应关系.观察:点P 从左向右移动,对应实数大小的变化.师:实数与数轴上的点的关系是怎样的?x0 1 2 3-1-2-3-4ABP-5新课呈现结论:数轴上的任意两点中,右边的点对应的实数比左边的点对应的实数大.a>b ⇔a-b>0a=b ⇔a-b=0a<b ⇔a-b<0含有不等号(<,>,≤,≥,≠)的式子,叫做不等式.练习1在数学表达式:①-5<1;②2 x+4>0;③x2+1;④x=6;⑤y≠4;⑥a-2≥a中,不等式的个数是( ).(A) 2 (B) 3 (C) 4 (D) 5练习2把下列语句用不等式表示:(1) y 是负数;(2) x2是非负数;(3)设 a 为三角形的一条边长,a 是正数;(4) b为非正数.例1比较下列各组中两个实数的大小:(1) -3和-4;(2)67和56;(3) -711和-1017;(4) 12.3和1213.解(1)因为(-3)-(-4)=-3+4=1>0,所以-3>-4;点A对应的实数与点B对应的实数各是多少?哪个大?生:实数与数轴上的点是一一对应的.点A表示实数3,点B表示实数-2,点A在点B右边,3>-2.当点P在不同的位置,学生分别比较点P对应的实数与点A,点B对应实数的大小.个别学生口答,其他学生评价,遇到问题,小组讨论解决.教师引导,学生口答.共同完成(1)和(2).通过动画演示提高学生学习的兴趣,活跃学生的思维.在复习初中知识的基础上加以提升.因为例题1较为简单,讲解两个,剩余两个让学生练习,使学生在参与中(2)因为67-56=3642-3542=142>0,所以67>56.例2对任意实数x,比较(x+1)(x+2)与(x-3)(x+6)的大小.解因为(x+1)(x+2)-(x-3)(x+6)=(x2+3x+2)-(x2+3x-18)=20>0.所以(x+1)(x+2)>(x-3)(x+6).练习3(1)比较(a+3)(a-5)与(a+2)(a-4)的大小;(2)比较(x+5)(x+7)与(x+6)2 的大小.例3比较(x2+1)2 与x4+x2+1 的大小.解因为(x2+1)2-(x4+x2+1)=(x4+2x2+1)-x4-x2-1=x2≥0,所以(x2+1)2≥x4+x2+1,当且仅当x=0时,等式成立.练习4(1)比较2 x2+3 x+4 和x2+3 x+3 的大小;(2)比较(x+1)2 和2 x+1的大小.学生完成(3)(4).学生仿照例题进行练习,教师巡视指导.学生复习(a+b)2的展开式.学生仿照例题进行练习,教师巡视指导.学习使用作差比较的方法.但仅限于使用,不必强调要求学生掌握这个方法.初步学习用作差比较法判断两个代数式的大小.小结作差法的步骤:作差→变形→定号(与0比较大小) →结论.作业必做题:教材P 33,练习A 组第3 题;选做题:教材P 34,练习B 组第2 (2)(5)(6)题.2.1.2不等式的性质【教学目标】1.掌握不等式的三条基本性质以及推论,能够运用不等式的基本性质将不等式变形解决简单的问题.2. 掌握应用作差比较法比较实数的大小.3.通过教学,培养学生合作交流的意识和大胆猜想、乐于探究的良好思维品质.【教学重点】不等式的三条基本性质及其应用.【教学难点】不等式基本性质3的探索与运用.【教学方法】这节课主要采用讲练结合法与分组探究教学法.通过引导学生回顾玩跷跷板的经验,师生共同探究天平两侧物体的质量的大小,引导学生理性地认识不等式的三条基本性质,并运用作差比较法来证明之.通过题组训练,使学生逐步掌握不等式的基本性质,为后面运用不等式的基本性质解不等式打下理论基础.【教学过程】教学环节教学内容师生互动设计意图导入【课件展示情境1】创设天平情境问题:观察课件,说出物体a和c哪个质量更大一些?由此判断:如果a>b,b>c,那么a和c的大小关系如何?从学生身边的生活经验出发进行新知的学习,有助于调动学生学习的积极性.新课性质1(传递性)如果a>b,b>c,则a>c.分析要证a>c,只要证a-c>0.学生思考、回答得出性质1.新课证明因为a-c=(a-b)+(b-c),又由a>b,b>c,即a-b>0,b-c>0,所以(a-b)+(b-c)>0.因此a-c>0.即a>c.【课件展示情境2】性质2(加法法则)如果a>b,则a+c>b+c.证明因为(a+c)-(b+c)=a-b,又由a>b,即a-b>0,所以a+c>b+c.思考:如果a>b,那么a-c>b-c.是否正确?不等式的两边都加上(或减去)同一个数,不等号的方向不变.推论1如果a+b>c,则a>c-b.证明因为a+b>c,所以a+b+(-b)>c+(-b),即a>c-b.不等式中任何一项,变号后可以从一边移到另一边.练习1(1)在-6<2 的两边都加上9,得;(2)在4>-3 的两边都减去6,得;(3)如果a<b,那么a-3 b-3;(4)如果x>3,那么x+2 5;(5)如果x+7>9,那么两边都,得x>2.引导学生判断:不等式的两边都加上(或减去)同一个数,不等号的方向是否改变?学生口答,教师点评.学生猜想创设一种情境,给学生提供了想象的空间,为后续学习做好了铺垫.让学生在“做”数学中学数学,真正成为学习的主人.把课堂变为学生再发现、再创造的乐园.对不等式的性质及时练习,进行巩固.把猜想作新课小组合作探究:学生4人一组,把不等式5>2的两边同时乘以任意一个不为0的数,观察不等号的方向是否变化.多试几次,你发现什么规律了吗?性质3(乘法法则)如果a>b,c>0,那么a c>b c;如果a>b,c<0,那么a c<b c.证明因为 a c-b c=(a-b)c,又由a>b,即a-b>0,所以当c>0时,(a-b)c>0,即 a c>b c;所以当c<0时,(a-b)c<0,即 a c<b c.如果不等式两边都乘同一个正数,则不等号的方向不变,如果都乘同一个负数,则不等号的方向改变.思考:如果a>b,那么-a-b.练习2(1)在-3<-2的两边都乘以2,得;(2)在1>-2的两边都乘以-3,得;(3)如果a>b,那么-3 a-3 b;(4)如果a<0,那么3 a 5 a;(5)如果3 x>-9,那么x-3;(6)如果-3 x>9,那么x-3.练习3 判断下列不等式是否成立,并说明理由.(1)若a<b,则a c<b c.( )(2)若a c>b c,则a>b.( )(3)若a>b,则a c2>b c2.( )(4)若a c2>b c2,则a>b.( )(5)若a>b,则a(c2+1)>b(c2+1) .( )结果后,小组内合作探究、交流,教师巡回指导.学生代表进行口答,其他学生评价.练习2前3个小题由学生思考后口答;后3个小题同桌之间讨论,回答.为教学的出发点,启发学生积极思维,探索规律.性质3学生容易出错,用练习及时巩固,通过相互评价学习效果,及时发现问题、解决知识盲点.小要点:不等式的三条基本性质.回顾、总结方法:作差比较法.注意点:不等式的两边同时乘以同一个负数时,不等号的方向必须改变.结、矫正、提高.帮助学生形成本节课的知识网络.作业必做题:教材P36,练习A组;选做题:教材P37,练习B组.2.2.1区间的概念【教学目标】1. 理解区间的概念,掌握用区间表示不等式解集的方法,并能在数轴上表示出来.2. 通过教学,渗透数形结合的思想和由一般到特殊的辩证唯物主义观点.3. 培养学生合作交流的意识和乐于探究的良好思维品质,让学生从数学学习活动中获得成功的体验,树立自信心.【教学重点】用区间表示数集.【教学难点】对无穷区间的理解.【教学方法】本节课主要采用数形结合法与讲练结合法.通过不等式介绍闭区间的有关概念,并与学生一起在数轴上表示两种不同的区间,学生类比得出其它区间的记法.在此基础上引导学生用区间表示不等式的解集,为学习用区间法求不等式组的解集打下坚实的基础.【教学过程】教学环节教学内容师生互动设计意图导入教师提问:(1) 用不等式表示数轴上的实数范围;(2) 把不等式1≤x≤5在数轴上表示出来.学生思考、回答,并在练习本上作出图象.复习初中所学旧知,有助学生在已有知识的基础上建构新的知识.新课设a,b 是实数,且a<b.满足a≤x≤b 的实数x 的全体,叫做闭区间,记作[a,b],如图.a,b 叫做区间的端点.在数轴上表示一个区间时,若区间包括端点,则端点用实心点表示;若区间不包括端点,则端点用空心点表示.教师讲解闭区间,开区间的概念,记法和图示,学生类比得出半开半闭区间的概念,记法和图示.用表格呈现相应的教师只讲两种区间,给学生提供了类比、想象的空间,为后续学习做好了铺垫.x01-1-2-3-4新课全体实数也可用区间表示为(-∞,+∞),符号“+∞”读作“正无穷大”,“-∞”读作“负无穷大”.例1用区间记法表示下列不等式的解集:(1) 9≤x≤10;(2) x≤0.4.解(1) [9,10];(2) (-∞,0.4].练习1用区间记法表示下列不等式的解集,并在数轴上表示这些区间:(1) -2≤x≤3;(2) -3<x≤4;(3) -2≤x<3;(4) -3<x<4;(5) x>3;(6) x≤4.例2用集合的性质描述法表示下列区间:(1) (-4,0);(2) (-8,7].解(1) {x | -4<x<0};(2) {x | -8<x≤7}.练习2用集合的性质描述法表示下列区间,并在数轴上表示这些区间:(1) [-1,2);(2) [3,1].例3在数轴上表示集合{x|x<-2或x≥1}.解如图所示.练习3区间,便于学生对比记忆.教师强调“∞”只是一种符号,不是具体的数,不能进行运算.学生在教师的指导下,得出结论,师生共同总结规律.学生抢答,巩固区间知识.学生代表板演,其它学生练习,相互评价.同桌之间讨论,完学生理解无穷区间有些难度,教师要强调“∞”只是一种符号,并结合数轴多加练习。
等式性质与不等式性质同步练习

等式性质与不等式性质同步练习等式性质与不等式性质同步练本节知识点:1.两个实数的大小比较。
2.不等式a+b≥2ab的探究。
3.不等式的基本性质。
本节题型:1.比较两个代数式的大小。
2.利用不等式的性质证明不等式。
3.利用不等式的性质求取值范围。
同步练:1.完成一项装修工程,木工需付工资每人500元,瓦工需付工资每人400元,现有工人工资预算元。
设请木工x人,瓦工y人,满足的关系式是5x+4y≤200(x,y∈N*)。
2.设M=x^2,N=-x-1,则M与N的大小关系是M<N。
3.设a,b∈R,且a>b,则ab<11.4.若a>b>c>d,则一定有a/b<c/d。
5.若-1<α<β<1,则恒有-1<α-β<1.6.已知a>b>c,且a+b+c=1,则不等式ab>XXX成立。
7.已知实数a,b,c满足b+c=6-4a+3a^2,c-b=4-4a+a^2,则a>c>b。
8.(多选)设a,b为正实数,则真命题是:若a^2-b^2=1,则a-b<1,若a/b-1=1,则a-b<1,若a-b=1,则a/b<1,若a^3-b^3=1,则a-b<1.9.有三个房间需要粉刷,粉刷方案要求每个房间只用一种颜色,且三个房间颜色各不相同。
已知三个房间的粉刷面积(单位:m^2)分别为x,y,z,且x<y<z,三种颜色涂料的粉刷费用(单位:元/m^2)分别为a,b,c,且a<b<c。
在不同的方案中,最低的总费用(单位:元)是ay+bx+cz。
10.如果$x<y<1$。
那么从小到大的顺序是 $x<y<1$。
11.比较大小:$a^2+b^2+c^2$ 和 $2(a+b+c)-4$。
12.若$-10<a<b<8$,则$a+b$的取值范围是$-2<b+a<18$。
代数式用作差法比较大小

1、将姚明和李连杰的身高标示在数轴上 观察他们的大小关系
李连杰身高 姚明身高
2.29-1.69=0.60>0 归纳: a-b>0 a-b=0 a-b<0
0
1.69 2.29
2.29>1.69 提示:运用了实数 减法运算符号法则
a>b a=b a<b
ab0 a b ab0 ab ab0ຫໍສະໝຸດ ab ab0 ab定号 下结论
3、思考:
①上述例题代数式有一个怎么样的特点? 答:都是整式
②结合上述例题概括下解题的一般步骤?
答:作差
变形
定号
下结论
合并同类项,
因式分解,配
③上述例题的解法名称是什么?
方等等
答:作差法
2、比较代数式的大小
把整体看着 实数轴上的
一个 a
把整体看着实数轴 上的一个 b
• 例:试比较6x2 +3x+5与5x2+3x+2的大小
•解: 6x2 +3x+5 –( 5x2+3x+2)
作差
= 6x2 +3x+5 –5x2-3x-2
整理变形
=x2+3
2 x 0
2 x 330
∴2x2 +3x+5 –( 5x2+3x+2)>0 ∴2x2 +3x+5 > 5x2+3x+2
解答不等式问题的几个技巧

解题宝典不等式问题侧重于考查同学们的分析与逻辑推理能力.常见的不等式问题有:(1)比较两个代数式的大小;(2)证明某个不等式成立;(3)由含参不等式恒成立求参数的取值范围.下面结合几道例题,谈一谈解答不等式问题的几个技巧.一、作差运用作差法解答不等式问题,需将要比较的两个代数式相减,并将所得到的差与0进行比较.有时所得的差式较为复杂,此时需采用移项、分解因式、通分、约分、平方等方式,将差式简化,以快速比较出其与零的大小.例1.设a,b为实数,比较a2+b2与ab+a+b-1的大小.解:将a2+b2与ab+a+b-1相减得,a2+b2-(ab+a+b-1)=12(2a2+2b2-2ab-2a-2b+2)=12[](a-b)2+(a-1)2+(b-1)2,因为(a-b)2≥0,(a-1)2≥0,(b-1)2≥0,所以a2+b2-(ab+a+b-1)≥0,所以a2+b2≥ab+a+b-1,当且仅当a=b=1时取等号.将要比较的两式作差,并运用完全平方公式进行配方,即可运用作差法快速比较出两个代数式的大小.在解题时,要注意取等号的情形,确保取等号时的条件成立且满足题意.二、作商运用作商法解答不等式问题,需将要比较的两个代数式相除,并将所得到的商与1进行比较.在作商之前,要对两个代数式的正负进行讨论,只有在两式同号时,才能将其作商,运用作商法来比较二者的大小.若分母有可能为零,则要注意对此特殊情况进行单独讨论.例2.已知a=1816,b=1618,试比较a与b的大小关系.解:∵a=1816>0,b=1618>0,∴a b=18161618=(1816)16×1162=(98)1616=16<1,∴a<b.作商法适合于比较两个单项式的大小.在化简商式时,要选择合适的公式、运算法则,如指数幂运算法则、换底公式等进行运算,以将商式化为便于和1比较的形式.三、放缩放缩法是解答不等式问题的一种重要方法.若已知关系式与目标式之间的差异较大,则需将其中一个式子进行适当的放缩,如扩大分子、缩小分母、去掉部分项、增加常数项等,使其与另一个式子靠拢,从而解答问题.有时需找到一个合适的中间量,以利用不等式的传递性建立已知关系式和目标式之间的联系.例3.若a>b>0,c<d<0,|b|>|c|,证明:b+c(a-c)2<a+d(b-d)2.证明:因为b+c>0,0<1(a-c)2<1(b-d)2,所以b+c(a-c)2<b+c(b-d)2,因为0<b+c<a+d,1(b-d)2>0,所以b+c(b-d)2<a+d(b-d)2,所以b+c(a-c)2<b+c(b-d)2<a+d(a-c)2,即b+c(a-c)2<a+d(b-d)2.不等号前后的两个式子之间的差异较大,但是结构一致,于是分别根据已知条件和不等式的性质将不等式左右两边的式子b+c(a-c)2、a+d(b-d)2放缩,使得b+c(a-c)2<b+c(b-d)2、b+c(b-d)2<a+d(b-d)2,再根据不等式的传递性证明结论.四、利用几何法运用几何法解答不等式问题,往往要挖掘代数式的几何意义,如将代数式x2看作抛物线,将ax2+by2看作圆,将ax+by看作同一条直线.画出几何图形,通过分析图形中点、直线、曲线的位置及其关系,找到使不等式成立的点的集合,即可解题.例4.证明:x12+y12+x22+y22≥(x1-x2)2+(y1-y2)2证明:设点A(x1,y1),B(x2,y2),则AO=x12+y12,BO=x22+y22,AB=(x1-x2)2+(y1-y2)2,因为三角形中两边之和大于第三边,即|AO|+|BO| >|AB|,周元祥38解题宝典所以x 12+y 12+x 22+y 22>(x 1-x 2)2+(y 1-y 2)2,当A ,B ,O 三点共线时,x 12+y 12+x 22+y 22=(x 1-x 2)2+(y 1-y 2)2,所以x 12+y 12+x 22+y 22≥(x 1-x 2)2+(y 1-y 2)2.我们由该根式可联想到两点间的距离公式,于是设出A 、B 两点的坐标,即可将问题转化为证明|AO |+|BO |>|AB |,根据三角形两边之和大于第三边的性质来解题.运用几何法解题,需进行数形互化,结合几何图形来分析问题.五、运用基本不等式若a ,b >0a 、b >0,则a +b ≥2ab ,当且仅当a =b 时等号成立,该式叫做基本不等式.在解答不等式问题时,可以根据不等式的结构特征进行适当的变形,如凑系数、常数代换、添项、去项等,以配凑出两式的和或积,以便能利用基本不等式证明不等式.运用基本不等式时,要确保“一正”“二定”“三相等”的条件成立.例5.已知正实数x ,y 满足2x +5y =20,若不等式10x +1y≥m 2+4m恒成立,求实数m 的取值范围.解:在2x +5y =20的左右同除以20,得x 10+y4=1,则10x +1y =æèçöø÷10x +1y æèçöø÷x 10+y 4=54+5y2x +x 10y ≥94,当且仅当x =203,y =43取等号.则m 2+4m ≤94,解得-92≤m ≤12.由于10x +1y 为分式,所以将已知关系式变形为x 10+1y=1,即可通过常数代换,将10x +1y 化为和式54+5y 2x +x10y .而5y 2x 、x 10y的积为定值,这样便可运用基本不等式求得10x +1y 的最小值,从而求得m 的取值范围.解答不等式问题的方法很多,我们需根据不等式的结构特征进行变形、代换,联系相关的公式、性质、定理等将问题转化为几何问题、最值问题、运算问题等,并选用合适的方法进行求解.(作者单位:安徽省宣城中学)二面角问题的常见命题形式有:(1)求二面角的大小或范围;(2)证明两个平面互相垂直;(3)根据二面角的大小求参数的取值范围.这类问题主要考查同学们的空间想象能力和运算能力.那么,解答这类问题有哪些方法呢?下面结合实例进行归纳总结.一、直接法直接法是指直接从题目的条件出发,通过合理的运算和严密的推理,得出正确的结果.我们知道,二面角的大小可用其平面角表示,因此求二面角的大小,关键是求其平面角的大小.在求二面角时,需先仔细审题,明确题目中点、线、面的位置关系,灵活运用三垂线定理、勾股定理、正余弦定理、夹角公式,根据二面角以及平面角的定义,作出并求出平面角,即可运用直接法快速求得问题的答案.例1.如图1,在三棱锥S -ABC 中,SA ⊥底面ABC ,AB ⊥BC ,DE 垂直且平分SC ,分别交AC ,SC 于点D ,E ,且SA =AB ,SB =BC ,求二面角E -BD -C的大小.解:∵SB =BC ,E 是SC 的中点,∴SC ⊥BE ,∵SC ⊥DE ,BE ⊂平面BDE ,DE ⊂平面BDE ,∴SC ⊥平面BDE ,∵BD ⊂平面BDE ,∴SC ⊥BD ,∵SA ⊥底面ABC ,BD ⊂平面ABC ,∴SA ⊥BD ,又∵SC ⋂SA =S ,SC ⊂平面SAC ,SA ⊂平面SAC ,∴BD ⊥平面SAC ,又∵DC ⊂平面SAC ,DE ⊂平面SAC ,∴DC ⊥BD ,DE ⊥BD ,∴∠DEC 是所求二面角的平面角.∵SA ⊥底面ABC ,AB ⊂平面ABC ,AC ⊂平面ABC ,∴SA ⊥AB ,SA ⊥AC ,设SA =2,得AB =2,BC =SB =22,∵AB⊥BC ,∴AC =23,∴∠ACS =30°,又∵DE ⊥SC ,∴∠EDC =60°,林菊芳图139。
中职数学第二章不等式题库

中职数学第二章不等式题库一、选择题1、比较大小,错误的是…………………( ) A.75<76B.5232> C.7532< D. 7532>2、用不等式表示“n 的2倍与1的差不是负数”,正确的是( )A.2n-1<0B. 2n-1>0C. 2n-1≥0D. 2n-1≤003-02-01. 不等式4x -10 < 3(1-3x)的解集是………( )A .x <13 B.x <1 C.{x ︱x >1} D.{x ︱x <1}3、 已知集合A=[]4,0 ,集合B=(-2,3),则A B=( )A .(0,3)B .[0,3)C .[0,3]D .(-2,3)4、用区间表示不等式组⎩⎨⎧>+>-0302xx 的解集是( )A .()+∞,2B .()+∞-,3C .()2,∞-D .()3,-∞-5、用描述法表示集合(3,7)正确的是…( )A .{x ︱x >3}B .{x ︱x >3或x <7}C .{x ︱x <7}D .{x ︱3 <x <7}6、 用区间表示数集{}2|<x x ,正确的是( )A .()2,0B .(]2,0 C.( ∞-,2 ] D .()2,∞-7、 用区间表示数集{}2|->x x ,正确的是( )A .()2,0-B .()0,2-C .()2,-∞- D.()+∞-,28、 用区间表示集合{}514|≤+x x ,正确的是( )A.1≤x B .{}1≤x x C .{}1≥x x D .(]1,∞-9、 用区间表示集合{}93|>x x 后它是什么类型的区间( )A.开区间 B .闭区间 C .左开右闭区间 D .无限区间10、不等式x 2-2x-3>0的解集是( )A. {}31<<-x x B .{}31>-<x x x 或 C .31<<-x D .31>-<x x 或11、 不等式x 2-4x+4>0的解集是( ) A. {}2<x x B .{}2>x x C .{}2-≠x x D .{}2≠x x12、若9-x 2 ≤0 则………( )A.0≤x ≤3 B -3≤x ≤0C.-3≤x ≤3 D. x ≤-3 或x 3≥13、不等式(x+1)(2-X )≤0的解集是A.[]1,2-B.[]2,1-C.(∞,-1] [2,+∞)D.(-∞,-2] [-1,+ ∞]14、不等式|x|<4的解集是( )A.4<x B .4->x C .44<<-x D .{}44<<-x x15、不等式|x|>9的解集是( )A.9>x B .9-<x C.{}99>-<x x x 或 D.{}99<<-x x16、不等式︱51x ︱≥2的解集是( ) A.{}10≥x x B .{}5≥x x C .{}1010≥-≤x x x 或 D .{}1010≤≤-x x17、不等式|2x|10≤的解集是( ) A.{}5≥x x B .{}5-≤x x C .{}55≥-≤x x x 或 D .{}55≤≤-x x18、已知a <b <0,则有( )A. a 2<ab <0B. a 2>ab >b 2C. a 2<b 2<0D. b 2>a 2>019、下列不等式组中,解集为Ø的是( )A. ⎩⎨⎧<+>-08021x xB. ⎩⎨⎧<->+0502x xC. ⎩⎨⎧≤-≥-0201x xD. ⎩⎨⎧>+>-0605x x20、若不等式组⎩⎨⎧>->-a x x 8211的解集 为(5,+∞),则a 等于…………( )A.0B.1C.2D.321、不等式(2-x )(x+3)>0的解集为( )A.(-∞,-3) (2,+∞)B.(-3,2)C.(-2,3)D.(-∞,-2) (3,+∞)22、不等式︱x+4︱>2的解集为A.(-6,6)B.(-2,2)C.(-∞,-2) (2,+∞)D.(-∞,-6) (-2,+∞)二、填空题1、用不等式表示下列不等关系:x 与4的和不大于5 。
比较两个代数式大小[技巧]
![比较两个代数式大小[技巧]](https://img.taocdn.com/s3/m/72f970c329ea81c758f5f61fb7360b4c2e3f2ac5.png)
比较两个代数式大小不等式这一章节有一类题型,告诉两个字母的范围,比较由这些字母组成的代数式的大小关系.简单的代数式的比较,大多数同学都会,可是复杂的代数式怎么比较呢?很多同学不知道怎么下手,复杂的代数式的比较,我们这儿给大家总结了三种方法:作差法,作商法,放缩法.相信学了这几种方法后,同学们遇到这类问题便可以如同瓮中捉鳖了.基本方法比较两个不等式的大小我们总结了三种方法.作差法:如a-b>0,那么a>b;如果a-b<0,那么a<b.这是最基本的方法,其它的一些比较方法均是由此推导出来的.作商法:如果a>0,b>0并且b a >1,那么a>b; 如果a<0,b<0并且ba>1,那么a<b;这种比较方法需有一定的前提条件,就是必须知道各代数式与0的大小关系.放缩法:如果a>b,b>c,那么a>b>c.正如老大比老二大,老二比老三大,肯定可以得到:老大比老三大。
下面结合体验题来体验一下这三种方法,在中学所学的范围内,大部分代数式的比较大小我们都可以用这三种方法来比较大小.体验题1体验题1 如果a>b,试比较5-a,5-b 的大小关系。
体验思路因为我们无法判断5-a,5-b 与0的大小关系,故在此我们无法用作商法,我们只有选择作差法。
体验过程 ∵5-a-(5-b)=b-a<0∴5-a<5-b简单的代数式可以,我们再看一个复杂一些的。
看看我们的方法行不行?体验题2体验题2 如1>a>b>0 ,试比较ab,ab 2,b 2a 的大小关系.体验思路本题很明显,ab>0,ab 2>0,ab 2>0.因此,我们既可以选择作差法,也可以选择作商法.体验过程 方法一,作差法.∵ab-ab 2=ab(1-b)>0, ∴ ab>a 2b∵ab-a 2b=ab(1-a)>0, ∴ ab>a 2b ∵ab 2-a 2b=ab(b-a)<0, ∴ab 2<a 2b∴ab> a 2b>ab2方法二,作商法.∵1>a>b>0, ∴ab>0,ab 2>0,b 2a>0.∵21ab ab b =>1, ∴ab>ab 2.∵21ab a b a=>1, ∴ab>a 2b.∵22ab b a b a=<1, ∴ab 2<a 2b.∴ab> a 2b>ab2体验题3体验题3如果a<b<0,试比较a 1-,b1-的大小关系?体验思路∵a<b<0.∴a 1->0,b1->0.如果我们作差,也可以比较上述代数式的大小关系,但相对麻烦一些。
高考数学专项复习专题二一元二次函数一元二次函数方程和不等式

专题二一元二次函数、方程和不等式06 等式性质与不等式性质题型一由不等式性质比较数(式)大小题型二作差法比较代数式大小题型三作商法比较代数式大小题型四由不等式性质证明不等式题型五利用不等式求值或取值范围07 基本不等式(1)题型一由基本不等式比较大小题型二由基本不等式证明不等关系题型三基本不等式求积的最大值题型四基本不等式求和的最小值题型五二次与二次(或一次)的商式的最值问题07 基本不等式(2)题型一条件等式求最值题型二基本不等式的恒成立问题题型三对勾函数求最值题型四基本不等式的应用08 二次函数与一元二次方程、不等式(1)题型一解含有参数的一元二次不等式题型二由一元二次不等式的解确定参数题型三一元二次方程根的分布问题题型四一元二次不等式与二次函数、一元二次方程的关系08 二次函数与一元二次方程、不等式(2)题型一 一元二次不等式在实数集上恒成立问题 题型二 一元二次不等式其他恒成立问题 题型三 一元二次不等式有解问题 题型四 一元二次不等式的应用一元二次函数、方程和不等式讲义§2.1等式性质与不等式性质 1.作差法比较大小0a b a b >⇔->;0a b a b <⇔-<;0a b a b =⇔-=.2.不等式的基本性质(1)(对称性)a b b a >⇔> (2)(传递性),a b b c a c >>⇒> (3)(可加性)a b a c b c >⇔+>+(4)(可乘性),0a b c ac bc >>⇒>;,0a b c ac bc ><⇒< (5)(同向可加性),a b c d a c b d >>⇒+>+ (6)(正数同向可乘性)0,0a b c d ac bd >>>>⇒> (7)(正数乘方法则)0(,1)n n a b a b n N n >>⇒>∈>且 §2.2基本不等式① 重要不等式:()222a b ab a b R +≥∈,,(当且仅当a b =时取""=号).变形公式: ()2222()()a b a b a b R +≥+∈,② 基本不等式:2a b+≥ ()a b R +∈,,(当且仅当a b =时取到等号).变形公式: a b +≥; 2.2a b ab +⎛⎫≤ ⎪⎝⎭用基本不等式求最值时(积定和最小,和定积最大),要满足条件:“一正.二定.三相等”. §2.3二次函数与一元二次方程.不等式b06 等式性质与不等式性质题型一 由不等式性质比较数(式)大小1.若a b <,d c <,且()()0c a c b --<,()()0d a d b -->,则a ,b ,c ,d 的大小关系是( ) A .d a c b <<< B .a c b d <<< C .a d b c <<< D .a d c b <<<【答案】A【解析】因为()()0c a c b --<,a b <,所以a c b <<,因为()()0d a d b -->,a b <,所以d a <或d b >,而a c b <<,d c <,所以d a <. 所以d a c b <<<. 故选:A .2.已知,,R a b c ∈,下列命题为真命题的是( ) A .若a b >,则22ac bc > B .若a b >,c d >,则a d b c ->- C .若a b >,c d >,则ac bd > D .若22a b >,且0ab <则11a b< 【答案】B【解析】:A 若,0a b c >=则220ac bc ==,A 不正确;B :因为a b >,c d >,则c d -<-,所以a d b c ->-,故B 正确;C :当0b c ==时,可得不等式不成立,故C 不正确.D :若3,2a b ==-,满足条件,但11a b>,所以D 不正确. 故选:B .3.已知,,a b c ∈R ,若a b c >>,且230a b c ++=,则下列不等关系正确的是( ) A .ac bc < B .a b c b >C .c c a c b c>-- D .()2a bc abc +>+【答案】ACD【解析】230a b c ++=,a b c >>,0c ∴<,0a >, 对于A ,a b >,0c <,ac bc ∴<,A 正确;对于B ,当0b =时,满足a b c >>,此时0a b c b ==,B 错误; 对于C ,a b c >>,0a c b c ∴->->,11a cbc ∴<--,又0c <,c c a c b c∴>--,C 正确; 对于D ,a b >,0a b ∴->,()()a a b c a b ∴->-,即2a ab ac bc ->-,整理可得:故选:ACD.4.已知g b 糖水中含有g a 糖(0b a >>),若再添加g m 糖完全溶解在其中,则糖水变得更甜了(即糖水中含糖浓度变大),根据这个事实,下列不等式中一定成立的有( ) A .a a m b b m+<+B .22mm a m a b m b ++<++ C .()()()()22a m b m a m b m ++<++ D .121313ba -<- 【答案】ABD【解析】对于A ,由题意可知a a mb b m+<+,正确; 对于B ,因为2mm <,所以2222m mm ma m a m m ab m b m m b +++-+<=+++-+,正确; 对于C ,22a m a m m a mb m b m m b m ++++<=++++即()()()()22a m b m a m b m ++<++,错误; 对于D ,1122131131311333b b b b a --+<==<--+,正确. 故选:ABD5.已知1m n >>,则下列不等式中一定成立的是( ) A .11+>+m n n mB .->-m n m nC .3322+>m n mnD .3322+>m n m n【答案】ABC【解析】对于A 项,11111,,m n m n n m n m>>>∴+>+,故A 正确; 对于B 项,()()22222220m nm nmn n n n ---=->-=,结合0,0m n m n ->->可得->-m n m n ,故B 正确;对于C 项,()()323222222()()m mn n mn m m n n n m m n m mn n -+-=-+-=-+-,222220,0m mn n m n n m n +->+->->,即3322+>m n mn ,故C 正确;对于D 项,当3,2m n ==时,33227835236m n m n +=+=<=,故D 错误; 故选:ABC题型二 作差法比较代数式大小1.已知a ,b 为非零实数,且a <b ,则下列命题成立的是( ) A .a 2<b 2 B .a 2b <ab 2 C .2211ab a b< D .b a a b< 【答案】C【解析】对于A ,取3,2a b =-=-,则a b <,但22a b >,故A 错误.而2332b aa b=->-=,故D 错误. 对于C ,因为2222110a b ab a b a b --=<,故2211ab a b<,故C 正确. 故选:C.2.设2243P a a =-+,()()13Q a a =--,a ∈R ,则有( ) A .P Q ≥ B .P Q > C .P Q < D .P Q ≤【答案】A【解析】解:∵ ()()22214330P a a Q a a a -=-+---=≥,∵ P Q ≥. 故选:A.3.若A =a 2+3ab ,B =4ab -b 2,则A 、B 的大小关系是( ) A .A ≤B B .A ≥B C .A <B 或A >B D .A >B【答案】B 【解析】()2234A B a ab ab b-=+--22a ab b =-+223204b a b ⎛⎫=-+ ⎪⎝⎭≥,A B ∴≥.故选:B4.已知a b c d ,,,均为实数,下列命题正确的有( ) A .若0ab >,0bc ad ->,则0c da b ->B .若0ab >,0c da b ->,则0bc ad ->C .若0bc ad ->,0c da b->,则0ab >D .如果0a b >>,0c d >>,则bc bd > 【答案】ABCD【解析】对于A ,因为0ab >,0bc ad ->,所以0c d bc ada b ab --=>,故A 正确; 对于B ,因为0ab >,又0c d a b ->,即0bc adab ->,所以0bc ad ->,故B 正确; 对于C ,因为0bc ad ->,又0c d a b ->,即0bc adab->,所以0ab >,故C 正确; 对于D ,因为0a b >>,0c d >>,,所以bc bd >,故D 正确. 故选:ABCD5.已知221110,1,1,,a A a B a C D -<<=+=-==,则,,,A B C D 的大小关系是________.(用“>”连【答案】C A B D >>> 【解析】由题意不妨取14a =-,这时171544,,,161635A B C D ====. 由此猜测:C A B D >>>下面给出证明:()()2221324111111a a a a a C A a a a a⎡⎤⎛⎫-++⎢⎥ ⎪-++⎝⎭⎢⎥⎣⎦-=-+==+++, 又21310,0,0,24a a a C A ⎛⎫+>->++>∴> ⎪⎝⎭222(1)(1)20A B a a a A B -=-=>∴>+-,,()2221512411111a a a a a B D a a a a⎡⎤⎛⎫--⎢⎥ ⎪--⎝⎭⎢⎥⎣⎦-=--==---. 又∵102a -<<,10a ∴->,又∵22151150,24224a B D ⎛⎫⎛⎫--<---<∴> ⎪ ⎪⎝⎭⎝⎭,综上所述,C A B D >>>. 故答案为:C A B D >>>.6.现有A B C D 、、、四个长方体容器,A B 、的底面积均为2x ,高分别为,x y ;C D 、的底面积均为2y ,高也分别为x y 、 (其中x y ≠),现规定一种两人的游戏规则:每人从四种容器中取两个盛水,盛水多者为胜.问先取者在未能确定x 与y 大小的情况下有没有必胜的方案?若有的话,有几种? 【答案】未能确定x 与y 大小的情况下,取,A D 必胜,有1种必胜的方案.【解析】由条件得3223,,,,A B C D V x V x y V xy V y ====,则()()()()()23223A B C D V V V V x x y xy y x y x y +-+=+-+=+-当x y >时, A B C D V V V V +>+,当x y <时, A B C D V V V V +<+()()()()()322322A C B D V V V V x xy x y y x y x y +-+=+-+=+-当x y >时, A C B D V V V V +>+,当x y <时, A C B D V V V V +<+()()()()()233220A D B C V V V V x y x y xy x y x y +-+=+-+=-+>所以未能确定x 与y 大小的情况下,取,A D 必胜,有1种必胜的方案. 题型三 作商法比较代数式大小(2)当0a >,0b >且ab 时,a b a b 与b a a b .【答案】(1)223121x x x x -+>+-;(2)a b b a a b a b >. 【解析】(1)()()()2222312122110xx x x x x x -+-+-=-+=-+>,因此,223121x x x x -+>+-;(2)1a ba ba b a b b a a b b a a b a a b a a b b b -----⎛⎫⎛⎫=== ⎪⎪⎝⎭⎝⎭.∵当0a b >>时,即0a b ->,1a b >时,01a ba ab b -⎛⎫⎛⎫>= ⎪ ⎪⎝⎭⎝⎭,a b b a a b a b ∴>; ∵当0b a >>时,即0a b -<,01a b <<时,01a ba ab b -⎛⎫⎛⎫>= ⎪ ⎪⎝⎭⎝⎭,a b b a a b a b ∴>. 综上所述,当0a >,0b >且ab 时,a b b a a b a b >.2.已知0a >,0b >,试比较+a b 与a b b a+的大小; 【答案】a ba bb a++(当且仅当a b =时取等号) 【解析】方法一:由题意()()()a b a b a b a a b b a b b a a b ba ab ab--+--⎛⎫+-+==⎪⋅⎝⎭()()2a ba bab+-=,因为0a >,0b >,所以0a b +>,()20a b-≥,0ab >,所以()()20a ba bab+-≥,当且仅当a b =时等号成立,所以a ba b b a+≤+(当且仅当a b =时取等号). 方法二:由()()()()a b a b a b aba ab b a b ab ba ab ab ab a bab a b +++-++-===+++()2a babab-+==()211a b ab-+,当且仅当a b =时等号成立,所以a ba bb a++(当且仅当a b =时取等号). 3.设,a b R +∈,试比较a b a b 与b a a b 的大小. 【答案】当a b =时两者相等;当a b 时a b b a a b a b >.【解析】依题意,,a b R +∈,当ab 时,a ba b b a a b a a b b -⎛⎫= ⎪⎝⎭:当0a b >>时,1,0a a b b >->,所以1a ba b b a a b a a b b -⎛⎫=> ⎪⎝⎭;当0b a >>时,01,0b a b a <<-<,所以1a ba b b a a b a a b b -⎛⎫=> ⎪⎝⎭.故当ab 时,1a ba b b a a b a a b b -⎛⎫=> ⎪⎝⎭,即a b b a a b a b >.4.(1)设x <y <0,试比较(x 2+y 2)(x -y )与(x 2-y 2)(x +y )的大小;(2)已知a ,b ,c ∵{正实数},且a 2+b 2=c 2,当n ∵N ,n >2时比较c n 与a n +b n 的大小. 【答案】(1)(x 2+y 2)(x -y )>(x 2-y 2)(x +y );(2)a n +b n <c n . 【解析】(1)(x 2+y 2)(x -y )-(x 2-y 2)(x +y )()()()222x y x y x y ⎡⎤=-+-+⎣⎦()()2x y xy =-⨯-因为0x y <<, 则0,20x y xy -<-<, 故()()20x y xy -⨯->, 即(x 2+y 2)(x -y )-(x 2-y 2)(x +y )>0 (x 2+y 2)(x -y )>(x 2-y 2)(x +y ).(2)∵a ,b ,c ∵{正实数},∵a n ,b n ,c n >0.而n n n a b c +=n na b c c ⎛⎫⎛⎫+ ⎪ ⎪⎝⎭⎝⎭∵a 2+b 2=c 2,则22a b c c ⎛⎫⎛⎫+ ⎪ ⎪⎝⎭⎝⎭=1,∵0<a c <1,0<bc<1. ∵n ∵N ,n >2,∵2na a c c ⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭,2nb bc c ⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭. ∵n n n a b c +=n n a b c c ⎛⎫⎛⎫+ ⎪ ⎪⎝⎭⎝⎭<22a b c c ⎛⎫⎛⎫+ ⎪ ⎪⎝⎭⎝⎭=1. ∵a n +b n <c n .1.设a ,b 为正实数,则下列命题中是真命题的是( ) A .若221a b -=,则1a b -< B .若111b a-=,则1a b -<C .若1a b -=,则1a b -<D .若1a ,1b ,则1a b ab --【答案】AD【解析】对于A 选项,由a ,b 为正实数,且221a b -=,可得1a b a b-=+,所以0a b ->, 所以0a b >>, 若1a b -≥,则11a b≥+,可得1a b +≤,这与0a b a b +>->矛盾,故1a b -<成立,所以A 中命题为真命题;对于B 选项,取5a =,56b =,则111b a -=,但5516a b -=->,所以B 中命题为假命题;对于C 选项,取4a =,1b =,则1a b -=,但31a b -=>,所以C 中命题为假命题;对于D 选项,由1,1a b ≤≤,则()()()()2222222211110a b ab a b a b a b---=+--=--,即()()221a b ab -≤-,可得1a b ab --,所以D 中命题为真命题.故选AD.2.已知三个不等式:0,0,0c dab bc ad a b>->->(其中a b c d ,,,均为实数),用其中两个不等式作为条件,余下的一个不等式作为结论组成一个命题,可组成正确命题的个数是______. 【答案】3【解析】若0,0ab bc ad >->成立,不等式0bc ab ->两边同除以ab 可得0c da b->,即0,0c dab bc ad a b>->⇒->; 若0,0c d ab a b >->成立,不等式0c da b ->两边同乘ab ,可得0bc ad ->,即0,00c dab bc ad a b>->⇒->;若0c d a b ->,0bc ad ->成立,则0c d bc ada b ab --=>,又0bc ad ->,则0ab >, 即0c da b->,00bc ad ab ->⇒>. 综上可知,以三个不等式中任意两个为条件都可推出第三个不等式成立,故可组成的正确命题有3个.故答案为:3.3.设n N ∈,1n >,1A n n =--,1B n n =+-,试比较A 与B 的大小. 【答案】A B >【解析】()()11111111n n n n n n A n n n n n n --+---=--===+-+-,同理可得11B n n=++,n N ∈,1n >,所以11n n n n +-<++,则1111n n n n>+-++,因此,A B >,故答案为A B >. 3.若0a b >>,0c d <<,||||b c > (1)求证:0b c +>; (2)求证:22()()b c a da cb d ++<--; (3)在(2)中的不等式中,能否找到一个代数式,满足2()bc a c +<-所求式2()a db d +<-?若能,请直接写出该代数式;若不能,请说明理由.【答案】(1)证明见解析;(2)证明见解析;(3)能,222()()()b c b c a da cb d b d +++<<---.【解析】(1)因为||||b c >,且0,0b c ><,所以b c >-,所以0b c +>.(2)因为0c d <<,所以0c d ->->.又因为 0a b >>,所以由同向不等式的相加性可将以上两式相加得0a c b d ->->.所以22()()0a c b d ->->. 所以22110()()a c b d <<--,因为,a b d c >>,所以由同向不等式的相加性可将以上两式相加得a d b c +>+. 所以0a d b c +>+>,所以由两边都是正数的同向不等式的相乘可得22()()b c a da cb d ++<--.(3)因为0b c +>,22110()()a c b d <<--, 所以22()()b c b ca cb d ++<--,因为0b c a d <+<+,210()b d >-,所以22()()b c a db d b d ++<--,所以222()()()b c b c a da cb d b d +++<<---. 所以在(2)中的不等式中,能找到一个代数式2()b cb d +-满足题意.4.设绝对值小于1的全体实数构成集合S ,在S 中定义一种运算“*”,使得*1a ba b ab+=+,求证:如果a ,b S ∈,那么*a b S ∈. 【答案】证明见解析【解析】由题意,绝对值小于1的全体实数构成集合S ,因为a S ∈,b S ∈,所以1a <,1b <,可得21a <,21b <, 则210b ->,210a -<,所以()()22110ba--<,即222210a b a b +--<,所以2222212a b ab ab a b ++<++,即()()221a b ab +<+,所以()()2211a b ab +<+,即11a bab+<+,所以*a b S ∈. 5.已知a ,b ,x ,y 都是正数,且1a >1b ,x >y ,求证xx a+>y y b +. 【答案】见解析【解析】,,,a b x y 都是正数,且1a >1b,x >y ,,x y a b a b x y∴>∴<, 故11a b x y +<+,即0x a y b x y ++<<, x yx a y b∴>++. 题型五 利用不等式求值或取值范围1.实数x ,y ,z 满足0x y z ++=,0xyz >,若111T x y z=++,则( ) A .0T > B .0T < C .0T =D .0T ≥【答案】B【解析】因为0x y z ++=且0xyz >,所以不妨设0x >,则0y <,0z <, 则()2y x z xz xy yz xz y xzT xyz xyz xyz++++-+===. 因为0x >,0z <,所以0xz <,又20y -<, 所以20y xz -+<,又0xyz >,所以0T <. 故选:B.2.设实数,x y 满足01xy <<且01x y xy <+<+,那么,x y 的取值范围是 A .1x >且1y > B .01x <<且1y < C .01x <<且01y << D .1x >且01y << 【答案】C【解析】∵1x y xy +<+, ∵10,x xy y -+-< ∵()110,x y y -+-<∵()()110,x y --< ∵()()110,x y -->∵1x >,1y >或1x <,1y <.又∵01xy <<,0x y +>,∵01x <<,01y <<. 故选C.3.设实数x ,y 满足238xy ≤≤,249x y ≤≤,求34x y的最大值. 【答案】27【解析】令()3224mn x x xy y y ⎛⎫=⋅ ⎪⎝⎭,则3422m n n m x y x y -+-⋅=⋅,所以2324m n n m +=⎧⎨-=-⎩,解得2,1m n ==-,所以()232124x x xy y y -⎛⎫=⋅ ⎪⎝⎭,由题意得2249,38x xy y≤≤≤≤, 所以2221111681,83x y xy ⎛⎫≤≤≤≤ ⎪⎝⎭,所以()[]2321242,27x x xy y y -⎛⎫=⋅∈ ⎪⎝⎭.故34x y 的最大值为27. 故答案为:274.若108a b -<<<,求a b +的取值范围. 【答案】018a b <+<【解析】当0a ≥时有08a ≤<,08b <<,故016a b <+<,即0616a <+<; 当0a <时,100a -<<,故010a <-<,因为108b -<<所以1018a b -<-+< 又a b <,所以018a b <-+<,即018a b <+<. 综上018a b <+<.5.已知11x y -≤+≤,13x y ≤-≤,则3x y -的取值范围是______ 【答案】137x y ≤-≤【解析】令3()()x y s x y t x y -=++- ()()s t x s t y =++-则31s t s t +=⎧⎨-=-⎩, 12s t =⎧∴⎨=⎩, 又11x y -≤+≤∵ 13x y ≤-≤, 22()6x y ∴≤-≤⋯∵∴∵+∵得137x y ≤-≤.07 基本不等式(1)题型一 由基本不等式比较大小 1.设b aM a b=+,其中a ,b 是正实数,且a b ,242N x x =-+-,则M 与N 的大小关系是( ).A .M N ≥B .M N >C .M N <D .M N ≤【答案】B【解析】∵a ,b 都是正实数,且a b ,∵22b a b a M a b a b=+>⋅=,即2M >, 又∵()2242442N x x x x =-+-=--++,()2222x =--+≤,即2N ≤,∵M N >, 故选B.2.已知0a >,0b >,2a b A +=,B ab =,2abC a b=+,则A ,B ,C 的大小关系为( ). A .A B C ≤≤ B .A C B ≤≤ C .B C A ≤≤ D .C B A ≤≤【答案】D【解析】由于0a >,0b >,故2a b ab +≥,则2a bab +≥,即A B ≥, 结合02a b ab +<≤可得:12a bab ≥+,两边乘以ab 可得:2ab ab a b ≥+,即B C ≥.据此可得:C B A ≤≤. 故选D .3.已知0a >,0b >,且4a b +=,则下列结论正确的是( ) A .4ab ≤ B .111a b+≥C .2216a b +≥D .228a b +≥【答案】ABD【解析】A .因为4a b +=,所以24ab ≤,所以4ab ≤,取等号时2a b ==,故正确; B .因为1141a b a b ab ab++==≥,取等号时2a b ==,故正确; C .因为22222228a b a b a b ++≥⋅==,取等号时2a b ==,故错误;D .因为2222a b a b++≥,所以228a b +≥,取等号时2a b ==,故正确. 故选:ABD.4.设0a >,0b >,下列不等式恒成立的是( ). A .21a a +>B .114a b a b ⎛⎫⎛⎫++≥ ⎪⎪⎝⎭⎝⎭C .()114a b a b ⎛⎫++≥ ⎪⎝⎭D .296a a +>E.若111a b+=,则4ab ≤【答案】ABC【解析】解:对于选项A ,由于22131024a a a ⎛⎫+-=-+> ⎪⎝⎭,∴21a a +>,故A 恒成立;对于选项B ,由于12a a+≥,12b b +≥,∴114a b a b ⎛⎫⎛⎫++≥ ⎪⎪⎝⎭⎝⎭,当且仅当1a b ==时,等号成立,故B 恒成立;对于选项C ,由于2a b ab +≥,1112a b ab+≥,∴()114a b a b ⎛⎫++≥ ⎪⎝⎭,当且仅当a b =时,等号成立,故C 恒成立;对于选项D ,当3a =时,296a a +=,故D 不恒成立; 对于选项E ,111a b +=,∴111112a b a b=+≥⨯,∴4ab ≥,当且仅当2a b ==时,等号成立.故E 不恒成立,即不等式恒成立的是ABC , 故选ABC.题型二 由基本不等式证明不等关系1.若0x >,0y >,4x y +≤,则下列不等式中成立的是( ) A .114x y ≤+ B .111x y+≥C .2xy ≥D .11xy≥ 【答案】B【解析】对于A ,因为4x y +≤,所以114x y ≥+,所以A 不正确; 对于B ,若0,0x y >>,设,04x y a a +=<≤,得1x ya+=,所以11111114()2(22)1y x x y x y a x y a x y a a ⎛⎫⎛⎫+=++=++≥+=≥ ⎪ ⎪⎝⎭⎝⎭当且仅当2x y ==时,等号成立,所以B 正确;对于C ,因为0,0x y >>,由4x y +≤,所以42x y xy ≥+≥,即2xy ≤,当且仅当2x y ==时,等号成立,所以C 不正确;对于D ,由上面可知2xy ≤,则4xy ≤,得114xy ≥,所以D 不正确; 故选:B2.已知a,b,c 均为正实数,且a+b+c=1,求证:(1a -1)(1b -1)(1c-1)≥8.【答案】证明见解析【解析】主要考查不等关系与基本不等式.证明:因为a, b, c (0,),∈+∞且a+b+c=1,所以111(1)(1)(1)()()()2)22)8.a b c a a b c b a b c c a b c a b c b c a c b a a a b b c c b c a c b aa ab bc c ++-++-++----=⋅⋅=+++≥⨯⨯⨯⨯⨯=. 3.已知a ,b ,c 是互不相等的正数,且a +b +c =1,求证:1a +1b +1c>9.【答案】证明见解析【解析】∵a ,b ,c ∵R +,且a +b +c =1,∵1a +1b +1c =a b c a b c a b c a b c++++++++ , =3+b a +c a +a b +c b +a c +b c =3+⎛⎫+ ⎪⎝⎭b a a b +⎛⎫+ ⎪⎝⎭c a a c +⎛⎫+ ⎪⎝⎭c b b c ,≥3+2b a a b ⋅+2⋅c aa c +2⋅cb b c=3+2+2+2=9. 当且仅当a =b =c 时取等号, 所以1a +1b +1c>9.4.已知0a >,0b >,1a b +=,求证:11254a b a b ⎛⎫⎛⎫++ ⎪⎪⎝⎭⎝⎭. 【答案】见解析 【解析】()()()22222211254112541254a b a b ab a b a b ab a b ⎛⎫⎛⎫++⇔++⇔+++ ⎪⎪⎝⎭⎝⎭ 2243380(41)(8)0a b ab ab ab ⇔-+⇔--1a b +=,2212a b ab ∴+=-.104ab<,410ab ∴-,80ab -<. ∵(41)(8)0ab ab --成立,故原不等式成立.5.已知0,0,0a b c >>>,求证:32c a b a b b c a c +++++. 【答案】见解析【解析】设,,a b x b c y c a z +=+=+=,则0,0,0x y z >>>, 且()()22x y z z x ya abc b c y +++-=++-+=-=. 同理,,22x y z y z xb c +-+-==. 所以原不等式的左边222y z x z x y x y zx y z+-+-+-=++ 1322y x zx z y x y x z y z ⎡⎤⎛⎫⎛⎫⎛⎫=+++++-⎢ ⎪⎥ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎣⎦133(222)222≥⨯++-=. 当且仅当,x y z x y x x z ==,且z yy z=,即,x y z a b c ====时,等号成立. 题型三 基本不等式求积的最大值1.如图,在半径为4(单位:cm )的半圆形(O 为圆心)铁皮上截取一块矩形材料ABCD ,其顶点,A B 在直径上,顶点,C D 在圆周上,则矩形ABCD 面积的最大值为( )(单位:cm 2).A .8B .10C .16D .20【答案】C【解析】设BC =x ,连结OC ,得OB =216x -,所以AB =2216x -, 所以矩形ABCD 面积S =2216x x -,x ∵(0,4), S =2()22222162161616x x x x x x -=-≤+-= . 即x 2=16﹣x 2,即x =22时取等号,此时max 16y =故选:C2.已知,a b 为正数,2247a b +=,则21a b +的最大值为( ) A .7B .3C .22D .2【答案】D【解析】222211411212222a b a b a b ⎛⎫+++=⨯+≤= ⎪⎝⎭,当且仅当2241a b =+时,取得最大值.故选:D3.(1)已知x ,y R +∈,求x y x y++的最大值;(2)求满足24a b k a b +≥+对a ,b R +∈有解的实数k 的最大值,并说明理由. 【答案】(1)2 (2)2.见解析【解析】(1)∵x ,y R +∈,∵22212x y x y xy xyx y x y x y ⎛⎫+++==+≤ ⎪ ⎪+++⎝⎭, 当且仅当x y =时,对等号, ∵当x y =时,x y x y++的最大值为2.(2)∵a ,b R +∈,∵设0a m =>,0b n =>,2a m =,2b n =, ∵22222m n mn mn +≥=,∵满足24a b k a b +≥+对a ,b R +∈有解的实数k 的最大值, ∵222224242m n k m n k m n k mn +≥+≥=, ∵222k ≤,解得2k ≤,∵满足24a b k a b +≥+对a ,b R +∈有解的实数k 的最大值为2. 4.我们学习了二元基本不等式:设0a >,0b >,2a bab +≥,当且仅当a b =时,等号成立利用基本不等式可以证明不等式,也可以利用“和定积最大,积定和最小”求最值. (1)对于三元基本不等式请猜想:设0,0,c 0,3a b ca b ≥ 当且仅当a b c ==时,等号成立(把横线补全).(2)利用(1)猜想的三元基本不等式证明:设0,0,0,a b c >>>求证:2229a b ca b c abc(3)利用(1)猜想的三元基本不等式求最值:设0,0,c 0,1,a b a b c 求111a b c 的最大值.【答案】(1)33a b cabc (2)证明见解析(3)827 【解析】(1)通过类比,可以得到当0a >,0b >,0c >时33a b c abc ,当且仅当a b c ==时,等号成立;(2)证明:0a >,0b >,0c >,由(1)可得22232223a b c a b c ++≥,∴22233222333333a b c a b c a b c abca b c abc()()2229a b c a b c abc ∴++++≥(3)解:由(1)可得,33a b c abc ++⎛⎫≥ ⎪⎝⎭,即33a b c abc ++⎛⎫≤ ⎪⎝⎭,由题,已知0a >,0b >,0c >,1a b c ++=,10a b c ∴-=+>,10b a c -=+>,10c a b -=+>,∴33322811133327b ca ca ba b c b c a c a ba b c ∴当且仅当b c a c a b +=+=+,即a b c ==时取等,即111a b c 的最大值为8275.设∵ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,且C =3π,a +b =λ,若∵ABC 面积的最大值为93,求λ的值. 【答案】 12 【解析】S ∵ABC =12absin C =34ab , 根据基本不等式2224a b ab λ+⎛⎫≤= ⎪⎝⎭ , 当且仅当a=b 时,等号成立, ∵S ∵ABC =34ab≤34·223216a b λ+⎛⎫= ⎪⎝⎭,令2316λ=93,解得λ=12. 题型四 基本不等式求和的最小值1.设x ,y 均为正数,且xy +x -y -10=0,则x +y 的最小值是_______. 【答案】6【解析】由xy +x -y -10=0,得101y x y +=+=91,111y y ++>+, 故()99121611x y y y y y +=++≥⋅+=++,当且仅当911y y =++,即y =2时,等号成立. 故答案为:6.2.若0a b +≠,则2221()a b a b +++的最小值为________.【答案】2【解析】由于()222222222a b a b a b ab a b +++⎛⎫≤≤⇒+≥ ⎪⎝⎭, 所以()()222222211122()2()2()a b a b a b a b a b a b ++++≥+≥⋅=+++,当且仅当a b =且()2212()a b a b +=+时等号成立, 即()34144222a b a b a b a b a b -=⎧=⎧⎪⎪⇒⇒==⎨⎨+=⎪⎪+=⎩⎩时等号成立. 所以2221()a b a b +++的最小值为2.故答案为:23.已知ab >0,则()()22222424541ab a b ab +++++的最小值为_____.【答案】4.【解析】解:根据题意,ab >0,故22224244a b a b ab +≥⨯=,当且仅当a =2b 时等号成立,则原式()()()22222224245(4)245(41)4414141ab a b ab ab ab ab ab ab ++++++++=≥==+++44141ab ab +++,又由ab >0,则4ab +1>1, 则有44141ab ab ++≥+()424141ab ab +⨯=+4,当且仅当4ab +1=2,即4ab =1时等号成立,综合可得:()()22222424541ab a b ab +++++的最小值为4,当且仅当a =2b 12=时等号成立 故答案为:4.4.设0a b c >>>,则221121025()a ac c ab a a b ++-+-的最小值为__________. 【答案】4【解析】因为0a b c >>>,所以()222221111210251025()a ac c a a ac c ab a a b ab a a b ++-+=+⎡⎤⎢⎥⎣⎦++-+-- ()()()()222222222211445 55204 2a a c a a c a a c a b a b a a b a b ⎡⎤⎢⎥⎛⎫=++-≥++-=++-≥⋅+=-+-⎣⎦⎪⎝⎭,当且仅当252a b c === 时取等号,此时221121025()a ac c ab a a b ++-+-的最小值为4. 故答案为:4.题型五 二次与二次(或一次)的商式的最值问题1.若41x -<<,则当22222x x x -+-取最大值时x 的值为( )A .3-B .2-C .1-D .0【答案】D【解析】变形,可得()()()()222112221111222121221x x x x x x x x x x -+-+-++-===+----,41x -<<,510x ∴-<-<,原式()()()11111121221221221x x x x x x ⎡⎤---=+=-+≤-⋅=-⎢⎥---⎣⎦, 当且仅当()11221x x -=-,即0x =时取等号,因此,22222x x x -+-取最大值时0x =. 故选:D.2.(1)若,0x y >,且280x y xy +-=,求x y +的最小值;(2)若41x -<<,求22222x x x -+-的最大值.【答案】(1)18;(2)-1.【解析】(1)由280x y xy +-=,得821x y+=,()828210y x x y x y x y x y ⎛⎫+=++=++ ⎪⎝⎭8210218y xx y ≥+⋅=,当且仅当212x y ==时取等号故当212x y ==,x y +取最小值18.(2)若41x -<<,则()2221112221x x x x x -+⎡⎤=--+⎢⎥--⎣⎦()1121x x-+≥-当且仅当0x =时取等号 ()111121x x ⎡⎤∴--+≤-⎢⎥-⎣⎦.即若41x -<<,22222x x x -+-的最大值为1-.3.(1)求当0x >时,2342x x y x ++=的最小值;(2)求当1x >时,221x y x +=-的最小值.【答案】(1)72;(2)232+.【解析】(1)当0x >时,234322372222222x x x x x x x ++=++≥⋅+=,当且仅当2x =时等号成立,所以当0x >时,函数2342x x y x++=的最小值为72;(2)()22112312111xxy x x x x -+⎡⎤+⎣⎦===-++---, 当1x >时,10x ->,所以()32122321y x x ≥-⋅+=+-, 当且仅当311x x -=-,即在13x =+时等号成立, 所以,当1x >时,221x y x +=-的最小值为232+.4.若,,x y z 均为正实数,则222xy yzx y z +++的最大值是_______.【答案】22【解析】因为,,x y z 均为正实数,所以2222222()11(2)2xy yz xy yzx y y x z y z ++=+++++ 22222()2222xy yzxy yz xy yz x y y z ++≤==+⋅+⋅⋅, 当且仅当2222x y y z ⎧=⎪⎪⎨⎪=⎪⎩,即22x z y ==时等号成立.故答案为:22. 、专题7 基本不等式(2)题型一 条件等式求最值1.已知0<a <1,0<b <1,且44430ab a b --+=,则12a b+的最小值是______.【答案】4243+【解析】已知01,01a b <<<<,由44430ab a b --+=得44441ab a b --+=,即1(1)(1)4a b --=, 令()()10,1,10,1,41x a y b xy =-∈=-∈=, 所以()10,14y x =∈,所以1,14x ⎛⎫∈ ⎪⎝⎭, 故12121218111114114x a b x y xx x x+=+=+=+------()()12421422224441141444134441x x x x x x x x ⎛⎫⎡⎤=++=++=++-+- ⎪⎣⎦------⎝⎭ ()()()()4412444412441242264434441344413x x x x x x x x ⎡⎤----=+++≥+⋅=+⎢⎥----⎣⎦, 当且仅当()()4412444441x x xx --=--即3224x -=时,取等号. 故答案为:4243+. 2.已知正实数x ,y 满足14xy <,且2441y y xy x ++=,则13x y x+-的最小值为______. 【答案】22【解析】解:正实数x ,y 满足14xy <,且2441y y xy x++= 所以21442y y xy x +--=,即()42y x y x y x +-+=,也即()142x y y x ⎛⎫+-= ⎪⎝⎭ 则()1123422x y y x y x y x x x y+-=-++=++≥+ 当且仅当()2142x y x y x y y x ⎧+=⎪+⎪⎨⎛⎫⎪+-= ⎪⎪⎝⎭⎩,即2142x y y x ⎧+=⎪⎨-=⎪⎩,则5234832348x y ⎧-=⎪⎪⎨+⎪=⎪⎩时取等号,此时1711164xy -=<,所以取得最小值22. 故答案为:22.3.已知0a >,0b >,1c >且1a b +=,则21221a c ab c ⎛⎫+-⋅+ ⎪-⎝⎭的最小值为______. 【答案】422+【解析】因为0a >,0b >,1a b +=,所以222221()22a a a b a b ab ab ab ab +++++==222222ab abab+≥=+,又1c >,则21221a c ab c ⎛⎫+-⋅+ ⎪-⎝⎭2221c c ≥+- =122(c 1)21c ⎡⎤-++≥⎢⎥-⎣⎦1222(1)24221c c ⎡⎤-⋅+=+⎢⎥-⎣⎦,其中等号成立的条件:当且仅当222112(1)1a b a b c c ⎧⎪=⎪+=⎨⎪⎪-=-⎩,解得21a =-,22b =-,212c =+,所以21221a c ab c ⎛⎫+-⋅+ ⎪-⎝⎭的最小值是422+. 故答案为:422+.4.若正实数a ,b 满足()2261a b ab +=+,则21aba b ++的最大值为______.【答案】16【解析】()()()221621216a b ab a b a b ab +-=⇒+++-= ,即21216ab a b a b +-=++又()22236323224a b ab a b a b +⎛⎫=⋅⋅≤=+ ⎪⎝⎭,等号成立的条件为2a b = ,原式整理为()()()2223212244a b a b a b +≤++⇒+≤ ,即022a b <+≤ ,那么2121121666ab a b a b +--=≤=++,所以21ab a b ++ 的最大值是16.5.求下列函数的最值(1)求函数22(1)1x y x x +=>-的最小值.(2)若正数x ,y 满足35x y xy +=,求34x y +的最小值. 【答案】(1)223+;(2)5.【解析】(1)2(1)2(1)33(1)223211x x y x x x -+-+==-+++--,当且仅当2(1)3x -=即31x =+时等号成立,故函数y 的最小值为223+.(2)由35x y xy +=得13155y x+=, 则1331213133634(34)()2555555525x y x y x y y x y x +=++=+++=, 当且仅当12355y x x y =,即12y =,1x =时等号成立, 故34x y +的最小值为5.题型二 基本不等式的恒成立问题1.已知a ,b 为正实数,且23a b ab +=,若0a b c +-≥对于满足条件的a 、b 恒成立,则c 的取值范围为.( ) A .2213c c ⎧⎫⎪⎪≤+⎨⎬⎪⎪⎩⎭B .322c c ⎧⎫≤+⎨⎬⎩⎭C .{}6c c ≤D .{}322c c ≤+【答案】A【解析】将23a b ab +=变形为213a b+=,所以()()11121223322132333a b a a b a b b a b ⎛⎫⎛⎫+=++=++≥+=+ ⎪ ⎪⎝⎭⎝⎭, 当且仅当2a b =时,即632,333a b =-=-时取等号.0a b c +-≥恒成立等价于c a b ≤+恒成立,即()min c a b ≤+,所以2213c ≤+故选:A .2.已知x 、y 都为正数,且4x y +=,若不等式14m x y +>恒成立,则实数m 的取值范围是________.【答案】94m ∴< 【解析】x 、y 都为正数,且4x y +=,由基本不等式得()14144x y x y x y ⎛⎫⎛⎫+=++ ⎪ ⎪⎝⎭⎝⎭445259y x y xx y x y=++≥⋅+=,即1494x y +≥,当且仅当2y x =时,等号成立,所以,14x y +的最小值为94,94m ∴<.3.已知正实数x ,y 满足2520x y +=. (1)求xy 的最大值; (2)若不等式21014m m x y+≥+恒成立,求实数m 的取值范围. 【答案】(1)10;(2)9122m -≤≤.【解析】(1)2025225x y x y =+≥⋅,解得10xy ≤, 当且仅当5x =,2y =取等号, ∵xy 最大值为10. (2)101555592104421042101041x y y x y x x x x y x y y y ⎛⎫⎛⎫++=++≥+⋅= ⎪⎪⎝⎭⎝⎭+=, 当且仅当203x =,43y =取等号, ∵2944m m +≤,解得9122m -≤≤. 4.设a b c >>,且11ma b b c a c+≥---恒成立,求实数m 的取值范围. 【答案】4m ∴≤ 【解析】由a b c >>知0a b ->,0b c ->,0a c ->. ∴原不等式等价于a c a cm a b b c--+≥--.要使原不等式恒成立,只需a c a ca b b c--+--的最小值不小于m 即可. ()()()()2224a b b c a b b c a c a c b c a b b c a ba b b c a b b c a b b c a b b c-+--+-------∴+=+=++≥+⋅=-------- 当且仅当b c a ba b b c--=--,即2b a c =+时,等号成立. 4m ∴≤5.已知16k >,若对任意正数x ,y ,不等式1322k x kyxy ⎛⎫-+ ⎪⎝⎭恒成立,求实数k 的取值范围.【答案】12k k ⎧⎫⎨⎬⎩⎭【解析】∵0x >,0y >,∵不等式1322k x kyxy ⎛⎫-+ ⎪⎝⎭恒成立等价于1322x y k ky x ⎛⎫-+ ⎪⎝⎭恒成立.又16k >,∵1132322x y k k k k y x ⎛⎫⎛⎫-+- ⎪ ⎪⎝⎭⎝⎭(当且仅当132k x ky ⎛⎫-= ⎪⎝⎭时,等号成立),∵12322k k ⎛⎫- ⎪⎝⎭,解得13k -(舍去)或12k ,∵实数k 的取值范围为12k k ⎧⎫⎨⎬⎩⎭.题型三 对勾函数求最值1.设x ,y 均为负数,且1x y +=-,那么1xy xy+有( ). A .最大值174- B .最小值174-C .最大值174D .最小值174【答案】D【解析】设a x =-,b y =-,则0a >,0b >.由12a b ab +=≥得14ab ≤. 由函数1y x x =+的图像得,当104ab <≤时,1ab ab +在14ab =处取得最小值, 11117444xy ab xy ab ∴+=++=≥,当且仅当12x y ==-时取等号成立.综上可得,1xy xy +有最小值174. 故选D .2.已知52x ≥,则24524x x y x -+=-有( )A .最大值52B.最小值54C .最大值1D.最小值1【答案】D【解析】解:由522x≥>得,()()()2221451121242222xx xy xx x x-+-+⎡⎤===-+≥⎢⎥---⎣⎦,当且仅当122xx-=-,即3x=时,等号成立,故选:D.题型四基本不等式的应用1.某工厂第一年年产量为A,第二年的增长率为a,第三年的增长率为b,这两年的平均增长率为x,则()A.2a bx+=B.2a bx+≤C.2a bx+>D.2a bx+≥【答案】B【解析】解:由题意得,2(1)(1)(1)A a b A x++=+,则2(1)(1)(1)a b x++=+,因为211(1)(1)2a ba b+++⎛⎫++≤ ⎪⎝⎭,所以21122a b a bx++++≤=+,所以2a bx+≤,当且仅当a b=时取等号,故选:B2.《几何原本》中的几何代数法(以几何方法研究代数问题)成为了后世数学家处理问题的重要依据.通过这一原理,很多的代数的公理或定理都能够通过图形实现证明,也称之为无字证明.如图所示的图形,在AB上取一点C,使得AC a=,BC b=,过点C作CD AB⊥交圆周于D,连接OD.作CE OD⊥交OD于E.由CD DE可以证明的不等式为()A.2(0,0)abab a ba b>>+B.(0,0)2a bab a b+>>C.22(0,0)22a b a ba b++>>D.222(0,0)a b ab a b+>>【答案】A【解析】解:由射影定理可知2CD DE OD=,即222DC ab abDEa bOD a b===++,由DC DE得2ababa b+,故选:A.。
基于不等式的基本性质知识点,以下题目的解答如下。

基于不等式的基本性质知识点,以下题目的解答如下。
基于不等式的基本性质知识点1. 不等式的定义和性质不等式是指数学中一种比较两个数或两个代数式大小关系的关系式。
常见的不等式符号有小于等于(≤)、大于等于(≥)、小于(<)、大于(>)等。
不等式具有以下性质:- 传递性:如果a≤b,b≤c,则a≤c。
- 反对称性:如果a≤b且b≤a,则a=b。
- 加法性质:如果a≤b,那么a+c≤b+c。
- 乘法性质:如果a≤b且c>0,那么ac≤bc;如果a≤b且c<0,那么ac≥bc。
对于除数为非零数,不等式成立性质反向。
2. 复合不等式的解法复合不等式是指两个或多个不等式同时存在,并要求同时满足的情况。
解复合不等式的方法主要包括图解法和代数法。
- 图解法:将每个不等式用线条进行表示,观察线条的交叉部分,该部分即为复合不等式的解集。
- 代数法:将不等式合并成一个不等式,然后求解合并后的不等式的解集。
3. 不等式的加减乘除运算对于不等式的加减乘除运算,需要注意以下几点:- 加减运算:如果a≤b,那么a+c≤b+c,但不能简单地将两边都加上c得到a+c≤b+c。
- 乘法运算:如果a≤b且c>0,那么ac≤bc;如果a≤b且c<0,那么ac≥bc。
对于c=0时,不等式可能成立也可能不成立。
- 除法运算:如果a≤b且c>0,那么a/c≤b/c;如果a≤b且c<0,那么a/c≥b/c。
需要注意除数c不能为0。
4. 绝对值不等式绝对值不等式是指绝对值函数与不等式的结合。
解绝对值不等式的一般步骤如下:- 将绝对值不等式分解成两个不等式,其中一个是绝对值大于等于0,另一个是绝对值大于0。
- 求解这两个不等式,然后取并集得到绝对值不等式的解集。
5. 不等式的求解范围对于不等式的求解范围,需要考虑以下几个方面:- 对于变量的限制条件,如变量的定义域,是否有整数限制等。
- 对于运算符号的限制条件,如是否存在除数为0的情况,是否有乘方、开方等特殊运算。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
比较两个代数式大小
不等式这一章节有一类题型,告诉两个字母的范围,比较由这些字母组成的代数式的大小关系.简单的代数式的比较,大多数同学都会,可是复杂的代数式怎么比较呢?很多同学不知道怎么下手,复杂的代数式的比较,我们这儿给大家总结了三种方法:作差法,作商法,放缩法.相信学了这几种方法后,同学们遇到这类问题便可以如同瓮中捉鳖了.
基本方法
比较两个不等式的大小我们总结了三种方法.
作差法:如a-b>0,那么a>b;如果a-b<0,那么a<b.这是最基本的方法,其它的一些比较方法均是由此推导出来的.
作商法:如果>1,那么a<b;这种比
放缩法:如果
到:老大比老三大。
体验题1如果
体验思路因
体验过程∵
∴5-a<5-b
简单的代数式可以,我们再看一个复杂一些的。
看看我们的方法行不行?
体验题2
体验题2如1>a>b>0 ,试比较ab,ab2,b2a的大小关系.
体验思路本题很明显,ab>0,ab2>0,ab2>0.因此,我们既可以选择作差法,也可以选择作商法.
体验过程方法一,作差法.
∵ab-ab2=ab(1-b)>0, ∴ ab>a2b
∵ab-a2b=ab(1-a)>0, ∴ ab>a2b
∵ab2-a2b=ab(b-a)<0, ∴ab2<a2b
∴ab> a2b>ab2
方法二,作商法.
∵1>a>b>0, ∴ab>0,ab 2>0,b 2
a>0. ∵
21ab ab b
=>1, ∴ab>ab 2. ∵21ab a b a =>1, ∴ab>a 2b. ∵22ab b a b a
=<1, ∴ab 2<a 2b. ∴ab> a 2b>ab 2
体验题3
体验题3
如果
体验思路 ∵体验过程 ∵a<b<0, ∵b a 11--
b a b a 题是分数形式的代数式,且上述代数式与0的大小关系已知.另外,易确
b a
,2a b ,2
b a 与1的大小关系,故也可考虑放缩法.
∵1>a>b>0, ∴a b >1, b a <1, ∴a b >b a
; ∴2a b =a b .a>a b .1=a b
>1 (这一步中间过程将a 放缩到1) ∴2b a =b a .b<b a .1=b a
<1. (这一步中间过程将b 放缩到1)
∴
2
b
a
<
b
a
<
a
b
<
2
a
b
方法二:作商法∵
2
2
b
b
a
a a
b
=<1,∴
b
a
<
a
b
∵
2
2
b
a
a
b
=
3
3
b
a
<1, ∴
2
b
a
<
2
a
b
,
∵
2 a b
a b
∵
2 b a b a
∴
2
b
a
<
小结:作差法,.
.
毕竟实践出真知!祝你成功!
实践题
实践题1 如果a+2b>a+b+1,比较a与b的大小关系 .
实践题2 有一个两位数,个位上的数是a,十位上的数是b,如果把这两位数的个位与十位上的数对调,新得到的两位数大于原来的两位数,那么a与b 哪个大?
实践题答案
实践题1
实践详解∵a+2b-(a+b+1)=a-(b+1)>0,所以a>b+1
b+1>b
∴a>b
实践题2
实践详解原来的两位数是10b+a,新的两位数是10a+b, ∵10a+b-(10b+a)=9(b-a)<0,∴b<a。