数学建模:差分方程模型

合集下载

数学建模中的差分方程模型

数学建模中的差分方程模型

数学建模中的差分方程模型数学建模是一种将实际问题转化为数学模型并寻求与之相连的数学方法的学科,不仅仅在理论研究上有很大的应用,也在实际生活中有着广泛的应用。

在各种数学模型中,差分方程模型也是一种很重要的模型。

本文将结合实例,介绍差分方程模型的定义、建立、求解以及应用。

差分方程模型定义差分方程模型是一种通过离散化的方法,将连续时间问题转化为离散时间问题,来描述变量随时间的变化规律的数学模型。

这种数学模型以时间为自变量,以某个状态量为因变量,由一定的关系式组成。

例如:y(n+1)=ay(n)+b,式子中y(n)代表第n时刻系统状态,y(n+1)代表第n+1时刻系统状态,a和b为常数。

差分方程模型建立建立差分方程模型的关键是将实际问题中的连续变化离散化。

一般情况下,对于所建立的模型,首先要确定它的思路和范围,然后根据实际情况,确定差分方程的形式。

此外,还需要进行参数的估计和参数变化的分析,以及对模型精确性的验证。

以物理学中的简谐振动为例,建立一个差分方程模型描述其运动,即一个质点在回复力作用下以简谐运动形式振动。

设t为时间,y为质点的位移,v为质点的速度,a为质点的加速度,则有:$$y=n\Delta y \\v=\dfrac{y(n+1)-y(n-1)}{2\Delta t} \\a=\dfrac{y(n+1)-2y(n)+y(n-1)}{(\Delta t)^2}$$其中n为时间步长,$\Delta t$为时间间隔。

我们利用受力平衡的原理,即简谐振动中的$F=-ky$得到:$$\dfrac{y(n+1)-2y(n)+y(n-1)}{(\Delta t)^2} = -\dfrac{k}{m}y(n)$$将$\alpha=\dfrac{k}{m}$带入上式得到:$$y(n+1)-2(1+\alpha)y(n)+y(n-1) = 0$$此时,我们便成功地建立了描述简谐振动的差分方程模型。

差分方程模型求解对差分方程模型求解通常有两种方法:一种是使用递推公式进行求解,另一个方法是使用其它数学方法,如拉普拉斯变换或离散傅立叶变换等。

差分方程模型的基本概念

差分方程模型的基本概念

预测经济趋势
通过建立差分方程模型,可以对 未来的经济趋势进行预测,帮助 决策者制定相应的经济政策。
评估经济政策
差分方程模型可以用来评估不同 经济政策的实施效果,为政策制 定者提供参考依据。
在物理学中的应用
描述振动现象
差分方程模型可以用来描述物体的振动规律,如弹簧振荡、单摆 等。
预Байду номын сангаас波动传播
在声学和波动理论中,差分方程模型可以用来描述波动传播的规 律,如声波、电磁波等。
可以采用动态模型来反映数据的变化趋势,减少时间滞后的影 响。
可以利用大数据技术来处理大规模的数据集,提高模型的预测 精度和稳定性。
可以尝试优化参数估计方法,例如采用全局优化算法或贝叶斯 推断等方法,以提高参数估计的准确性和稳定性。
THANKS FOR WATCHING
感谢您的观看
确定差分关系
根据时间序列数据的特性,确定合适的差分关系,以描述数据的变化规律。差分关系通常表示为变量在不同时间 点的变化量或变化率。
建立差分方程模型
根据变量和参数建立模型
根据确定的变量和参数,建立差分方程模型,以描述变量的变化规律。
验证模型的适用性
建立差分方程模型后,需要验证模型的适用性,确保模型能够准确描述实际问题的变化规律。
Python
使用Python的数值计算库,如NumPy和 SciPy,求解差分方程。
Mathematica
使用Mathematica的符号计算和数值计算功 能求解差分方程。
04 差分方程模型的应用
在经济学中的应用
描述经济周期
差分方程模型可以用来描述经济 活动的周期性变化,如经济增长、 通货膨胀、就业率等的时间序列 数据。

(完整版)差分方程模型(讲义)

(完整版)差分方程模型(讲义)

差分方程模型一. 引言数学模型按照离散的方法和连续的方法,可以分为离散模型和连续模型。

1. 确定性连续模型1) 微分法建模(静态优化模型),如森林救火模型、血管分支模型、最优价格模型。

2) 微分方程建模(动态模型),如传染病模型、人口控制与预测模型、经济增长模型。

3) 稳定性方法建模(平衡与稳定状态模型),如军备竞赛模型、种群的互相竞争模型、种群的互相依存模型、种群弱肉强食模型。

4) 变分法建模(动态优化模型),如生产计划的制定模型、国民收入的增长模型、渔业资源的开发模型。

2. 确定性离散模型1) 逻辑方法建模,如效益的合理分配模型、价格的指数模型。

2) 层次分析法建模,如旅游景点的选择模型、科研成果的综合评价模型。

3)图的方法建模,如循环比赛的名次模型、红绿灯的调节模型、化学制品的存放模型。

4)差分方程建模,如市场经济中的蛛网模型、交通网络控制模型、借贷模型、养老基金设置模型、人口的预测与控制模型、生物种群的数量模型。

随着科学技术的发展,人们将愈来愈多的遇到离散动态系统的问题,差分方程就是建立离散动态系统数学模型的有效方法。

在一般情况下,动态连续模型用微分方程方法建立,与此相适应,当时间变量离散化以后,可以用差分方程建立动态离散模型。

有些实际问题既可以建立连续模型,又可建立离散模型,究竟采用那种模型应视建模的目的而定。

例如,人口模型既可建立连续模型(其中有马尔萨斯模型Malthus、洛杰斯蒂克Logistic模型),又可建立人口差分方程模型。

这里讲讲差分方程在建立离散动态系统数学模型的的具体应用。

二. 差分方程简介在实际中,许多问题所研究的变量都是离散的形式,所建立的数学模型也是离散的,譬如,像政治、经济和社会等领域中的实际问题。

有些时候,即使所建立的数学模型是连续形式,例如像常见的微分方程模型、积分方程模型等。

但是,往往都需要用计算机求数值解。

这就需要将连续变量在一定的条件下进行离散化,从而将连续型模型转化为离散型模型。

差分方程模型

差分方程模型
洛阳理工学院数学建模竞赛培训教案
差分方程模型
周家全
对连续型变化的问题而言, 常常可建立微分方程模型. 而对离散状态转移的问题, 则可建立差分方程模型. 差分方 程与常微分方程有很多类似的性质和结论.首先引入差分的 概念.
1 差分定义及其性质
定义 设函数 y = y(x) 在等距节点 xi = x0 + ih ( i = 0,1, , n)
对于一般的差分方程 xn+2 + axn+1 + bxn = f 来讲, 其平衡 点的稳定性问题可以同样给出. 二阶方程的上述结果可以推
广到 n 阶线性差分方程, 即稳定平衡点的条件是特征根: n
次代数方程的根 λi (i = 1, 2, , n) 均有| λi |< 1.
4 经济学中的蛛网模型
1. 提出问题 在自由竞争的社会中, 很多领域会出现循环波动的现象. 在经济领域中, 可以从自由集市上某种商品的价格变化看到 如下现象:在某一时期, 商品的上市量大于需求, 引起价格 下跌, 生产者觉得该商品无利可图, 转而经营其它商品;一

Δf (0) = f (0.5) − f (0) = 0.75 ,
-2-
洛阳理工学院数学建模竞赛培训教案
Δf (0.5) = f (1) − f (0.5) = 1.25
周家全
Δ2 f (0)= Δ(Δf (0)) = Δf (0.5) − Δf (0) = 1.25 − 0.75 = 0.5
计算较多点的差分可按差分表进行, 容易看出表中每一 个需要计算的差分值分别等于其左侧的数减去左上侧的 数.每个点 xi 处的各阶差分位于与主对角线平行的斜线上.
(I) 先求解对应的特征方程
a0λn + a1λn−1 + + a0 = 0

7.数学建模-差分方程法

7.数学建模-差分方程法


pt 发生动态等幅振荡;
ab t ) p* (5) 当 0 < ab < 2 , pt ( A1 sin kt A2 cos kt)( 2 ab ab t 1 ( ) 为衰减因子 2 2

pt → p*
( t → + ∞ ) , pt 动态发展趋于稳定 .
5.差分形式的生物数量 ic(阻滞增长)模型及其稳定性研究 描述生物生长受到环境约束的微分方程模型是 Logistic(阻滞增 长)模型 。其形式是 : y
0
这时还贷公司需要还清银行的债务的时限变为:
b ln b ry0 x 503.5 ( 半月) 21年 . ln(1 r )
这表明还贷公司只用 21 年就可还清银行的债务, 由此 , 还贷公司赚 了购房人 一年的钱: 24 × 316 = 7584 ( 元 ) . 故问题 (2) 的解答是 : 此方案对还贷公司而言是有利可图的 。
模型II . 模型假设: (1) t 时刻的商品价格 pt 是商品数量 xt 的直线下降函数: pt = pM - a xt ; (2) 这一时期的商品数量 xt 是前两个时期的商品价格 pt-1 与 pt-2 的 算术平均值的直线上升函数(企业对市场的分析、判断应更成 b( pt 1 pt 2 ) 熟一些): 模型建立:
p ( 0 ) = p0 ,p(1) = p1 ( 初始价格 ) . (二阶线性常系数差分方程)
r1, 2
ab ab(ab 8) 4
p M axm p* 1 ab
(2) 当 ab = 8 时,
ab t pt ( A1 A2 t )( ) p * ( A1 A2 t )(2) t p * 4 ab t ) p* (3) 当 ab < 8 时, pt ( A1 sin kt A2 cos kt)(

数学建模之差分方程

数学建模之差分方程

差分方程对连续型变量而言,我们常常回导致到微分方程的问题. 对离散型变量将导致一类的问题.一、差分的定义定义 设)(x y y =是一个函数, 自变量从x 变化到x +1, 这时函数的增量记为)()1(x y x y y x -+=∆, 我们趁这个量为)(x y 在点x 步长为1的一阶差分,简称为)(x y 的一阶差分. 为了方便我们也记)(),1(1x y y x y y x x =+=+,即 x x x y y y -=∆+1.称x x x x x x x x y y y y y y y y +-=---=∆∆+++++121122)()()(为)(x y 二阶差分,简记为x y 2∆.同样记)(2x y ∆∆为x y 3∆,并称为三阶差分.一般记)(1x n x n y y -∆∆=∆,称为n 阶差分.且有i n x i ni i n x ny C y -+=-=∆∑)1(0. 性质: 当a,b,C 是常数, y x 和z x 是函数时,(1) Δ(C )=0;(2) Δ(Cy x )= C Δ(y x );(3) Δ(ay x + b z x )= a Δy x + b Δ z x ;(4) Δ(y x z x )= z x+1Δy x +y x Δ z x = y x+1Δz x +z x Δy x ;(5) 1111++++∆-∆=∆-∆=⎪⎪⎭⎫ ⎝⎛∆x x x x x x x x x x x x x x z z z y y z z z z y y z z y . 例 已知),0(≠=x x y x α求Δ(y x ).解 Δ(y x )= ααx x -+)1(.特别, 当n 为正整数时, Δ(y x )= i n n i i n x C -=∑1, 阶数降了一阶.推论 若m, ,n 为正整数时, m,> n P(x)为n 次多项式,则0)(=∆x P m .例 已知),10(≠<=a a y x x 求Δ(y x ).解 Δ(y x )= )1(1-=-+a a a a x x x .二、差分方程定义 设是含有未知函数差分的等式,称为差分方程。

差分方程数学建模举例

差分方程数学建模举例

差分方程建模举例差分方程建模方法的思想与与一般数学建模的思想是一致的,也需要经历背景分析、确定目标、预想结果、引入必要的数值表示(变量、常量、函数、积分、导数、差分、取最等)概念和记号、几何形式(事物形状、过程轨迹、坐标系统等),也就是说要把事物的性态、结构、过程、成分等用数学概念、原理、方法来表现、分析、求解。

当然,由于差分方程的特殊性,首先应当把系统或过程进行特别分解,形成表现整个系统的各个部分的离散取值形式,或形成变化运动过程的时间或距离的分化而得到离散变量。

然后通过内在的机理分析,找出变量所能满足的平衡关系、增量或减量关系及规律,从而得到差分方程。

另外,有时有可能通过多个离散变量的关系得到我们关心的变量的关系,这实际上建立的是离散向量方程,它有着非常重要的意义。

有时还需要找出决定变量的初始条件。

有时还需要将问题适当分成几个子部分,分别求解。

模型1 种群生态学中的虫口模型:在种群生态学中,考虑像蚕、蝉这种类型的昆虫数目的变化 ,他的变化规律是:每年夏季这种昆虫成虫产卵后全部死亡,第二年春天每个虫卵孵化成一个虫子。

建立数学模型来表现虫子数目的变化规律。

模型建立:假设第n 年的虫口数目为n P ,每年一个成虫平均产卵c 个(这个假设有点粗糙,应当考虑更具体的产卵分布状况),则有:n n cP P =+1,这是一种简单模型;如果进一步分析,由于成虫之间会有争斗以及传染病、天敌等的威胁,第n+1年的成虫数会减少,如果考虑减少的主要原因是虫子之间的两两争斗,由于虫子配对数为)1(21-n n p p 221n p ≈,故减少数应当与它成正比,从而有: 21n n n bP cP P -=+这个模型可化成:)1(1n n n x x x -=+λ,这是一阶非线性差分方程。

这个模型的解的稳定性可以用相应一阶差分方程的判断方法来获得。

如果还考虑其它的影响成虫孵卵及成活的因素的定量关系,这个模型在此基础上仍可进一步改进,更加符合实际情形。

《数学建模》课件:第7章 差分方程模型(投影版)

《数学建模》课件:第7章 差分方程模型(投影版)

求得的方程的解
x=x =
b
n
称为该差分方程的平衡点(奇解)。
ai
i0
若记该差分方程的一般解(通解)为 xk,它若满足:lkim xk x,
则称 x 是稳定的, 否则,称 x 是不稳定的。
6. 特征方程
称代数方程: an n an1 n1 a1 a0 0
为差分方程 an xkn a1xk1 a0xk b 对应的特征方程。
x1 y1 x2 y2 x3
xk x0 , yk y0
P1 P2 P3 P0
xk x0 , yk y0 P1 P2 P3 P0
P0是稳定平衡点
y
f
y2 P3
yy30 y1
P2
g 曲线斜率
P4
P0
K f Kg
P1
0 x2 x0 x3 x1 x
P0是不稳定平衡点
y
P3 f
根据导数的定义:
f
'(xk )
lim =
x xk
f
(x) f (xk ) x xk
lim = f (x) f (xk ) lim = f (x) f (xk )
x xk
x xk
x xk-
x xk
于是,当分割足够细时,用差商代替微商,则得到如下差分公式:
向前差分:
f
'(xk )
数学建模
第七章 差分方程模型
数学建模
第七章 差分方程与代数方程模型
主讲教师:邵红梅
数学建模
第七章 差分方程模型
差分方程稳定性理论简介
一、差分方程
所谓n阶差分方程,简单地说,是指对于一个点列 xk ,把它的前n+1项

数学建模差分方程模型

数学建模差分方程模型

yk
x k 1 bk(1 x x k) (2 )
记br1 一阶(非线性)差分方程
(1)的平衡点y*=N
(2)的平衡点 x* r 11 r1 b
讨论 x* 的稳定性
补充知识
一阶非线性差分方程 xk1f(xk)(1)的平衡点及稳定性 (1)的平衡点 x*——代数方程 x=f(x)的根 (1)的近似线性方程 x k 1 f(x * ) f(x * )x k ( x * )( 2 ) 稳定性判断 x*也是(2)的平衡点
需求函数不变 y k y 0 (x k x 0 ) 2 x x x 2 ( 1 ) x , k 1 , 2 ,
k 2 k 1 k
0
二阶线性常系数差分方程
x0为平衡点 研究平衡点稳定,即k, xkx0的条件
模型的推广 2 x k 2 x k 1 x k 2 ( 1 ) x 0
• 运动(内容同前) C 80 0 0 .00 2 78 5 16(千 80 )
3 差分形式的阻滞增长模型
连续形式的阻滞增长模型 (Logistic模型)
x(t) ~某种群 t 时刻的数量(人口)
x (t)rx(1 x) N
t, xN, x=N是稳定平衡点(与r大小无关)
离散
yk ~某种群第k代的数量(人口)
y
g
需求曲线变为水平 y0 以行政手段控制价格不变
0
2. 使 尽量小,如 =0 y
供应曲线变为竖直
靠经济实力控制数量不变
0
f
x g
f
x0
x
模型的推广 生产者管理水平提高 xk1h(yk)
• 生产者根据当前时段和前一时 段的价格决定下一时段的产量。
xk1
h

浙江大学数学建模第四章基于线性代数与差分方程方法的模型

浙江大学数学建模第四章基于线性代数与差分方程方法的模型
(i,i)为可取状态,这是因为总可以适当安排而使他 们是 i对夫妻。 (ii)可取运算: 过河方式可以是一对夫妻、两个男人或两个女人, 这一问题的状态和运算与 当然也可以是一人过河。转移向量可取成 ((- 前一问题有所不同,根据 im,(-1)in),其中m、n可取0、1、2,但必须 1) 题意,状态应能反映出两 满足1≤m+n≤2。当j为奇数时表示过河。 当j为偶 岸的男女人数,过河也同 数时表示由对岸回来,运算规则同普通向量的加 样要反映出性别 法。
2.移位密码体制
移位密码采用移位法进行加密,明文中的字母重新排列,本 身不变,只是位置改变了。 另一种移位 法采用将字母表中的字母平移若干位的方法来构造 早在4000多年前,古希腊人就用一种名 叫“天书”的器械 密文字母表,传说这类方法是由古罗马皇帝凯撒最早使用的, 来加密消息。该密码器械是用一条窄长的草纸缠绕在一个 故这种密文字母表被称为凯撒字母表。例如,如用将字母表向 直径确定的圆筒上,明文逐行横写在纸带上,当取下纸带 右平移3位的方法来构造密文字母表,可 得: 时,字母的次序就被打乱了,消息得以隐蔽。收方阅读消 明文字母表: ABCDEFGHIJKLMNOPQRSTUVWXYZ 息时,要将纸带重新绕在直径与原来相同的圆筒上,才能 密文字母表: DEFGHIJKLMNOPQRTSUVWXYZABC 看到正确的消息。在这里圆筒的直径起到了密钥的作用。 “WKDQN BRX” 因此 “THANK YOU” 以上两种移位较易被人破译,为打破字母表中原有的顺序还可 采用所谓路线加密法,即把明文字母表按某种既定的顺序安排 在一个矩阵中,然后用另一种顺序选出矩阵中的字母来产生密 文表。
§4.2 密码的设计,解码与破译
密码的设计和使用至少可从追溯到四千多年前的埃及 ,巴 比伦、罗马和希腊,历史极为久远 。古代隐藏信息的方法 主要有两大类: 其一为隐藏信息载体,采用隐写术 等; 其二为变换信息载体,使之无法为一般人所理解 。

数学建模中的差分方程与微分方程

数学建模中的差分方程与微分方程

数学建模是一门研究如何用数学方法解决实际问题的学科,它在现代科学、工程技术以及社会经济领域中扮演着重要的角色。

在数学建模的过程中,我们经常会遇到需要描述连续或离散变化的问题,而差分方程与微分方程则成为了解决这类问题的有力工具。

差分方程是描述离散变化的方程,它将一个变量与它在前一时刻或前几个时刻的取值联系起来。

在数学建模中,差分方程常常被用来描述离散的时间或空间变化,比如物种数量的变化、金融市场的波动等。

差分方程最简单的形式是递推式,它用一个前一时刻的变量的值来表示当前时刻的变量的值。

例如,一个典型的一阶差分方程可以写作:$x_{n+1}=f(x_n)$,其中$x_n$表示第$n$个时刻的变量的值,$f(x_n)$表示根据$x_n$计算出的$x_{n+1}$的函数。

通过递推式,我们可以得到变量在不同时刻的取值,进而研究它的变化规律。

微分方程是描述连续变化的方程,它涉及到变量对时间的导数或各个变量之间的关系。

微分方程在数学建模中的应用非常广泛,尤其在物理学、生物学等自然科学领域中经常被用来描述变化的物理现象。

微分方程的形式多种多样,比如一阶线性微分方程、二阶非线性微分方程等等。

一阶微分方程的一般形式可以写作:$\frac{dx}{dt}=f(x,t)$,其中$x$表示一个或多个变量,$t$表示时间,$f(x,t)$表示$x$和$t$的关系。

通过求解微分方程,我们可以得到变量随时间的变化规律,并进一步分析问题。

在实际问题中,差分方程与微分方程往往会相互呼应和融合,一些问题既可以用差分方程描述离散变化,也可以用微分方程描述连续变化。

这时,我们可以通过将差分方程转化为微分方程或将微分方程离散化为差分方程来求解问题。

例如,在人口增长的问题中,我们可以通过建立一个差分方程来描述每一年的人口数量,而利用微分方程的分析方法可以得到人口增长的长期行为。

又例如,在物理学中,连续介质的运动可以用微分方程描述,而粒子的运动可以用差分方程描述。

差分方程模型介绍

差分方程模型介绍
function x=zwfz(x0,n,b) c=10;a1=0.5;a2=0.25; p=a1*b1*c; q=a2*b*91-a1)*b*c; x(1)=x0; x(2)=p*x(1); for k=3:n x(k)=p*x(k-1)+q*x(k-2); end
结果分析:Xk= pXk-1 + qXk-2
∗ 以k=0时X0=M代入,递推n次可得n年后本息为
xn = (1 + r ) M
n
∗ 例2 污水处理厂每天可将处理池的污水浓度降低一个固 定比例q,问多长时间才能将污水浓度降低一半? ∗ 记第k天的污水浓度为Ck,则第k+1天的污水浓度为 Ck+1=(1q)Ck, k=0,1,2,···· 从k=0开始递推n次得
模型及其求解
∗ 记一棵植物春季产种的平均数为C,种子能活过一个冬天的 (1岁种子)比例为b,活过一个冬天没有发芽又活过一个冬天 的(2岁种子)比例仍为b,1岁种子发芽率a1,2岁种子发芽 率a2。 ∗ 设C,a1,a2固定,b是变量,考察能一直繁殖的条件 ∗ 记第k年植物数量为Xk,显然Xk与Xk-1,Xk-2有关,由Xk-1决 定的部分是 a1bCXk-1,由Xk-2决定的部分是 a2b(1-a1)bCXk-2
• 用矩阵表示
x1 (k + 1) 0.6 0.2 0.1 x1 (k ) x2 (k + 1) = 0.3 0.7 0.3 x2 ( k ) x (k + 1) 0.1 0.1 0.6 x ( k ) 3 3
λ1,2 < 1, xk → 0(k → ∞)
λ 1, 2 > 1, x k → ∞ ( k → ∞ )

差分方程数学建模分析

差分方程数学建模分析
=Y — 一X ) >0 o ( o,
规 律 和运 算关 系等式 ,建 立起 差分 方 程 。 12 对事 物 系统进 行 划分 ,划分 成若干 子 系统 ,在 每个 子 系统 . 中 引入恰 当的 变量 或 向量 ,然 后分析 建 立起 子过 程 间的这 种 量 的关 系等式 ,从而 建立 起 差分 方程 , 着重 强调 的是在 此过 程 中 ,时段 或子 系统 的 划分方 式是 非 常非 常 重要 的 ,应 当结 合 已有 的信 息和 分 析条 件 ,从 多种可 选方 式 中挑 选 易于 分 析 、针对 性 强的 划分 ,同时 ,对 划 分后 的时 段或 子过 程 ,引入 哪些 变量 或 向量 都是 至关 重要 的 ,要 仔 细分 析 、选择 ,尽 量 扩大 对 过程 或 系统 的数 量感 知范 围 ,包 括对 已有的 、 已知的 若干 量 进行 结 合运 算 、取 最运 算等 处理 方式 , 目的 是 建立 起 简洁 、深 刻 、易于 求解 分析 的 差分方 程 。 2 模 型 举 例
Y =f hy ) [( 】
这就 是 两个 差分 方程 , 属一 阶非 线性 差分 方程 。
于是 2.1 x++
即 2. + x+ 2
一+a , =(+a )o l px 1  ̄ X
++ l :(+ )。 1
3几 何模 型 分析
为了表现出两个变量 X 和 的变化过程, 我们可以借助已有的函 数 f 和 g , 过对应 关系 的几何表现 把点列 ( , ,和 n 在 通 Y) +Y) l 坐标 系 中描 绘 出来 ,进而 分析 它们的变化规 律 、 势、找稳 定点. 中 趋 其 (nY ) X, ( ) Y) X g + ) X , =(nf x) ( , :(n ( ) 将 点 列 P( I 。 P (2Y)P (3Y )P (4Y ) … 一 接起来 , 1X, ) 2X 1 3X 3 x ,,… Y, , , 连 就会形成 象蛛 一样的折线,这个图形被称作为蛛网模型。

数学建模中的差分法

数学建模中的差分法

步数n可任意大,但n太大,会有误差积累。
优点:容易编程计算。
西北大学数学系
例2 从 t0 出发并取 t 1
的近似解。 dN rN , dt
,求下列初值问题 N (0) N0
解 t0 0, N (0) N0
t1 t0 t 1 t2 t1 t 2 t3 3
(t, x, t) (1 ) f (t, x) f (x t , y t f (t, x)) 2 2
西北大学数学系
(t, x, t) (1 ) f (t, x) f (x t , y t f (t, x)) 2 2
(t, x, t) f (t, x)

yn1

yn

g(tn ,
xn ,
yn )t
步数n可任意大,但n太大,会有误差积累。
西北大学数学系
对捕食模型
dx dt

3x

xy

dy
dt

xy

2
y
用Euler法求出前三次逼近,初始条件为
t0 0, x0 1, y0 2, t 0.1
解 t1 t0 t 0.1 t2 t1 t 0.2 t3 0.3
xk1 axk b, k 0,1,2,,
(1)
满足方程 x ax b 的解,称为上方程的平衡点。
即平衡点为 x b . 1 a
当k 时,xk x, 则称 x 是稳定的, 否则是不稳定的。
西北大学数学系
xk1 axk b, k 0,1,2,,
(4)
平衡点为 x 0. 为了得到(4)零点的稳定性
我们求解方程(4)。

数学建模方法之差分方程模型

数学建模方法之差分方程模型

数学建模方法之差分方程模型差分方程模型是数学建模中常用的一种方法,它基于差分方程来描述问题,并用差分方程来求解问题。

所谓差分方程,是指用差分代替微分的方程,它是一种离散的模型。

在实际问题中,很多情况下,并不能直接通过微分方程来描述问题,而差分方程模型则可以通过离散化的方法来近似地描述问题。

差分方程模型的优点之一是可以适用于离散化的数据,对于实际问题的离散化模型建立是非常有帮助的。

差分方程模型的另一个优点是可以通过数值方法来求解,不需要进行繁琐的解析推导,因此适用于复杂问题的求解。

差分方程模型的基本形式为:yn+1 = fn(yn, yn-1, ..., yn-k)其中,yn表示第n个时刻的解,fn是一个给定的函数,表示通过前k个时刻的解来计算第n+1个时刻的解。

这个方程是离散的,通过已知的初始条件来逐步递推获得结果。

差分方程模型的适用范围非常广泛,可以用于描述和预测各种动态过程。

例如,差分方程模型可以用来描述人口增长模型、生态系统模型、传染病模型等等。

在这些例子中,差分方程模型可以通过已知的数据和初始条件来预测未来的发展趋势。

差分方程模型的建立步骤主要包括以下几个方面:1.确定问题的描述和目标:明确问题的背景和目标,确定需要建立差分方程模型的原因和用途。

2.确定模型的变量和参数:根据实际问题,确定需要用到的变量和参数。

3.确定差分方程的形式和函数:根据问题的特点和要求,选择合适的差分方程形式和函数。

这部分需要结合实际问题和数学方法来确定。

4.确定初始条件和边界条件:确定差分方程模型的初始条件和边界条件。

这部分是求解差分方程的前提条件。

5.差分方程的求解和分析:通过数值方法求解差分方程,得到数值解,并对结果进行分析和解释。

数学建模常见差分方程方法

数学建模常见差分方程方法

(a
1),
xt


(a
1)N
Pt

,于是(2)式又可改写为
xt1 bxt (1 xt ) f ( xt ), t 0,1,2,
(3)
虽然,(3)式是一个非线性差分方程,但对确定的初值x0, 其差微后分分的方方程程x1(稳可定3利)性用有的方两讨程个论确平,定衡非的点线递,性推即差关x分系*=方迭0和程代平求衡出x*点。的b稳b。1定类性似也于
r(xm ) 0
s r r(x) r(1 x )
xm
xm
阻滞增长模型(Logistic模型)
dx rx dt
dx/dt
dx r(x)x rx(1 x )
dt
xm
x
xm
xm/2
0
xm/2 xm x
x(t)
xm
1 ( xm 1)e rt
x0
x0
0
t
x(t)~S形曲线, x增加先快后慢
Fn

c1

1
2
5
n

c2

1
2
5
ቤተ መጻሕፍቲ ባይዱ
n
由初始条件 F1 1, F2 1 得
1 c1 2
5
c2
1 2
5

1
2
2
1 5
c1
2

c2
1 2
5

1
联立解得:
c1
xk b1xk1 L bk 0
(2)
称为差分方程(1)的特征方程,其根称为特征根。
{ 例:求Fibonacci数的通项:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档